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ON THE CONTROL OF THE LINEAR KURAMOTO−SIVASHINSKY
EQUATION ∗

Eduardo Cerpa1, Patricio Guzmán1 and Alberto Mercado1

Abstract. In this paper we study the null controllability property of the linear Kuramoto−Sivashinsky
equation by means of either boundary or internal controls. In the Dirichlet boundary case, we use the
moment theory to prove that the null controllability property holds with only one boundary control if
and only if the anti-diffusion parameter of the equation does not belong to a critical set of parameters.
Regarding the Neumann boundary case, we prove that the null controllability property does not hold
with only one boundary control. However, it does always hold when either two boundary controls or
an internal control are considered. The proof of the latter is based on the controllability-observability
duality and a suitable Carleman estimate.
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1. Introduction

The Kuramoto−Sivashinsky equation is given by

zt + zxxxx + λzxx + zzx = 0, (1.1)

where λ > 0 is known as the anti-diffusion parameter. This equation was derived independently by Kuramoto
and Tsuzuki, in [14, 15], as a model for phase turbulence in reaction-diffusion systems, and by Sivashinsky,
in [17, 20], as a model for the physical phenomenon of plane flame propagation. The role of λ is to add some
instabilities to the model and this occurs with λ > 0.

In this paper we study the control properties of the linear Kuramoto−Sivashinsky equation (consider (1.1)
without the nonlinear term zzx), posed with Dirichlet or Neumann boundary conditions, by means of either
boundary or internal controls. The physical interpretation of these actuators is related to heat flux or fuel supply
if flame front propagation is considered. We first focus on the following boundary control systems.

Keywords and phrases. Kuramoto−Sivashinky equation, parabolic equation, boundary control, internal control, null controlla-
bility, moment theory, Carleman estimates.
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Dirichlet Case − Boundary Control:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zt + zxxxx + λzxx = 0, (t, x) ∈ (0, T ) × (0, L),

z(t, 0) = u1(t), z(t, L) = 0, t ∈ (0, T ),

zx(t, 0) = u2(t), zx(t, L) = 0, t ∈ (0, T ),

z(0, x) = z0(x), x ∈ (0, L).

(1.2)

Neumann Case − Boundary Control:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zt + zxxxx + λzxx = 0, (t, x) ∈ (0, T ) × (0, L),

zxx(t, 0) = u1(t), zxx(t, L) = 0, t ∈ (0, T ),

zxxx(t, 0) = u2(t), zxxx(t, L) = 0, t ∈ (0, T ),

z(0, x) = z0(x), x ∈ (0, L).

(1.3)

Given the parabolic character of these equations, the appropriate control notion to study is the null con-
trollability, which is defined as follows. The above equations are said to be null controllable in time T > 0 if,
given any initial state z0, there exist controls (u1, u2) such that the corresponding solution z = z(t, x) satisfies
z(T, ·) = 0.

In the literature, there are already some control results for these equations. In fact, by using four boundary
controls, in [13], the robust control has been addressed for (1.2). In [16], the stability and stabilizability issues
have been studied for (1.2) and (1.3). The question of using less controls in (1.2) has been raised in [2], where
the case u1 = 0 is considered. Indeed, by using the control u2 only, the null controllability of (1.2) is proven to
hold if and only if the anti-diffusion parameter, λ > 0, does not belong to the set of critical parameters

C :=
{

(j2 + k2)π2

L2
/ (j, k) ∈ N

2 with the same parity and j < k

}
. (1.4)

In this paper we complete the study in [2] by proving the following result.

Theorem 1.1. Consider the case u2 = 0 and suppose that

λ /∈ G := C ∪
{

4l2π2

L2
/ l ∈ N

}
. (1.5)

Then, for every z0 ∈ L2(0, L), there exists u1 ∈ H1(0, T ) such that the unique solution z ∈ C([0, T ];L2(0, L))
of equation (1.2) satisfies z(T, ·) = 0 in L2(0, L). Moreover, if λ ∈ G, then equation (1.2) is not null controllable
in time T > 0 in L2(0, L).

Therefore, in the Dirichlet case, the null controllability property holds with only one control provided that
λ > 0, the anti-diffusion parameter, does not belong to the corresponding set of critical parameters (1.4) or (1.5).
The situation improves with two controls, where λ > 0 does not play any role in the null controllability property.
In fact, this property holds with two controls and has already been shown in [2,3] by using the moment theory
and a suitable Carleman estimate respectively.

The proof of Theorem 1.1 makes use of the fact that the operator

AD : y ∈ H4 ∩H2
0 (0, L) ⊂ L2(0, L) → −y′′′′ − λy′′ ∈ L2(0, L), (1.6)

which is the underlying spatial operator in (1.2), has a compact resolvent and is self-adjoint. Therefore, it has a
discrete spectrum consisting only in real eigenvalues, {σk}k∈N, and its corresponding eigenfunctions, {φk}k∈N,
form an orthonormal basis of L2(0, L). This allows us to transform the null controllability problem into a problem
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of moments (see Lem. 2.5), which is solved by using the moment theory developed by Fattorini and Russell
in [8], and the results on the asymptotic behaviour of σk and φ′′′k (0) when k → +∞ obtained in ([2], Lem. 2.2).

Remark 1.2. Consider u2 = 0 and suppose that λ ∈ G. Theorem 1.1 tells us that equation (1.2) is not null
controllable in time T > 0 in L2(0, L). Being more precise, in the proof of that theorem we see that if λ ∈ G,
then there exists n ∈ N, depending on λ ∈ G, such that φ′′′n (0) = 0. Furthermore, in that case, the inital states
z0 ∈ L2(0, L) that cannot be driven to the null state in time T > 0 are those that satisfy∫ L

0

z0(x)φn(x) dx �= 0.

Regarding the Neumann case, up to our best knowledge, there are no controllability results. In this case, the
corresponding underlying spatial operator is

AN : y ∈ {v ∈ H4(0, L) / v′′ ∈ H2
0 (0, L)} ⊂ L2(0, L) → −y′′′′ − λy′′ ∈ L2(0, L),

which has a compact resolvent but is not self-adjoint because of the boundary conditions. Accordingly, we cannot
follow the same strategy based on the moment theory for studying the null controllability property. With a useful
characterization of this property (see Lem. 3.5), we have obtained the following negative controllability result
when only one control is considered.

Theorem 1.3.

(a) Consider the case u2 = 0 and suppose that z0 ∈ L2(0, L) is such that∫ L

0

z0(x) cos (
√
λx) dx �= 0. (1.7)

Then, for every u1 ∈ L2(0, T ) the unique solution z ∈ C([0, T ];L2(0, L)) of equation (1.3) satisfies z(T, ·) �= 0
in L2(0, L).

(b) Consider the case u1 = 0 and suppose that z0 ∈ L2(0, L) is such that∫ L

0

z0(x) sin (
√
λx) dx �= 0. (1.8)

Then, for every u2 ∈ L2(0, T ) the unique solution z ∈ C([0, T ];L2(0, L)) of equation (1.3) satisfies z(T, ·) �= 0
in L2(0, L).

As in the Dirichlet case, the situation improves when two controls are considered.

Theorem 1.4. For every z0 ∈ L2(0, L), there exist (u1, u2) ∈ L2(0, T )2 such that the unique solution z ∈
C([0, T ];L2(0, L)) of equation (1.3) satisfies z(T, ·) = 0 in L2(0, L).

In virtue of the controllability-observability duality (see [5], Thm. 2.44 or [21], Thm. 11.2.1 for instance), we
could prove Theorem 1.4 by showing the existence of a constant C > 0 such that

‖q(0, ·)‖2
L2(0,L) ≤ C

∫ T

0

(|q(t, 0)|2 + |qx(t, 0)|2) dx, (1.9)

for every q = q(t, x) satisfying the adjoint equation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−qt + qxxxx + λqxx = 0, (t, x) ∈ (0, T ) × (0, L),

(qxx + λq)(t, 0) = 0, (qxx + λq)(t, L) = 0, t ∈ (0, T ),

(qxxx + λqx)(t, 0) = 0, (qxxx + λqx)(t, L) = 0, t ∈ (0, T ),

q(T, x) = qT (x), x ∈ (0, L),

(1.10)
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with qT ∈ L2(0, L). An adequate tool for obtaining observability inequality (1.9) is a Carleman estimate for (1.10)
with boundary observation. However, due to the boundary conditions of (1.10), we were not able to obtain the
desired Carleman estimate. Because of this difficulty, we have followed a different strategy to prove Theorem 1.4.
We first prove the internal null controllability and then we use it to obtain the boundary null controllability
by means of trace arguments. Consider ω ⊂ (0, L) as a given non-empty open interval such that ω ⊂ (0, L).
Denoting by �ω the characteristic function on ω, the above-mentioned internal control system is the following
one.

Neumann Case − Internal Control:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

zt + zxxxx + λzxx = u�ω, (t, x) ∈ (0, T )× (0, L),

zxx(t, 0) = 0, zxx(t, L) = 0, t ∈ (0, T ),

zxxx(t, 0) = 0, zxxx(t, L) = 0, t ∈ (0, T ),

z(0, x) = z0(x), x ∈ (0, L).

(1.11)

We have obtained the following result.

Theorem 1.5. For every z0 ∈ L2(0, L), there exists u ∈ L2(0, T ;L2(ω)) such that the unique solution z ∈
C([0, T ];L2(0, L)) of equation (1.11) satisfies z(T, ·) = 0 in L2(0, L).

Thanks to the controllability-observability duality, we can prove this theorem by showing the existence of a
constant C > 0 such that

‖q(0, ·)‖2
L2(0,L) ≤ C

∫ T

0

∫
ω

|q(t, x)|dxdt, (1.12)

for every q = q(t, x) satisfying (1.10) with qT ∈ L2(0, L). We derive a suitable Carleman estimate for (1.10)
with internal obervation, which allowed us to obtain (1.12) and prove Theorem 1.5. Finally, we make use of the
regularizing effect of equation (1.3) when u1 = u2 = 0 (see Prop. 3.3) to prove that this internal control result
implies Theorem 1.4. Note that a similar internal control result has been obtained in ([22],Thm. 1.3) for the
Dirichlet case.

This paper is organized as follows. The Dirichlet case is addressed in Section 2 by presenting well-posedness
results (Sect. 2.1), the characterization of the null controllability property (Sect. 2.2) and the proof of Theo-
rems 1.1 and 1.2 (Sect. 2.3). The Neumann case is addressed in Section 3 by presenting well-posedness results
(Sect. 3.1), the proof of the negative controllability result (Sect. 3.2) and the proof of Theorems 1.4 and 1.5
(Sect. 3.3). Finally, in Section 3.4 the suitable Carleman estimate used in our study is derived.

Remark 1.6. In [19] the author showed that the linear Korteweg-de Vries equation is exactly controllable,
with a single boundary control, if and only if the length of the interval where the equation is posed does not
belong to a critical set of lengths. Other works related to the control of the Korteweg-de Vries equation where
this phenomenon is found are [4, 11]. With a suitable rescaling in the linear Kuramoto−Sivashinsky equation,
we could have studied the problem of finding critical lengths L, instead of critical anti-diffusion parameters λ,
for which the null controllability property fails.
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2. Dirichlet case

2.1. Well-Posedness

In this section we present the well-posedness results needed for studying control system (1.2). Let us consider
the equation ⎧⎪⎨

⎪⎩
zt + zxxxx + λzxx = f, (t, x) ∈ (0, T ) × (0, L),

z(t, 0) = u1(t), z(t, L) = 0, t ∈ (0, T ),
zx(t, 0) = u2(t), zx(t, L) = 0, t ∈ (0, T ),

z(0, x) = z0(x), x ∈ (0, L).

