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Abstract. In this work, we study the existence of solutions of a perturbed sweeping process and of
a time optimal control problem under a condition on the perturbation that is strictly weaker than the
usual assumption of convexity.

Mathematics Subject Classification. 34A60, 28A25, 28A20.

Received March 17, 2014. Revised April 26, 2015.

1. Introduction

The existence of solutions for the following first order differential inclusion governed by the sweeping process

(P )

⎧⎨
⎩
u̇(t) ∈ −NK(t)(u(t)) + F (t, u(t)), a.e t ∈ [0, T ],

u(t) ∈ K(t), ∀t ∈ [0, T ],
u(0) = u0,

where NK(t)(.) denotes the normal cone to K(t) (K(t) are convex or non-convex sets) and F : [0, T ]×R
d ⇒ R

d

is a convex compact valued multifunction, Lebesgue-mesurable on [0, T ] and upper semicontinuous on R
d, has

been studied by many authors, see for example [5–7], and their references. Our aim in this paper is to provide
existence results for the problem

(PF )

⎧⎨
⎩
u̇(t) ∈ −NK(u(t)) + F (u(t)), a.e t ∈ [0, T ],

u(t) ∈ K, ∀t ∈ [0, T ],
u(0) = u0,

where K is a non-nempty closed and ρ-prox regular subset of R
d and F : R

d ⇒ R
d is an upper semicontinuous

multifunction with almost-convex values, which is a strictly weaker condition than the convexity. Note that
in [9], Cellina and Ornelas studied the first order Cauchy problem u̇(t) ∈ F (u(t)), u(0) = u0, with F an upper
semicontinuous multifunction with non-empty compact and almost convex values, and in [1] we have extended
this result to a second order differential inclusion with boundary conditions. Moreover, we prove the existence
of solutions to the time optimal control problem u̇(t) ∈ −NK(u(t)) + f(u(t), ν(t)), ν(t) ∈ U(u(t)), when the
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set F (x) = f(x, U(x)) is compact and almost convex. Filippov in [12], proved the first general theorem on the
existence of solutions to a minimum time control problem of the form u̇(t) = f(u(t), ν(t)), ν(t) ∈ U(u(t)), the
classical assumption of convexity of the images of the map F (x) = f(x, U(x)) was replaced in [9] by the weaker
assumption of almost convexity of the same images.

This paper is organized as follows. In Section 2 we present some notation and preliminaries, in Section 3 we
prove the existence of solutions of (PF ) and of a time optimal control problem where F is a multifunction with
non-convex values, using the convexified problem.

2. Notation and preliminaries

We denote by B the unit closed ball of R
d. L1

Rd([0, T ]) is the space of all Lebesgue integrable R
d-valued

mappings defined on [0, T ]. By CRd([0, T ]) we denote the Banach space of all continuous mappings u : [0, T ] → R
d

endowed with the sup-norm.
For a subset A ⊂ R

d, co(A) denotes the convex hull of A and co(A) denotes its closed convex hull.
For a nonempty closed subset S of R

d, we denote by dS(.) the usual distance function associated with S, i.e.,
dS(u) = inf

y∈S
‖u− y‖, ProjS(u) the projection of u onto S defined by

ProjS(u) = {y ∈ S : dS(u) = ‖u− y‖},
and δ∗(x′, S) = sup

y∈S
〈x′, y〉 the support function of S at x′ ∈ R

d.

Let X be a vector space, a set D ⊂ X is called almost convex if for every ξ ∈ co(D) there exist λ1 and λ2,
0 ≤ λ1 ≤ 1 ≤ λ2, such that λ1ξ ∈ D, λ2ξ ∈ D.

Every convex set is almost convex. If a set D is almost convex and 0 ∈ co(D), then 0 ∈ D. Typical cases of
almost convex sets are D = ∂C, with C a convex set not containing the origin, or D = {0} ∪ ∂C, C a convex
set containing the origin. Other notions of almost convexity exist in the literature (sometimes, a subset D ⊂ R

d

is called almost convex if cl(D) is convex and ri(cl(D)) ⊂ D).
The following results are needed in the proof of our theorems.

Theorem 2.1 (see [2]). Let us consider a sequence of absolutely continuous mappings xk(.) from an interval I
of R to R

d satisfying

(a) ∀t ∈ I, (xk(t)) is a relatively compact subset of R
d;

(b) there exists a positive function δ(.) ∈ L1
R
(I) such that, for almost all t ∈ I, ‖ẋk(t)‖ ≤ δ(t).

Then, there exists a subsequence (again denoted by) (xk(.)) converging to an absolutely continuous mapping x(.)
from I to R

d in the sense that:

(i) (xk(.)) converges uniformly to x(.) over compact subsets of I;
(ii) (ẋk(.)) converges weakly to ẋ(.) in L1

Rd(I).

