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THE INVERSE PROBLEM IN CONVEX OPTIMIZATION
WITH LINEAR CONSTRAINTS ∗, ∗∗

Marwan Aloqeili1

Abstract. In this paper, we solve an inverse problem arising in convex optimization. We consider
a maximization problem under m linear constraints. We characterize the solutions of this kind of
problems. More precisely, we give necessary and sufficient conditions for a given function in R

n to be
the solution of a multi-constraint maximization problem. The conditions we give here extend well-known
results in microeconomic theory.
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1. Introduction

In this paper, we consider a multi-constraint maximization problem of the form

max
x

f(x)
Ax ≤ C(A)

where x ∈ R
n, A is an m× n matrix and f and C are some functions that satisfy certain conditions which will

be specified later. Hence, we are dealing with a multi-constraint maximization problem with linear constraints.
The solution of this problem is a function of the parameters A = (ai

j). We assume certain conditions on the
functions f and C that guarantee the differentiability of the solutions which we require to be at least of class
C2. Our main objective is to characterize the solutions of this type of optimization problems. We rely on the
first order conditions and optimality conditions to achieve our objective. Moreover, we make use of the envelope
theorem and the value function, V (A) = f(x(A)), of the above problem.

Such kind of problems arise in many applications especially in some economic contexts in microeconomic
theory. Economic applications to this problem will be given in the sequel. Moreover, we will show that the
results we get here generalize well-known results in consumer theory, see [6] for a recent survey. An inverse
problem arising from economic theory was also solved by Ekeland and Djitté [8].

We use the indirect approach to deal with this problem. This approach depends on the value function, V (A).
The necessary and sufficient conditions on a given function x(A) ∈ R

n for the existence of a value function will
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be given. It turns out that the necessary and sufficient conditions will include a set of function λij , i, j = 1, . . . , m
that can be computed from x(A). The problem then is to find the objective function. This is a duality problem.
We consider a class of functions introduced by Epstein [10] that is stable under duality.

Our problem will be split into mathematical integration problem and economic integration problem. The
mathematical and the economic integration problems can be stated as follows:

• Mathematical integration. Given a function x(A) and a family of functions λik, 1 ≤ i, k ≤ m, what are
the necessary and sufficient conditions for the existence of m + 1 functions λ1, . . . , λm and V that satisfy
equation (2.2) with λik = λi/λk and Ci(ai) = (ai)T x(A).

• Economic integration. In addition to the mathematical integration, we impose the following additional
conditions on the functions that satisfy (2.2): the functions λi are strictly positive and the function V is
quasi-convex with respect to each ai for all i = 1, . . . , m.

Both of these problems will be solved. The duality problem will then be solved.
In this model, the objective function is assumed to satisfy a set of conditions that will be specified later. One

of these conditions requires f to be strictly increasing in each of its arguments. This condition permits us to
write the inequality constraints as equalities.

To get the necessary and sufficient conditions for mathematical integration, we use the techniques of exterior
differential calculus that showed to be powerful for the treatment of such problems. A good reference to these
techniques is the book by Bryant et al. [4]. We get local results; that is, the functions involved in the integration
problem are defined in a neighbourhood of some given point. We define a family of differential forms and set
up an integration problem using these forms. The solution of this integration problem, then, requires solving
a nonlinear system of partial differential equations. The integration problem will be solved using Darboux
Theorem [4].

The rest of the article is organized in the following way: in the next section, we set up the model and present its
basic assumptions. Then, the main results that include the necessary and sufficient conditions for mathematical
integration are given in Sections 3 and 4. In Section 5, the economic integration problem is solved. Then, duality
problem is considered. The necessary and sufficient conditions for the 2-constraint case are given in Section 7.
The geometry of the problem and some economic applications are finally discussed. Proofs of main results are
gathered in the appendix.

2. Setting up the model

We consider a multi-constraint maximization problem of the form

(P)
{

max
x

f(x)
Ax = C(A)

Where f is a function that satisfies certain regularity and convexity conditions that will be specified later, A
is an m × n matrix of rank m and C : R

m×n
++ → R

m
++ is a given mapping. The ith constraint takes the form

(ai)T x = Ci(A) where ai is the ith row of the matrix A. Define the Lagrangian function

L(x, λ) = f(x) +
m∑

i=1

λk

(
Ck(A) −

n∑
l=1

ak
l xl

)

with x ∈ R
n
++ and λ ∈ R

m
++. The first order conditions for interior maximum are

∂f

∂xj
=

m∑
k=1

λkak
j , j = 1, . . . , n

Ax = C(A)
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Define the value function of this problem by

V (A) = max
x

{
f(x) +

m∑
k=1

λk

(
Ck(A) −

n∑
l=1

ak
l xl

)}

If the functions C1(a1), . . . , Cm(am) are convex on R
n
++ then the value function V (a1, . . . , am) is quasi-convex

with respect to each ai for i = 1, . . . , m, see [2].
Differentiating the function V (A) with respect to ai

j and using the envelope theorem we get

∂V

∂ai
j

=
m∑

k=1

λk
∂Ck

∂ai
j

− λix
j . (2.1)

We suppose that Ck is a function of the vector ak ∈ R
n
++ only, where ak is the kth row of the matrix A.

Moreover, we assume that each component of the mapping C(A) is not homogeneous of degree one because this
entails division by zero. This implies, in particular that, the function x(A) is not homogeneous of degree zero
and the Lagrange multiplier corresponding to the ith constraint, λi(A) is not homogeneous of degree −1 in ai.
The case of homogeneous mapping C(A) will not be treated here. We adopt the following assumptions on the
mapping C:

Assumption 2.1. For each i ∈ {1, . . . , m}, we assume that the function Ci has the following properties:

(a) Ci : R
n
++ → R++ is a function of ai only.

(b) Ci is a convex function of ai.
(c) Ci is of class C2.
(d) Ci is not homogeneous of degree one in ai; that is, (ai)T DaiCi − Ci(ai) �= 0.

We consider the following assumptions on the objective function f :

Assumption 2.2. Assume the function f satisfies the following conditions:

(1) f is strictly increasing in each of its arguments.
(2) the Hessian matrix D2

xf is negative definite on the subspace {Dxf}⊥.
(3) f is of class C2.

By applying the implicit function theorem, one can show that the solution of the above maximization problem as
well as the associated vector of Lagrange multipliers are of class C2, we refer to [3] for details. Assumption 2.1(a)
implies that DaiCk = 0 if i �= k which reduces equation (2.1) to

∂V

∂ai
j

= λi

(
∂Ci

∂ai
j

− xj

)
. (2.2)

Define a family of differential 1-forms ω1, . . . , ωm by

ωi =
n∑

j=1

(
∂Ci

∂ai
j

− xj

)
dai

j . (2.3)

It follows that the differential of V , dV , can be written as:

dV =
m∑

i=1

λiω
i. (2.4)
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Notice that

dωi =
∑
j,l

∂2Ci

∂ai
l∂ai

j

dai
l ∧ dai

j −
∑
j,k,l

∂xj

∂ak
l

dak
l ∧ dai

j .

The coefficients in the first summation are symmetric, so we end up with

dωi = −
∑
j,k,l

∂xj

∂ak
l

dak
l ∧ dai

j . (2.5)

The ith constraint is (ai)T x(A) = Ci(ai). Differentiating both sides of this equality with respect to ai
j and

rearranging, we get:
∂Ci

∂ai
j

− xj =
n∑

r=1

∂xr

∂ai
j

ai
r. (2.6)

Using this result, the 1-form ωi can be written as:

ωi =
n∑

r,j=1

∂xr

∂ai
j

ai
rdai

j (2.7)

Now, our inverse problem can be stated as follows:

• We observe the functions xj(A), j = 1, . . . , n from R
mn
++ to R++.

• Then we define the functions Ci(ai) ≡ (ai)T x(A).
• We observe also a family of positive functions λik using symmetry conditions that will be given below.
• Our objective is to find a function f(x), by first finding the value function V (A), such that x(A) ∈

argmax{f(x)|Ax = C(A)} and V (A) = f(x(A)).

