ALMOST CONVEX VALUED PERTURBATION TO TIME OPTIMAL CONTROL SWEEPING PROCESSES

Doria Affane ${ }^{1}$ and Dalila Azzam-Laouir ${ }^{1}$

Abstract

In this work, we study the existence of solutions of a perturbed sweeping process and of a time optimal control problem under a condition on the perturbation that is strictly weaker than the usual assumption of convexity.

Mathematics Subject Classification. 34A60, 28A25, 28A20.

Received March 17, 2014. Revised April 26, 2015.

1. Introduction

The existence of solutions for the following first order differential inclusion governed by the sweeping process

$$
(P)\left\{\begin{array}{c}
\dot{u}(t) \in-N_{K(t)}(u(t))+F(t, u(t)), \text { a.e } t \in[0, T], \\
u(t) \in K(t), \forall t \in[0, T], \\
u(0)=u_{0}
\end{array}\right.
$$

where $N_{K(t)}($.$) denotes the normal cone to K(t)\left(K(t)\right.$ are convex or non-convex sets) and $F:[0, T] \times \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{d}$ is a convex compact valued multifunction, Lebesgue-mesurable on $[0, T]$ and upper semicontinuous on \mathbb{R}^{d}, has been studied by many authors, see for example [5-7], and their references. Our aim in this paper is to provide existence results for the problem

$$
\left(P_{F}\right)\left\{\begin{array}{c}
\dot{u}(t) \in-N_{K}(u(t))+F(u(t)), \text { a.e } t \in[0, T], \\
u(t) \in K, \forall t \in[0, T], \\
u(0)=u_{0}
\end{array}\right.
$$

where K is a non-nempty closed and ρ-prox regular subset of \mathbb{R}^{d} and $F: \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{d}$ is an upper semicontinuous multifunction with almost-convex values, which is a strictly weaker condition than the convexity. Note that in [9], Cellina and Ornelas studied the first order Cauchy problem $\dot{u}(t) \in F(u(t)), u(0)=u_{0}$, with F an upper semicontinuous multifunction with non-empty compact and almost convex values, and in [1] we have extended this result to a second order differential inclusion with boundary conditions. Moreover, we prove the existence of solutions to the time optimal control problem $\dot{u}(t) \in-N_{K}(u(t))+f(u(t), \nu(t)), \nu(t) \in U(u(t))$, when the

[^0]set $F(x)=f(x, U(x))$ is compact and almost convex. Filippov in [12], proved the first general theorem on the existence of solutions to a minimum time control problem of the form $\dot{u}(t)=f(u(t), \nu(t)), \nu(t) \in U(u(t))$, the classical assumption of convexity of the images of the map $F(x)=f(x, U(x))$ was replaced in [9] by the weaker assumption of almost convexity of the same images.

This paper is organized as follows. In Section 2 we present some notation and preliminaries, in Section 3 we prove the existence of solutions of $\left(P_{F}\right)$ and of a time optimal control problem where F is a multifunction with non-convex values, using the convexified problem.

2. Notation and preliminaries

We denote by $\overline{\mathbf{B}}$ the unit closed ball of \mathbb{R}^{d}. $\mathbf{L}_{\mathbb{R} d}^{1}([0, T])$ is the space of all Lebesgue integrable \mathbb{R}^{d}-valued mappings defined on $[0, T]$. By $\mathbf{C}_{\mathbb{R}^{d}}([0, T])$ we denote the Banach space of all continuous mappings $u:[0, T] \rightarrow \mathbb{R}^{d}$ endowed with the sup-norm.

For a subset $A \subset \mathbb{R}^{d}, \operatorname{co}(A)$ denotes the convex hull of A and $\overline{c o}(A)$ denotes its closed convex hull.
For a nonempty closed subset S of \mathbb{R}^{d}, we denote by $d_{S}($.$) the usual distance function associated with S$, i.e., $d_{S}(u)=\inf _{y \in S}\|u-y\|, \operatorname{Proj}_{S}(u)$ the projection of u onto S defined by

$$
\operatorname{Proj}_{S}(u)=\left\{y \in S: \quad d_{S}(u)=\|u-y\|\right\}
$$

and $\delta^{*}\left(x^{\prime}, S\right)=\sup _{y \in S}\left\langle x^{\prime}, y\right\rangle$ the support function of S at $x^{\prime} \in \mathbb{R}^{d}$.
Let X be a vector space, a set $D \subset X$ is called almost convex if for every $\xi \in \operatorname{co}(D)$ there exist λ_{1} and λ_{2}, $0 \leq \lambda_{1} \leq 1 \leq \lambda_{2}$, such that $\lambda_{1} \xi \in D, \lambda_{2} \xi \in D$.

Every convex set is almost convex. If a set D is almost convex and $0 \in \operatorname{co}(D)$, then $0 \in D$. Typical cases of almost convex sets are $D=\partial C$, with C a convex set not containing the origin, or $D=\{0\} \cup \partial C, C$ a convex set containing the origin. Other notions of almost convexity exist in the literature (sometimes, a subset $D \subset \mathbb{R}^{d}$ is called almost convex if $\operatorname{cl}(D)$ is convex and $\operatorname{ri}(c l(D)) \subset D)$.

The following results are needed in the proof of our theorems.
Theorem 2.1 (see [2]). Let us consider a sequence of absolutely continuous mappings $x_{k}($.$) from an interval I$ of \mathbb{R} to \mathbb{R}^{d} satisfying
(a) $\forall t \in I,\left(x_{k}(t)\right)$ is a relatively compact subset of \mathbb{R}^{d};
(b) there exists a positive function $\delta(.) \in \mathbf{L}_{\mathbb{R}}^{1}(I)$ such that, for almost all $t \in I,\left\|\dot{x}_{k}(t)\right\| \leq \delta(t)$.

Then, there exists a subsequence (again denoted by) $\left(x_{k}().\right)$ converging to an absolutely continuous mapping $x($. from I to \mathbb{R}^{d} in the sense that:
(i) $\left(x_{k}().\right)$ converges uniformly to $x($.$) over compact subsets of I$;
(ii) $\left(\dot{x}_{k}().\right)$ converges weakly to $\dot{x}($.$) in \mathbf{L}_{\mathbb{R}^{d}}^{1}(I)$.

Theorem 2.2 (see [4]). Let U be a topological space and let Φ be a multifunction from $[0, T] \times U$ with non empty convex compact values in a Hausdorff locally convex space E such that for every $t \in[0, T], \Phi(t,$.$) is upper$ semicontinuous and for every $x \in U, \Phi(., x)$ is Lebesgue-mesurable. Let $\left(x_{n}\right)$ and x defined from $[0, T]$ to U and $\left(y_{n}\right)$ and y be scalarly Lebesgue-integrable mappings from $[0, T]$ to E. We assume the following hypotheses
(a) there exists a sequence $\left(e_{n}^{\prime}\right)$ in E^{\prime} which separates the points of E
(b) $\lim _{n \rightarrow \infty} x_{n}(t)=x(t)$, a.e.
(c) for every fixed $x^{\prime} \in E^{\prime}$, the sequence $\left(\left\langle x^{\prime}, y_{n}().\right\rangle\right)$ converges to $\left\langle x^{\prime}, y().\right\rangle$ with respect to the weak topology $\sigma\left(\mathbf{L}_{E}^{1}([0, T]), \mathbf{L}_{E^{\prime}}^{\infty}([0, T])\right)$
(d) $y_{n}(t) \in \Phi\left(t, x_{n}(t)\right)$, a.e. Then $y(t) \in \Phi(t, x(t))$, a.e.