Theorem 2.2 (see [4]). Let U be a topological space and let Φ be a multifunction from [0, T ] × U with non
empty convex compact values in a Hausdorff locally convex space E such that for every t ∈ [0, T ], Φ(t, .) is upper
semicontinuous and for every x ∈ U, Φ(., x) is Lebesgue-mesurable. Let (xn) and x defined from [0, T ] to U and
(yn) and y be scalarly Lebesgue-integrable mappings from [0, T ] to E. We assume the following hypotheses

(a) there exists a sequence (e′n) in E′ which separates the points of E
(b) lim

n→∞xn(t) = x(t), a.e.

(c) for every fixed x′ ∈ E′, the sequence (〈x′, yn(.)〉) converges to 〈x′, y(.)〉 with respect to the weak topology
σ(L1

E([0, T ]),L∞
E′([0, T ]))

(d) yn(t) ∈ Φ(t, xn(t)), a.e.
Then y(t) ∈ Φ(t, x(t)), a.e.
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We need in the sequel to recall some definitions and results that will be used throughout the paper. Let G be
an open subset of a Hilbert space H and h : G→ (−∞,+∞] be a lower semicontinuous function. The proximal
subdifferential ∂Ph(x), of h at x (see [11]) is defined by ξ ∈ ∂Ph(x) iff there exist positive numbers σ and ς
such that

h(y) − h(x) + σ‖y − x‖2 ≥ 〈ξ, y − x〉, ∀y ∈ x+ ςBH .

Let x be a point of S ⊂ H . We recall (see [11]) that the proximal normal cone to S at x is defined by
NP

S (x) = ∂P δ(x, S), where δ(., S) denotes the indicator function of S, i.e., δ(x, S) = 0 if x ∈ S and +∞
otherwise. Note that the proximal normal cone is also given by:

NP
S (x) = {ξ ∈ H : ∃α > 0 s.t x ∈ ProjS(x+ αξ)}.

If h is a real-valued locally-Lipschitz function defined on H, the Clarke subdifferential ∂Ch(x), of h at x (see [10])
is the nonempty convex compact subset of H given by:

∂Ch(x) = {ξ ∈ H : h◦(x; v) ≥ 〈ξ, v〉, ∀v ∈ H},

where

h◦(x; v) = lim
y→x,

sup
t↓0

h(y + tv) − f(y)
t

is the generalized directional derivative of h at x in the direction v. The Clarke normal cone NC
S (x) to S at

x ∈ S is defined by polarity with TC
S (x), that is,

NC
S (x) = {ξ ∈ H : 〈ξ, v〉 ≤ 0, ∀v ∈ TC

S (x)},

where TC
S (x) denotes the clarke tangent cone and is given by

TC
S (x) = {v ∈ H : d◦S(x; v) = 0}.

Recall now, that for a given ρ ∈]0,+∞] the subset S is uniformly ρ-prox-regular (see [13]) or equivalently
ρ-proximally smooth (see [11]) if and only if every nonzero proximal normal to S can be realized by a ρ-ball,
this means that for all x ∈ S and all 0 �= ξ ∈ NP

S (x) one has
〈

ξ

‖ξ‖ , x− x

〉
≤ 1

2ρ
‖x− x‖2,

for all x ∈ S. We make the convention 1
ρ = 0 for ρ = +∞. Recall that for ρ = +∞ the uniform ρ-prox-regularity

of S is equivalent to the convexity of S.
The following proposition summarizes some important consequences of the uniform prox-regularity needed

in the sequel. For the proof of these results we refer the reader to [13].

Proposition 2.3. Let S be a non-empty closed subset of H. The following assertions hold:

1) for all x ∈ H, ∂dP
S (x) = NP

S (x) ∩ BH ;
2) i) all (usual) normal cones coincide for a uniformly prox-regular set S, and they are denoted by the usual

notation NS . The same holds for the subdifferential of dS(.);
ii) ∂dS(x) is a weakly compact set;
iii) for all x ∈ R

d with dS(x) < ρ, ProjS(x) is a singleton of H.

The following is an important closedness property of the subdifferential of the distance function associated with
a multifunction (see [3]).
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Theorem 2.4. let ρ ∈]0,+∞], Ω be an open subset of H, and K : Ω ⇒ H be a Hausdorff-continuous multi-
function. Assume that K(z) is uniformly ρ-prox-regular for all z ∈ Ω. Then for a given 0 < σ < ρ, the following
holds: for any z̄ ∈ Ω, x̄ ∈ K(z̄) + (ρ− σ)BH , xn → x̄, zn → z̄ with zn ∈ Ω (xn not necessarily in K(zn)) and
ξn ∈ ∂dK(zn)(xn) with ξn →w ξ̄ one has ξ̄ ∈ dK(z)(x̄).
Here →w means the weak convergence in H.