The inverse problem will be solved in three steps. In the first step, we identify a set of necessary conditions. Then,
we find sufficient conditions by solving the following problem: given a family of m differential 1-forms Ω1, . . . , Ωm

that satisfy the conditions
Ωi ∧ Ωk = 0, for any i, k

can we find m+1 functions μ1, . . . , μm and V such that μkdV = Ωk. Notice that the function V is independent
of k. Finally, we solve for functions that have the required curvature and positivity conditions. Notice that the
family of m 1-forms, {Ω1, . . . , Ωm} generates a vector space of dimension one; that is, span{Ω1, . . . , Ωm} =
span{Ω1}.

Henceforth, we set ηi(A) = ((ai)T (Daix)ai)−1. Note that it is an observed quantity (it can be computed from
x(A) and A). We wrote ηi(A) to emphasize the fact that ηi is a function of A. In fact, ηi can be written as:

η−1
i = (ai)T (Daix)ai =

n∑
j=1

(
∂Ci

∂ai
j

− xj

)
ai

j = (ai)T (DaiCi) − Ci(ai)

where η−1
i is the reciprocal of ηi. Using equation (2.2), we find that

(ai)T (DaiV ) = λi((ai)T (DaiCi) − Ci(ai)).

Remark 2.3. Let us suppose, for a moment, that Ci(ai) is homogeneous of degree ρ; that is, (ai)T (DaiCi) =
ρCi(ai). It follows from this equation that

(ai)T (DaiV ) = λi(ρ − 1)Ci(ai).
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We conclude that (ai)T (DaiV ) is negative, zero or positive if ρ < 1, ρ = 1 or ρ > 1, respectively. If ρ = 1 then
Ci(ai) is homogeneous of degree one in which case the value function V is homogeneous of degree zero, hence
(ai)T (DaiV ) = 0. Moreover, we conclude that 0 < Ci(ai) = (ai)T (DaiCi − (Daix)ai). Notice that if Ci(ai) = ci

(Ci is independent of ai) then η−1
i = −ci.

Using equations (2.2) and (2.6) we find that

λi = ηi

∑
j

∂V

∂ai
j

ai
j .

Consequently, ηi and (ai)T DaiV should have the same sign since λi > 0. Moreover, we have

∂Ci

∂ai
j

− xj =
∂V/∂ai

j

ηi

∑
j

∂V
∂ai

j
ai

j

· (2.8)

We will come back to this equation in the applications section as this equation has an important counterpart
in economics.

To allow for better follow up of our exposition, we will restrict the ranges of the subscripts and superscripts
used in the sequel as follows, 1 ≤ i, k, k′, s, t ≤ m and 1 ≤ j, j′, l, l′, r ≤ n. In what follows, δi

k denotes the
Kronecker symbol which equals one if i = k and zero otherwise.

Now we are ready to give our main results. We first identify a set of necessary conditions satisfied by the
function x(A) as well as the vector of Lagrange multipliers. Then, the necessary and sufficient conditions for
mathematical and economic integration will be given.

3. Mathematical integration: necessary conditions

In the following sections we give the main results of the paper. We first give a set of symmetry conditions
satisfied by the function x(A). Then, we give the necessary and sufficient conditions for mathematical integration.
Necessary conditions permit us to specify (proportionality) functions λik > 0. As we will see, sufficient conditions
involve a system of partial differential equations that should be satisfied by these functions as well as x. Consider
the following result

Theorem 3.1. Let x(A) be a solution of problem (P) and λ(A) be the corresponding vector of Lagrange mul-
tipliers. Then, the following symmetry conditions are satisfied:

λk

⎛
⎝ ∂xl

∂ai
j

− ηi

n∑
j′=1

∂xl

∂ai
j′

ai
j′

n∑
r=1

∂xr

∂ai
j

ai
r

⎞
⎠ = λi

⎛
⎝∂xj

∂ak
l

− ηk

n∑
j′=1

∂xj

∂ak
j′

ak
j′

n∑
r=1

∂xr

∂ak
l

ak
r

⎞
⎠ (3.1)

for all 1 ≤ i, k ≤ m and 1 ≤ j, l ≤ n.

Proof. See Appendix. �

Some remarks are in order:

Remark 3.2.

(a) As the function x(A) is observable, we can use symmetry conditions (3.1) that we write as Σkl
ij = Σij

kl to
determine the proportionality functions λik := λi/λk. It is important to point out that we do not observe the
Lagrange multipliers λ1, . . . , λm. We observe, however, the functions λik. The above necessary conditions
can be written as λiSk = λkST

i where Sk is the n × n matrix whose ij-entry is given by

Sjl
k =

∂xj

∂ak
l

− ηk

n∑
j′=1

∂xj

∂ak
j′

ak
j′

n∑
r=1

∂xr

∂ak
l

ak
r
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(b) Conditions (3.1) mean that there is a symmetric matrix corresponding to each constraint and these matrices
are proportional.

Theorem 3.3. Let x(A) be a solution of problem (P) and λ1, . . . , λm are the corresponding Lagrange multipli-
ers. Then the following conditions are equivalent

(a) λiSk = λkST
i , for all i, k = 1, . . . , m.

(b)
m∑

i=1

λidωi ∧ ω1 ∧ . . . ∧ ωm = 0.

Proof. See Appendix. �

As a consequence of the last theorem, we can conclude that the conditions given in Theorem 3.1 are necessary
but not sufficient for the decomposition dV =

∑
i λiω

i. Moreover, if there is only one constraint then S = ST if
and only if dω∧ω = 0. Consequently, the condition dω∧ω = 0 is both necessary and sufficient for mathematical
integration in the single constraint case. In the multi-constraint case, however, we need additional conditions
on the proportionality functions λik := λi/λk as well as on the function x(A). Symmetry conditions can also be
interpreted as follows: for any given i and k, we fix all variables except ai and ak. Optimality conditions imply
that λiω

i +λkωk = dV . Consequently, we have d(λiω
i) = −d(λkωk) which implies that λiSk = λkST

i . However,

the above theorem proves that λiSk = λkST
i , for all i and k, are equivalent to

m∑
i=1

λidωi ∈ span{ω1, . . . , ωm}
which means that

∑m
i=1 λidωi +

∑m
i=1 βi ∧ ωi = 0 for some 1-forms β1, . . . , βm. Obviously, this result is not

sufficient, we need βi = dλi, compare equations (A.8) and (A.11) below.

4. Mathematical integration: Necessary and sufficient conditions

The conditions given so far are not sufficient for mathematical integration. Our objective now is to give
sufficient conditions and to express them as a system of partial differential equations that have to be satisfied
by the coefficient functions λik and the function x(A).

Notice that λii = 1 for every i = 1, . . . , m and λikλki = 1. Equation (2.2) implies that

1
λk

∂V

∂ai
j

= λik

(
∂Ci

∂ai
j

− xj

)
. (4.1)

Define a family of 1-forms Ωk, k = 1, . . . , m, by

Ωk =
m∑

s=1

λskωs (4.2)

where ωs is the 1-form defined by (2.3) or the equivalent form (2.7). Notice that Ω1, . . . , Ωm are defined using
observable functions only. Then equation (4.1) can be written as μkdV = Ωk which is equivalent to Ωk∧dΩk = 0.
Clearly, the family of 1-forms defined by (4.2) are collinear to the same gradient dV . The last equation gives
us the necessary and sufficient conditions for mathematical integration. This result stems from the underlying
structure of the optimization problem. The following result proves that the 1-forms Ω1, . . . , Ωm are proportional.

Lemma 4.1. Let Ω1, . . . , Ωm be the family of 1-forms defined by (4.2) with λik = λi

λk
then Ωi ∧ Ωk = 0 for all

i, k = 1, . . . , m.

Proof. Using the definition of Ωk in (4.2) we have

Ωi ∧ Ωk =
m∑

s,t=1

(λtiλsk)ωt ∧ ωs =
∑
t<s

(λtiλsk − λsiλtk)ωt ∧ ωs
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The coefficients λtiλsk − λsiλtk are identically zero since

λtiλsk

λsiλtk
=

λtλs

λiλk

λiλk

λsλt
= 1.