(2.1)

From [2,3, 13, 16] it is known that AD, which was defined in (1.6), is an infinitesimal generator of a strongly
continuous semigroup in L2(0, L). Therefore, in virtue of ([18], Cor. 2.10, Chapt. 4), it follows that equation (2.1)
with u1 = u2 = 0 has a unique solution z ∈ C([0, T ];H4 ∩ H2

0 (0, L)) ∩ C1([0, T ];L2(0, L)) provided that
f ∈ C1([0, T ];L2(0, L)) and z0 ∈ H4 ∩ H2

0 (0, L). The above facts and suitable energy estimates, that can be
obtained, for instance, by employing the techniques used in [1, 12, 13], allow us to use a density argument to
conclude the following result.

Proposition 2.1. Let f ∈ L2(0, T ;L2(0, L)) and u1 = u2 = 0.

(a) If z0 ∈ L2(0, L), then equation (2.1) has a unique solution z ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H2
0 (0, L)).

Moreover, there exists C = C(T, L, λ) > 0 such that

‖z‖C([0,T ];L2(0,L))∩L2(0,T ;H2
0 (0,L)) ≤ C

(‖f‖L2(0,T ;L2(0,L)) + ‖z0‖L2(0,L)

)
.

(b) If z0 ∈ H2
0 (0, L), then equation (2.1) has a unique solution z ∈ C([0, T ];H2

0 (0, L)) ∩ L2(0, T ;H4(0, L)).
Moreover, there exists C = C(T, L, λ) > 0 such that

‖z‖C([0,T ];H2
0(0,L))∩L2(0,T ;H4(0,L)) ≤ C

(
‖f‖L2(0,T ;L2(0,L)) + ‖z0‖H2

0 (0,L)

)
.

With the aid of a suitable lifting function, we can use the previous proposition to study equation (2.1) with
non-homogeneous boundary conditions.

Proposition 2.2. Let f ∈ L2(0, T ;L2(0, L)), (u1, u2) ∈ H1(0, T )2 and z0 ∈ L2(0, L). Then, equation (2.1)
has a unique solution z ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H2(0, L)). Moreover, there exists C = C(T, L, λ) > 0
such that

‖z‖C([0,T ];L2(0,L))∩L2(0,T ;H2(0,L)) ≤ C
(‖f‖L2(0,T ;L2(0,L)) + ‖(u1, u2)‖H1(0,T )2 + ‖z0‖L2(0,L)

)
. (2.2)

Proof. With the aid of the polynomials

d1(x) := 2L−3x3 − 3L−2x2 + 1, d2(x) := L−2x3 − 2L−1x2 + x,

we define the lifting function

ψD(t, x) := u1(t)d1(x) + u2(t)d2(x).

By taking into account that g := f − (ψD)t− (ψD)xxxx−λ(ψD)xx and y0(x) := z0(x)−ψD(0, x) are elements
of L2(0, T ;L2(0, L)) and L2(0, L) respectively, it follows that the equation⎧⎪⎨

⎪⎩
yt + yxxxx + λyxx = g, (t, x) ∈ (0, T ) × (0, L),
y(t, 0) = 0, y(t, L) = 0, t ∈ (0, T ),

yx(t, 0) = 0, yx(t, L) = 0, t ∈ (0, T ),
y(0, x) = y0(x), x ∈ (0, L),
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has a unique solution y ∈ C([0, T ];L2(0, L))∩L2(0, T ;H2
0 (0, L)) thanks to Proposition 2.1(a). Furthermore, this

solution satisfies

‖y‖C([0,T ];L2(0,L))∩L2(0,T ;H2
0 (0,L)) ≤ C

(‖g‖L2(0,T ;L2(0,L)) + ‖y0‖L2(0,L)

)
. (2.3)

From ψD(t, 0) = u1(t) and (ψD)x(t, 0) = u2(t), we get that z := y + ψD ∈ C([0, T ];L2(0, L)) ∩
L2(0, T ;H2(0, L)) is a solution of equation (2.1). The continuous injection H1(0, T ) ↪→ C([0, T ]) allows us
to get

‖ψD‖C([0,T ];L2(0,L)) ≤ C‖(u1, u2)‖H1(0,T )2 ,

which combined with ‖z‖ − ‖ψD‖ ≤ ‖y‖ (valid for any norm) and (2.3) give us (2.2). This inequality and the
linearity of the equation yield the uniqueness of solutions. The proof of Proposition 2.2 is complete. �

We finish this section with a result concerning the regularizing effect of equation (2.1) when f = 0 and
u1 = u2 = 0. This will be used in Section 3.1 when studying the regularizing effect of the uncontrolled equation
associated to the Neumann case (see Prop. 3.3).

Proposition 2.3. Let τ ∈ (0, T ) and z0 ∈ L2(0, L). Then, the unique solution z ∈ C([0, T ];L2(0, L)) ∩
L2(0, T ;H2

0 (0, L)) of equation (2.1) with f = 0 and u1 = u2 = 0 belongs to

RD(τ, L) := C([τ, T ];H2
0 (0, L)) ∩ L2(τ, T ;H4(0, L)) ∩H1(τ, T ;L2(0, L)).

Moreover, there exists C = C(T, L, λ) > 0 such that

‖z‖C([0,T ];L2(0,L))∩L2(0,T ;H2
0(0,L)) + ‖z‖RD(τ,L) ≤ C

(
1 +

1
τ

)1/2

‖z0‖L2(0,L). (2.4)

Proof. We make all the computations needed considering z0 ∈ H4 ∩ H2
0 (0, L), so that equation (2.1) would

have a unique solution z ∈ C([0, T ];H4 ∩H2
0 (0, L))∩C1([0, T ];L2(0, L)). The case z0 ∈ L2(0, L) follows from a

density argument after obtaining (2.4).
Let us consider a regular function φ = φ(t). Multiplying equation (2.1) by zxxxxφ we get

1
2

∫ L

0

∂
(|zxx(t, x)|2)

∂t
φ(t) dx +

∫ L

0

|zxxxx|2φ(t) dx +
∫ L

0

λzxx(t, x)zxxxx(t, x)φ(t) dx = 0. (2.5)

Let τ ∈ (0, T ). First, taking φ(t) = 1 in (2.5) and then integrating the equation over (t, T ) we get, thanks to
the Cauchy inequality, that for every t ∈ [τ, T ] it holds

‖zxx(t, ·)‖2
L2(0,L) ≤ ‖zxx(T, ·)‖2

L2(0,L) + 3‖zxxxx‖2
L2(τ,T ;L2(0,L)) + λ2‖zxx‖2

L2(τ,T ;L2(0,L)). (2.6)

Second, taking φ(t) = t in (2.5) and then integrating the equation over (0, T ) we get, thanks once again to
the Cauchy inequality, that

T ‖zxx(T, ·)‖2
L2(0,L) +

∫ T

0

∫ L

0

|zxxxx|2t dxdt ≤ (1 + Tλ2)‖zxx‖2
L2(0,T ;L2(0,L)).

Here we can use that τ ∈ (0, T ) to obtain

‖zxx(T, ·)‖2
L2(0,L) + ‖zxxxx‖2

L2(τ,T ;L2(0,L)) ≤
C

τ
‖zxx‖2

L2(0,T ;L2(0,L)).
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Third, from the combination of (2.2) with the previous inequality and (2.6) we arrive at

‖z‖2
C([τ,T ];H2

0(0,L))∩L2(τ,T ;H4(0,L)) ≤ C

(
1 +

1
τ

)
‖z0‖2

L2(0,L).

Note that we have used the fact that ‖v(n)‖L2(0,L) + ‖v‖L2(0,L), with n ∈ N, is a norm equivalent to ‖v‖Hn(0,1).
Furthermore, the equation zt = −zxxxx − λzxx tells us that we actually have

‖z‖2
C([τ,T ];H2

0(0,L))∩L2(τ,T ;H4(0,L))∩H1(τ,T ;L2(0,L)) ≤ C

(
1 +

1
τ

)
‖z0‖2

L2(0,L).

Finally, (2.2) together with the previous inequality gives us (2.4). Furthermore, this inequality and the
linearity of the equation yield the uniqueness of solutions. The proof of Proposition 2.3 is complete. �

In the forthcoming sections we will apply the results developed here to⎧⎪⎨
⎪⎩

−qt + qxxxx + λqxx = G, (t, x) ∈ (0, T )× (0, L),
q(t, 0) = 0, q(t, L) = 0, t ∈ (0, T ),

qx(t, 0) = 0, qx(t, L) = 0, t ∈ (0, T ),
q(T, x) = qT (x), x ∈ (0, L),

(2.7)

which corresponds to the adjoint equation associated to equation (1.2) when G = 0.

2.2. Boundary control with one input

In this section we state useful characterizations of the null controllability for control system (1.2). Its proofs
are very classical.

Lemma 2.4. Consider u2 = 0. Equation (1.2) is null controllable in time T > 0 in L2(0, L) if and only if for
any z0 ∈ L2(0, L) there exists u1 ∈ H1(0, T ) such that for every qT ∈ H2

0 (0, L) it holds∫ L

0

z0(x)q(0, x) dx =
∫ T

0

u1(t)qxxx(t, 0) dt, (2.8)

where q = q(t, x) is the unique solution of adjoint equation (2.7) with G = 0.

We make use of the following fact, taken from [2], to transform the null controllability problem into a problem
of moments.

(F) AD, defined in (1.6), is a self-adjoint operator whose resolvent is compact. Its spectrum is a discrete set
consisting only of real eigenvalues, denoted by {σk}k∈N, satisfying σk ≤ λ2/4 for all k ∈ N and limk→+∞ σk =
−∞. Its corresponding eigenfunctions, denoted by {φk}k∈N, are elements of H4 ∩ H2

0 (0, L) and form an
orthonormal basis of L2(0, L).

Lemma 2.5. Consider u2 = 0. Equation (1.2) is null controllable in time T > 0 in L2(0, L) if and only if for
any

z0(x) =
∑
k∈N

zk0φk(x) with
∑
k∈N

|zk0 |2 < +∞, (2.9)

there exists f ∈ H1(0, T ) such that

φ′′′k (0)
∫ T

0

f(t)eσkt dt = zk0 eσkT , ∀k ∈ N. (2.10)

The control is given by u1(t) := f(T − t).
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2.3. Spectral analysis

The purpose of this section is to prove Theorem 1.1. The proof is based on the spectral analysis of the
operator AD, which was defined in (1.6).

Proof of Theorem 1.1. Every initial state z0 ∈ L2(0, L) can be written as

z0(x) =
∑
k∈N

zk0φk(x),
∑
k∈N

|zk0 |2 < +∞.

In virtue of Lemma 2.5, control system (1.2) is null controllable in time T > 0 in L2(0, L) if and only if there
exists f ∈ H1(0, T ) such that

φ′′′k (0)
∫ T

0

f(t)eσkt dt = zk0 eσkT , ∀k ∈ N.

Hence, provided that φ′′′k (0) �= 0 for every k ∈ N, we arrive at the following problem of moments. Find f ∈
H1(0, T ) such that

∫ T

0

f(t)eσkt dt =
zk0eσkT

φ′′′k (0)
, ∀k ∈ N.

This problem of moments can directly be solved by using the moment theory developed by Fattorini and Russell
(see [8], Cor. 3.2), and the results on the asymptotic behaviour of σk and φ′′′k (0) when k → +∞ given in ([2],
Lem. 2.2). Therefore, the only thing left to do is to determine when φ′′′k (0) �= 0 for every k ∈ N.