Remark 2.5. As a direct consequence of this theorem we have for every ρ ∈]0,+∞], for a given 0 < σ < ρ, and
for every multifunction K : Ω ⇒ H with uniformly ρ-prox regular values, the multifunction (z, x) �→ ∂dK(z)(x)
is upper semicontinuous from {(z, x) ∈ Ω×H : x ∈ K(z)+ (ρ−σ)BH} into H, which is equivalent to the upper
semicontinuity of the function (z, x) �→ δ∗(p, ∂dK(z)(x)), on {(z, x) ∈ Ω ×H : x ∈ K(z) + (ρ − σ)BH} for any
p ∈ H.

Let t̄ ∈ [0, T ]. We denote by Au0(t̄) = {u(t̄) : u(.) ∈ Tt̄(u0)} the attainable set at t̄ for the problem (PF ),
where Tt̄(u0) is the set of the trajectories of the differential inclusion (PF ) on the interval [0, t̄].

3. Existence results

First, we present an existence result of solutions of the problem (P ) where F : [0, T ] × R
d ⇒ R

d is a convex
compact valued multifunction (see Thm. 1.5 in [7]), and we prove that the set of the trajectories is compact.

Theorem 3.1. Let T > 0, and let K : [0, T ] ⇒ R
d be a nonempty closed valued multifunction satisfying the

following assumptions:

(H1) for each t ∈ [0, T ], K(t) is ρ-prox regular for some fixed ρ ∈]0,+∞],
(H2) K varies in an absolutely continuous way, that is, there exists a nonnegative absolutely continuous function

v : [0, T ] → R such that

|d(x,K(t)) − d(y,K(s))| ≤ ‖x− y‖ + |v(t) − v(s)|

for all x, y ∈ R
d and all s, t ∈ [0, T ]. Let F : [0, T ] × R

d ⇒ R
d be a convex compact valued multifunction

such that:
(i) for every t ∈ [0, T ], F (t, .) is upper semicontinuous on R

d,

(ii) for every x ∈ R
d, F (., x) is Lebesgue-mesurable on [0, T ],

(iii) there are two nonnegative constants p and q such that

F (t, x) ⊂ (p+ q‖x‖)B, ∀(t, x) ∈ [0, T ]× R
d.

Then, for each u0 ∈ K(0):

1) there is an absolutely continuous solution u : [0, T ] → R
d of the problem (P ) satisfying

‖u̇(t)‖ ≤ α(t) + β(t), a.e. t ∈ [0, T ],

where
α(t) = |v̇(t)| + 2(p+ q‖u0‖),

and

β(t) = 2q
∫ t

0

[α(s)exp(2q(t− s)]ds;

2) for all t̄ ∈ [0, T ], the set of the trajectories Tt̄(u0), is compact.
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Proof.

1) See the proof of Theorem 1.5 in [7].
2) a) Fix any t̄ ∈ [0, T ], and let us prove that the set

Tt̄(u0) = {u ∈ CRd([0, t̄]) : u is an absolutely continuous solution of (P )},
is compact. Let (un) be a sequence in Tt̄(u0). Then, for each n ∈ N, un is an absolutely continuous solution of
(P ), and

‖u̇n(t)‖ ≤ α(t) + β(t), a.e. t ∈ [0, t̄]. (3.1)

We get, for almost every t ∈ [0, t̄],

‖un(t)‖ ≤ ‖u0 +
∫ t

0

u̇n(s)ds‖ ≤ ‖u0‖ +
∫ t

0

(α(s) + β(s))ds,

so,

‖un(t)‖ ≤ ‖u0‖ +
∫ T

0

(α(s) + β(s))ds = ‖u0‖ + ‖α+ β‖L1
R
([0,T ]). (3.2)

We conclude that (un(t)) is relatively compact. On the other hand, for all t1, t2 ∈ [0, t̄] such that t1 ≤ t2 we
have

‖un(t1) − un(t2)‖ ≤
∫ t2

t1

‖u̇n(s)‖ds ≤
∫ t2

t1

(α(s) + β(s))ds.

Since (α + β) ∈ L1
R
([0, t̄]), we get the equicontinuity of the sequence (un(.)). By the Ascoli–Arzelà theorem

we conclude that (un(.)) is relatively compact in CRd([0, t̄]), and since ‖u̇n(t)‖ ≤ α(t) + β(t), a.e. on [0, t̄],
we conclude by Theorem 2.1, that there exists a subsequence (again denoted by) (un(.)) converging to an
absolutely continuous mapping u(.) from [0, t̄] to R

d in the sense that, (un(.)) converges uniformly to u(.) and
(u̇n(.)) converges σ(L1

Rd([0, t̄]),L∞
Rd([0, t̄])) to u̇(.). Then

u(t) = lim
n→∞un(t) = u0 + lim

n→∞

∫ t

0

u̇n(s)ds = u0 +
∫ t

0

u̇(s)ds, ∀t ∈ [0, t̄].