We need in the sequel to recall some definitions and results that will be used throughout the paper. Let G be an open subset of a Hilbert space H and $h: G \rightarrow(-\infty,+\infty]$ be a lower semicontinuous function. The proximal subdifferential $\partial^{P} h(x)$, of h at x (see [11]) is defined by $\xi \in \partial^{P} h(x)$ iff there exist positive numbers σ and ς such that

$$
h(y)-h(x)+\sigma\|y-x\|^{2} \geq\langle\xi, y-x\rangle, \forall y \in x+\varsigma \overline{\mathbf{B}}_{H}
$$

Let x be a point of $S \subset H$. We recall (see [11]) that the proximal normal cone to S at x is defined by $N_{S}^{P}(x)=\partial^{P} \delta(x, S)$, where $\delta(., S)$ denotes the indicator function of S, i.e., $\delta(x, S)=0$ if $x \in S$ and $+\infty$ otherwise. Note that the proximal normal cone is also given by:

$$
N_{S}^{P}(x)=\left\{\xi \in H: \exists \alpha>0 \text { s.t } x \in \operatorname{Proj}_{S}(x+\alpha \xi)\right\}
$$

If h is a real-valued locally-Lipschitz function defined on H, the Clarke subdifferential $\partial^{C} h(x)$, of h at x (see [10]) is the nonempty convex compact subset of H given by:

$$
\partial^{C} h(x)=\left\{\xi \in H: h^{\circ}(x ; v) \geq\langle\xi, v\rangle, \forall v \in H\right\}
$$

where

$$
h^{\circ}(x ; v)=\lim _{y \rightarrow x,} \sup _{t \downarrow 0} \frac{h(y+t v)-f(y)}{t}
$$

is the generalized directional derivative of h at x in the direction v. The Clarke normal cone $N_{S}^{C}(x)$ to S at $x \in S$ is defined by polarity with $T_{S}^{C}(x)$, that is,

$$
N_{S}^{C}(x)=\left\{\xi \in H:\langle\xi, v\rangle \leq 0, \forall v \in T_{S}^{C}(x)\right\}
$$

where $T_{S}^{C}(x)$ denotes the clarke tangent cone and is given by

$$
T_{S}^{C}(x)=\left\{v \in H: d_{S}^{\circ}(x ; v)=0\right\} .
$$

Recall now, that for a given $\rho \in] 0,+\infty$] the subset S is uniformly ρ-prox-regular (see [13]) or equivalently ρ-proximally smooth (see [11]) if and only if every nonzero proximal normal to S can be realized by a ρ-ball, this means that for all $\bar{x} \in S$ and all $0 \neq \xi \in N_{S}^{P}(\bar{x})$ one has

$$
\left\langle\frac{\xi}{\|\xi\|}, x-\bar{x}\right\rangle \leq \frac{1}{2 \rho}\|x-\bar{x}\|^{2}
$$

for all $x \in S$. We make the convention $\frac{1}{\rho}=0$ for $\rho=+\infty$. Recall that for $\rho=+\infty$ the uniform ρ-prox-regularity of S is equivalent to the convexity of $\stackrel{\rho}{S}$.

The following proposition summarizes some important consequences of the uniform prox-regularity needed in the sequel. For the proof of these results we refer the reader to [13].

Proposition 2.3. Let S be a non-empty closed subset of H. The following assertions hold:

1) for all $x \in H, \partial d_{S}^{P}(x)=N_{S}^{P}(x) \cap \overline{\mathbf{B}}_{H}$;
2) i) all (usual) normal cones coincide for a uniformly prox-regular set S, and they are denoted by the usual notation N_{S}. The same holds for the subdifferential of $d_{S}($.$) ;$
ii) $\partial d_{S}(x)$ is a weakly compact set;
iii) for all $x \in \mathbb{R}^{d}$ with $d_{S}(x)<\rho, \operatorname{Proj}_{S}(x)$ is a singleton of H.

The following is an important closedness property of the subdifferential of the distance function associated with a multifunction (see [3]).

Theorem 2.4. let $\rho \in] 0,+\infty], \Omega$ be an open subset of H, and $K: \Omega \rightrightarrows H$ be a Hausdorff-continuous multifunction. Assume that $K(z)$ is uniformly ρ-prox-regular for all $z \in \Omega$. Then for a given $0<\sigma<\rho$, the following holds: for any $\bar{z} \in \Omega, \bar{x} \in K(\bar{z})+(\rho-\sigma) \overline{\mathbf{B}}_{H}, x_{n} \rightarrow \bar{x}, z_{n} \rightarrow \bar{z}$ with $z_{n} \in \Omega\left(x_{n}\right.$ not necessarily in $\left.K\left(z_{n}\right)\right)$ and $\xi_{n} \in \partial d_{K\left(z_{n}\right)}\left(x_{n}\right)$ with $\xi_{n} \rightarrow^{w} \bar{\xi}$ one has $\bar{\xi} \in d_{K(z)}(\bar{x})$.
Here $\rightarrow{ }^{w}$ means the weak convergence in H.
Remark 2.5. As a direct consequence of this theorem we have for every $\rho \in] 0,+\infty]$, for a given $0<\sigma<\rho$, and for every multifunction $K: \Omega \rightrightarrows H$ with uniformly ρ-prox regular values, the multifunction $(z, x) \mapsto \partial d_{K(z)}(x)$ is upper semicontinuous from $\left\{(z, x) \in \Omega \times H: x \in K(z)+(\rho-\sigma) \overline{\mathbf{B}}_{H}\right\}$ into H, which is equivalent to the upper semicontinuity of the function $(z, x) \mapsto \delta^{*}\left(p, \partial d_{K(z)}(x)\right)$, on $\left\{(z, x) \in \Omega \times H: x \in K(z)+(\rho-\sigma) \overline{\mathbf{B}}_{H}\right\}$ for any $p \in H$.

Let $\bar{t} \in[0, T]$. We denote by $A_{u_{0}}(\bar{t})=\left\{u(\bar{t}): u(.) \in \mathfrak{T}_{\bar{t}}\left(u_{0}\right)\right\}$ the attainable set at \bar{t} for the problem $\left(P_{F}\right)$, where $\mathfrak{T}_{\bar{t}}\left(u_{0}\right)$ is the set of the trajectories of the differential inclusion $\left(P_{F}\right)$ on the interval $[0, \bar{t}]$.

3. Existence Results

First, we present an existence result of solutions of the problem (P) where $F:[0, T] \times \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{d}$ is a convex compact valued multifunction (see Thm. 1.5 in [7]), and we prove that the set of the trajectories is compact.