In order to make the notation clearer, we omit the subscript k in the eigenvalues and eigenfunctions. Let
(φ, σ) satisfy {−φ′′′′ − λφ′′ = σφ, x ∈ (0, L),

φ(0) = φ(L) = φ′(0) = φ′(L) = 0. (2.11)

We consider the following three cases: σ > 0, σ = 0 or σ < 0. For the sake of completeness, we write again
all the computations of the eigenfunctions that appear in the proof of ([2], Lem. 2.1). A similar analysis has
been done in [6].

Case 1: σ > 0. Because of (F) we know that there exist a finite number of positive eigenvalues satisfying
σ < λ2/4 (it can be shown that σ �= λ2/4). Set

α :=

(
λ−√

λ2 − 4σ
2

)1/2

, β :=

(
λ+

√
λ2 − 4σ
2

)1/2

·

We have that

φ(x) = C1 cos (α(x− L/2)) + C2 sin (α(x − L/2)) + C3 cos (β(x − L/2)) + C4 sin (β(x − L/2)),

is a solution of equation (2.11). The real constants C1, C2, C3 and C4 make φ satisfy the boundary conditions
in (2.11), and hence, these are the solutions of[

cos (αL/2) cos (βL/2)
α sin (αL/2) β sin (βL/2)

]
︸ ︷︷ ︸

S1

[
C1

C3

]
=
[

0
0

]
, (2.12)
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[
sin (αL/2) sin (βL/2)
α cos (αL/2) β cos (βL/2)

]
︸ ︷︷ ︸

S2

[
C2

C4

]
=
[

0
0

]
. (2.13)

From (2.12) and (2.13) we get two finite sets of positive eigenvalues, which we denote by {σ1,n}m1
n=1 and {σ2,n}m2

n=1

for a certain (m1,m2) ∈ N
2.

(a) {σ1,n}m1
n=1 is obtained from the positive solutions of det (S1) = 0. Thus, they satisfy

α sin(αL/2) cos(βL/2) = β sin (βL/2) cos (αL/2). (2.14)

The following two possibilities are considered. The first possibility is when cos (αL/2) �= 0.
From (2.12), (2.13) and (2.14) we get that the eigenfunctions associated to σ1,n are

φA(x) = C3

[
− cos (βL/2)

cos (αL/2)
cos (α(x − L/2)) + cos (β(x− L/2))

]
,

φB(x) = C4

[
−β cos (βL/2)
α cos (αL/2)

sin (α(x − L/2)) + sin (β(x− L/2))
]
.

Considering (2.14) we arrive at

φ′′′A (0) = C3β(α2 − β2) sin (βL/2), φ′′′B (0) = C4β(α2 − β2) cos (βL/2).

Let us study when φ′′′A (0) �= 0 and φ′′′B (0) �= 0. On the one hand, if φ′′′A (0) = 0, then from (2.14) we get
sin (αL/2) = 0, allowing us to conclude, together with β2 − α2 =

√
λ2 − 4σ and β2 + α2 = λ, that λ > 0

should be of the form λ =
[
(2j)2 + (2k)2

]
π2/L2 with (j, k) ∈ N

2 being such that j < k. On the other hand,
from (2.14) we conclude that φ′′′B (0) �= 0.
The second possibility is when cos (αL/2) = 0. From (2.12), (2.13) and (2.14) we get that the eigenfunctions
associated to σ1,n are

φA(x) = C3

[
−β sin (βL/2)
α sin (αL/2)

cos (α(x− L/2)) + cos (β(x − L/2))
]
,

φB(x) = C4

[
− sin (βL/2)

sin (αL/2)
sin (α(x − L/2)) + sin (β(x− L/2))

]
,

Considering (2.14) we arrive at

φ′′′A (0) = C3β(α2 − β2) sin(βL/2), φ′′′B (0) = C4β(α2 − β2) cos(βL/2).

As we did before, let us study when φ′′′A (0) �= 0 and φ′′′B (0) �= 0. On the one hand, from (2.14) we conclude
that φ′′′A (0) �= 0. On the other hand, from (2.14) we get φ′′′B (0) = 0, allowing us to conclude, together with
β2 − α2 =

√
λ2 − 4σ and β2 + α2 = λ, that λ > 0 should be of the form λ =

[
(2j + 1)2 + (2k + 1)2

]
π2/L2

with (j, k) ∈ N
2 being such that j < k.

(b) {σ2,n}m2
n=1 is obtained from the positive solutions of det (S2) = 0. Thus, they satisfy

α sin(βL/2) cos(αL/2) = β sin (αL/2) cos (βL/2).

This time we consider the possibilities sin (αL/2) �= 0 and sin (αL/2) = 0, where the computations and con-
clusions are the same as those obtained in the possibilities cos (αL/2) = 0 and cos (αL/2) �= 0, respectively,
of the previous part.
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Therefore, if λ /∈
{

(j2 + k2)π2

L2
/ (j, k) ∈ N

2 with the same parity and j < k

}
, then φ′′′(0) �= 0.

Case 2: σ = 0. We have that

φ(x) = C1 + C2 (x− L/2) + C3 cos
(√

λ(x− L/2)
)

+ C4 sin
(√

λ(x− L/2)
)
,

is a solution of equation (2.11). The real constants C1, C2, C3 and C4 make φ satisfy the boundary conditions
in (2.11), and hence, these are the solutions of[

1 cos (
√
λL/2)

0
√
λ sin (

√
λL/2)

]
︸ ︷︷ ︸

S1

[
C1

C3

]
=
[

0
0

]
, (2.15)

[
L 2 sin (

√
λL/2)

1
√
λ cos (

√
λL/2)

]
︸ ︷︷ ︸

S2

[
C2

C4

]
=
[

0
0

]
. (2.16)

The following two possibilities are considered.

(a) Let us assume that det (S1) =
√
λ sin (

√
λL/2) = 0, which is when

√
λL/2 = lπ with l ∈ N. Since det (S2) =

L
√
λ cos (

√
λL/2) − 2 sin (

√
λL/2) �= 0, we get that C2 = C4 = 0 is the unique solution of system (2.16),

allowing us to conclude that φ′′′(0) = −C3λ
√
λ sin (

√
λL/2) = 0. Note that λ �= 4l2π2/L2 with l ∈ N gives

us φ′′′(0) = −C4λ
√
λ cos (

√
λL/2) �= 0 thank to det (S1) �= 0.

(b) Let us assume that det (S2) = L
√
λ cos (

√
λL/2)− 2 sin (

√
λL/2) = 0, which tells us that det (S1) �= 0. Since

the unique solution of system (2.15) is C1 = C3 = 0, we get that φ′′′(0) = −C4λ
√
λ cos (

√
λL/2) �= 0.

Therefore, if λ /∈
{

4l2π2

L2
/ l ∈ N

}
, then φ′′′(0) �= 0.

Case 3: σ < 0. In this case we set

α :=

(
−λ+

√
λ2 − 4σ
2

)1/2

, β :=
(
λ+

√
λ− 4σ
2

)1/2

.

We have that

φ(x) = C1 cosh (α(x− L/2)) + C2 sinh (α(x− L/2)) + C3 cos (β(x− L/2)) + C4 sin (β(x − L/2)),

is a solution of equation (2.11). The real constants C1, C2, C3 and C4 make φ satisfy the boundary conditions
in (2.11), and hence, these are the solutions of[

cosh (αL/2) cos (βL/2)
α sinh (αL/2) β sin (βL/2)

]
︸ ︷︷ ︸

S1

[
C1

C3

]
=
[

0
0

]
, (2.17)

[
sinh (αL/2) sin (βL/2)
α cosh (αL/2) β cos (βL/2)

]
︸ ︷︷ ︸

S2

[
C2

C4

]
=
[

0
0

]
, (2.18)

From (2.17) and (2.18) we get two sets of negative eigenvalues, which we denote by {σ1,n}n∈N and {σ2,n}n∈N.
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(a) {σ1,n}n∈N is obtained from the negative solutions of det (S1) = 0. Thus, they satisfy

−α sinh (αL/2) cos (βL/2) = β sin (βL/2) cosh (αL/2). (2.19)

Considering (2.19) we get

det(S2) = β cos (βL/2) sinh (αL/2) − α sin (βL/2) cosh (αL/2),
= − (α2 + β2) sin (βL/2) cosh (αL/2)/α,

which tells us that C2 = C4 = 0 is the unique solution of system (2.18). Accordingly, from (2.17) we get
that the eigenfunction associated to σ1,n is

φ(x) = C3

[
− β sin (βL/2)
α sinh (αL/2)

cosh (α(x− L/2)) + cos (β(x − L/2))
]
.

Once again, (2.19) allows us to conclude that

φ′′′(0) = −C3β(α2 + β2) sin (βL/2) �= 0.

(b) {σ2,n}n∈N is obtained from the negative solutions of det (S2) = 0. Thus, they satisfy

α sin (βL/2) cosh (αL/2) = β cos (βL/2) sinh (αL/2). (2.20)

Considering (2.20) we get

det(S2) = − β sin (βL/2) cosh (αL/2) − α cos (βL/2) sinh (αL/2),
= − (α2 + β2) cos (βL/2) sinh (αL/2)/α.

which tells us that C1 = C3 = 0 is the unique solution of system (2.17). Accordingly, from (2.18) we get
that the eigenfunction associated to σ2,n is

φ(x) = C4

[
− sin (βL/2)

sinh (αL/2)
sinh (α(x − L/2)) + sin (β(x − L/2))

]
.

Once again, (2.20) allows us to conclude that

φ′′′(0) = −C4β(α2 + β2) cos (βL/2) �= 0.

Therefore, for every λ > 0 we have that φ′′′(0) �= 0.
From the combination of the three above cases we conclude that φ′′′k (0) �= 0 for every k ∈ N if and only if

λ /∈ G :=
{

(j2 + k2)π2

L2
/ (j, k) ∈ N

2 with the same parity and j < k

}
∪
{

4π2l2

L2
/ l ∈ N

}
.

Now, it only remains to prove that equation (1.2) is not null controllable in time T > 0 in L2(0, L) when
λ ∈ G. If λ ∈ G, then there exists n ∈ N, depending on λ ∈ G, such that φ′′′n (0) = 0. Consider an initial state
z0 ∈ L2(0, L), satisfying ∫ L

0

z0(x)φn(x) dx �= 0,
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as the initial state of equation (1.2). If we take qT (x) = φn(x) as the final state of adjoint equation (2.7) with
G = 0, then we get that q(t, x) = e(T−t)σnφn(x) is its unique solution. Hence, for every u1 ∈ H1(0, T ) we have
that

•
∫ L

0

z0(x)q(0, x) dx �= 0.

•
∫ T

0

u1(t)qxxx(t, 0) dt = 0.

Therefore, the preceding points and (2.8) of Lemma 2.4 give us the desired result. The proof of Theorem 1.1
is complete. �

3. Neumann case

3.1. Well-Posedness

In this section we present the well-posedness results needed for studying control system (1.3). Let us consider
the equation ⎧⎪⎨

⎪⎩
zt + zxxxx + λzxx = f, (t, x) ∈ (0, T ) × (0, L),

zxx(t, 0) = u1(t), zxx(t, L) = 0, t ∈ (0, T ),
zxxx(t, 0) = u2(t), zxxx(t, L) = 0, t ∈ (0, T ),

z(0, x) = z0(x), x ∈ (0, L),

(3.1)

We begin studying this equation with homogeneous boundary conditions.

Proposition 3.1. Let f ∈ C1([0, T ];L2(0, L)) and z0 ∈ NL := {v ∈ H4(0, L) / v′′ ∈ H2
0 (0, L)}. Then, equa-

tion (3.1) with u1 = u2 = 0 has a unique solution z ∈ C([0, T ];NL) ∩ C1([0, T ];L2(0, L)).

Proof. We use the semigroup theory for the proof of this proposition. Let us consider the bilinear form a :
H2(0, L) ×H2(0, L) → R defined by

a(u, v) :=
∫ L

0

u′′(x)v′′(x) dx+
∫ L

0

λu′′(x)v(x) dx.