Now, for each n ∈ N, since un(.) is a solution of (P ), there exists a measurable mapping fn : [0, t̄] → R
d such

that for almost every t ∈ [0, t̄], fn(t) ∈ F (t, un(t)), and

u̇n(t) − fn(t) ∈ −NK(t)(un(t)).

As
‖fn(t)‖ ≤ p+ q‖un(t)‖, a.e. t ∈ [0, t̄],

using the relation (3.2) we get

‖fn(t)‖ ≤ p+ q[‖u0‖ + ‖α+ β‖L1
R
([0,T ])] = m2. (3.3)

It is clear that (fn) is bounded in L∞
Rd([0, t̄]), taking a subsequence if necessary, we may conclude that (fn)

weakly* or σ(L∞
Rd([0, t̄]),L1

Rd([0, t̄])]-converges to some mapping f ∈ L∞
Rd([0, t̄]). Consequently, for all v(.) ∈

L1
Rd([0, t̄]), we have

lim
n→∞〈fn(.), v(.)〉 = 〈f(.), v(.)〉.

Let z(.) ∈ L∞
Rd([0, t̄]) ⊂ L1

Rd([0, t̄]), then

lim
n→∞〈fn(.), z(.)〉 = 〈f(.), z(.)〉.
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This shows that (fn(.)) weakly or σ(L1
Rd([0, t̄]),L∞

Rd([0, t̄]))-converges to f(.), by Theorem 2.2 we conclude that
f(t) ∈ F (t, u(t)) a.e. on [0, t̄].

Let us prove now that u is a solution of the problem (P ). By the relation (3.1) and (3.3), we get for almost
every t ∈ [0, t̄]

‖u̇n(t) − fn(t)‖ ≤ ‖u̇n(t)‖ + ‖fn(t)‖ ≤ α(t) + β(t) +m2 := γ(t),

that is,
u̇n(t) − fn(t) ∈ γ(t)B,

since
u̇n(t) − fn(t) ∈ −NK(t)(un(t))

we get by (1) of Proposition 2.3
u̇n(t) − fn(t) ∈ −γ(t)∂dK(t)(un(t)). (3.4)

Remark that (u̇n − fn) weakly converges in L1
Rd([0, t̄]) to u̇− f. An application of the Mazur’s trick to (u̇n − fn)

provides a sequence (zn) with zn ∈ co{u̇k − fk : k ≥ n} such that (zn) converges strongly in L1
Rd([0, t̄]) to u̇− f.

We can extract from (zn) a subsequence which converges a.e. to u̇− f. Then, for almost every t ∈ [0, t̄]

u̇(t) − f(t) ∈
⋂
n≥0

{zk(t) : k ≥ n} ⊂
⋂
n≥0

co{u̇k(t) − fk(t) : k ≥ n}.

Fix any t ∈ [0, t̄] and μ ∈ R
d, then the last relation gives

〈μ, u̇(t) − f(t)〉 ≤ lim sup
n→∞

δ∗(μ,−γ(t)∂dK(t)(un(t)))

≤ δ∗(μ,−γ(t)∂dK(t)(u(t))),

where the second inequality follows from Theorem 2.4 and Remark 2.5. Taking the supremum over μ ∈ R
d, we

deduce that
δ(u̇(t) − f(t),−γ(t)∂dK(t)(u(t)) = δ∗∗(u̇(t) − f(t),−γ(t)∂dK(t)(u(t)) ≤ 0,

which entails
u̇(t) − f(t) ∈ −γ(t)∂dK(t)(u(t))) ⊂ −NK(t)(u(t)),

where the last set is well defined since un(t) ∈ K(t), K(t) is closed and then u(t) ∈ K(t). This shows that
Tt̄(u0) is compact.
b) With the same arguments, one can prove that Au0(t̄) is compact.

Now we are able to give an existence result and a property of the attainable set for the problem (PF ) where
F has almost convex compact values. For the proof of our Theorem we need the following result.

Theorem 3.2. Let K be a non-empty closed and ρ-prox regular set. Let F : R
d ⇒ R

d be a compact valued
multifunction, upper semicontinuous on R

d. Suppose that there are nonnegative constants p and q such that

F (x) ⊂ (p+ q‖x‖)B, ∀x ∈ R
d.

Let u0 ∈ K and let x : [0, T ] → R
d be an absolutely continuous solution of the problem

(PcoF )

⎧⎨
⎩
u̇(t) ∈ −NK(u(t)) + co(F (u(t))), a.e. t ∈ [0, T ],

u(t) ∈ K, ∀t ∈ [0, T ],
u(0) = u0.

Assume that there are two integrable functions λ1(.) and λ2(.) defined on [0, T ], satisfying 0 ≤ λ1(t) ≤ 1 ≤ λ2(t)
and such that, for almost every t ∈ [0, T ], we have

λ1(t)f(t) ∈ F (x(t)) and λ2(t)f(t) ∈ F (x(t)),
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where f : [0, T ] → R
d is a measurable mapping satisfying ẋ(t) ∈ −NK(x(t)) + f(t) a.e. and f(t) ∈ co(F (x(t))),

for all t ∈ [0, T ]. Then there exists a nondecreasing absolutely continuous map t(.) of the interval [0, T ] into itself,
such that the map x̃(τ) = x(t(τ)) is a solution of the problem (PF ). Moreover, x̃(0) = x(0) and x̃(T ) = x(T ).