This proves the result. �

This is a general result that is true for any 1-forms defined by equation (4.2) with coefficients λik = λi/λk.
This result is obvious if Ωk = μkdV .

Theorem 4.2. Given the family of 1-forms Ω1, . . . , Ωm defined above, then there exist m + 1 functions
μ1, . . . , μm and V , defined in a neighbourhood U of some point Ā ∈ R

mn
++, such that μkdV = Ωk for k = 1, . . . , m

if and only if the condition Ωk ∧ dΩk = 0 holds in a neighbourhood V of Ā with U ⊂ V.

Proof. Using Darboux Theorem [4], Ωk ∧ dΩk = 0 if and only if there exist two functions μk and Vk such that
μkdVk = Ωk. Lemma 4.1 implies that

Ωi ∧ Ωk = μiμkdVi ∧ dVk = 0.

Therefore, dVk = φik(A)dVi, ∀i, k = 1, . . . , m for some function φik. So we can set dV1 = · · · = dVm = dV . �

We also need the following lemma.

Lemma 4.3. Let Ω1, . . . , Ωm be the family of differential 1-forms defined in (4.2). Then, if Ωi ∧ dΩi = 0 for
some i, then Ωk ∧ dΩk = 0 for any k ∈ {1, . . . , m}.

Proof. Let i, k ∈ {1, . . . , m}. Assume that Ωi ∧ dΩi = 0. Note that Ωi ∧ Ωk = 0 if and only if Ωk = ϕΩi for
some function ϕ. Taking the exterior derivative we get dΩk = ϕdΩi + dϕ ∧ Ωi. Multiply both sides of the last
equation by Ωk and using the fact that Ωk = ϕΩi, we find that Ωk ∧ dΩk = ϕ2Ωi ∧ dΩi + ϕΩi ∧ dϕ ∧ Ωi = 0.
This completes the proof. �

Clearly, the 1-forms Ω1, . . . , Ωm belong to the space of 1-forms spanned by ω1, . . . , ωm. Moreover, it follows
from the definition of ω1, . . . , ωm that they are linearly independent since ω1 ∧ . . . ∧ ωm �= 0. Let us consider
the following result.

Lemma 4.4. Let β1, . . . , βm belong to the subspace of 1-forms spanned by α1, . . . , αm. Suppose that α1, . . . , αm

are linearly independent; that is, α1 ∧ . . . ∧ αm �= 0. Then βi ∧ βk = 0 if and only if there exist Cm
2 rank-one

symmetric m × m matrices Mik = (bisbkt), such that βi =
∑m

s=1 bisα
s.

Proof. Since β1, . . . , βm belong to the linear span of α1, . . . , αm then for any i there exist m functions bi1, . . . , bim

such that βi =
∑n

j=1 bisα
s Therefore, βi∧βk =

∑
s,t bisbktα

s∧αt =
∑

s<t(bisbkt−bitbks)αs∧αt. Thus, βi∧βk = 0
if and only if bisbkt = bitbks. �

Our objective now is to explicit the necessary and sufficient conditions for mathematical integration given in
Theorem 4.2.

Theorem 4.5. Given the family of 1-forms Ω1, . . . , Ωm. Then Ωk ∧ dΩk = 0 if and only if for any k′ ∈
{1, . . . , m} the following conditions are satisfied for all 1 ≤ i, s ≤ m, 1 ≤ j, l ≤ n.

∂λik

∂as
l

∑
r

∂xr

∂ai
j

ai
r − λik

∂xj

∂as
l

+
ηk′

λkk′

⎛
⎝∑

j′

∂λsk

∂ak′
j′

ak′
j′
∑

r

∂xr

∂as
l

as
r − λsk

∑
j′

∂xl

∂ak′
j′

ak′
j′
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− 1
ηk′

∂λk′k

∂as
l

+ λk′k

∑
j

∂xj′

∂as
l

ak′
j′

⎞
⎠λik

n∑
r=1

∂xr

∂ai
j

ai
r

=
∂λsk

∂ai
j

∑
r

∂xr

∂as
l

as
r − λsk

∂xl

∂ai
j

+
ηk′

λkk′

⎛
⎝∑

j′

∂λik

∂ak′
j′

ak′
j′
∑

r

∂xr

∂ai
j

ai
r − λik

∑
j′

∂xj

∂ak′
j′

ak′
j′

− 1
ηk′

∂λk′k

∂ai
j

+ λk′k

∑
j′

∂xj′

∂ai
j

ak′
j′

⎞
⎠λsk

n∑
r=1

∂xr

∂as
l

as
r (4.3)

Proof. See Appendix. �

Remark 4.6. It is clear that the necessary and sufficient conditions are imposed on observable functions.
Moreover, when we get the functions μ1, . . . , μk and V by setting λi = μkλik so as to get (2.2) as required.

The next result proves that (4.3) includes the conditions given in Theorem (3.1).

Corollary 4.7. Suppose that conditions (4.3) are satisfied then

(a) Si = ST
i , for all i = 1, . . . , m.

(b) Si = λikST
k for all i, k = 1, . . . , m.

Proof. If s = k′ = i = k then, using the fact that λii = 1, relations (4.3) boil down to the following symmetry
conditions

∂xj

∂ai
l

− ηi

⎛
⎝∑

j′

∂xl

∂ai
j′

ai
j′ −

∑
j′

∂xj′

∂ai
l

ai
j′

⎞
⎠ n∑

r=1

∂xr

∂ai
j

ai
r

=
∂xl

∂ai
j

− ηi

⎛
⎝∑

j′

∂xj

∂ai
j′

ai
j′ −

∑
j′

∂xj′

∂ai
j

ai
j′

⎞
⎠ n∑

r=1

∂xr

∂ai
l

ai
r

so we get (a). To prove (b), it suffices to take k′ = s = k and i �= k in (4.3) which writes down in this case as

∂λik

∂ak
l

∑
r

∂xr

∂ai
j

ai
r − λik

∂xj

∂ak
l

+ ηkλik

⎛
⎝−

∑
j′

∂xl

∂ak
j′

ak
j′ +

∑
j

∂xj′

∂ak
l

ak
j′

⎞
⎠ n∑

r=1

∂xr

∂ai
j

ai
r

= − ∂xl

∂ai
j

+ ηk

⎛
⎝∑

j′

∂λik

∂ak
j′

ak
j′
∑

r

∂xr

∂ai
j

ai
r − λik

∑
j′

∂xj

∂ak
j′

ak
j′

⎞
⎠ n∑

r=1

∂xr

∂ak
l

ak
r . (4.4)

Now, multiply both sides by ai
j , summing over j and solving to get the following formula

∂λik

∂ak
l

= λikηk

⎛
⎝∑

j′

∂xl

∂ak
j′

ak
j′ −

∑
j

∂xj′

∂ak
l

ak
j′

⎞
⎠− ηi

∑
j′

∂xl

∂ai
j′

ai
j′ + ηk

∑
j′

∂λik

∂ak
j′

ak
j′

n∑
r=1

∂xr

∂ak
l

ak
r

substitute back into (4.4) to get the conditions Si = λikST
k . �

Now, we have the following theorem that solves the mathematical integration problem.
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Theorem 4.8. Given a function x(A) ∈ R
n
++ and a family of strictly positive functions λik, 1 ≤ i, k ≤ m all

of class C2 defined in a neighbourhood V of some point Ā such that λtiλsk = λsiλtk for all 1 ≤ i, k, s, t ≤ m.
Define the functions C1(a1), . . . , Cm(am) by Ci(ai) = (ai)T x(A). Then, there exist m + 1 functions μ1, . . . , μk

and V , defined in a possibly smaller neighbourhood U ⊂ V, such that μkdV = Ωk if and only if conditions (4.3)
are satisfied in V.