Let AN be the unbounded operator with domain

D(AN ) := {u ∈ H2(0, L) / v → a(u, v) is continuous over H2(0, L) for the L2(0, L)-topology},
defined through (ANu, v)L2(0,L) = a(u, v). From the continuous injection Hm(0, L) ↪→ Cm−1([0, L]), m ∈ N, the
identity

a(u, v) = (u′′′′ + λu′′, v)L2(0,L) + u′′(x)v′(x)|x=Lx=0 − u′′′(x)v(x)|x=Lx=0 ,

and the Cauchy inequality, we get that D(AN ) = NL and AN : D(AN ) ⊂ L2(0, 1) → L2(0, L) is given by
ANu = u′′′′ + λu′′.

It turns out that AN is the underlying spatial operator of equation (3.1). Therefore, ([18], Cor. 2.10, Chap. 4)
would allow us to conclude our result if −AN is an infinitesimal generator of a strongly continuous semigroup
in L2(0, L). The inequality

∫ L

0

|v′′(x)|2dx+
1
2

∫ L

0

|v(x)|2dx =
1
2

∫ L

0

|v(x)|2dx−
∫ L

0

λv′′(x)v(x) dx + a(v, v),

≤ 1 + λ2

2

∫ L

0

|v(x)|2dx+
1
2

∫ L

0

|v′′(x)|2dx+ a(v, v),
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and the fact that ‖v′′‖L2(0,L) +‖v‖L2(0,L) is an equivalent norm to the norm ‖v‖H2(0,L), lead us to the existence
of a λ0 ∈ R and an α > 0 such that for every v ∈ H2(0, L) it holds

α‖v‖H2(0,L) ≤ λ0‖v‖2
L2(0,L) + a(v, v).

Accordingly, ([7], Th. 3, Chap. XVII) gives us the desired property for −AN . The proof of Proposition 3.1 is
complete. �

With the aid of a suitable lifting function, we can use the previous proposition to study equation (3.1) with
non-homogeneous boundary conditions.

Proposition 3.2. Let f ∈ L2(0, T ;L2(0, L)), (u1, u2) ∈ L2(0, T )2 and z0 ∈ L2(0, L). Then, equation (3.1) has
a unique solution z ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H2(0, L)). Moreover, there exists C = C(T, L, λ) > 0 such
that

‖z‖C([0,T ];L2(0,L))∩L2(0,T ;H2(0,L)) ≤ C
(‖f‖L2(0,T ;L2(0,L)) + ‖(u1, u2)‖L2(0,T )2 + ‖z0‖L2(0,L)

)
. (3.2)

Proof. Let us assume that f ∈ C1([0, T ];L2(0, L)), (u1, u2) ∈ {u ∈ C2([0, T ]) / u(0) = 0}2 and z0 ∈ NL. With
the aid of the polynomials

n1(x) := (1/10)L−3x5 − (1/4)L−2x4 + (1/2)x2, n2(x) := (1/20)L−2x5 − (1/6)L−1x4 + (1/6)x3,

we define the lifting function

ψN (t, x) := u1(t)n1(x) + u2(t)n2(x).

By taking into account that g := f − (ψN )t− (ψN )xxxx−λ(ψN )xx and y0(x) := z0(x)−ψN (0, x) = z0(x) are
elements of C1([0, T ];L2(0, L)) and NL respectively, it follows that the equation⎧⎪⎨

⎪⎩
yt + yxxxx + λyxx = g, (t, x) ∈ (0, T )× (0, L),

yxx(t, 0) = 0, yxx(t, L) = 0, t ∈ (0, T ),
yxxx(t, 0) = 0, yxxx(t, L) = 0, t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L),

has a unique solution y ∈ C([0, T ];NL) ∩ C1([0, T ];L2(0, L)) in virtue of Proposition 3.1. From (ψN )xx(t, 0) =
u1(t) and (ψN )xxx(t, 0) = u2(t), we get that z := y+ψN ∈ C([0, T ];H4(0, L))∩C1([0, T ];L2(0, L)) is a solution
of equation (3.1).

Multiplying equation (3.1) by z we get

1
2

d
dt

(∫ L

0

|z(t, x)|2dx
)

+
∫ L

0

zxxxx(t, x)z(t, x) dx +
∫ L

0

λzxx(t, x)z(t, x) dx =
∫ L

0

f(t, x)z(t, x) dx. (3.3)

Two integrations by parts on (0, L) and the Cauchy inequality lead us to

∫ L

0

zxxxx(t, x)z(t, x) dx =
∫ L

0

|zxx(t, x)|2dx− zxx(t, x)zx(t, x)|Lx=0 + zxxx(t, x)z(t, x)|Lx=0 ,

≥
∫ L

0

|zxx(t, x)|2dx− 1
2ε
(|u1(t)|2 + |u2(t)|2

)− ε‖z(t, ·)‖2
W 1,∞(0,L),
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where ε > 0 will be chosen later. Combining the above inequality with (3.3) and then using the continuous
injection H2(0, L) ↪→W 1,∞(0, L) we obtain

d
dt

(∫ L

0

|z(t, x)|2dx
)

+
∫ L

0

|zxx(t, x)|2dx ≤
∫ L

0

|f(t, x)|2dx+ (1 + λ2)
∫ L

0

|z(t, x)|2dx

+
1
2ε
(|u1(t)|2 + |u2(t)|2

)
+ Cε‖z(t, ·)‖2

H2(0,L). (3.4)

Applying Grönwall’s Lemma to (3.4) gives us

‖z‖2
C([0,T ];L2(0,L)) + ‖z‖2

L2(0,T ;H2(0,L)) ≤ C
(
‖f‖2

L2(0,T ;L2(0,L)) + ε−1‖(u1, u2)‖2
L2(0,T )2

+‖z0‖2
L2(0,L) + ε‖z‖2

L2(0,T ;H2(0,L))

)
. (3.5)

Note that here we have the fact that ‖zxx‖L2(0,T ;L2(0,L)) + ‖z‖L2(0,T ;L2(0,L)) is an equivalent norm to the norm
‖z‖L2(0,T ;H2(0,L)).

Therefore, we arrive at (3.2) after the choice of ε = 1/(2C) in (3.5). Since C1([0, T ];L2(0, L)), {u ∈
C2([0, T ]) / u(0) = 0} and NL are dense in L2(0, T ;L2(0, L)), L2(0, T ) and L2(0, L) respectively, (3.2) al-
lows us to use a density argument to conclude that equation (3.1) has a unique solution z ∈ C([0, T ];L2(0, L))∩
L2(0, T ;H2(0, L)) provided that f ∈ L2(0, T ;L2(0, L)), (u1, u2) ∈ L2(0, T )2 and z0 ∈ L2(0, L). Note that the
uniqueness of solutions comes from the linearity of equation (3.1) together with (3.2). The proof of Proposi-
tion 3.2 is complete. �

Our next result concerns the regularizing effect of equation (3.1) when f = 0 and u1 = u2 = 0. This will play
a key role in the proof of Theorem 1.4.

Proposition 3.3. Let τ ∈ (0, T ) and z0 ∈ L2(0, L). Then, the unique solution z ∈ C([0, T ];L2(0, L)) ∩
L2(0, T ;H2(0, L)) of equation (3.1) with f = 0 and u1 = u2 = 0 belongs to

RN (τ, L) := C([τ, T ];NL) ∩ L2(τ, T ;H6(0, L)) ∩H1(τ, T ;H2(0, L)).

Moreover, there exists C = C(T, L, λ) > 0 such that

‖z‖C([0,T ];L2(0,L))∩L2(0,T ;H2(0,L)) + ‖z‖RN(τ,L) ≤ C

(
1 +

1
τ

)1/2

‖z0‖L2(0,L). (3.6)

Proof. For a τ ∈ (0, T ) given, consider τ1 ∈ (0, τ). By noting that we can carry out the same computations as
those made in the proof of Proposition 2.3, it is possible to conclude that z ∈ C([τ1, T ];H2(0, L))∩L2(τ1, T ;NL)∩
H1(τ1, T ;L2(0, L)) provided that z0 ∈ L2(0, L).

Since y := zxx satisfies the equation⎧⎪⎨
⎪⎩

yt + yxxxx + λyxx = 0, (t, x) ∈ (τ1, T ) × (0, L),
y(t, 0) = 0, y(t, L) = 0, t ∈ (τ1, T ),

yx(t, 0) = 0, yx(t, L) = 0, t ∈ (τ1, T ),
y(τ1, x) = zxx(τ1, x), x ∈ (0, L),

and zxx(τ1, x) belongs to L2(0, L), we can use Proposition 2.3 to conclude that

zxx ∈ RD(τ, L) := C([τ, T ];H2
0 (0, L)) ∩ L2(τ, T ;H4(0, L)) ∩H1(τ, T ;L2(0, L)),

which gives us the desired result. Note that (3.6) follows from the combination of (3.2) and (2.4). The proof of
Proposition 3.3 is complete. �
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We finish this section by studying the well-posedness of⎧⎪⎨
⎪⎩

−qt + qxxxx + λqxx = G, (t, x) ∈ (0, T ) × (0, L),
(qxx + λq)(t, 0) = 0, (qxx + λq)(t, L) = 0, t ∈ (0, T ),

(qxxx + λqx)(t, 0) = 0, (qxxx + λqx)(t, L) = 0, t ∈ (0, T ),
q(T, x) = qT (x), x ∈ (0, L),

(3.7)

which corresponds to the adjoint equation associated to equation (1.3) when G = 0.

Proposition 3.4.

(a) If G ∈ C1([0, T ];L2(0, L)) and qT ∈ N ∗
L := {v ∈ H4(0, L) / (v′′ + λv) ∈ H2

0 (0, L)}, then equation (3.7) has
a unique solution q ∈ C([0, T ];N ∗

L) ∩ C1([0, T ];L2(0, L)).
(b) If G ∈ L2(0, T ;L2(0, L)) and qT ∈ L2(0, L), then equation (3.7) has a unique solution q ∈

C([0, T ];L2(0, L)) ∩ L2(0, T ;H2(0, L)). Moreover, there exists C = C(T, L, λ) > 0 such that

‖q‖C([0,T ];L2(0,L))∩L2(0,T ;H2(0,L)) ≤ C
(‖G‖L2(0,T ;L2(0,L) + ‖qT ‖L2(0,L)

)
.

Proof. Let us recall some notation introduced in Proposition 3.1. Consider the unbounded operator AN : NL ⊂
L2(0, L) → L2(0, L) given by ANu = u′′′′+λu′′. In that proposition we have shown that −AN is an infinitesimal
generator of a strongly continuous semigroup in L2(0, L).

Let u ∈ NL and v ∈ H4(0, 1). From

(ANu, v)L2(0,L) = (u, v′′′′ + λv′′)L2(0,L) + u′(x)(v′′(x) + λv(x))|x=Lx=0 − u(x)(v′′′(x) + λv′(x))|x=Lx=0 ,

we find out that D(A∗
N ) = N ∗

L and A∗
Nv = v′′′′ + λv′′, which allow us to conclude that AN is not a self-adjoint

operator. However, because of the above mentioned property for −AN , [18, Corollary 10.6, Chapter 1] tells us
that (−AN )∗ is also an infinitesimal generator of a strongly continuous semigroup in L2(0, L).

Therefore, on the one hand, part (a) of this proposition follows from the application of ([18], Cor. 2.10,
Chap. 4) to equation (3.7) after the change of variable t→ T − t. On the other hand, part (b) of this proposition
follows by using the same arguments as those used in the proof of Proposition 3.2 by taking into account that
C1([0, T ];L2(0, L)) and N ∗

L are dense in L2(0, T ;L2(0, L)) and L2(0, L) respectively. The proof of Proposition 3.4
is complete. �

3.2. Boundary control with one input

The aim of this section is to prove Theorem 1.3. Let us start with a classical characterization of the null
controllability for control system (1.3) whose proof is omitted.