Proof.
Step 1. Let [a, b] ⊂ [0, T ] be an interval, and assume that, on this interval, there exist two integrable functions
λ1(.) and λ2(.), with the properties stated above. In addition, assume that λ1(τ) > 0 a.e. We claim that there
exist two measurable subsets of [a, b], having characteristic functions X1 and X2 such that X1 +X2 = X[a,b], and
an absolutely continuous function s : [a, b] → [a, b] with s(a) − s(b) = a− b, such that

ṡ(τ) = X1(τ)
1

λ1(τ)
+ X2(τ)

1
λ2(τ)

·

Set

ψ(τ) =

⎧⎪⎨
⎪⎩

1
2

when λ1(τ) = λ2(τ) = 1,
λ2(τ) − 1

λ2(τ) − λ1(τ)
otherwise.

With this definition we have that 0 ≤ ψ(τ) ≤ 1 and both equalities hold true

1 = ψ(τ) +
(
1 − ψ(τ)

)
= ψ(τ)λ1(τ) +

(
1 − ψ(τ)

)
λ2(τ).

In particular, we have
∫ b

a

1dτ =
∫ b

a

(
ψ(τ) +

(
1 − ψ(τ)

))
dτ =

∫ b

a

(
ψ(τ)λ1(τ)
λ1(τ)

+

(
1 − ψ(τ)

)
λ2(τ)

λ2(τ)
)
dτ.

We wish to apply Liapunov’s theorem on the range of measures, to infer the existence of two measurable subsets
having characteristic functions X1(.),X2(.) such that X1 + X2 = X[a,b] and with the property

∫ b

a

1dτ =
∫ b

a

(
X1(τ)

1
λ1(τ)

+ X2(τ)
1

λ2(τ)

)
dτ. (3.5)

However, it is not obvious that the function
1

λ1(τ)
is integrable. For this purpose, we shall use a device already

used in [8]. Consider the sequence of disjoint sets

En =
{
τ ∈ [a, b] : n <

1
λ1(τ)

≤ n+ 1
}
.

We have that
⋃
n∈N

En = [a, b]. Applying Liapunov’s theorem to each En, we infer the existence of two sequences

of measurable subsets En
1 , E

n
2 , having characteristic functions Xn

1 ,Xn
2 , such that for every n

∫
En

1dτ =
∫

En

(
Xn

1 (τ)
1

λ1(τ)
+ Xn

2 (τ)
1

λ2(τ)

)
dτ.

For each k, the function

σk(τ) =
k∑

n=0

(
Xn

1 (τ)
1

λ1(τ)
+ Xn

2 (τ)
1

λ2(τ)

)

is positive, and the sequence (σk(.)) converges pointwise monotonically increasing to

σ(τ) = X1(τ)
1

λ1(τ)
+ X2(τ)

1
λ2(τ)

· (3.6)
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Moreover, the sequence of sets V k =
k⋃

n=0

En is monotonically increasing to [a, b] so that

∫ b

a

1dτ =
∫
⋃
k

V k
1dτ =

∫
⋃
n

En
1dτ,

and ∫
⋃
k

V k
1dτ = lim

k→∞

∫
V k

1dτ,

and since the sets En are disjoint we get

∫ b

a

1dτ = lim
k→∞

∫
V k

1dτ = lim
k→∞

∫
k⋃

n=0

En

1dτ = lim
k→∞

k∑
n=0

∫
En

1dτ,

then
∫ b

a

1dτ = lim
k→∞

k∑
n=0

∫
En

(
Xn

1 (τ)
1

λ1(τ)
+ Xn

2 (τ)
1

λ2(τ)

)
dτ

= lim
k→∞

k∑
n=0

∫
En

k∑
n=0

(
Xn

1 (τ)
1

λ1(τ)
+ Xn

2 (τ)
1

λ2(τ)

)
dτ = lim

k→∞

k∑
n=0

∫
En

σk(τ)dτ

= lim
k→∞

∫
k⋃

n=0

En

σk(τ)dτ = lim
k→∞

∫
⋃
n

En
σk(τ)dτ =

∫
⋃
n

En
lim

k→∞
σk(τ)dτ,

we conclude that ∫ b

a

1dτ =
∫ b

a

σ(τ)dτ =
∫ b

a

(
X1(τ)

1
λ1(τ)

+ X2(t)
1

λ2(τ)

)
dτ.

Set ṡ(τ) = σ(τ). Then
∫ b

a

ṡ(τ)dτ = b− a.