Theorem 3.1. Let $T>0$, and let $K:[0, T] \rightrightarrows \mathbb{R}^{d}$ be a nonempty closed valued multifunction satisfying the following assumptions:
$\left(H_{1}\right)$ for each $t \in[0, T], K(t)$ is ρ-prox regular for some fixed $\left.\left.\rho \in\right] 0,+\infty\right]$,
$\left(H_{2}\right) K$ varies in an absolutely continuous way, that is, there exists a nonnegative absolutely continuous function $v:[0, T] \rightarrow \mathbb{R}$ such that

$$
|d(x, K(t))-d(y, K(s))| \leq\|x-y\|+|v(t)-v(s)|
$$

for all $x, y \in \mathbb{R}^{d}$ and all $s, t \in[0, T]$. Let $F:[0, T] \times \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{d}$ be a convex compact valued multifunction such that:
(i) for every $t \in[0, T], F(t,$.$) is upper semicontinuous on \mathbb{R}^{d}$,
(ii) for every $x \in \mathbb{R}^{d}, F(., x)$ is Lebesgue-mesurable on $[0, T]$,
(iii) there are two nonnegative constants p and q such that

$$
F(t, x) \subset(p+q\|x\|) \overline{\mathbf{B}}, \forall(t, x) \in[0, T] \times \mathbb{R}^{d}
$$

Then, for each $u_{0} \in K(0)$:

1) there is an absolutely continuous solution $u:[0, T] \rightarrow \mathbb{R}^{d}$ of the problem (P) satisfying

$$
\|\dot{u}(t)\| \leq \alpha(t)+\beta(t), \text { a.e. } t \in[0, T]
$$

where

$$
\alpha(t)=|\dot{v}(t)|+2\left(p+q\left\|u_{0}\right\|\right)
$$

and

$$
\beta(t)=2 q \int_{0}^{t}[\alpha(s) \exp (2 q(t-s)] \mathrm{d} s
$$

2) for all $\bar{t} \in[0, T]$, the set of the trajectories $\mathfrak{T}_{\bar{t}}\left(u_{0}\right)$, is compact.

Proof.

1) See the proof of Theorem 1.5 in [7].
2) a) Fix any $\bar{t} \in[0, T]$, and let us prove that the set

$$
\mathfrak{T}_{\bar{t}}\left(u_{0}\right)=\left\{u \in \mathbf{C}_{\mathbb{R}^{d}}([0, \bar{t}]): u \text { is an absolutely continuous solution of }(P)\right\},
$$

is compact. Let $\left(u_{n}\right)$ be a sequence in $\mathfrak{T}_{\bar{t}}\left(u_{0}\right)$. Then, for each $n \in \mathbb{N}, u_{n}$ is an absolutely continuous solution of (P), and

$$
\begin{equation*}
\left\|\dot{u}_{n}(t)\right\| \leq \alpha(t)+\beta(t), \text { a.e. } t \in[0, \vec{t}] . \tag{3.1}
\end{equation*}
$$

We get, for almost every $t \in[0, t]$,

$$
\left\|u_{n}(t)\right\| \leq\left\|u_{0}+\int_{0}^{t} \dot{u}_{n}(s) \mathrm{d} s\right\| \leq\left\|u_{0}\right\|+\int_{0}^{t}(\alpha(s)+\beta(s)) \mathrm{d} s
$$

so,

$$
\begin{equation*}
\left\|u_{n}(t)\right\| \leq\left\|u_{0}\right\|+\int_{0}^{T}(\alpha(s)+\beta(s)) \mathrm{d} s=\left\|u_{0}\right\|+\|\alpha+\beta\|_{\mathbf{L}_{\mathbb{R}}^{1}([0, T])} . \tag{3.2}
\end{equation*}
$$

We conclude that $\left(u_{n}(t)\right)$ is relatively compact. On the other hand, for all $t_{1}, t_{2} \in[0, \overparen{t}]$ such that $t_{1} \leq t_{2}$ we have

$$
\left\|u_{n}\left(t_{1}\right)-u_{n}\left(t_{2}\right)\right\| \leq \int_{t_{1}}^{t_{2}}\left\|\dot{u}_{n}(s)\right\| \mathrm{d} s \leq \int_{t_{1}}^{t_{2}}(\alpha(s)+\beta(s)) \mathrm{d} s .
$$

Since $(\alpha+\beta) \in \mathbf{L}_{\mathbb{R}}^{1}\left([0, \notin)\right.$), we get the equicontinuity of the sequence $\left(u_{n}().\right)$. By the Ascoli-Arzelà theorem we conclude that $\left(u_{n}().\right)$ is relatively compact in $\mathbf{C}_{\mathbb{R}^{d}}([0, \not])$, and since $\left\|\dot{u}_{n}(t)\right\| \leq \alpha(t)+\beta(t)$, a.e. on $[0, \vec{t}]$, we conclude by Theorem 2.1, that there exists a subsequence (again denoted by) $\left(u_{n}().\right)$ converging to an absolutely continuous mapping $u($.$) from [0, \nexists]$ to \mathbb{R}^{d} in the sense that, $\left(u_{n}().\right)$ converges uniformly to $u($.$) and$ $\left(\dot{u}_{n}().\right)$ converges $\sigma\left(\mathbf{L}_{\mathbb{R}^{d}}^{1}([0, \vec{t}]), \mathbf{L}_{\mathbb{R}^{d}}^{\infty}([0, \bar{t}])\right)$ to $\dot{u}($.$) . Then$

$$
u(t)=\lim _{n \rightarrow \infty} u_{n}(t)=u_{0}+\lim _{n \rightarrow \infty} \int_{0}^{t} \dot{u}_{n}(s) \mathrm{d} s=u_{0}+\int_{0}^{t} \dot{u}(s) \mathrm{d} s, \forall t \in[0, \vec{t}] .
$$

Now, for each $n \in \mathbb{N}$, since $u_{n}($.$) is a solution of (P)$, there exists a measurable mapping $f_{n}:[0, \bar{t}] \rightarrow \mathbb{R}^{d}$ such that for almost every $t \in[0, \bar{t}], f_{n}(t) \in F\left(t, u_{n}(t)\right)$, and

$$
\dot{u}_{n}(t)-f_{n}(t) \in-N_{K(t)}\left(u_{n}(t)\right) .
$$

As

$$
\left\|f_{n}(t)\right\| \leq p+q\left\|u_{n}(t)\right\| \text {, a.e. } t \in[0, t],
$$

using the relation (3.2) we get

$$
\begin{equation*}
\left\|f_{n}(t)\right\| \leq p+q\left[\left\|u_{0}\right\|+\|\alpha+\beta\|_{\mathbf{L}_{\mathbb{1}}^{1}([0, T])}\right]=m_{2} . \tag{3.3}
\end{equation*}
$$

It is clear that $\left(f_{n}\right)$ is bounded in $\mathbf{L}_{\mathbb{R}^{d}}^{\infty}([0, \vec{t}])$, taking a subsequence if necessary, we may conclude that $\left(f_{n}\right)$ weakly* or $\sigma\left(\mathbf{L}_{\mathbb{R}^{d}}^{\infty}([0, t)), \mathbf{L}_{\mathbb{R}^{d}}^{1}([0, t])\right]$-converges to some mapping $f \in \mathbf{L}_{\mathbb{R}^{d}}^{\infty}([0, t])$. Consequently, for all $v(.) \in$ $\mathbf{L}_{\mathbb{R}^{d}}^{1}([0, t])$, we have

$$
\lim _{n \rightarrow \infty}\left\langle f_{n}(.), v(.)\right\rangle=\langle f(.), v(.)\rangle .
$$

Let $z(.) \in \mathbf{L}_{\mathbb{R}^{d}}^{\infty}([0, \nexists]) \subset \mathbf{L}_{\mathbb{R}^{d}}^{1}([0, \nexists])$, then

$$
\lim _{n \rightarrow \infty}\left\langle f_{n}(.), z(.)\right\rangle=\langle f(.), z(.)\rangle .
$$

This shows that $\left(f_{n}().\right)$ weakly or $\sigma\left(\mathbf{L}_{\mathbb{R}^{d}}^{1}([0, \bar{t}]), \mathbf{L}_{\mathbb{R}^{d}}^{\infty}([0, \bar{t}])\right)$-converges to $f($.$) , by Theorem 2.2$ we conclude that $f(t) \in F(t, u(t))$ a.e. on $[0, t]$.