Lemma 3.5. Equation (1.3) is null controllable in time T > 0 in L2(0, L) if and only if for any z0 ∈ L2(0, L)
there exists (u1, u2) ∈ L2(0, T )2 such that for every qT ∈ L2(0, L) it holds

∫ L

0

z0(x)q(0, x) dx =
∫ T

0

u1(t)qx(t, 0) dt−
∫ T

0

u2(t)q(t, 0) dt, (3.8)

where q = q(t, x) is the unique solution of adjoint equation (3.7) with G = 0.

The proof of Theorem 1.3 is a consequence of the previous lemma.

Proof of Theorem 1.3. Let u2 = 0 and consider z0 ∈ L2(0, L), satisfying (1.7), as the initial state of equa-
tion (1.3). If we take qT (x) = cos (

√
λx) as the final state of adjoint equation (3.7) with G = 0, then we get that
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q(t, x) = cos (
√
λx) is its unique solution. Hence, for every u1 ∈ L2(0, T ) we have that

•
∫ L

0

z0(x)q(0, x) dx �= 0, thanks to (1.7).

•
∫ T

0

u1(t)qx(t, 0) dt = 0.

Therefore, the preceding points and (3.8) of Lemma 3.5 give us part (a) of this theorem. For the other part,
take u1 = 0 and consider z0 ∈ L2(0, L), satisfying (1.8), as the initial state of equation (1.3). In this case, the
final state qT (x) = sin (

√
λx) in adjoint equation (3.7) with G = 0 gives the unique solution q(t, x) = sin (

√
λx).

Hence, for every u2 ∈ L2(0, T ) we have that

•
∫ L

0

z0(x)q(0, x) dx �= 0, thanks to (1.8).

•
∫ T

0

u2(t)q(t, 0) dt = 0.

Accordingly, the preceding points and (3.8) of Lemma 3.5 lead us to part (b) of this theorem. The proof of
Theorem 1.3 is complete. �

3.3. Boundary control with two inputs and internal control

This section is devoted to the proofs of Theorems 1.4 and 1.5.
Recall that ω ⊂ (0, L) is a given non-empty open interval such that ω ⊂ (0, L). Throughout this section and

the next one we use Q := (0, T ) × (0, L) and Qω := (0, T ) × ω. Due to the controllability-observability duality
(see [5], Thm. 2.44 or [21], Thm. 11.2.1 for instance), Theorem 1.5 can be shown by means of the following
observability inequality.

Proposition 3.6. There exists C = C(L, λ, ω) > 0 such that

‖q(0, ·)‖2
L2(0,L) ≤

C

T
exp

{
C

(
T +

max {T, T 2}
T 2

)}∫∫
Qω

|q|2dxdt, (3.9)

where q = q(t, x) is the unique solution of adjoint equation (3.7) with G = 0 and qT ∈ L2(0, L).

In our case, the main tool for obtaining this observability inequality is a Carleman estimate for adjoint
equation (3.7), which will be derived by following a procedure described in [9] due to Fursikov and Imanuvilov.
To this end, we need to introduce some weight functions.

For a x0 ∈ ω take ω0 := (x0 − ε, x0 + ε) with ε := dist(x0, ∂ω)/2 > 0. Then, choose ψ ∈ C4([0, L]) satisfying:

• ψ(x) > 0 for every x ∈ (0, L). (3.10)

• ψ(0) = ψ(L) = 0. (3.11)
• |ψ′(x)| > 0 for every x ∈ [0, L]\ω0. (3.12)

Remark 3.7. Since we are working in a one-dimensional setting, it is possible to give examples for such a
function ψ ∈ C4([0, L]). Indeed, take ψ(x) = x(L− x)eψ0(x) with

ψ0(x) =
2x0 − L

x0(L− x0)
x.

This ψ ∈ C∞([0, L]) satisfies (3.10) and (3.11). Furthermore, it can be shown that ψ′(x) > 0 for x ∈ [0, x0) and
ψ′(x) < 0 for x ∈ (x0, L], allowing us to conclude that x0 ∈ ω0 is the unique maximizer in [0, L] for the function
and that (3.12) holds.
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Finally, for μ > 0 define the weight functions

α(t, x) :=
e4μ‖ψ‖L∞(0,L)

t(T − t)
− β(t, x), β(t, x) :=

e2μ‖ψ‖L∞(0,L)+μψ(x)

t(T − t)
, ∀(t, x) ∈ Q. (3.13)

In virtue of the procedure that will lead us to the Carleman estimate for equation (3.7) (adjoint equation for
the Neumann case), it will be needed a Carleman estimate for equation (2.7) (adjoint equation for the Dirichlet
case). This is just a technicality in order to avoid some unwanted boundary terms that would appear when
deriving directly the Carleman estimate for adjoint equation (3.7) (see Rem. 3.13). The Carleman estimate for
adjoint equation (2.7) that we are going to use corresponds to a slightly modified version of ([10], Prop. 2.1)
or ([22], Thm. 1.1).

Theorem 3.8 (Prop.2.1 in [10] or Thm. 1.1 in [22]). There exist μ0 ≥ 1 and C = C(L, λ, ω) > 0 such that for
every μ ≥ μ0 and ν ≥ max{T, T 2} we have

∫∫
Q

e−2να
(
ν7μ8β7|q|2 + ν5μ6β5|qx|2 + ν3μ4β3|qxx|2 + νμ2β|qxxx|2

)
dxdt

+
∫∫

Q

e−2να

( |qt|2 + |qxxxx|2
νβ

)
dxdt ≤ C

∫∫
Q

e−2να|G|2dxdt

+ C

∫∫
Qω1

e−2ναν7μ8β7|q|2dxdt, (3.14)

with ω1 being any non-empty open interval satisfying ω0 ⊂ ω1 ⊆ ω and q = q(t, x) the unique solution of adjoint
equation (2.7) with G ∈ L2(0, T ;L2(0, L)) and qT ∈ H2

0 (0, L).

Now we can present our Carleman estimate whose proof will be given in Section 3.4.

Proposition 3.9. There exist μ0 ≥ 1 and C = C(L, λ, ω) > 0 such that for every μ ≥ μ0 and ν ≥ max{T, T 2}
we have

∫∫
Q

e−2να
(
ν7μ8β7|q|2 + ν5μ6β5|qx|2 + ν3μ4β3|qxx|2 + νμ2β|qxxx|2

)
dxdt

+
∫∫

Q

e−2να

( |qt|2 + |qxxxx|2
νβ

)
dxdt ≤ C

∫∫
Q

e−2να

(
1
μ2

|Gxx|2 + ν3μ2β3|G|2
)

dxdt

+ C

∫∫
Qω1

e−2ναν11μ10β11|q|2dxdt, (3.15)

with ω1 being any non-empty open interval satisfying ω0 ⊂ ω1 ⊆ ω and q = q(t, x) the unique solution of adjoint
equation (3.7) with G ∈ L2(0, T ;H2(0, L)) and qT ∈ N ∗

L := {v ∈ H4(0, L) / (v′′ + λv) ∈ H2
0 (0, L)}.

By considering G = 0 in adjoint equation (3.7), a density argument together with Proposition 3.4(b) can be
used to obtain from Proposition 3.9 the following result.

Corollary 3.10. There exist μ0 ≥ 1 and C = C(L, λ, ω) > 0 such that for every μ ≥ μ0 and ν ≥ max{T, T 2}
we have

∫∫
Q

e−2να
(
ν7μ8β7|q|2 + ν5μ6β5|qx|2 + ν3μ4β3|qxx|2

)
dxdt ≤ C

∫∫
Qω1

e−2ναν11μ10β11|q|2dxdt, (3.16)

with ω1 being any non-empty open interval satisfying ω0 ⊂ ω1 ⊆ ω and q = q(t, x) the unique solution of adjoint
equation (3.7) with G = 0 and qT ∈ L2(0, L).

We proceed to derive observability inequality (3.9) of Proposition 3.6.
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Proof of Proposition 3.6. First, let us assume that qT ∈ N ∗
L so that adjoint equation (3.7) with G = 0 would

have a unique solution q ∈ C([0, T ];N ∗
L) ∩ C1([0, T ];L2(0, L)) thanks to Proposition 3.4(a). Once again, the

qT ∈ L2(0, L) case follows from a density argument together with Proposition 3.4(b) after obtaining observability
inequality (3.9).

For t ∈ [0, T ] we define E(t) := ‖q(t, ·)‖2
L2(0,L). Multiplying adjoint equation (3.7) with G = 0 by q and then

using the Cauchy inequality we get

−dE(t)
dt

≤ λ2E(t).

This inequality together with

d
dt

(
eλ

2tE(t)
)

e−λ
2t = λ2E(t) +

dE(t)
dt

,

leads us to

‖q(0, ·)‖2
L2(0,L) ≤ eλ

2t‖q(t, ·)‖2
L2(0,L), t ∈ [0, T ]. (3.17)

Second, in (3.16) of Corollary 3.10 we fix μ = μ0 and ν = max{T, T 2} to obtain∫∫
Q

e−2ναν7μ8β7|q|2dxdt ≤ C

∫∫
Qω

e−2ναν11μ10β11|q|2dxdt. (3.18)

Since there exist C1 > 0 and C2 > 0 such that

C1ν
7

T 14
exp {−C2ν

T 2
} ≤ e−2ανν7μ8β7, ∀(t, x) ∈ [T/4, 3T/4]× [0, L],

e−2ανν11μ10β11 ≤ C2, ∀(t, x) ∈ Q,

from (3.18) it follows that

∫ 3T/4

T/4

∫ L

0

|q|2dxdt ≤ CT 14

ν7
exp

{
Cν

T 2

}∫∫
Qω

|q|2dxdt.

Finally, observability inequality (3.9) is obtained from the combination of (3.17) and the previous inequality.
The proof of Proposition 3.6 is complete. �

Now we are ready to show the null controllability property for control system (1.3).

Proof of Theorem 1.4. Let z0 ∈ L2(0, L) and τ ∈ (0, T ). Define

a0(x) :=
{
z0(x) , x ∈ (0, L),

0 , x ∈ (L, 2L).

First, let us consider the equation⎧⎪⎨
⎪⎩

at + axxxx + λaxx = 0, (t, x) ∈ (0, T )× (0, 2L),
axx(t, 0) = 0, axx(t, 2L) = 0, t ∈ (0, T ),

axxx(t, 0) = 0, axxx(t, 2L) = 0, t ∈ (0, T ),
a(0, x) = a0(x), x ∈ (0, 2L).

(3.19)
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Recall that N2L = {v ∈ H4(0, 2L) / v′′ ∈ H2
0 (0, 2L)}. In virtue of Proposition 3.3 we have that equation (3.19)

has a unique solution a ∈ C([0, T ];L2(0, 2L)) ∩ L2(0, T ;H2(0, 2L)) which belongs to

RN (τ, 2L) = C([τ, T ];N2L) ∩ L2(τ, T ;H6(0, 2L)) ∩H1(τ, T ;H2(0, 2L)).