Step 2.
(a) Consider the set

C = {τ ∈ [0, T ] : 0 ∈ F (x(τ))}.
It is clear that C is closed. Indeed, let (τn) be a sequence in C converging to τ ∈ [0, T ]. Then, for each
n ∈ N, 0 ∈ F (x(τn)). Since x(.) is continuous and F is upper semicontinuous with compact values, we conclude
that 0 ∈ F (x(τ)), that is, C is closed.
(b) Consider the case in which C is empty. In this case, it cannot be that λ1(τ) = 0 on a set of positive

measure, and the Step 1 can be applied to the interval [0, T ]. Set s(τ) =
∫ τ

0

ṡ(ω)dω, s is increasing and we have

s(0) = 0 and s(T ) =
∫ T

0

ṡ(ω)dω = T, that is, s maps [0, T ] into itself. Let t : [0, T ] → [0, T ] be its inverse, then

t(0) = 0; t(T ) = T and we have
d
dτ
s(t(τ)) = ṡ(t(τ))ṫ(τ) = 1. Then,

ṫ(τ) =
1

ṡ
(
t(τ)

) =
1

σ
(
t(τ)

) =
(
λ1

(
t(τ)

)X1

(
t(τ)

)
+ λ2

(
t(τ)

)X2

(
t(τ)

))
.
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Consider the map x̃ : [0, T ] → R
d defined by x̃(τ) = x

(
t(τ)

)
. We have

d
dτ
x̃(τ) = ṫ(τ)ẋ

(
t(τ)

)
=

1
ṡ
(
t(τ)

) ẋ(t(τ))

=
(
λ1

(
t(τ)

)X1

(
t(τ)

)
+ λ2

(
t(τ)

)X2

(
t(τ)

))
ẋ
(
t(τ)

)

∈
(
λ1

(
t(τ)

)X1

(
t(τ)

)
+ λ2

(
t(τ)

)X2

(
t(τ)

))(
−NK

(
x
(
t(τ)

))
+ f

(
t(τ)

))
,

by the properties of the normal cone and the assumption on f we get

d
dτ
x̃(τ) ∈ −NK(x

(
t(τ)

)
) + f

(
t(τ)

)(
λ1

(
t(τ)

)X1

(
t(τ)

)
+ λ2

(
t(τ)

)X2

(
t(τ)

))

⊂ −NK

(
x
(
t(τ)

))
+ F

(
x
(
t(τ)

))
= −NK

(
x̃
(
t(τ)

))
+ F

(
x̃(τ)

)
.

(c) Now we shall assume that C is nonempty. Let c = sup{τ : τ ∈ C}, there is a sequence (τn) in C such
that lim

n→∞τn = c. Since C is closed we get c ∈ C. The complement of C is open relative to [0, T ], it consists of

at most countably many nonoverlapping open intervals ]ai, bi[, with the possible exception of one of the form
[aii , bii [ with aii = 0 and one of the form ]aif

, bif
] with aif

= c. For each i, apply Step 1 to the interval ]ai, bi[
to infer the existence of Ai

1 and Ai
2, two subsets of ]ai, bi[ with characteristic functions X i

1(.), X i
2(.) such that

X i
1(.) + X i

2(.) = X]ai,bi[(.). Setting

ṡ(τ) =
1

λ1(τ)
X i

1(τ) +
1

λ2(τ)
X i

2(τ),

we obtain ∫ bi

ai

ṡ(ω)dω = bi − ai.

(d) On [0, c], set

ṡ(τ) =
1

λ2(τ)
XC(τ) +

∑
i

(
1

λ1(τ)
X i

1(τ) +
1

λ2(τ)
X i

2(τ)
)
,

where the sum is over all intervals contained in [0, c]. We have that

∫ c

0

ṡ(ω)dω = κ ≤ c

since λ2(τ) ≥ 1, and
∫ bi

ai

ṡ(ω)dω = bi − ai. Setting s(τ) =
∫ τ

0

ṡ(ω)dω, we obtain that s(.) is an invertible map

from [0, c] to [0, κ].
(e) Define t : [0, κ] → [0, c] to be the inverse of s(.). Extend t(.) as an absolutely continuous map t̃(.) on [0, c],
setting ˙̃t(τ) = 0 for τ ∈]κ, c]. We claim that the mapping x̃(τ) = x(t̃(τ)) is a solution of the problem (PF ) on
the interval [0, c]. Moreover, we claim that it satisfies x̃(c) = x(c).
Observe that, as in (b), we have that for τ ∈ [0, κ], t̃(τ) = t(τ) is invertible and

ṫ(τ) = λ2

(
t(τ)

)XC

(
t(τ)

)
+

∑
i

(
λ1

(
t(τ)

)X i
1

(
t(τ)

)
+ λ2

(
t(τ)

)X i
2

(
t(τ)

))
.
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Since
d
dτ
x̃(τ) = ṫ(τ)ẋ(t(τ)) we get

d
dτ
x̃(τ) = ẋ

(
t(τ)