Let us prove now that u is a solution of the problem (P). By the relation (3.1) and (3.3), we get for almost every $t \in[0, \bar{t}]$

$$
\left\|\dot{u}_{n}(t)-f_{n}(t)\right\| \leq\left\|\dot{u}_{n}(t)\right\|+\left\|f_{n}(t)\right\| \leq \alpha(t)+\beta(t)+m_{2}:=\gamma(t)
$$

that is,

$$
\dot{u}_{n}(t)-f_{n}(t) \in \gamma(t) \overline{\mathbf{B}}
$$

since

$$
\dot{u}_{n}(t)-f_{n}(t) \in-N_{K(t)}\left(u_{n}(t)\right)
$$

we get by (1) of Proposition 2.3

$$
\begin{equation*}
\dot{u}_{n}(t)-f_{n}(t) \in-\gamma(t) \partial d_{K(t)}\left(u_{n}(t)\right) \tag{3.4}
\end{equation*}
$$

Remark that $\left(\dot{u}_{n}-f_{n}\right)$ weakly converges in $\mathbf{L}_{\mathbb{R}^{d}}^{1}([0, \bar{t}])$ to $\dot{u}-f$. An application of the Mazur's trick to $\left(\dot{u}_{n}-f_{n}\right)$ provides a sequence $\left(z_{n}\right)$ with $z_{n} \in \operatorname{co}\left\{\dot{u}_{k}-f_{k}: k \geq n\right\}$ such that $\left(z_{n}\right)$ converges strongly in $\mathbf{L}_{\mathbb{R}^{d}}^{1}([0, \bar{t}])$ to $\dot{u}-f$. We can extract from $\left(z_{n}\right)$ a subsequence which converges a.e. to $\dot{u}-f$. Then, for almost every $t \in[0, \bar{t}]$

$$
\dot{u}(t)-f(t) \in \bigcap_{n \geq 0} \overline{\left\{z_{k}(t): k \geq n\right\}} \subset \bigcap_{n \geq 0} \overline{c o}\left\{\dot{u}_{k}(t)-f_{k}(t): k \geq n\right\} .
$$

Fix any $t \in[0, \bar{t}]$ and $\mu \in \mathbb{R}^{d}$, then the last relation gives

$$
\begin{aligned}
\langle\mu, \dot{u}(t)-f(t)\rangle & \leq \limsup _{n \rightarrow \infty} \delta^{*}\left(\mu,-\gamma(t) \partial d_{K(t)}\left(u_{n}(t)\right)\right) \\
& \leq \delta^{*}\left(\mu,-\gamma(t) \partial d_{K(t)}(u(t))\right)
\end{aligned}
$$

where the second inequality follows from Theorem 2.4 and Remark 2.5. Taking the supremum over $\mu \in \mathbb{R}^{d}$, we deduce that

$$
\delta\left(\dot{u}(t)-f(t),-\gamma(t) \partial d_{K(t)}(u(t))=\delta^{* *}\left(\dot{u}(t)-f(t),-\gamma(t) \partial d_{K(t)}(u(t)) \leq 0\right.\right.
$$

which entails

$$
\left.\dot{u}(t)-f(t) \in-\gamma(t) \partial d_{K(t)}(u(t))\right) \subset-N_{K(t)}(u(t))
$$

where the last set is well defined since $u_{n}(t) \in K(t), K(t)$ is closed and then $u(t) \in K(t)$. This shows that $\mathfrak{T}_{\bar{t}}\left(u_{0}\right)$ is compact.
b) With the same arguments, one can prove that $A_{u_{0}}(\bar{t})$ is compact.

Now we are able to give an existence result and a property of the attainable set for the problem $\left(P_{F}\right)$ where F has almost convex compact values. For the proof of our Theorem we need the following result.

Theorem 3.2. Let K be a non-empty closed and ρ-prox regular set. Let $F: \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{d}$ be a compact valued multifunction, upper semicontinuous on \mathbb{R}^{d}. Suppose that there are nonnegative constants p and q such that

$$
F(x) \subset(p+q\|x\|) \overline{\mathbf{B}}, \forall x \in \mathbb{R}^{d}
$$

Let $u_{0} \in K$ and let $x:[0, T] \rightarrow \mathbb{R}^{d}$ be an absolutely continuous solution of the problem

$$
\left(P_{c o F}\right)\left\{\begin{array}{c}
\dot{u}(t) \in-N_{K}(u(t))+c o(F(u(t))), \text { a.e. } t \in[0, T] \\
u(t) \in K, \forall t \in[0, T] \\
u(0)=u_{0}
\end{array}\right.
$$

Assume that there are two integrable functions $\lambda_{1}($.$) and \lambda_{2}($.$) defined on [0, T]$, satisfying $0 \leq \lambda_{1}(t) \leq 1 \leq \lambda_{2}(t)$ and such that, for almost every $t \in[0, T]$, we have

$$
\lambda_{1}(t) f(t) \in F(x(t)) \quad \text { and } \quad \lambda_{2}(t) f(t) \in F(x(t))
$$

where $f:[0, T] \rightarrow \mathbb{R}^{d}$ is a measurable mapping satisfying $\dot{x}(t) \in-N_{K}(x(t))+f(t)$ a.e. and $f(t) \in \operatorname{co}(F(x(t)))$, for all $t \in[0, T]$. Then there exists a nondecreasing absolutely continuous map $t($.$) of the interval [0, T]$ into itself, such that the map $\tilde{x}(\tau)=x(t(\tau))$ is a solution of the problem $\left(P_{F}\right)$. Moreover, $\tilde{x}(0)=x(0)$ and $\tilde{x}(T)=x(T)$.

Proof.
Step 1. Let $[a, b] \subset[0, T]$ be an interval, and assume that, on this interval, there exist two integrable functions $\lambda_{1}($.$) and \lambda_{2}($.$) , with the properties stated above. In addition, assume that \lambda_{1}(\tau)>0$ a.e. We claim that there exist two measurable subsets of $[a, b]$, having characteristic functions \mathcal{X}_{1} and \mathcal{X}_{2} such that $\mathcal{X}_{1}+\mathcal{X}_{2}=\mathcal{X}_{[a, b]}$, and an absolutely continuous function $s:[a, b] \rightarrow[a, b]$ with $s(a)-s(b)=a-b$, such that

$$
\dot{s}(\tau)=\mathcal{X}_{1}(\tau) \frac{1}{\lambda_{1}(\tau)}+\mathcal{X}_{2}(\tau) \frac{1}{\lambda_{2}(\tau)}
$$

Set

$$
\psi(\tau)=\left\{\begin{array}{cl}
\frac{1}{2} & \text { when } \lambda_{1}(\tau)=\lambda_{2}(\tau)=1 \\
\frac{\lambda_{2}(\tau)-1}{\lambda_{2}(\tau)-\lambda_{1}(\tau)} & \text { otherwise }
\end{array}\right.
$$