Second, let ω ⊂ (L, 2L) a non-empty open interval such that ω ⊂ (L, 2L). By taking into account that
a(τ, ·) ∈ N2L, an application of Theorem 1.5 tells us that there exists u ∈ L2(τ, T ;L2(ω)) such that the unique
solution of the equation ⎧⎪⎨

⎪⎩
bt + bxxxx + λbxx = u�ω, (t, x) ∈ (τ, T ) × (0, 2L),

bxx(t, 0) = 0, bxx(t, 2L) = 0, t ∈ (τ, T ),
bxxx(t, 0) = 0, bxxx(t, 2L) = 0, t ∈ (τ, T ),

b(0, x) = a(τ, x), x ∈ (0, 2L),

(3.20)

satisfies b(T, ·) = 0 in L2(0, 2L). Due to Proposition 3.2, equation (3.20) has a unique solution b ∈
C([τ, T ];L2(0, 2L)) ∩ L2(τ, T ;H2(0, 2L)). Moreover, by employing the methods used in Section 3.1, we also
have that b ∈ L2(τ, T ;N2L). Therefore, the continuous injection H4(0, 2L) ↪→ C3([0, 2L]) tells us that bxx(·, L)
and bxxx(·, L) are elements of L2(τ, T ).

Finally, let us define

z(t, x) :=
{

a(t, x) , (t, x) ∈ (0, τ) × (0, L),
b(t, L− x) , (t, x) ∈ (τ, T ) × (0, L).

From equations (3.19) and (3.20) we have that z = z(t, x) satisfies the equation⎧⎪⎨
⎪⎩

zt + zxxxx + λzxx = 0, (t, x) ∈ (0, T ) × (0, L),
zxx(t, 0) = u1(t), zxx(t, L) = 0, t ∈ (0, T ),

zxxx(t, 0) = u2(t), zxxx(t, L) = 0, t ∈ (0, T ),
z(0, x) = z0(x), x ∈ (0, L),

with u1 and u2 being elements of L2(0, T ) defined by

u1(t) :=
{

0 , t ∈ (0, τ),
bxx(t, L) , t ∈ (τ, T ). u2(t) :=

{
0 , t ∈ (0, τ),

−bxxx(t, L) , t ∈ (τ, T ).

Therefore, Proposition 3.2 and the fact that z(T, ·) = 0 in L2(0, L) allow us to conclude our result. The proof
of Theorem 1.4 is complete. �

3.4. Carleman estimate

In this section we prove Proposition 3.9. The useful properties of the weight functions defined in (3.13), which
can be deduced from straightforward computations, are listed in the following lemma.

Lemma 3.11.

(a) For every μ > 0 we have

μ ≤ T 2

8‖ψ‖L∞(0,L)
β(t, x), ∀(t, x) ∈ Q.

(b) Let n ∈ {1, 2, 3, 4}. There exists C > 0, independent of μ > 0, such that∣∣∣∣∂nα∂xn
(t, x)

∣∣∣∣ ≤ C

n∑
k=1

μkβ(t, x), ∀(t, x) ∈ Q.
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Proof of Proposition 3.9. For a parameter ν > 0, which will be rather large than small, let us consider Pw :=
e−να (−∂t + ∂xxxx + λ∂xx) (eναw), with w := e−ναq, and the decomposition Pw = P1w + P2w + P3w given by

P1w := − wt + 4ν3α3
xwx + 4ναxwxxx,

P2w := ν4α4
xw + 6ν2α2

xwxx + wxxxx,

P3w := − ναtw + 6ν3αxxα
2
xw + 3ν2α2

xxw + 4ν2αxxxαxw + ναxxxxw

+ 12ν2αxxαxwx + 4ναxxxwx + 6ναxxwxx + λ
(
ν2α2

xw + ναxxw + 2ναxwx + wxx
)
.

We remark that this decomposition for Pw is slightly different to the decompositions considered in ([1], Thm. 3.1
and [12], Prop. 3). Regardless of the above, the structure of the decomposition gives us

‖P1w‖2
L2(Q) + 2 (P1w,P2w)L2(Q) + ‖P2w‖2

L2(Q) = ‖Pw − P3w‖2
L2(Q). (3.21)

We shall deduce the desired Carleman estimate from this equality and Theorem 3.8. This will be done
in seven steps in order to do a clearer proof. Steps 1, 2 and 3 are classical computations when proving
a Carleman estimate for w = e−ναq. Step 4 takes care of boundary terms. In Step 5, we apply Theo-
rem 3.8 to p := (qxx + λq), which satisfies Dirichlet boundary condition as in equation (2.7). Step 6 deal
with rest terms, as those in P3w. Finally, Step 7 is the conclusion where the Carleman estimate for q is obtained.

Step 1. We proceed to handle the terms ‖P1w‖2
L2(Q) and ‖P2w‖2

L2(Q). To this end, we introduce the quantities

‖w‖A :=
∫∫

Q

(
ν7μ8β7|w|2 + ν5μ6β5|wx|2 + ν3μ4β3|wxx|2 + νμ2β|wxxx|2

)
dxdt,

‖w‖B :=
∫∫

Q

( |wt|2 + |wxxxx|2
νβ

)
dxdt.

From the weight functions defined in (3.13) we have that αx(t, x) = −μψ′(x)β(t, x) for every (t, x) ∈ Q. The
inequalities ∫∫

Q

|wt|2
νβ

dxdt ≤
∫∫

Q

|P1w|2
νβ

dxdt+ C

∫∫
Q

(
ν5μ6β5|wx|2 + νμ2β|wxxx|2

)
dxdt,

∫∫
Q

|wxxxx|2
νβ

dxdt ≤
∫∫

Q

|P2w|2
νβ

dxdt+ C

∫∫
Q

(
ν7μ8β7|w|2 + ν3μ4β3|wxx|2

)
dxdt,

together with the fact that β(t, x) ≥ 4/T 2 for every (t, x) ∈ Q allow us to conclude that

‖w‖B ≤ C
(
‖P1w‖2

L2(Q) + ‖P2w‖2
L2(Q) + ‖w‖A

)
, ∀ν ≥ T 2. (3.22)

Step 2. We proceed to compute (P1w,P2w)L2(Q). For i, j = 1, 2, 3 we denote by Ii,j the L2-product in Q
between the ith term of P1w with the jth term of P2w. Note that with this notation we have

(P1w,P2w)L2(Q) =
3∑

i,j=1

Ii,j .

Before going any further, we remark that in virtue of Proposition 3.4(b) we have that q ∈ C([0, T ];L2(0, L))∩
L2(0, T ;H2(0, L)). Furthermore, since p := qxx + λq satisfies the equation⎧⎪⎨

⎪⎩
−pt + pxxxx + λpxx = Gxx + λG, (t, x) ∈ (0, T )× (0, L),

p(t, 0) = 0, p(t, L) = 0, t ∈ (0, T ),
px(t, 0) = 0, px(t, L) = 0, t ∈ (0, T ),

p(T, x) = pT (x), x ∈ (0, L),

(3.23)
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with pT (x) := q′′T (x) + λqT (x) ∈ H2
0 (0, L), due to qT ∈ N ∗

L := {v ∈ H4(0, L) / (v′′ + λv) ∈ H2
0 (0, L)}, and

Gxx + λG ∈ L2(0, T ;L2(0, L)), Proposition 2.1(b) tells us that p ∈ C([0, T ];H2
0 (0, L)) ∩ L2(0, T ;H4(0, L)).

Hence, in particular, when performing the computations needed it is considered that w ∈ C([0, T ];H2(0, L)) ∩
L2(0, T ;H4(0, L)) ∩H1(0, T ;L2(0, L)) satisfies w(0, x) = w(T, x) = 0 for every x ∈ [0, L]. The latter is due to
w = e−ναq and the choice of the weight functions defined in (3.13).

Integrations by parts are performed and each resulting term is labeled to indicate where it is going to be
considered later. Each resulting expression for Ii,j is listed below.

• I1,1 =
ν4

2

∫∫
Q

(
α4
x

)
t
|w|2dxdt︸ ︷︷ ︸

R(w)

.

• I1,2 = − 6ν2

∫∫
Q

α2
xwtwxx dxdt︸ ︷︷ ︸
R(w)

.

• I1,3 = −
∫∫

Q

wtwxxxx dxdt︸ ︷︷ ︸
R(w)

.

• I2,1 = − 2ν7

∫∫
Q

(
α7
x

)
x
|w|2dxdt︸ ︷︷ ︸

M0(w)

+ 2ν7

∫ T

0

α7
x|w|2

∣∣x=L
x=0

dt︸ ︷︷ ︸
B(w,·)

.

• I2,2 = − 12ν5

∫∫
Q

(
α5
x

)
x
|wx|2dxdt︸ ︷︷ ︸

M1(w)

+ 12ν5

∫ T

0

α5
x|wx|2

∣∣x=L
x=0

dt︸ ︷︷ ︸
B(w,·)

.

• I2,3 = − 2ν3

∫∫
Q

(
α3
x

)
xxx

|wx|2dxdt︸ ︷︷ ︸
R(w)

+ 6ν3

∫∫
Q

(
α3
x

)
x
|wxx|2dxdt︸ ︷︷ ︸

M2(w)

+ 2ν3

∫ T

0

(
α3
x

)
xx

|wx|2
∣∣x=L
x=0

dt︸ ︷︷ ︸
B(w,·)

− 2ν3

∫ T

0

α3
x|wxx|2

∣∣x=L
x=0

dt︸ ︷︷ ︸
B(w,·)

− 4ν3

∫ T

0

(
α3
x

)
x
wxwxx

∣∣x=L
x=0

dt︸ ︷︷ ︸
B(w,·)

+ 4ν3

∫ T

0

α3
xwxwxxx

∣∣x=L
x=0

dt︸ ︷︷ ︸
B(w,·)

.

• I3,1 = − 2ν5

∫∫
Q

(
α5
x

)
xxx

|w|2dxdt︸ ︷︷ ︸
R(w)

+ 6ν5

∫∫
Q

(
α5
x

)
x
|wx|2dxdt︸ ︷︷ ︸

M1(w)

+ 2ν5

∫ T

0

(
α5
x

)
xx

|w|2∣∣x=L
x=0

dt︸ ︷︷ ︸
B(w,·)

− 2ν5

∫ T

0

α5
x|wx|2

∣∣x=L
x=0

dt︸ ︷︷ ︸
B(w,·)

− 4ν5

∫ T

0

(
α5
x

)
x
wwx

∣∣x=L
x=0

dt︸ ︷︷ ︸
B(w,·)

+ 4ν5

∫ T

0

α5
xwwxx

∣∣x=L
x=0

dt︸ ︷︷ ︸
B(w,·)

.
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• I3,2 = − 12ν3

∫∫
Q

(
α3
x

)
x
|wxx|2dxdt︸ ︷︷ ︸

M2(w)

+ 12ν3

∫ T

0

α3
x|wxx|2

∣∣x=L
x=0

dt︸ ︷︷ ︸
B(w,·)

.

• I3,3 = − 2ν
∫∫

Q

αxx|wxxx|2dxdt︸ ︷︷ ︸
M3(w)

+ 2ν
∫ T

0

αx|wxxx|2
∣∣x=L
x=0

dt︸ ︷︷ ︸
B(w,·)

.