)(
λ2

(
t(τ)

)XC

(
t(τ)

)
+

∑
i

(
λ1

(
t(τ)

)X i
1

(
t(τ)

)
+ λ2

(
t(τ)

)X i
2

(
t(τ)

)))

∈
(
−NK(x

(
t(τ)

)
) + f

(
t(τ)

))(
λ2

(
t(τ)

)XC

(
t(τ)

)

+
∑

i

(
λ1(t(τ))X i

1(t(τ)) + λ2

(
t(τ)

)X i
2

(
t(τ)

)))

⊂ −NK

(
x
(
t(τ)

))
+ F (x

(
t(τ)

)
) = −NK

(
x̃(τ)

)
+ F

(
x̃(τ)

)
.

In particular, from t(κ) = c and ˙̃t(τ) = 0 for all τ ∈]κ, c] we obtain

t̃(τ) = t̃(κ) = t(κ), ∀τ ∈]κ, c],

then
x̃(κ) = x(t̃(κ)) = x(t(κ)) = x(t̃(τ)) = x̃(τ), ∀τ ∈]κ, c],

so, x̃(c) = x(c), x̃ is constant on ]κ, c], and we have

d
dτ
x̃(τ) = 0 ∈ F (x(c)) = F (x̃(τ)) ⊂ co

(
F (x̃(τ)

)
, ∀τ ∈]κ, c]. (3.7)

As 0 ∈ −NK(x̃(τ)), using (3.7) we conclude that for τ ∈]κ, c]

d
dτ
x̃(τ) = 0 ∈ −NK(x̃(τ)) + F (x̃(τ)).

This proves our claim.
(f) It remains to define the solution on [c, T ]. On it, λ1(τ) > 0 and the construction of Step 1 and (b) can be
repeated to find a solution to the problem (PF ) on [c, T ]. This completes the proof of the theorem. �

Theorem 3.3. Let K be a nonempty closed and ρ-prox regular set. Let F : R
d ⇒ R

d be an almost convex
compact valued multifunction, upper semicontinuous on R

d. Suppose that there are nonnegative constants p and
q such that

F (x) ⊂ (p+ q‖x‖)B, ∀x ∈ R
d.

Then, for each u0 ∈ K :

1) the problem (PF ) has at least an absolutely continuous solution;
2) for every t̄ ∈ [0, T ], the attainable set at t̄, Au0(t̄), coincides with Aco

u0
(t̄), the attainable set at t̄ of the

convexified problem (PcoF ).

Proof.
1) In view of Theorem 3.1, as co(F ) : R

d ⇒ R
d is a multifunction with convex compact values, upper semicon-

tinuous on R
d since F is upper semicontinuous on R

d, and for all x ∈ R
d,

co(F (x)) ⊂ (p+ q‖x‖)co(B) = (p+ q‖x‖)B,

we conclude the existence of an absolutely continuous solution u(.) of the problem (Pco(F )) satisfying

‖u̇(t)‖ ≤ α(t) + β(t), a.e. t ∈ [0, T ].
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Then,

‖u(t)‖ ≤ ‖u0‖ +
∫ t

0

(α(s) + β(s))ds ≤ ‖u0‖ + ‖α+ β‖L1
R
([0,T ]),

and
co(F (u(t))) ⊂ (p+ q(‖u0‖ + ‖α+ β‖L1

R
([0,T ])))B = m2B.

Let f(.) be a Lebesgue-measurable selection of co(F (u(.))), i.e. f(t) ∈ co(F (u(t))), for all t ∈ [0, T ] and such
that u̇(t) ∈ −NK(u(t)) + f(t), a.e. Let us prove that there exist two integrable functions λ1(.), λ2(.) defined
on [0, T ] and satisfying 0 ≤ λ1(t) ≤ 1 ≤ λ2(t), such that for almost every t ∈ [0, T ], λ1(t)f(t) ∈ F (u(t)) and
λ2(t)f(t) ∈ F (u(t)).

Since for every t ∈ [0, T ] F (u(t)) is almost convex, there exist two nonempty sets Λ1(t) and Λ2(t) such that

Λ1(t) = {λ1 ∈ [0, 1] : λ1f(t) ∈ F (u(t))}

and
Λ2(t) = {λ2 ∈ [1,+∞[: λ2f(t) ∈ F (u(t))}.