Proof. Given the functions x(A) and λik, 1 ≤ i, k ≤ m as in the statement of the theorem, define a family of
1-forms Ωk, k = 1, . . . , m as in (4.2). Symmetry conditions (4.3) are equivalent to Ωk ∧ dΩk = 0 for all k. Now,
Ωk ∧ dΩk = 0 if and only if there exist two functions μk and Vk such that μkdVk = Ωk. Symmetry conditions
on the coefficients λik guarantee that dV1 = · · · = dVk = dV using Lemma (4.4). The proof is complete. �

5. Economic integration

In this section, we give the necessary and sufficient conditions for the existence of m+1 functions λ1, . . . , λm

and V such that dV = λ(dC − x) where λ1, . . . , λm are strictly positive and V is quasi-convex with respect to
each ai, i = 1, . . . , m. Such a result solves the economic integration problem. The following theorem relates the
matrix λiSk, for any i, k, to the value function V and the mapping C.

Theorem 5.1. Let x(A) be a solution of a problem of type (P), λ1, . . . , λm be the associated Lagrange multipliers
and V (A) be the value function then

λi

⎛
⎝∂xj

∂ak
l

− ηk

n∑
j′=1

∂xj

∂ak
j′

ak
j′

n∑
r=1

∂xr

∂ak
l

ak
r

⎞
⎠ = − ∂2V

∂ak
l ∂ai

j

+ λi
∂2Ci

∂ak
l ∂ai

j

δi
k

+
ηi

λi

⎛
⎝∑

j′

∂2V

∂ak
l ∂ai

j′
ai

j′ −
⎛
⎝λi

∑
j′

∂2Ci

∂ak
l ∂ai

j′
ai

j′ −
∂V

∂ak
l

⎞
⎠ δi

k

⎞
⎠ ∂V

∂ai
j

+
ηk

λk

⎛
⎝∑

l′

∂2V

∂ak
l′∂ai

j

ak
l′ −

ηi

λi

∑
j′,l′

∂2V

∂ak
l′∂ai

j′
ak

l′a
i
j′

∂V

∂ai
j

+ ηi

∑
j′,l′

∂2Ci

∂ak
l′∂ai

j′
ak

l′a
i
j′

∂V

∂ai
j

δi
k

− ∂V

∂ai
j

δi
k − λi

∑
l′

∂2Ci

∂ak
l′∂ai

j

ak
l′δ

i
k

)
∂V

∂ak
l

The proof of this theorem is given in the appendix.
Notice that if i �= k then the Hessian matrix of the mapping C(A) drops out of this formula because of the

assumption that Ci depends on ai only.

Remark 5.2. Set i = k in the previous equality. Then

λiSi = −D2
aiV + λiD

2
aiCi + Ri

Where Ri is a rank one symmetric matrix that takes the form Q(DaiV )T for some matrix Q. Let ζ ∈ {DaiV }⊥
then we have

ζT Siζ = − 1
λi

ζT (D2
aiV )ζ + ζT (D2

aiCi)ζ.

It follows that the n × n matrix Si has no specific negativity properties since the first term is negative while
the second one is positive. In fact, this holds true for any vector ζ ∈ R

n since any such vector can be written as
ζ = ζ̄+tai where ζ̄ is orthogonal to DaiV . This follows from the fact that (ai)T DaiV = λi

ηi
�= 0 and Theorem 5.1.

If the function Ci(ai) is an affine function then the matrix Si is indeed negative semi-definite. Moreover, if
we pre-multiply both sides of the equality in Theorem 5.1 by (ai)T and post-multiply both sides by ai then
both sides of the equality are identically zero. To see this, it suffices to use the fact that ηi = λi(ai)T DaiV .
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Although the matrix Si is not necessarily negative semi-definite, there do exist negativity conditions related
to the function x(A). We have the following result.

Lemma 5.3. Suppose that V (A) is the value function, x(A) is a solution and λ(A) is the associated vector of
Lagrange multipliers for problem (P), C(A) = Ax(A). Then we have

D2
aiV (A) = λi(A)(D2

aiCi(ai) − Daix(A)) + Daiλ(A)(DaiCi(ai) − x)T . (5.1)

Moreover, the n × n matrix D2
aiCi(ai) − Daix(A) is symmetric and positive semi-definite on (DaiV )⊥.

Proof. Equation (5.1) follows by differentiating the first order conditions DaiV = λi(DaiCi(ai) − x) and the
positivity result follows from the fact that the value function V is quasi-convex with respect to ai. �

We have also the following results

Lemma 5.4. Let x(A) be a solution of problem (P) and C(A) = Ax(A). Then

∑
r

∂2xr

∂ak
l ∂ai

j

as
r +

∂xl

∂ai
j

δs
k +

∂xj

∂ak
l

δi
s =

∂2Cs

∂ak
l ∂ai

j

δi
sδ

k
s . (5.2)

Moreover, if Ci(ai) is a convex function then the n × n matrix M i where

M i
jl =

∑
r

∂2xr

∂ai
l∂ai

j

ai
r +

∂xl

∂ai
j

+
∂xj

∂ai
l

is symmetric and positive semi-definite.

Proof. Differentiating the sth constraint with respect to ai
j and ak

l

n∑
r=1

∂2xr

∂ak
l ∂ai

j

as
r +

∂xl

∂ai
j

δs
k +

∂xj

∂ak
l

δi
s =

∂2Cs

∂ak
l ∂ai

j

δi
sδ

k
s . (5.3)

Thus, we have equation (5.2). Positivity follows from the convexity of Ci(ai). �

Lemma 5.5. Let x(A) and C(A) be as above. Then the matrix T i defined by

T i
jl =

∑
r

∂2xr

∂ai
l∂ai

j

ai
r +

∂xl

∂ai
j

is symmetric and positive semi-definite on the subspace {(ai)T Daix}⊥.

Proof. It follows from the above calculations that T i + Daix = D2
aiCi. Using equation (5.1) and the fact that

DaiCi − x = 1
λi

DaiV , we get

D2
aiV = λiT

i +
1
λi

(Daiλi)(DaiV )T .

The result follows from the last equality, the quasi-convexity of V with respect to ai and the fact that DaiV =
λi((ai)T Daix). �

The following theorem solves the economic integration problem.

Theorem 5.6. Let x(A) ∈ R
n
++, λik(A) > 0 be given functions defined on a neighbourhood U of some point

Ā ∈ R
mn
++. Define C(A) = Ax(A). Suppose that the following conditions are satisfied in U for all i, k = 1, . . . , m
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(a) λtiλsk = λsiλtk for all 1 ≤ i, k, s, t ≤ m.
(b) Conditions (4.3).
(c) The matrix M i is positive semi-definite.
(d) The restriction of the matrix T i to {(ai)T Daix}⊥ is positive definite.
Then, there exist positive functions λ1, . . . , λm and a function V which is quasi-convex with respect to ai for
each i, defined in a neighbourhood V ⊂ U such that DaiV = λi(DaiCi − x).

Proof. Notice first that condition (c) implies that the function Ci(ai) is convex. Consider the family of 1-forms
Ω1, . . . , Ωm defined by

Ωk =
∑
i,j

λik

(
∂Ci

∂ai
j

− xj

)
dai

j =
m∑

i=1

λik

n∑
r,j=1

∂xr

∂ai
j

ai
rdai

j .

Conditions (4.3) are equivalent to Ωk ∧ dΩk = 0. Using Darboux theorem, the last equation is satisfied if and
only if there exist two functions μk and V such that μkdV = Ωk. Note that V is independent of k. Therefore,
we have

μkdV =
m∑

i=1

λik

n∑
r,j=1

∂xr

∂ai
j

ai
rdai

j . (5.4)

Apply the previous 1-form to the vector field ξs to get

μk((as)T DasV ) = λsk
1
ηs

·

It follows that ηs(A)μk(A)(as)T DasV (A) = λsk(A) > 0, for all A in sufficiently small neighbourhood of some
point Ā. We can assume that ηs(as)T DasV > 0 and μk > 0. Substitute for λik in (5.4), we get

μkdV =
∑

i

μkηi((ai)T DaiV )

(
∂Ci

∂ai
j

− xj

)
dai

j .

Canceling μk and setting λi = ηi((ai)T DaiV ) > 0, we obtain

dV =
m∑

i=1

λi

(
∂Ci

∂ai
j

− xj

)
dai

j .