Accordingly, by adding all the above terms we get

(P1w,P2w)L2(QT ) =
3∑
k=0

Mk(w) +B(w,L) −B(w, 0) +R(w), (3.24)

where we have defined the main terms

M0(w) := −14ν7

∫∫
QT

α6
xαxx|w|2dxdt, (3.25)

M1(w) := −30ν5

∫∫
QT

α4
xαxx|wx|2dxdt, (3.26)

M2(w) := −18ν3

∫∫
QT

α2
xαxx|wxx|2dxdt, (3.27)

M3(w) := −2ν
∫∫

QT

αxx|wxxx|2dxdt, (3.28)

the boundary terms for x ∈ {0, L}

B(w, x) := 2ν7

∫ T

0

α7
x|w|2dt+ 12ν5

∫ T

0

α5
x|wx|2dt+ 2ν3

∫ T

0

(
α3
x

)
xx

|wx|2dt

− 2ν3

∫ T

0

α3
x|wxx|2dt− 4ν3

∫ T

0

(
α3
x

)
x
wxwxxdt+ 4ν3

∫ T

0

α3
xwxwxxxdt

+ 2ν5

∫ T

0

(
α5
x

)
xx

|w|2dt− 2ν5

∫ T

0

α5
x|wx|2dt− 4ν5

∫ T

0

(
α5
x

)
x
wwxdt

+ 4ν5

∫ T

0

α5
xwwxxdt+ 12ν3

∫ T

0

α3
x|wxx|2dt+ 2ν

∫ T

0

αx|wxxx|2dt, (3.29)
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and finally, the rest terms

R(w) :=
ν4

2

∫∫
Q

(
α4
x

)
t
|w|2dxdt− 6ν2

∫∫
Q

α2
xwtwxx dxdt−

∫∫
Q

wtwxxxx dxdt

− 2ν3

∫∫
Q

(
α3
x

)
xxx

|wx|2dxdt− 2ν5

∫∫
Q

(
α5
x

)
xxx

|w|2dxdt. (3.30)

Step 3. We proceed to handle the main terms defined in (3.25)−(3.28). From the weight functions defined
in (3.13) it follows that

αx(t, x) = −μψ′(x)β(t, x), αxx(t, x) = −μψ′′(x)β(t, x) − μ2ψ′(x)2β(t, x), ∀(t, x) ∈ Q. (3.31)

By plugging them into the main terms defined in (3.25)−(3.28) and then considering that |ψ′(x)| > 0 for every
x ∈ [0, L] \ ω0, we see that there exist C > 0 such that

3∑
k=0

Mk(w) ≥ C‖w‖A − 1
μ
‖w‖A

−
∫∫

Qω0

(
ν7μ8β7|w|2 + ν5μ6β5|wx|2 + ν3μ4β3|wxx|2 + νμ2β|wxxx|2

)
dxdt. (3.32)

Let us handle the last three terms of the right-hand side of this inequality. To this end, let us consider a
non-negative function χ ∈ C∞

0 (ω1) such that χ(x) = 1 for every x ∈ ω0. Recall that ω0 ⊂ ω1 ⊆ ω.
First, some integration by parts gives us∫∫

Qω1

ν5μ6β5χ|wx|2dxdt =
1
2

∫∫
Qω1

ν5μ6
(
β5χ

)
xx

|w|2dxdt︸ ︷︷ ︸
A1

−
∫∫

Qω1

ν5μ6β5χwxxw dxdt︸ ︷︷ ︸
A2

. (3.33)

On the one hand, the property αx(t, x) = −βx(t, x) for every (t, x) ∈ Q together with (3.31) and Lemma 3.11(b)
allow us to obtain

A1 =
1
2

∫∫
Qω1

ν5μ6
(
20β3β2

xχ+ 5β4βxxχ+ 10β4βxχ
′ + β5χ′′) |w|2dxdt,

≤ C

ν2

(
1 +

1
μ

+
1
μ2

)∫∫
Qω1

ν7μ8β5|w|2dxdt.

If in this inequality we take into account Lemma 3.11(a), then we arrive at

A1 ≤ C

μ2

∫∫
Q

ν7μ8β7|w|2dxdt, ∀μ ≥ 1, ∀ν ≥ T 2. (3.34)

On the other hand, the Cauchy inequality leads us to

|A2| ≤ C

ρ1

∫∫
Q

ν3μ4β3|wxx|2dxdt+ Cρ1

∫∫
Qω1

ν7μ8β7χ|w|2dxdt, ∀ρ1 > 0. (3.35)
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Accordingly, from the combination of (3.33), (3.34) and (3.35) we get

∫∫
Qω1

ν5μ6β5χ|wx|2dxdt ≤ C

μ2

∫∫
Q

ν7μ8β7|w|2dxdt+
C

ρ1

∫∫
Q

ν3μ4β3|wxx|2dxdt

+ Cρ1

∫∫
Qω1

ν7μ8β7χ|w|2dxdt, ∀ρ1 > 0, ∀μ ≥ 1, ∀ν ≥ T 2. (3.36)

Second, note that the same arguments presented above can be used to obtain the following inequalities.

∫∫
Qω1

ν3μ4β3χ|wxx|2dxdt ≤ C

μ2

∫∫
Q

ν5μ6β5|wx|2dxdt+
C

ρ2

∫∫
Q

νμ2β|wxxx|2dxdt

+ Cρ2

∫∫
Qω1

ν5μ6β5χ|wx|2dxdt, ∀ρ2 > 0, ∀μ ≥ 1, ∀ν ≥ T 2, (3.37)

∫∫
Qω1

νμ2βχ|wxxx|2dxdt ≤ C

μ2

∫∫
Q

ν3μ4β3|wxx|2dxdt+
C

ρ3

∫∫
Q

|wxxxx|2
νβ

dxdt

+ Cρ3

∫∫
Qω1

ν3μ4β3χ|wxx|2dxdt, ∀ρ3 > 0, ∀μ ≥ 1, ∀ν ≥ T 2. (3.38)

Third, plugging (3.36) into (3.37) we obtain

∫∫
Qω1

ν3μ4β3χ|wxx|2dxdt ≤ C

μ2
(1 + ρ2)

∫∫
Q

(
ν7μ8β7|w|2 + ν5μ6β5|wx|2

)
dxdt

+ C

(
1
ρ2

+
ρ2

ρ1

)∫∫
Q

(
ν3μ4β3|wxx|2 + νμ2β|wxxx|2

)
dxdt+ Cρ1ρ2

∫∫
Qω1

ν7μ8β7χ|w|2dxdt,

∀(ρ1, ρ2) ∈ R
2
+, ∀μ ≥ 1, ∀ν ≥ T 2. (3.39)

Then, plugging (3.39) into (3.38) we get

∫∫
Qω1

νμ2βχ|wxxx|2dxdt ≤ C

μ2
(1 + ρ3 + ρ2ρ3)

∫∫
Q

(
ν7μ8β7|w|2 + ν5μ6β5|wx|2 + ν3μ4β3|wxx|2

)
dxdt

+ C

(
ρ3

ρ2
+
ρ2ρ3

ρ1

)∫∫
Q

(
ν3μ4β3|wxx|2 + νμ2β|wxxx|2

)
dxdt+

C

ρ3

∫∫
Q

|wxxxx|2
νβ

dxdt

+ Cρ1ρ2ρ3

∫∫
Qω1

ν7μ8β7χ|w|2dxdt, ∀(ρ1, ρ2, ρ3) ∈ R
3
+, ∀μ ≥ 1, ∀ν ≥ T 2. (3.40)

Here we note that if we choose ρ2 = ρ > 0 and ρ1 = ρ2 in (3.39), then it follows that

∫∫
Qω1

ν3μ4β3χ|wxx|2dxdt ≤ C

μ2
(1 + ρ)‖w‖A +

C

ρ
‖w‖A

+ Cρ3

∫∫
Qω1

ν7μ8β7χ|w|2dxdt, ∀ρ > 0, ∀μ ≥ 1, ∀ν ≥ T 2.
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In a similar way, the choice of ρ3 = ρ > 0, ρ2 = ρ2 and ρ1 = ρ4 in (3.40) lead us to

∫∫
Qω1

νμ2βχ|wxxx|2dxdt ≤ C

μ2
(1 + ρ+ ρ3)‖w‖A +

C

ρ
(‖w‖A + ‖w‖B)

+ Cρ7

∫∫
Qω1

ν7μ8β7χ|w|2dxdt, ∀ρ > 0, ∀μ ≥ 1, ∀ν ≥ T 2.

Therefore, from the combination of (3.36) with the two previous inequalities we obtain

∫∫
Qω1

(
ν5μ6β5χ|wx|2 + ν3μ4β3χ|wxx|2 + νμ2βχ|wxxx|2

)
dxdt ≤ C

μ2

(
1 + ρ+ ρ3

) ‖w‖A
+
C

ρ
(‖w‖A + ‖w‖B) + C(ρ+ ρ3 + ρ7)

∫∫
Qω1

ν7μ8β7|w|2dxdt, ∀ρ > 0, ∀μ ≥ 1, ∀ν ≥ T 2. (3.41)

Finally, since∫∫
Qω0

ν7−2nμ8−2nβ7−2n

∣∣∣∣∂nw∂xn

∣∣∣∣2 dxdt ≤
∫∫

Qω1

ν7−2nμ8−2nβ7−2nχ

∣∣∣∣∂nw∂xn

∣∣∣∣2 dxdt, n = 1, 2, 3,

we can use (3.32) together with (3.41) to see that by setting ρ = ρ0 with ρ0 ≥ 1 large enough give us

3∑
k=0

Mk(w) ≥ C‖w‖A − 1
ρ0

‖w‖B − ρ7
0

∫∫
Qω1

ν7μ8β7|w|2dxdt, ∀μ ≥ ρ3
0, ∀ν ≥ T 2. (3.42)

Step 4. We proceed to handle the boundary terms defined in (3.29). The Cauchy inequality and Lemma 3.11
allow us to obtain the following inequalities that are valid for x ∈ {0, L}.

•
∣∣∣∣∣2ν3

∫ T

0

(
α3
x

)
xx

|wx|2dt
∣∣∣∣∣ =

∣∣∣∣∣2ν3

∫ T

0

(
6αxα2

xx + 3α2
xαxxx

) |wx|2dt
∣∣∣∣∣

≤ C

ν2

(
T 2

8‖ψ‖L∞(0,1)

)2 1
μ2

∫ T

0

ν5μ5β5|wx|2dt, ∀μ ≥ 1.

•
∣∣∣∣∣4ν3

∫ T

0

(
α3
x

)
x
wxwxx dt

∣∣∣∣∣ =

∣∣∣∣∣12ν3

∫ T

0

α2
xαxxwxwxx dt

∣∣∣∣∣
≤ Cν4

∫ T

0

α2
xα

2
xx|wx|2dt+ Cν2

∫ T

0

α2
x|wxx|2dt

≤ C

ν

(
T 2

8‖ψ‖L∞(0,1)

)
1
μ

∫ T

0

(
ν5μ5β5|wx|2 + ν3μ3β3|wxx|2

)
dt, ∀μ ≥ 1.

•
∣∣∣∣∣4ν3

∫ T

0

α3
xwxwxxx dt

∣∣∣∣∣ ≤ 4ν5

∫ T

0

|α5
x||wx|2dt+ ν

∫ T

0

|αx||wxxx|2dt.

•
∣∣∣∣∣2ν5

∫ T

0

(
α5
x

)
xx

|w|2dt
∣∣∣∣∣ =

∣∣∣∣∣2ν5

∫ T

0

(
20α3

xα
2
xx + 5α4

xαxxx
) |w|2dt

∣∣∣∣∣
≤ C

ν2

(
T 2

8‖ψ‖L∞(0,1)

)2 1
μ2

∫ T

0

ν7μ7β7|w|2dt, ∀μ ≥ 1.
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•
∣∣∣∣∣4ν5

∫ T

0

(
α5
x

)
x
wwx dt

∣∣∣∣∣ =

∣∣∣∣∣20ν5

∫ T

0

α4
xαxxwwx dt

∣∣∣∣∣
≤ Cν6

∫ T

0

α4
xα

2
xx|w|2dt+ Cν4

∫ T

0

α4
x|wx|2dt

≤ C

ν

(
T 2

8‖ψ‖L∞(0,1)

)
1
μ

∫ T

0

(
ν7μ7β7|w|2 + ν5μ5β5|wx|2

)
dt, ∀μ ≥ 1.

•
∣∣∣∣∣4ν5

∫ T

0

α5
xwwxx dt

∣∣∣∣∣ ≤ ν7

∫ T

0

|α7
x||w|2dt+ 4ν3

∫ T

0

|α3
x||wxx|2dt.