Set Z = {t : f(t) = 0}. There is no loss of generality in assuming that, for t ∈ Z, Λ1(t) = Λ2(t) = {1}.
We must show that the multifunction Λ1 : [0, T ] ⇒ [0, 1] is measurable. Applying Lusin’s theorem to f,

we can write [0, T ] \ Z as (
⋃
i∈I

Bi) ∪ N , where I is countable, each Bi is compact, the measure of N is 0, and

the restriction of f to each Bi is continuous. We need to prove that the graph of Λ1 (gph(Λ1)) is closed on
Bi × [0, 1]. Let (tn, λn

1 ) be a sequence in gph(Λ1)/Bi×[0,1] which converges to (t, λ1) ∈ Bi × [0, 1]. Then, for each
n ∈ N, λn

1f(tn) ∈ F (u(tn)). Since F is upper semicontinuous with compact values and since f(.) and u(.) are
continuous on Bi, we get λ1f(t) ∈ F (u(t)), then λ1 ∈ Λ1(t). It follows that Λ1 has a closed graph on Bi × [0, 1].
In addition, its values are closed subsets of [0, 1] because the values of F are closed. Then, we conclude that Λ1

is upper semicontinuous and consequently it is measurable on [0, T ].
The proof that Λ2 : [0, T ] ⇒ [1,+∞[ is measurable is similar, with the difference that the values of Λ2 need

not be bounded. In this case, we write [0, T ] \ Z as the countable union of the sets Mn = {t : ‖f(t)‖ ≥ 1
n}. On

each Mn, and for all λ2 ∈ Λ2(t) we have λ2f(t) ∈ F (u(t)) ⊂ m2B. So, Λ2 has an upper bound on Mn, and the
same reasoning as in the previous point can be applied.

Consequently, by the existence of measurable selection theorem, there are measurable selections λ1(.) and
λ2(.), of Λ1 and Λ2 respectively, satisfying 0 ≤ λ1(t) ≤ 1 ≤ λ2(t), and such that, for every t ∈ [0, T ], we have

λ1(t)f(t) ∈ F (u(t)) and λ2(t)f(t) ∈ F (u(t)).

Using Theorem 3.2, we conclude the existence of a solution ũ(.) of the problem (PF ) such that u(T ) = ũ(T ).
2) For every t̄ ∈ [0, T ] the attainable set at t̄, Au0(t̄), is contained in the attainable set at t̄ of the convexified
problem, Aco

u0
(t̄), it is enough to show that Aco

u0
(t̄) ⊂ Au0(t̄).

Let x(t̄) ∈ Aco
u0

(t̄), so x(.) is an absolutely continuous solution of the problem (Pco(F )). The point 1) of
Theorem 3.2, can be repeated on [0, t̄] to find a solution x̃(.) of the problem (PF ) such that x(t̄) = x̃(t̄) ∈ Au0(t̄).
Consequently Aco

u0
(t̄) ⊂ Au0 (t̄). This finishes the proof. �

In the following corollary we prove the existence of solutions to the minimum time problem for the differential
inclusion

(Pf )

⎧⎪⎨
⎪⎩
u̇(t) ∈ −NK(u(t)) + f(u(t), ν(t)), a.e. t ∈ [0, T ],

ν(t) ∈ U(u(t)), ∀t ∈ [0, T ],
u(t) ∈ K, ∀t ∈ [0, T ],

u(0) = u0,

under the almost convexity assumption on the set F (x) = f(x, U(x)).
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Corollary 3.4. Let T > 0 and K be a nonempty closed and ρ-prox regular set. Let U : R
d ⇒ R

d, be a compact
valued multifunction, upper semicontinuous on R

d and f : R
d × R

d → R
d be a mapping satisfying the following

assumptions:

(i) for any y ∈ R
d, f(., y) is continuous on R

d;
(ii) there are nonnegative constants p and q such that

‖f(x, y)‖ ≤ p+ q‖x‖, ∀(x, y) ∈ R
d × R

d;

(iii) the set F (x) = f(x, U(x)) is compact and almost convex for every x ∈ R
d.

Let u0, u1 be given in R
d, and assume that for some 0 ≤ t̃ ≤ T, u1 ∈ Au0(t̃). Then, the problem of reaching

u1 from u0 in a minimum time admits a solution.

Proof. Let t̂ = inf{t ∈ [0, t̃] : u1 ∈ Au0(t)}. Let (tn) be decreasing to t̂ and for each n let un(.) be a solution of
the problem ⎧⎨

⎩
u̇(t) ∈ −NK(u(t)) + F (u(t)), a.e. t ∈ [0, tn],

u(t) ∈ K, ∀t ∈ [0, tn],
u(0) = u0

such that un(tn) = u1. We define the sequence (ûn(.)) by ûn(t) = un(t), for all t ∈ [0, t̂]. Then (ûn(t)) ⊂
Au0 (t) = Aco

u0
(t). Since Aco

u0
(t) is compact, by extracting a subsequence if necessary we may conclude that

(ûn(t)) converges to û(t) ∈ Aco
u0

(t), clearly û(t̂) = u1 ∈ Aco
u0

(t̂). By Theorem 3.3 we have Aco
u0

(t̂) = Au0(t̂).
Consequently, û is the solution of the problem (Pf ) that reaches u1 in the minimum time, and t̂ is the value of
the minimum time for the problem in consideration. This finishes the proof. �
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