With this definition we have that $0 \leq \psi(\tau) \leq 1$ and both equalities hold true

$$
1=\psi(\tau)+(1-\psi(\tau))=\psi(\tau) \lambda_{1}(\tau)+(1-\psi(\tau)) \lambda_{2}(\tau) .
$$

In particular, we have

$$
\int_{a}^{b} 1 \mathrm{~d} \tau=\int_{a}^{b}(\psi(\tau)+(1-\psi(\tau))) \mathrm{d} \tau=\int_{a}^{b}\left(\frac{\psi(\tau) \lambda_{1}(\tau)}{\lambda_{1}(\tau)}+\frac{(1-\psi(\tau)) \lambda_{2}(\tau)}{\lambda_{2}(\tau)}\right) \mathrm{d} \tau .
$$

We wish to apply Liapunov's theorem on the range of measures, to infer the existence of two measurable subsets having characteristic functions $\mathcal{X}_{1}(),. \mathcal{X}_{2}($.$) such that \mathcal{X}_{1}+\mathcal{X}_{2}=\mathcal{X}_{[a, b]}$ and with the property

$$
\begin{equation*}
\int_{a}^{b} 1 \mathrm{~d} \tau=\int_{a}^{b}\left(\mathcal{X}_{1}(\tau) \frac{1}{\lambda_{1}(\tau)}+\mathcal{X}_{2}(\tau) \frac{1}{\lambda_{2}(\tau)}\right) \mathrm{d} \tau . \tag{3.5}
\end{equation*}
$$

However, it is not obvious that the function $\frac{1}{\lambda_{1}(\tau)}$ is integrable. For this purpose, we shall use a device already used in [8]. Consider the sequence of disjoint sets

$$
E^{n}=\left\{\tau \in[a, b]: \quad n<\frac{1}{\lambda_{1}(\tau)} \leq n+1\right\}
$$

We have that $\bigcup_{n \in \mathbb{N}} E^{n}=[a, b]$. Applying Liapunov's theorem to each E^{n}, we infer the existence of two sequences of measurable subsets E_{1}^{n}, E_{2}^{n}, having characteristic functions $\mathcal{X}_{1}^{n}, \mathcal{X}_{2}^{n}$, such that for every n

$$
\int_{E^{n}} 1 \mathrm{~d} \tau=\int_{E^{n}}\left(\mathcal{X}_{1}^{n}(\tau) \frac{1}{\lambda_{1}(\tau)}+\mathcal{X}_{2}^{n}(\tau) \frac{1}{\lambda_{2}(\tau)}\right) \mathrm{d} \tau
$$

For each k, the function

$$
\sigma_{k}(\tau)=\sum_{n=0}^{k}\left(\mathcal{X}_{1}^{n}(\tau) \frac{1}{\lambda_{1}(\tau)}+\mathcal{X}_{2}^{n}(\tau) \frac{1}{\lambda_{2}(\tau)}\right)
$$

is positive, and the sequence $\left(\sigma_{k}().\right)$ converges pointwise monotonically increasing to

$$
\begin{equation*}
\sigma(\tau)=\mathcal{X}_{1}(\tau) \frac{1}{\lambda_{1}(\tau)}+\mathcal{X}_{2}(\tau) \frac{1}{\lambda_{2}(\tau)} \tag{3.6}
\end{equation*}
$$

Moreover, the sequence of sets $V^{k}=\bigcup_{n=0}^{k} E^{n}$ is monotonically increasing to $[a, b]$ so that

$$
\int_{a}^{b} 1 \mathrm{~d} \tau=\int_{\bigcup_{k}} V^{k} 1 \mathrm{~d} \tau=\int \bigcup_{n} E^{n} 1 \mathrm{~d} \tau
$$

and

$$
\int \bigcup_{k} V^{k} 1 \mathrm{~d} \tau=\lim _{k \rightarrow \infty} \int_{V^{k}} 1 \mathrm{~d} \tau
$$

and since the sets E^{n} are disjoint we get

$$
\int_{a}^{b} 1 \mathrm{~d} \tau=\lim _{k \rightarrow \infty} \int_{V^{k}} 1 \mathrm{~d} \tau=\lim _{k \rightarrow \infty} \int_{\bigcup_{n=0}^{k} E^{n}} 1 \mathrm{~d} \tau=\lim _{k \rightarrow \infty} \sum_{n=0}^{k} \int_{E^{n}} 1 \mathrm{~d} \tau
$$

then

$$
\begin{aligned}
\int_{a}^{b} 1 \mathrm{~d} \tau & =\lim _{k \rightarrow \infty} \sum_{n=0}^{k} \int_{E^{n}}\left(\mathcal{X}_{1}^{n}(\tau) \frac{1}{\lambda_{1}(\tau)}+\mathcal{X}_{2}^{n}(\tau) \frac{1}{\lambda_{2}(\tau)}\right) \mathrm{d} \tau \\
& =\lim _{k \rightarrow \infty} \sum_{n=0}^{k} \int_{E^{n}} \sum_{n=0}^{k}\left(\mathcal{X}_{1}^{n}(\tau) \frac{1}{\lambda_{1}(\tau)}+\mathcal{X}_{2}^{n}(\tau) \frac{1}{\lambda_{2}(\tau)}\right) \mathrm{d} \tau=\lim _{k \rightarrow \infty} \sum_{n=0}^{k} \int_{E^{n}} \sigma_{k}(\tau) \mathrm{d} \tau \\
& =\lim _{k \rightarrow \infty} \int_{\bigcup_{n=0}^{k} E^{n}}^{\sigma_{k}(\tau) \mathrm{d} \tau=\lim _{k \rightarrow \infty} \int \bigcup_{n} E^{n} \sigma_{k}(\tau) \mathrm{d} \tau=\int \bigcup_{n} E^{n} \lim _{k \rightarrow \infty} \sigma_{k}(\tau) \mathrm{d} \tau}
\end{aligned}
$$

we conclude that

$$
\int_{a}^{b} 1 \mathrm{~d} \tau=\int_{a}^{b} \sigma(\tau) \mathrm{d} \tau=\int_{a}^{b}\left(\mathcal{X}_{1}(\tau) \frac{1}{\lambda_{1}(\tau)}+\mathcal{X}_{2}(t) \frac{1}{\lambda_{2}(\tau)}\right) \mathrm{d} \tau
$$

Set $\dot{s}(\tau)=\sigma(\tau)$. Then $\int_{a}^{b} \dot{s}(\tau) \mathrm{d} \tau=b-a$.

Step 2.