It remains to prove that the function V has the required positivity conditions. Note that

∂2V

∂as
l ∂ai

j

=
m∑

i=1

λi

(
n∑

r=1

∂2xr

∂as
l ∂ai

j

ai
r +

∂xl

∂ai
j

δi
s

)
+

∂λi

∂as
l

n∑
r=1

∂xr

∂ai
j

ai
r.

Using relations (5.3), we can write D2
pV as

∂2V

∂as
l ∂as

j

= λsT
s
jl +

∂λs

∂as
l

n∑
r=1

∂xr

∂as
j

as
r.

Take a vector � ∈ {DasV }⊥; that is, � satisfies the condition
n∑

j=1

n∑
r=1

∂xr

∂as
j

as
r�j = 0.

It follows that
n∑

j,l=1

∂2V

∂as
l ∂as

j

�j�l = λs

n∑
j,l=1

T s
jl�j�l > 0.

We conclude that the matrix D2
asV is positive definite on {DasV }⊥; that is, V is quasi-convex with respect

to as. The proof is complete. �
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6. Duality

After solving the mathematical and economic integration problems, we get functions λ1, . . . , λm and V that
have the required properties. The question now is how to get a concave (or quasi-concave) objective function.
In the single constraint case, if V (a) is strongly convex (meaning that the Hessian is positive), then f (x) =
mina {V (a) | a′x ≤ c (a)} is quasi-convex (see [5], Prop. 11).

The objective function can be obtained from the value function using the duality relation

f(x) = min
{
V (A)|(ai)T x(A) = Ci(A)

}
.

The function f is not necessarily quasi-concave. However, we can introduce a class of functions that is stable
under duality, see [3, 10]. We need to define the following space

E(A) = {ν = (ν1, . . . , νm) ∈ R
mn|(νi)T DaiV = 0, i = 1, . . . , m}.

We now recall the definitions of QE-convex and QE-concave introduced by Epstein [10].

Definition 6.1. Let U ⊂ R
n
++ and V ⊂ R

mn
++. Suppose that C(A) is a convex mapping. Then,

• We say that a function f(x) is locally QE-concave if

∀x∗ ∈ U , ∃A∗ ∈ V such that f(x∗) = max
x∈U

{f(x)|A∗x = C(A∗)}.

• We say that a function V (A) is locally QE-convex if

∀A∗ ∈ V , ∃x∗ ∈ U such that V (A∗) = min
A∈V

{V (A)|Ax∗ = C(A)}.

We have the following theorems:

Theorem 6.2. The value function V (A) is locally QE-convex if D2
AV is positive definite on E(A).

Proof. Let V be a neighbourhood of a point Ā in which the function V is defined. The assumption that D2
AV is

positive definite on E(A) for all A ∈ V implies that if ν = (ν1, . . . , νm) ∈ E such that (a1 +ν1, . . . , am +νm) ∈ V
then

V (a1 + ν1, . . . , am + νm) > V (a1, . . . , am) (6.1)

To show that V is locally QE-convex, suppose that A∗ is given. Let x∗ be such that

V (A∗) = min
A

{V (A)|Ax∗ = C(A)}.

Take
x∗(A) = DaiCi(ai∗) − 1

λi(A∗)
DaiV (A∗)

and
λi(A∗) = ηi(A∗)(ai∗)T DaiV (A∗)

where η−1
i = (ai)T (DaiCi) − Ci(ai). The point A∗ satisfies the first order optimality conditions. Its clear

that A∗x∗(A∗) = C(ai∗). The point A∗ satisfies the second order condition for minimum which is the positive
definiteness of D2

AV on E(A∗). This completes the proof. �

Now, we need to show that the function

f(x) = min
A∈V

{V (A)|Ax = C(A)}
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is locally QE-concave if V is locally QE-convex. Let f(x) be a given locally QE-concave function. Define a
function V : V ⊂ R

mn
++ → R by

V (A) = max
x∈U

{f(x)|Ax = C(A)}

define also the function f∗(x) = min
A∈V

{V (A)|Ax = C(A)}.
Suppose that the function V (A) is defined in a neighbourhood of some point Ā ∈ R

mn
++, then U = {x ∈

R
n
++|Ax = C(A), ∀A ∈ V}. The following theorem establishes duality between f and V .

Theorem 6.3. If V is locally QE-convex then f∗ is locally QE-concave. Moreover, f∗ = f throughout U if f
is locally QE-concave.

Proof. See [1]. �

Theorem (5.1) implies that, on the space E , we have for any fixed k0 ∈ {1, . . . , m}

λk0

∂2V

∂ak
l ∂ai

j

= λik0

(∑
r

∂2xr

∂ak
l ∂ai

j

ai
r(1 − δi

k) + T i
jlδ

i
k

)
:= Kik

jl .

Clearly, the assumption of positive definiteness of D2V on the subspace E can now be stated in terms of
observable functions, namely λik0 and x. Moreover, it is a stronger condition than the assumption of positive
definiteness of T i on {(ai)Daix}⊥ as required in theorem (5.6). To put all pieces of the puzzle together, we state
the following theorem that gives the solution of the inverse problem:

Theorem 6.4. Let x(A) ∈ R
n
++, λik(A) > 0 be given functions defined on a neighbourhood U of some point

Ā ∈ R
mn
++. Define C(A) = Ax(A). Suppose that the following conditions are satisfied throughout U

(a) λtiλsk = λsiλtk for all 1 ≤ i, k, s, t ≤ m.
(b) Conditions (4.3).
(c) The matrix M i is positive semi-definite.
(d) The restriction of the tensor K to the subspace E is positive definite.

Then, there exists a locally QE-concave function f(x) such that

x(A) ∈ argmax{f(x)|Ax = C(A)}.

7. Particular case: m = 2

In the 2-constraint particular case, we have i, s, k, k′ ∈ {1, 2} which gives 16 cases to consider in Theorem 4.5.
Fortunately, some of these cases are redundant. The first type of redundancy comes from the proportionality of
Ω1 and Ω2 and Lemma 4.3. Consequently, we can take only one value for k, say k = 1, and k′ ∈ {1, 2}.

The second kind of redundancy arises from symmetry with respect to i and s, the case s = 1, i = 2 gives the
same conditions as s = 2, i = 1. This reduces the number of cases to be considered to 6. Let λ = λ21, note that
λ11 = λ22 = 1 and λ12 = 1/λ21. We consider each case in turn:

(a) First we set k = k′ = 1. We consider the following 3 subcases:
(i) s = i = 1, in this case λ11 = 1. After canceling identical terms from both sides we get

∂xj

∂a1
l

+ η1

∑
j′

∂xl

∂a1
j′

a1
j′

n∑
r=1

∂xr

∂a1
j

a1
r. =

∂xl

∂a1
j

+ η1

∑
j′

∂xj

∂a1
j′

a1
j′

n∑
r=1

∂xr

∂a1
l

a1
r. (7.1)

So we have S1 = ST
1 .
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(ii) s = 1, i = 2 we get in this case the following conditions

∂λ

∂a1
l

∑
r

∂xr

∂a2
j

a2
r − λ

∂xj
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l

+ η1

⎛
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∂xl
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j
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= − ∂xl
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j

+ η1

⎛
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∂λ
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j
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⎞
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r . (7.2)

Multiply both sides of the previous equation by a2
j and summing over j we find the following formula

∂λ

∂a1
l

= λη1

∑
j′

(
∂xl

∂a1
j′
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∂a1
l
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r.

Substitute in the previous equation for ∂λ
∂a1

l
we get the condition S2 = λS1.

(iii) s = i = 2
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r (7.3)

(b) k = 1, k′ = 2. We have another 3 subcases to consider:
(i) i = s = 1

∂xj
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(ii) i = s = 2
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Multiply both sides of the last equation by p2
j and summing over j, we get

∂λ

∂a2
l

= λη2

∑
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∂xr
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− ∂xl

∂a2
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)
a2

r.

Substituting back in the above equation we get S2 = ST
2 .
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(iii) s = 1, i = 2
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∑
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∂a2
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∂a2
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∂a2
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⎞
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l
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So far, we have proved the following theorem.