A useful feature of the function ψ ∈ C4([0, L]) satisfying (3.10)−(3.12) is that ψ′(0) > 0 and ψ′(L) < 0.
From this feature and the combination of the six above inequalities with the boundary terms defined in (3.29),
it follows that the choice of μ0 ≥ 1 large enough gives us

B(w, 0) ≤ 0, B(w,L) ≥ 0, ∀μ ≥ μ0, ∀ν ≥ T 2. (3.43)

Step 5. Before handling the rest terms defined in (3.30), we are going to apply Theorem 3.8 to the equation
satisfied by p := qxx + λq, which is equation (3.23). Let ω1/2 be a non-empty open interval such that ω0 ⊂ ω1/2

and ω1/2 ⊂ ω1. The above theorem in particular yields

∫∫
Q

e−2να
(
ν7μ8β7|p|2 + ν5μ6β5|px|2 + ν3μ4β3|pxx|2

)
dxdt

≤ C

∫∫
Q

e−2να|Gxx + λG|2dxdt+ C

∫∫
Qω1/2

e−2ναν7μ8β7|p|2dxdt, ∀μ ≥ μ0, ∀ν ≥ max{T, T 2},

from which it follows that

∫∫
Q

e−2να
(
ν7μ8β7|qxx|2 + ν5μ6β5|qxxx|2 + ν3μ4β3|qxxxx|2

)
dxdt ≤

C

∫∫
Q

e−2να
(|Gxx|2 + |G|2) dxdt+ C

∫∫
Q

e−2να
(
ν7μ8β7|q|2 + ν5μ6β5|qx|2 + ν3μ4β3|qxx|2

)
dxdt

+ C

∫∫
Qω1/2

e−2ναν7μ8β7
(|qxx|2 + |q|2) dxdt, ∀μ ≥ μ0, ∀ν ≥ max{T, T 2}. (3.44)
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Now, let us consider a non-negative function χ ∈ C∞
0 (ω1) such that χ(x) = 1 for every x ∈ ω1/2. Then, by

using the same arguments as those used in Step 3 it is possible to obtain

∫∫
Qω1/2

e−2ναν7μ8β7|qxx|2dxdt ≤ C

ρ

∫∫
Q

e−2να
(
ν7μ8β7|qxx|2 + ν5μ6β5|qxxx|2

)
dxdt

+ C(1 + ρ)(1 + ρ2)
∫∫

Qω1

e−2ναν11μ12β11|q|2dxdt, ∀ρ > 0, ∀μ ≥ 1, ∀ν ≥ T 2.

Accordingly, by plugging the previous inequality into (3.44) we see that ρ > 0 can be choosen in such a way
that for μ0 ≥ 1 large enough we get

∫∫
Q

e−2να
(
ν7μ8β7|qxx|2 + ν5μ6β5|qxxx|2 + ν3μ4β3|qxxxx|2

)
dxdt ≤

C

∫∫
Q

e−2να
(|Gxx|2 + |G|2) dxdt+ C

∫∫
Q

e−2να
(
ν7μ8β7|q|2 + ν5μ6β5|qx|2

)
dxdt

+ C

∫∫
Qω1

e−2ναν11μ12β11|q|2dxdt, ∀μ ≥ μ0, ∀ν ≥ max{T, T 2}.

Furthermore, in view of −qt + qxxxx + λqxx = G and Lemma 3.11(a) we actually have

∫∫
Q

e−2να
(
ν7μ8β7|qxx|2 + ν5μ6β5|qxxx|2 + ν3μ4β3|qxxxx|2 + ν3μ4β3|qt|2

)
dxdt ≤

C

∫∫
Q

e−2να
(|Gxx|2 + ν3μ4β3|G|2) dxdt+ C

∫∫
Q

e−2να
(
ν7μ8β7|q|2 + ν5μ6β5|qx|2

)
dxdt

+ C

∫∫
Qω1

e−2ναν11μ12β11|q|2dxdt, ∀μ ≥ μ0, ∀ν ≥ max{T, T 2}. (3.45)

Step 6. We proceed to handle the rest terms defined in (3.30) and those in P3w. All of these can be handled
in the same way as we did in Step 4. Nevertheless, we pay special attention to the first three terms of the
right-hand side of (3.30) and to the term ναtw in P3w.

The Cauchy inequality, (3.31) and Lemma 3.11(a) allow us to obtain the following inequalities.

• ν4

2

∫∫
Q

(
α4
x

)
t
|w|2dxdt = 2ν4

∫∫
Q

α3
xαxt|w|2dxdt

≤ C

ν3

(
T 2

8‖ψ‖L∞(0,1)

)2

T
1
μ7

∫∫
Q

ν7μ8β7|w|2dxdt. (3.46)

• 6ν2

∫∫
Q

α2
xwtwxx dxdt ≤ C

∫∫
Q

ν2μ2β2|wt|2dxdt+
C

ν

(
T 2

8‖ψ‖L∞(0,1)

)
1
μ3

∫∫
Q

ν3μ4β3|wxx|2dxdt.

•
∫∫

Q

wtwxxxx dxdt ≤ C

∫∫
Q

ν2μ2β2|wt|2dxdt+ C

∫∫
Q

|wxxxx|2
ν2μ2β2

dxdt.

• ν2

∫∫
Q

α2
t |w|2dxdt ≤

C

ν5

(
T 2

8‖ψ‖L∞(0,1)

)3

T 2 1
μ10

∫∫
Q

ν7μ8β7|w|2dxdt. (3.47)
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Note that here we have used the facts that |αxt(t, x)| ≤ CTβ2(t, x) and |αt(t, x)| ≤ Tβ2(t, x) hold for every
(t, x) ∈ Q. Accordingly, from the combination of the above inequalities with the rest term defined in (3.30) and
P3w we get

|R(w)| ≤ C

μ
‖w‖A + C

∫∫
Q

ν2μ2β2|wt|2dxdt+ C

∫∫
Q

|wxxxx|2
ν2μ2β2

dxdt, ∀μ ≥ 1, ∀ν ≥ max{T, T 2}. (3.48)

‖P3w‖2
L2(Q) ≤

C

μ
‖w‖A, ∀μ ≥ 1, ∀ν ≥ max{T, T 2}. (3.49)

We remark that ν ≥ max{T, T 2} was asked because of (3.46) and (3.47).

Step 7. We proceed to obtain the desired Carleman estimate. First, from the combination of (3.21), (3.24), (3.42)
and (3.43), it follows that for ρ0 ≥ 1 large enough we have

C
(‖P1w‖L2(Q) + ‖P2w‖L2(Q) + ‖w‖A

) ≤‖Pw − P3w‖2
L2(Q) +

1
ρ0

‖w‖B

+ |R(w)| + ρ7
0

∫∫
Qω1

ν7μ8β7|w|2dxdt, ∀μ ≥ ρ3
0, ∀ν ≥ T 2.

Hence, from this inequality and (3.22) we see that by taking ρ0 ≥ 1 large enough gives us the existence of a
μ0 ≥ 1 also large enough such that

C (‖w‖A + ‖w‖B) ≤ ‖Pw − P3w‖2
L2(Q) + |R(w)| +

∫∫
Qω1

ν7μ8β7|w|2dxdt, ∀μ ≥ μ0, ∀ν ≥ T 2.

Second, by plugging (3.48) together with (3.49) into this inequality and then taking μ0 ≥ 1 large enough lead
us to

C (‖w‖A + ‖w‖B) ≤ ‖Pw‖2
L2(Q) +

∫∫
Qω1

ν7μ8β7|w|2dxdt

+
∫∫

Q

ν2μ2β2|wt|2dxdt+
∫∫

Q

|wxxxx|2
ν2μ2β2

dxdt, ∀μ ≥ μ0, ∀ν ≥ max{T, T 2}. (3.50)

Third, by taking into account that the inequalities∫∫
Q

e−2να 1
νβ

(|(eναw)t|2 + |(eναw)xxxx|2
)
dxdt ≤ C (‖w‖A + ‖w‖B) ,

3∑
n=0

∫∫
Q

e−2ναν7−2nμ8−2nβ7−2n

∣∣∣∣∂n(eναw)
∂xn

∣∣∣∣2 dxdt ≤ C‖w‖A,

|wt|2 ≤ Ce−2να
(|qt|2 + T 2ν2β4|q|2) , ∀(t, x) ∈ Q,

|wxxxx|2 ≤ Ce−2να
(
ν8μ8β8|q|2 + ν6μ6β6|qx|2 + ν4μ4β4|qxx|2 + ν2μ2β2|qxxx|2

)
, ∀(t, x) ∈ Q,
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hold for every μ ≥ μ0, with μ0 ≥ 1 large enough, and ν ≥ max{T, T 2}, we see from (3.50), w = e−ναq and
Pw := e−να (−∂t + ∂xxxx + λ∂xx) (eναw) that it follows

∫∫
Q

e−2να
(
ν7μ8β7|q|2 + ν5μ6β5|qx|2 + ν3μ4β3|qxx|2 + νμ2β|qxxx|2

)
dxdt

+
∫∫

Q

e−2να

( |qt|2 + |qxxxx|2
νβ

)
dxdt ≤ C

∫∫
Q

e−2να|G|2dxdt+ C

∫∫
Qω1

e−2ναν7μ8β7|q|2dxdt,

+
C

μ2

∫∫
Q

e−2να
(
ν7μ8β7|q|2 + ν5μ6β5|qx|2 + ν3μ4β3|qxx|2 + νμ2β|qxxx|2

)
dxdt

+
C

μ2

∫∫
Q

e−2ναν3μ4β3|qt|2dxdt, ∀μ ≥ μ0, ∀ν ≥ max{T, T 2}.

Finally, from the combination of this inequality with (3.45) we obtain (3.15) by choosing μ0 ≥ 1 large enough.
The proof of Proposition 3.9 is complete.

Remark 3.12. We were not able to prove the null controllability of the Kuramoto−Sivashinsky equation with
Neumann boundary condition and either internal or boundary controls. The reason is that our Carleman es-
timate (47) is not good enough. In the the right-hand side of (47), we see the term

∫∫
Q

e−2να 1
μ2 |Gxx|2dxdt,

which requires the right-hand side G of the adjoint equation to be in L2(0, T ;H2(0, L)). Thus, if duality ar-
guments are applied, then the solution of the controlled equation would be in L2(0, T ;H−2(0, L)) and then in
C([0, T ], H−4(0, L)). At this level of regularity, it is hard to deal with the nonlinearity of the equation.

Remark 3.13. As mentioned in the Introduction, we do not obtain directly a Carleman estimate in the Neu-
mann case, because of the boundary conditions. For instance, if we perform integration by parts in I1,2 and I1,3
(see Step 2 in the proof of Prop. 3.9), then we would obtain

• I1,2 = 6ν2

∫∫
Q

(
α2
x

)
x
wtwx dxdt− 3ν2

∫∫
Q

(
α2
x

)
t
|wx|2dxdt − 6ν2

∫ T

0

α2
xwtwx

∣∣x=L
x=0

dt︸ ︷︷ ︸
B1

.

• I1,3 =
∫ T

0

wtxwxx|x=Lx=0 dt︸ ︷︷ ︸
B2

−
∫ T

0

wtwxxx|x=Lx=0 dt︸ ︷︷ ︸
B3

.

The boundary conditions of adjoint equation (3.7) makes difficult to handle the boundary terms B1, B2 and
B3. The difficulty arises when trying to handle the terms wt(t, x) and wtx(t, x) at x ∈ {0, L}. Note that this
difficulty does not appear when deriving Carleman estimates for adjoint equation (2.7) because B1, B2 and B3

vanish.
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