(a) Consider the set

$$
C=\{\tau \in[0, T]: \quad 0 \in F(x(\tau))\}
$$

It is clear that C is closed. Indeed, let $\left(\tau_{n}\right)$ be a sequence in C converging to $\tau \in[0, T]$. Then, for each $n \in \mathbb{N}, 0 \in F\left(x\left(\tau_{n}\right)\right)$. Since $x($.$) is continuous and F$ is upper semicontinuous with compact values, we conclude that $0 \in F(x(\tau))$, that is, C is closed.
(b) Consider the case in which C is empty. In this case, it cannot be that $\lambda_{1}(\tau)=0$ on a set of positive measure, and the Step 1 can be applied to the interval $[0, T]$. Set $s(\tau)=\int_{0}^{\tau} \dot{s}(\omega) \mathrm{d} \omega, s$ is increasing and we have $s(0)=0$ and $s(T)=\int_{0}^{T} \dot{s}(\omega) \mathrm{d} \omega=T$, that is, s maps $[0, T]$ into itself. Let $t:[0, T] \rightarrow[0, T]$ be its inverse, then $t(0)=0 ; t(T)=T$ and we have $\frac{\mathrm{d}}{\mathrm{d} \tau} s(t(\tau))=\dot{s}(t(\tau)) \dot{t}(\tau)=1$. Then,

$$
\dot{t}(\tau)=\frac{1}{\dot{s}(t(\tau))}=\frac{1}{\sigma(t(\tau))}=\left(\lambda_{1}(t(\tau)) \mathcal{X}_{1}(t(\tau))+\lambda_{2}(t(\tau)) \mathcal{X}_{2}(t(\tau))\right)
$$

Consider the map $\tilde{x}:[0, T] \rightarrow \mathbb{R}^{d}$ defined by $\tilde{x}(\tau)=x(t(\tau))$. We have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \tau} \tilde{x}(\tau) & =\dot{t}(\tau) \dot{x}(t(\tau))=\frac{1}{\dot{s}(t(\tau))} \dot{x}(t(\tau)) \\
& =\left(\lambda_{1}(t(\tau)) \mathcal{X}_{1}(t(\tau))+\lambda_{2}(t(\tau)) \mathcal{X}_{2}(t(\tau))\right) \dot{x}(t(\tau)) \\
& \in\left(\lambda_{1}(t(\tau)) \mathcal{X}_{1}(t(\tau))+\lambda_{2}(t(\tau)) \mathcal{X}_{2}(t(\tau))\right)\left(-N_{K}(x(t(\tau)))+f(t(\tau))\right)
\end{aligned}
$$

by the properties of the normal cone and the assumption on f we get

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \tau} \tilde{x}(\tau) & \in-N_{K}(x(t(\tau)))+f(t(\tau))\left(\lambda_{1}(t(\tau)) \mathcal{X}_{1}(t(\tau))+\lambda_{2}(t(\tau)) \mathcal{X}_{2}(t(\tau))\right) \\
& \subset-N_{K}(x(t(\tau)))+F(x(t(\tau))) \\
& =-N_{K}(\tilde{x}(t(\tau)))+F(\tilde{x}(\tau))
\end{aligned}
$$

(c) Now we shall assume that C is nonempty. Let $c=\sup \{\tau: \tau \in C\}$, there is a sequence $\left(\tau_{n}\right)$ in C such that $\lim _{n \rightarrow \infty} \tau_{n}=c$. Since C is closed we get $c \in C$. The complement of C is open relative to $[0, T]$, it consists of at most countably many nonoverlapping open intervals $] a_{i}, b_{i}$ [, with the possible exception of one of the form $\left[a_{i_{i}}, b_{i_{i}}\right.$ [with $a_{i_{i}}=0$ and one of the form $\left.] a_{i_{f}}, b_{i_{f}}\right]$ with $a_{i_{f}}=c$. For each i, apply Step 1 to the interval $] a_{i}, b_{i}[$ to infer the existence of A_{1}^{i} and A_{2}^{i}, two subsets of $] a_{i}, b_{i}$ [with characteristic functions $\mathcal{X}_{1}^{i}(),. \mathcal{X}_{2}^{i}($.$) such that$ $\mathcal{X}_{1}^{i}()+.\mathcal{X}_{2}^{i}()=.\mathcal{X}_{] a_{i}, b_{i}[}($.$) . Setting$

$$
\dot{s}(\tau)=\frac{1}{\lambda_{1}(\tau)} \mathcal{X}_{1}^{i}(\tau)+\frac{1}{\lambda_{2}(\tau)} \mathcal{X}_{2}^{i}(\tau)
$$

we obtain

$$
\int_{a_{i}}^{b_{i}} \dot{s}(\omega) \mathrm{d} \omega=b_{i}-a_{i}
$$

(d) On $[0, c]$, set

$$
\dot{s}(\tau)=\frac{1}{\lambda_{2}(\tau)} \mathcal{X}_{C}(\tau)+\sum_{i}\left(\frac{1}{\lambda_{1}(\tau)} \mathcal{X}_{1}^{i}(\tau)+\frac{1}{\lambda_{2}(\tau)} \mathcal{X}_{2}^{i}(\tau)\right)
$$

where the sum is over all intervals contained in $[0, c]$. We have that

$$
\int_{0}^{c} \dot{s}(\omega) \mathrm{d} \omega=\kappa \leq c
$$

since $\lambda_{2}(\tau) \geq 1$, and $\int_{a_{i}}^{b_{i}} \dot{s}(\omega) \mathrm{d} \omega=b_{i}-a_{i}$. Setting $s(\tau)=\int_{0}^{\tau} \dot{s}(\omega) \mathrm{d} \omega$, we obtain that $s($.$) is an invertible map$ from $[0, c]$ to $[0, \kappa]$.
(e) Define $t:[0, \kappa] \rightarrow[0, c]$ to be the inverse of $s($.$) . Extend t($.$) as an absolutely continuous map \tilde{t}($.$) on [0, c]$, setting $\dot{\tilde{t}}(\tau)=0$ for $\tau \in] \kappa, c]$. We claim that the mapping $\tilde{x}(\tau)=x(\tilde{t}(\tau))$ is a solution of the problem $\left(P_{F}\right)$ on the interval $[0, c]$. Moreover, we claim that it satisfies $\tilde{x}(c)=x(c)$.
Observe that, as in (b), we have that for $\tau \in[0, \kappa], \tilde{t}(\tau)=t(\tau)$ is invertible and

$$
\dot{t}(\tau)=\lambda_{2}(t(\tau)) \mathcal{X}_{C}(t(\tau))+\sum_{i}\left(\lambda_{1}(t(\tau)) \mathcal{X}_{1}^{i}(t(\tau))+\lambda_{2}(t(\tau)) \mathcal{X}_{2}^{i}(t(\tau))\right)
$$

Since $\frac{\mathrm{d}}{\mathrm{d} \tau} \tilde{x}(\tau)=\dot{t}(\tau) \dot{x}(t(\tau))$ we get

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \tau} \tilde{x}(\tau) & =\dot{x}(t(\tau))\left(\lambda_{2}(t(\tau)) \mathcal{X}_{C}(t(\tau))+\sum_{i}\left(\lambda_{1}(t(\tau)) \mathcal{X}_{1}^{i}(t(\tau))+\lambda_{2}(t(\tau)) \mathcal{X}_{2}^{i}(t(\tau))\right)\right) \\
& \in\left(-N_{K}(x(t(\tau)))+f(t(\tau))\right)\left(\lambda_{2}(t(\tau)) \mathcal{X}_{C}(t(\tau))\right. \\
& \left.+\sum_{i}\left(\lambda_{1}(t(\tau)) \mathcal{X}_{1}^{i}(t(\tau))+\lambda_{2}(t(\tau)) \mathcal{X}_{2}^{i}(t(\tau))\right)\right) \\
& \subset-N_{K}(x(t(\tau)))+F(x(t(\tau)))=-N_{K}(\tilde{x}(\tau))+F(\tilde{x}(\tau))
\end{aligned}
$$