Theorem 7.1. Given functions x and λ of class C2. There exist three functions V, λ1 and λ2 such that DaiV =
λi(DaiCi − x), i = 1, 2 if and only if conditions (7.1)−(7.6) are fulfilled.

8. Geometry of the problem

Consider the following pair of dual problems

v(a) = maxu(x) subject to aT x = c(a)

and
f(x) = min v(a) subject to aT x = c(a).

The first order conditions for those problems are, respectively

∂v

∂pi
= λ

(
∂c

∂ai
− xi

)

and
∂f

∂xi
= μai.

Define the 1-form

ω(a) =
n∑

i=1

(
∂c

∂ai
− xi

)
dai.

Then ω(a) vanishes on the tangent space to the (n − 1)-dimensional manifold defined by

M(a) = {a ∈ R
n|v(a) = const.}

That is, for any ξ ∈ TaM , 〈ω(a), ξ〉 = 0. This is our integration problem: given ω(a), can we find a (n − 1)-
dimensional manifold M such that ω vanishes on the tangent space of M . The existence of this manifold is
guaranteed by the symmetry of the matrix

S = Dax +
1

a′(Dax)a
((Dax) − (Dax)′)aa′(Dax).

Following the argument in [7], take a mapping x(a) that we assume to be invertible with inverse a(x). Define
the 1-form π(x) =

∑n
i=1 aidxi. Integrating π means that we want to find a (n − 1)-dimensional manifold such

that the form π vanishes on its tangent space.
In the general m-constraint case, we have the following dual problems

V (A) = max f(x) subject to Ax = C(A)



86 M. ALOQEILI

and
f(x) = min V (A) subject to Ax = C(A).

The first order conditions for these problems are, respectively

∂V

∂ai
j

=
∑

k

λk
∂Ck

∂ai
j

− λix
j

and
∂f

∂xi
=

m∑
k=1

μkak
j .

Analogously, we define a family of 1-forms ω1, . . . , ωm by ωi = dCi −∑j xidai
j . The symmetry of the matrix Si

guarantees the existence of a (n − 1)-dimensional manifold

Mi =
{
ai ∈ R

n|Vi(ai; a−i) = ci
}

where a−i denotes the set of row vectors of the matrix A except the ith row, such that ωi vanishes over its
tangent space. Clearly, this is not sufficient for our purpose. This is reflected in the fact that these symmetry
conditions are not sufficient for mathematical integration.

9. Applications

In this section, the dependent variables will be denoted by P instead of A as they represent prices. The
inverse problem we considered in this article has interesting applications in microeconomics. The results we
got here extend basic results in microeconomic theory. This kind of problems, maximization under several
constraints, arise in many economic contexts; e.g., rationing, choice under uncertainty and other applications
such as models of uncertainty with production. The objective function f is called the individual’s utility function.
This function represents the tastes (or preferences) of the consumer on the set of affordable goods. The solution
of the optimization problem is called, in such models, the individual demand function. The value function is
called the indirect utility function which gives the maximum utility achieved by the consumer under budget
constraints. This function has many interesting properties in the basic individual model. These properties include
zero-homogeneity and quasi-convexity. In our setting, however, the indirect utility function is quasi-convex with
respect to each ai if each component of the mapping C is convex. It is not zero-homogeneous unless income
mapping is one-homogeneous.

9.1. The basic consumer’s problem

The basic individual problem in consumer theory takes the form of a maximization problem of the utility
function U(x) under one budget constraint in which the income y is price independent; that is,

max
x

U(x) subject to pT x = y

where p ∈ R
n
++ is the price vector. The solution to this problem, x(p, y) that is called the individual demand

function is, characterized by the following conditions:

• pT x(p, y) = y (Walras law).
• x(tp, ty) = x(p, y) (zero-homogeneity).
• Symmetry and negative semi-definiteness of the Slutsky matrix S where

Sij =
∂xi

∂pj
+

∂xi

∂y
xj .
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9.2. The consumer’s problem when income is price dependent

Now, if the consumer’s income depends on the price vector p, then we have a maximization problem of the
utility function U(x) under the linear constraint pT x = c(p). In this case, the necessary and sufficient conditions
of theorem (4.5) boil down to

∂xj

∂pl
− η

⎛
⎝∑

j′

∂xj

∂pj′
pj′ −

∑
j′

∂xj′

∂pj
pj′

⎞
⎠ n∑

r=1

∂xr

∂pl
pr

=
∂xl

∂pj
− η

⎛
⎝∑

j′

∂xl

∂pj′
pj′ −

∑
j

∂xj′

∂pl
pj′

⎞
⎠ n∑

r=1

∂xr

∂pj
pr.

This is indeed the extended Slutsky matrix given in [2] that characterizes individual demand functions in the
single constrain case. Moreover, if the function c is independent of a then we get the Slutsky matrix of the
standard individual model. It is important to point out that in the single constraint case the symmetry of this
matrix is both necessary and sufficient for mathematical integration.

Remark 9.1. Equation (2.8) is a generalized Roy’s identity in consumer theory. This relation can be used, as
in the classical individual model, to find the demand function from the indirect utility function V as the income
mapping C is given

xj =
∂Ci

∂pi
j

− ((pi)T (DpiCi) − Ci(pi))
∂V/∂pi

j∑
j

∂V
∂pi

j
pi

j

·

It can be readily verified that this formula reduces to the classical Roy’s identity if Ci is independent of the
price vector ai.

We also get generalization of the results in [3] when the mapping C is independent of A, see Corollary (4.7).

9.3. Point rationing

There are two types of rationing: simple rationing and points rationing. Simple rationing consists of exogenous
restrictions on certain consumption goods whereas points rationing means that the consumer has a certain
number of rationing coupons. Points rationing could be considered as replacing a systems with one currency by
a system of multiple currencies. Under points rationing, the consumer’s problem takes the form

max
(x1,...,xn)

U(x1, . . . , xn)

subject to the constraints
∑n

j=1 pi
jx

j = ci(pi), i = 1, . . . , m. In this model, pi
j refers to the price of good j in

currency i. It is assumed here that the individual’s income is price dependent.

10. Concluding remarks

In this paper,we have solved the inverse problem maxx f(x) subject to the linear constraints Ax = C(A).
We assumed that m < n and that the rank of the matrix A is m. If m > n, then ω1 ∧ . . . ∧ ωm = 0; that is,
ω1, . . . , ωm are linearly dependent. Consequently, the condition

∑
i λidωi ∧ ω1 ∧ . . . ∧ ωm = 0 is fulfilled.

In fact, we have treated the problem in its most general form. In some cases, however, we need to deal with
some problems in which there is few number of parameters. More precisely, we are given a mapping q → A(q)
so that the problem depends, ultimately, on the parameters q. This would, rather, simplify the necessary and
sufficient conditions. To get an idea of this case, we give a simple example from microeconomic theory. Let us
consider a consumer whose utility function is U(x1, . . . , xn) and his income is normalized to 1. Suppose that
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the prices of the n consumption goods p1, . . . , pn are determined by the prices of capital and labor used in
the production process, namely, wage rate w and capital rental price v. The consumer maximizes U(x1, . . . , xn)
under the budget constraint p1(v, w)x1 + · · ·+pn(v, w)xn = 1. Let V (v, w) be the value function of this problem.
Then, the envelope theorem implies that

− 1
λ

dV = x′(Dvp)dv + x′(Dwp)dw := ω.

The necessary and sufficient condition for this decomposition is ω ∧ dω = 0 is always fulfilled in the parameter
(v, w)-space; this is a 3-form in a 2-dimensional space2.

Appendix A. Proofs of main results

A.1. Proof of Theorem 3.1

We use the following preliminary results in the proof of theorem

Lemma A.1. Let x(A) be a solution of a multi-constraint maximization problem of the above type then

(a)
n∑

l=1

∂xl

∂ai
j
ak

l = 0 if i �= k.

(b)
n∑

j=1

(
∂Ci

∂ai
j
− xj

)
ai

j = (ai)T (Daix)ai.