In particular, from $t(\kappa)=c$ and $\dot{\tilde{t}}(\tau)=0$ for all $\tau \in] \kappa, c]$ we obtain

$$
\tilde{t}(\tau)=\tilde{t}(\kappa)=t(\kappa), \forall \tau \in] \kappa, c]
$$

then

$$
\tilde{x}(\kappa)=x(\tilde{t}(\kappa))=x(t(\kappa))=x(\tilde{t}(\tau))=\tilde{x}(\tau), \forall \tau \in] \kappa, c]
$$

so, $\tilde{x}(c)=x(c), \tilde{x}$ is constant on $] \kappa, c]$, and we have

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} \tau} \tilde{x}(\tau)=0 \in F(x(c))=F(\tilde{x}(\tau)) \subset \operatorname{co}(F(\tilde{x}(\tau)), \forall \tau \in] \kappa, c\right] \tag{3.7}
\end{equation*}
$$

As $0 \in-N_{K}(\tilde{x}(\tau))$, using (3.7) we conclude that for $\left.\left.\tau \in\right] \kappa, c\right]$

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau} \tilde{x}(\tau)=0 \in-N_{K}(\tilde{x}(\tau))+F(\tilde{x}(\tau))
$$

This proves our claim.
(f) It remains to define the solution on $[c, T]$. On it, $\lambda_{1}(\tau)>0$ and the construction of Step 1 and (b) can be repeated to find a solution to the problem $\left(P_{F}\right)$ on $[c, T]$. This completes the proof of the theorem.

Theorem 3.3. Let K be a nonempty closed and ρ-prox regular set. Let $F: \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{d}$ be an almost convex compact valued multifunction, upper semicontinuous on \mathbb{R}^{d}. Suppose that there are nonnegative constants p and q such that

$$
F(x) \subset(p+q\|x\|) \overline{\mathbf{B}}, \forall x \in \mathbb{R}^{d}
$$

Then, for each $u_{0} \in K$:

1) the problem $\left(P_{F}\right)$ has at least an absolutely continuous solution;
2) for every $\bar{t} \in[0, T]$, the attainable set at $\bar{t}, A_{u_{0}}(\bar{t})$, coincides with $A_{u_{0}}^{c o}(\bar{t})$, the attainable set at \bar{t} of the convexified problem ($P_{\text {coF }}$).

Proof.

1) In view of Theorem 3.1, as $c o(F): \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{d}$ is a multifunction with convex compact values, upper semicontinuous on \mathbb{R}^{d} since F is upper semicontinuous on \mathbb{R}^{d}, and for all $x \in \mathbb{R}^{d}$,

$$
c o(F(x)) \subset(p+q\|x\|) c o(\overline{\mathbf{B}})=(p+q\|x\|) \overline{\mathbf{B}}
$$

we conclude the existence of an absolutely continuous solution $u($.$) of the problem \left(P_{c o(F)}\right)$ satisfying

$$
\|\dot{u}(t)\| \leq \alpha(t)+\beta(t), \text { a.e. } t \in[0, T]
$$

Then,

$$
\|u(t)\| \leq\left\|u_{0}\right\|+\int_{0}^{t}(\alpha(s)+\beta(s)) \mathrm{d} s \leq\left\|u_{0}\right\|+\|\alpha+\beta\|_{\left.\mathbf{L}_{\mathbb{R}}^{1}(0, T]\right)}
$$

and

$$
c o(F(u(t))) \subset\left(p+q\left(\left\|u_{0}\right\|+\|\alpha+\beta\|_{\mathbf{L}_{\mathbb{R}}^{1}([0, T])}\right)\right) \overline{\mathbf{B}}=m_{2} \overline{\mathbf{B}} .
$$

Let $f($.$) be a Lebesgue-measurable selection of c o(F(u())$.$) , i.e. f(t) \in c o(F(u(t)))$, for all $t \in[0, T]$ and such that $\dot{u}(t) \in-N_{K}(u(t))+f(t)$, a.e. Let us prove that there exist two integrable functions $\lambda_{1}(),. \lambda_{2}($.$) defined$ on $[0, T]$ and satisfying $0 \leq \lambda_{1}(t) \leq 1 \leq \lambda_{2}(t)$, such that for almost every $t \in[0, T], \lambda_{1}(t) f(t) \in F(u(t))$ and $\lambda_{2}(t) f(t) \in F(u(t))$.

Since for every $t \in[0, T] F(u(t))$ is almost convex, there exist two nonempty sets $\Lambda_{1}(t)$ and $\Lambda_{2}(t)$ such that

$$
\Lambda_{1}(t)=\left\{\lambda_{1} \in[0,1]: \lambda_{1} f(t) \in F(u(t))\right\}
$$

and

$$
\Lambda_{2}(t)=\left\{\lambda _ { 2 } \in \left[1,+\infty\left[: \lambda_{2} f(t) \in F(u(t))\right\} .\right.\right.
$$

Set $Z=\{t: f(t)=0\}$. There is no loss of generality in assuming that, for $t \in Z, \Lambda_{1}(t)=\Lambda_{2}(t)=\{1\}$.
We must show that the multifunction $\Lambda_{1}:[0, T] \rightrightarrows[0,1]$ is measurable. Applying Lusin's theorem to f, we can write $[0, T] \backslash Z$ as $\left(\bigcup_{i \in I} B_{i}\right) \cup \mathcal{N}$, where I is countable, each B_{i} is compact, the measure of \mathcal{N} is 0 , and the restriction of f to each B_{i} is continuous. We need to prove that the graph of $\Lambda_{1}\left(g p h\left(\Lambda_{1}\right)\right)$ is closed on $B_{i} \times[0,1]$. Let $\left(t_{n}, \lambda_{1}^{n}\right)$ be a sequence in $\operatorname{gph}\left(\Lambda_{1}\right) /_{B_{i} \times[0,1]}$ which converges to $\left(t, \lambda_{1}\right) \in B_{i} \times[0,1]$. Then, for each $n \in \mathbb{N}, \lambda_{1}^{n} f\left(t_{n}\right) \in F\left(u\left(t_{n}\right)\right)$. Since F is upper semicontinuous with compact values and since $f($.$) and u($.$) are$ continuous on B_{i}, we get $\lambda_{1} f(t) \in F(u(t))$, then $\lambda_{1} \in \Lambda_{1}(t)$. It follows that Λ_{1} has a closed graph on $B_{i} \times[0,1]$. In addition, its values are closed subsets of $[0,1]$ because the values of F are closed. Then, we conclude that Λ_{1} is upper semicontinuous and consequently it is measurable on $[0, T]$.

The proof that $\Lambda_{2}:[0, T] \rightrightarrows\left[1,+\infty\left[\right.\right.$ is measurable is similar, with the difference that the values of Λ_{2} need not be bounded. In this case, we write $[0, T] \backslash Z$ as the countable union of the sets $M_{n}=\left\{t:\|f(t)\| \geq \frac{1}{n}\right\}$. On each M_{n}, and for all $\lambda_{2} \in \Lambda_{2}(t)$ we have $\lambda_{2} f(t) \in F(u(t)) \subset m_{2} \overline{\mathbf{B}}$. So, Λ_{2} has an upper bound on M_{n}, and the same reasoning as in the previous point can be applied.