Proof. Differentiate the kth constraint (ak)T x = Ck(ak) with respect to ai
j we get

n∑
j=1

∂xl

∂ai
j

ak
l + xjδi

k =
∂Ck

∂ai
j

δi
k.

Condition (a) follows when i �= k. If i = k then multiply both sides of the last equality by ai
j , summing over j

and rearranging to get (b). This completes the proof. �

We need also the following lemma.

Lemma A.2. Let λi, i = 1, . . . , m be the Lagrange multiplier corresponding to the ith constraint. Then, the
m × m matrix Λ = (Λik), i, k = 1, . . . , m is symmetric where

Λik = ηk

n∑
l=1

∂λi

∂ak
l

ak
l .

Moreover, let qi = ηia
i then

Λik = (qk)T (D2
akaiV )qi + (qk)T (D2

akaiC
i)qiδi

k − ηkλiδ
i
k (A.1)

Proof. Let i, k ∈ {1, . . . , m} with i �= k. By differentiating equality (2.2) with respect to ak
l we get

∂2V

∂ak
l ∂ai

j

=
∂λi

∂ak
l

(
∂Ci

∂ai
j

− xj

)
− λi

∂xj

∂ak
l

.

2 I would like to thank an anonymous referee for pointing out the issues discussed in this section and for other constructive
comments that contributed to improving the presentation of this article. Errors are mine.
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Multiply both sides of the last equality by ai
ja

k
l and summing up to get

n∑
j,l=1

∂2V

∂ak
l ∂ai

j

ai
ja

k
l =

n∑
l=1

∂λi

∂ak
l

ak
l

n∑
j=1

(
∂Ci

∂ai
j

− xj

)
ai

j − λi

n∑
j,l=1

∂xj

∂ak
l

ai
ja

k
l .

Using Lemma (A.1), we end up with

n∑
j,l=1

∂2V

∂ak
l ∂ai

j

ai
ja

k
l = η−1

i

n∑
l=1

∂λi

∂ak
l

ak
l .

Multiply both sides by ηk, we find that

Λik = ηkηi

n∑
j,l=1

∂2V

∂ak
l ∂ai

j

ai
ja

k
l .

This proves the symmetry of the matrix Λ. �

Equation (A.1) can be considered as a generalization of the homogeneity condition for Lagrange multiplier
when Ci is independent of ai, see [3]. Now, we start the proof of Theorem 3.1.

Proof. Let x(A) be a solution of problem (P) and λ(A) = (λ1(A), . . . , λm(A)) be the corresponding vector of
Lagrange multipliers. These functions are related to the value function through decomposition (2.4). Taking the
exterior derivative of both sides of equation (2.4), gives the 2-form

m∑
k=1

(
λkdωk + dλk ∧ ωk

)
= 0. (A.2)

Introduce a family of vector fields ξ1, . . . , ξm defined by

ξi =
n∑

j=1

ai
j

∂

∂ai
j

. (A.3)

Equation (2.7) implies that

〈ωi, ξi〉 =
n∑

r,j=1

∂xr

∂ai
j

ai
ra

i
j = (ai)T (Daix)ai = η−1

i .

Notice that 〈ωi, ξk〉 = 0 if i �= k. Applying equation (A.2) to the vector field ξi

m∑
k=1

λk〈dωk, (ξi, .)〉 +
m∑

k=1

〈dλk, ξi〉ωk − dλi〈ωi, ξi〉 = 0.

Since 〈ωi, ξi〉 = η−1
i , solving for dλi, we get

dλi = ηi

(
m∑

k=1

λk〈dωk, (ξi, .)〉 +
m∑

k=1

〈dλk, ξi〉ωk

)
. (A.4)

Substituting this value of dλi into
∑m

i=1

(
λidωi + dλi ∧ ωi

)
= 0, we get

m∑
i=1

(
λidωi + ηi

m∑
k=1

(
λk〈dωk, (ξi, .)〉 + 〈dλk, ξi〉ωk

) ∧ ωi

)
= 0. (A.5)
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Expanding each summation on the right-hand side of this equality, we can write

〈dωk, (ξi, .)〉 = −
∑
j,s,l

∂xj

∂as
l

das
l ∧ dak

j

⎛
⎝ n∑

j=1

ai
j

∂

∂ai
j

, .

⎞
⎠

= −
∑
j,l

∂xj

∂ai
l

ai
ldak

j +
∑
j,s,l

∂xj

∂as
l

ai
jdas

l δ
i
k.

It follows that

∑
k

λk〈dωk, (ξi, .)〉 = −
∑
j,k,l

λk
∂xj

∂ai
l

ai
ldak

j +
∑

j,k,s,l

λk
∂xj

∂as
l

ai
jdas

l δ
i
k

= −
∑
j,k,l

λk
∂xj

∂ai
l

ai
ldak

j + λi

∑
j,k,l

∂xj

∂ak
l

ai
jdak

l .

Using Lemma (A.1), we get

∑
k

λk〈dωk, (ξi, .)〉 = −
∑
j,k,l

λk
∂xl

∂ai
j

ai
jdak

l + λiω
i. (A.6)

Similarly,

〈dλk, ξi〉 =

〈∑
s,l

∂λk

∂as
l

das
l ,

n∑
j=1

ai
j

∂

∂ai
j

〉
=

n∑
l=1

∂λk

∂ai
l

ai
l =

1
ηi

Λki. (A.7)

Therefore,
m∑

k=1

〈dλk, ξi〉ωk =
m∑

k=1

1
ηi

Λkiω
k.

It follows, from the above calculations, that

dλi = −ηi

∑
k,l

n∑
j=1

λk
∂xl

∂ai
j

ai
jdak

l +
∑

k

Λkiω
k + ηiλiω

i. (A.8)

Using Lemma (A.2), we conclude that

dλi ∧ ωi = −ηi

∑
k,l

n∑
j=1

λk
∂xl

∂ai
j

ai
jdak

l ∧ ωi.

Then, equation (A.5) becomes

∑
i,j,k,l

⎛
⎝λi

∂xj

∂ak
l

+ ηi

n∑
j′=1

λk
∂xl

∂ai
j′

ai
j′

n∑
r,j=1

∂xr

∂ai
j

ai
r

⎞
⎠dak

l ∧ dai
j = 0. (A.9)

The result follows. �
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A.2. Proof of Theorem 3.3

Proof. Firstly, we prove that (a) implies (b). Define a family of 1-forms β1, . . . , βm by

βi = ηi

∑
l,j′,k

λk
∂xl

∂ai
j′

ai
j′dak

l .

Symmetry conditions in (a) read as

λi

⎛
⎝∂xj

∂ak
l

− ηk

n∑
j′=1

∂xj

∂ak
j′

ak
j′

n∑
r=1

∂xr

∂ak
l

ak
r

⎞
⎠ = λk

⎛
⎝∂xl

∂ai
j

− ηi

n∑
j′=1

∂xl

∂ai
j′

ai
j′

n∑
r=1

∂xr

∂ai
j

ai
r

⎞
⎠ .

Recall the definition of ωi in (2.7) and equation (2.5), the last symmetry conditions are equivalent to

n∑
i=1

(λidωi + βi ∧ ωi) = 0.

Multiply by ω1 ∧ . . . ∧ ωm to get condition (b).
Conversely, condition (b) means that there exist m differential 1-forms γ1, . . . , γm such that

m∑
i=1

(λidωi + γi ∧ ωi) = 0. (A.10)

Then, write γi as
γi =

∑
k,l

ϕi
kl(A)dak

l

for some smooth functions ϕi
kl(A). Now, apply the 2-form in equation (A.10) to the vector field ξk for some

1 ≤ k ≤ m, the first summation gives, using equation (A.6),

m∑
i=1

λi〈dωi, (ξk, .)〉 = −
∑
i,j,l

λi
∂xl

∂ak
j

ak
j dai

l + λkωk.

While the second summation gives us

m∑
i=1

〈γi ∧ ωi, (ξk, .)〉 =

(
n∑

l=1

ϕi
kla

k
l

)
ωk − η−1

k γk.

It follows from the two previous equations that,

−
∑
j,k,l

λk
∂xl

∂ai
j

ai
jdak

l + λiω
i +

(
n∑

l=1

ϕk
ila

i
l

)
ωi − η−1

i γi = 0.

Solving for γi

γi = −ηi

∑
j,k,l

λk
∂xl

∂ai
j

ai
jdak

l + ηi

n∑
l=1

ϕk
ila

i
lω

i + ηiλiω
i. (A.11)

So, we conclude that

γi = −ηi

∑
j,k,l

λk
∂xl

∂ai
j

ai
jdak

l mod ωi
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Now, plug this value of γi into (A.10) and expand to get

∑
i,j,k,l

⎛
⎝λi

∂xj

∂ak
l

+ ηiλk

n∑
j′=1

∂xl

∂ai
j′

ai
j′

n∑
r=1

∂xr

∂ai
j

ai
r

⎞
⎠dak

l ∧ dai
j = 0.

Symmetry conditions (a) follow from the last equality. This completes the proof. �

A.3. Proof of Theorem 4.5

Proof. Recall that Ωk ∧ dΩk = 0 if and only if there exists a 1-form αk such that

dΩk = αk ∧ Ωk (A.12)

The 1-form αk can be identified (mod Ωk). Notice that

Ωk =
m∑

i=1

λik

n∑
r,j=1

∂xr

∂ai
j

ai
rdai

j .

Let ξk′
be a vector field defined as in (A.3), then

〈Ωk, ξk′〉 = λk′k(ak′
)T (Dak′ x)ak′

= λk′kη−1
k′ .

To find a 1-form αk that satisfies equation (A.12), we apply both sides of that equation to the vector field ξk′
,

so we have
〈dΩk, (ξk′

, .)〉 = 〈αk, ξk′〉Ωk − αk〈Ωk, ξk′ 〉.
Using the fact that 〈Ωk, ξk′〉 = λk′kη−1

k′ and solving for αk, we get

αk =
ηk′

λk′k

[
〈αk, ξk′〉Ωk − 〈dΩk, (ξk′

, .)〉
]
.

Substitute for αk in equation (A.12) that becomes

dΩk = − ηk′

λk′k
〈dΩk, (ξk′

, .)〉 ∧ Ωk. (A.13)

Now

Ωk =
m∑

i=1

λik

(
∂Ci

∂ai
j

− xj

)
dai

j .

Taking the exterior derivative and using the budget constraint we find that

dΩk =
∑

i,j,s,l

(
∂λik

∂as
l

∑
r

∂xr

∂ai
j

ai
r − λik

∂xj

∂as
l

)
das

l ∧ dai
j .

Now, we apply the 2-form dΩk to the vector field ξk′
, we conclude that

〈dΩk, (ξk′
, .)〉 =

∑
i,j,l

(
∂λik

∂ak′
l

∑
r

∂xr

∂ai
j

ai
r − λik

∂xj

∂ak′
l

)
ak′

l dai
j

−
∑
j,s,l

(
∂λk′k

∂as
l

∑
r

∂xr

∂ak′
j

ak′
r − λk′k

∂xj

∂as
l

)
ak′

j das
l
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Rewrite equation (A.13) as
dΩk +

ηk′

λk′k
〈dΩk, (ξk′

, .)〉 ∧ Ωk = 0.

Depending on the above formulas of dΩk and 〈dΩk, (ξk′
, .)〉 the last equation can be expanded as

∑
i,j,s,l

⎛
⎝∂λik

∂as
l

∑
r

∂xr

∂ai
j

ai
r − λik

∂xj

∂as
l

+
ηk′

λkk′

⎛
⎝∑

j′

∂λsk

∂ak′
j′

ak′
j′
∑

r

∂xr

∂as
l

as
r − λsk

∑
j′

∂xl

∂ak′
j′

ak′
j′

− 1
ηk′

∂λk′k

∂as
l

+ λk′k

∑
j′

∂xj′

∂as
l

ak′
j′

⎞
⎠λik

n∑
r=1

∂xr

∂ai
j

ai
r

⎞
⎠ das

l ∧ dai
j = 0. (A.14)

Write the previous equation as ∑
i,s,j,l

(Γk′k)sl
ijdas

l ∧ dai
j = 0,

where

(Γk′k)sl
ij =

∂λik

∂as
l

∑
r

∂xr

∂ai
j

ai
r − λik

∂xj

∂as
l

+
ηk′

λkk′

⎛
⎝∑

j′

∂λsk

∂ak′
j′

ak′
j′
∑

r

∂xr

∂as
l

as
r − λsk

∑
j′

∂xl

∂ak′
j′

ak′
j′

− 1
ηk′

∂λk′k

∂as
l

+ λk′k

∑
j

∂xj′

∂as
l

ak′
j′

⎞
⎠λik

n∑
r=1

∂xr

∂ai
j

ai
r.

Then equation (A.14) is satisfied if and only if (Γk′k)sl
ij = (Γk′k)ij

sl for any given k′, k ∈ {1, . . . , m} and all
1 ≤ i, s ≤ m and 1 ≤ j, l ≤ n. So, we get the required symmetry conditions. This completes the proof. �

A.4. Proof of Theorem 5.1

First, we have from the envelope theorem

∂V

∂ai
j

= λi

(
∂Ci

∂ai
j

− xj

)
= λi

∑
r

∂xr

∂ai
j

ai
r. (A.15)

Differentiate this equation with respect to ak
l , we get

∂2V

∂ak
l ∂ai

j

=
∂λi

∂ak
l

(
∂Ci

∂ai
j

− xj

)
+ λi

(
∂2Ci

∂ak
l ∂ai

j

δi
k − ∂xj

∂ak
l

)
. (A.16)

Multiply both sides by ai
j , summing over j, and solving to get the following formula

∂λi

∂ak
l

= ηi

∑
j′

∂2V

∂ak
l ∂ai

j′
ai

j′ − λiηi

∑
j′

(
∂2Ci

∂ak
l ∂ai

j′
δi
k − ∂xj′

∂ak
l

)
ai

j′ .

Note that

λi

∑
j′

∂xj′

∂ak
l

ai
j′ =

∂V

∂ak
l

δi
k.

Using the last two equations together with (A.15) and (A.16) we find that

λi
∂xj

∂ak
l

= − ∂2V

∂ak
l ∂ai

j

+ λi
∂2Ci

∂ak
l ∂ai

j

δi
k +

ηi

λi

⎛
⎝∑

j′

∂2V

∂ak
l ∂ai

j′
ai

j′ −
⎛
⎝λi

∑
j′

∂2Ci

∂ak
l ∂ai

j′
ai

j′ −
∂V

∂ak
l

⎞
⎠ δi

k

⎞
⎠ ∂V

∂ai
j

· (A.17)
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Now, multiply both sides of (A.16) by ak
l and add up with respect to l to get the following formula after

rearrangement

λi

∑
l′

∂xj

∂ak
l′

ak
l′ =

∑
l′

∂2V

∂ak
l′∂ai

j

ak
l′ +

ηi

λi

∑
j′,l′

∂2V

∂ak
l′∂ai

j′
ak

l′a
i
j′

∂V

∂ai
j

− ηi

∑
j′,l′

∂2Ci

∂ak
l′∂ai

j′
ak

l′a
i
j′

∂V

∂ai
j

δi
k (A.18)

+
∂V

∂ai
j

δi
k + λi

∑
l′

∂2Ci

∂ak
l′∂ai

j

ak
l′δ

i
k.

To get this formula we used also

n∑
l′=1

∂λi

∂ak
l′

ak
l′ = ηi

∑
j′,l′

∂2V

∂ak
l′∂ai

j′
ak

l′a
i
j′ − λiηi

∑
j′,l′

∂2Ci

∂ak
l′∂ai

j′
ak

l′a
i
j′δ

i
k + λiδ

i
k.

Recall that

λiSk = λi

⎛
⎝∂xj

∂ak
l

− ηk

n∑
j′=1

∂xj

∂ak
j′

ak
j′

n∑
r=1

∂xr

∂ak
l

ak
r

⎞
⎠ .

It suffices to substitute from (A.15), (A.17) and (A.18) into this equation to get the required formula. The proof
is complete.
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