Consequently, by the existence of measurable selection theorem, there are measurable selections $\lambda_{1}($.$) and$ $\lambda_{2}($.$) , of \Lambda_{1}$ and Λ_{2} respectively, satisfying $0 \leq \lambda_{1}(t) \leq 1 \leq \lambda_{2}(t)$, and such that, for every $t \in[0, T]$, we have

$$
\lambda_{1}(t) f(t) \in F(u(t)) \text { and } \lambda_{2}(t) f(t) \in F(u(t)) .
$$

Using Theorem 3.2, we conclude the existence of a solution $\tilde{u}($.$) of the problem \left(P_{F}\right)$ such that $u(T)=\tilde{u}(T)$.
2) For every $\bar{t} \in[0, T]$ the attainable set at $\bar{t}, A_{u_{0}}(\bar{t})$, is contained in the attainable set at \bar{t} of the convexified problem, $A_{u_{0}}^{c o}(\bar{t})$, it is enough to show that $A_{u_{0}}^{c o}(\bar{t}) \subset A_{u_{0}}(\bar{t})$.

Let $x(\bar{t}) \in A_{u_{0}}^{c o}(\bar{t})$, so $x($.$) is an absolutely continuous solution of the problem \left(P_{c o(F)}\right)$. The point $\left.\mathbf{1}\right)$ of Theorem 3.2, can be repeated on $\left[0, \bar{t}\right.$ to find a solution $\tilde{x}($.$) of the problem \left(P_{F}\right)$ such that $x(\bar{t})=\tilde{x}(\bar{t}) \in A_{u_{0}}(\bar{t})$. Consequently $A_{u_{0}}^{c o}(\bar{t}) \subset A_{u_{0}}(\bar{t})$. This finishes the proof.

In the following corollary we prove the existence of solutions to the minimum time problem for the differential inclusion

$$
\left(P_{f}\right)\left\{\begin{array}{c}
\dot{u}(t) \in-N_{K}(u(t))+f(u(t), \nu(t)), \text { a.e. } t \in[0, T], \\
\nu(t) \in U(u(t)), \forall t \in[0, T], \\
u(t) \in K, \forall t \in[0, T], \\
u(0)=u_{0},
\end{array}\right.
$$

under the almost convexity assumption on the set $F(x)=f(x, U(x))$.

Corollary 3.4. Let $T>0$ and K be a nonempty closed and ρ-prox regular set. Let $U: \mathbb{R}^{d} \rightrightarrows \mathbb{R}^{d}$, be a compact valued multifunction, upper semicontinuous on \mathbb{R}^{d} and $f: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a mapping satisfying the following assumptions:
(i) for any $y \in \mathbb{R}^{d}, f(., y)$ is continuous on \mathbb{R}^{d};
(ii) there are nonnegative constants p and q such that

$$
\|f(x, y)\| \leq p+q\|x\|, \forall(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d} ;
$$

(iii) the set $F(x)=f(x, U(x))$ is compact and almost convex for every $x \in \mathbb{R}^{d}$.

Let u_{0}, u_{1} be given in \mathbb{R}^{d}, and assume that for some $0 \leq \tilde{t} \leq T, u_{1} \in A_{u_{0}}(\tilde{t})$. Then, the problem of reaching u_{1} from u_{0} in a minimum time admits a solution.
Proof. Let $\hat{t}=\inf \left\{t \in[0, \tilde{t}]: u_{1} \in A_{u_{0}}(t)\right\}$. Let $\left(t_{n}\right)$ be decreasing to \hat{t} and for each n let $u_{n}($.$) be a solution of$ the problem

$$
\left\{\begin{array}{c}
\dot{u}(t) \in-N_{K}(u(t))+F(u(t)), \text { a.e. } t \in\left[0, t_{n}\right], \\
u(t) \in K, \forall t \in\left[0, t_{n}\right], \\
u(0)=u_{0}
\end{array}\right.
$$

such that $u_{n}\left(t_{n}\right)=u_{1}$. We define the sequence $\left(\hat{u}_{n}().\right)$ by $\hat{u}_{n}(t)=u_{n}(t)$, for all $t \in[0, \hat{t}]$. Then $\left(\hat{u}_{n}(t)\right) \subset$ $A_{u_{0}}(t)=A_{u_{0}}^{c o}(t)$. Since $A_{u_{0}}^{c o}(t)$ is compact, by extracting a subsequence if necessary we may conclude that $\left(\hat{u}_{n}(t)\right)$ converges to $\hat{u}(t) \in A_{u_{0}}^{c o}(t)$, clearly $\hat{u}(\hat{t})=u_{1} \in A_{u_{0}}^{c o}(\hat{t})$. By Theorem 3.3 we have $A_{u_{0}}^{c o}(\hat{t})=A_{u_{0}}(\hat{t})$. Consequently, \hat{u} is the solution of the problem $\left(P_{f}\right)$ that reaches u_{1} in the minimum time, and \hat{t} is the value of the minimum time for the problem in consideration. This finishes the proof.

References

[1] D. Affane and D. Azzam-Laouir, Second-order differential inclusions with almost convex right-hand sides. Electron. J. Qual. Theory Differ. Equ. 34 (2011) 1-14.
[2] J.P. Aubin and A. Cellina, Differential inclusions set valued maps and viability theory. Springer-Verlag, Berlin (1984).
[3] M. Bounkhel and L. Thibault, Nonconvex sweeping process and prox-regularity in Hilbert space. J. Nonlinear Convex Anal. 6 (2005) 359-374.
[4] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions. Vol. 580 of Lect. Notes Math. Springer-Verlag, Berlin (1977).
[5] C. Castaing and M.D.P. Monteiro Marques, Evolution problems associated with nonconvex closed moving sets. Portugal. Math. 53 (1996) 73-87.
[6] C. Castaing, T.X. Duc Ha and M. Valadier, Evolution equations governed by the sweeping process. Set-Valued Anal. 1 (1993) 109-139.
[7] C. Castaing, A. Salvadori and L. Thibault, Functional evolution equations governed by nonconvex sweeping process. J. Nonlin. Convex Anal. 2 (2001) 217-241.
[8] A. Cellina and G. Colombo, On a classical problem of the calculus of variations without convexity assumption. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7 (1990) 97-106.
[9] A. Cellina and A. Ornelas, Existence of solution to differential inclusion and optimal control problems in the autonomous case. Siam J. Control Optim. 42 (2003) 260-265.
[10] F.H. Clarke, Optimization and Nonsmooth Analysis. John Wiley and Sons (1983).
[11] F.H. Clarke, R.L. Stern and P.R. Wolenski, Proximal smoothness and the lower C^{2} property. J. Convex Anal. 2 (1995) 117-144.
[12] A.F. Filippov, On certain questions in the theory of optimal control. Vestnik. Univ., Ser. Mat. Mech. 2 (1959) 25-32; Translated in [SIAM J. Control 1 (1962) 76-84].
[13] R.A. Poliquin, R.T. Rockafellar and L.Thibault, Local differentiability of distance functions. Trans. Math. Soc. 352 (2000) 5231-5249.

[^0]: Keywords and phrases. Differential inclusion, almost convex set, attainable set.
 1 Laboratory of Pure and Applied Mathematics, University of Jijel, 18000 Jijel, Algeria.
 affanedoria@yahoo.fr; laouir.dalila@gmail.com

