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INSTRUMENTAL VARIABLES AND LSM IN CONTINUOUS-TIME
PARAMETER ESTIMATION ∗

Jesica Escobar1 and Martin Enqvist2

Abstract. In this paper the main goal is to compare the instrumental variables and the least squares
methods applied to parameter estimation in continuous-time systems, avoiding any preliminary dis-
cretization of the process, and to analyse which method is more suitable for estimation in continuous-
time under stochastic perturbations. A numerical example illustrates the effectiveness of the algorithms.
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1. Introduction

System identification is the process of developing or improving a mathematical representation of a system
using experimental data [11]. It consists of three basic steps, which are interrelated: the design of an experiment;
the construction of a model, black box or from physical laws; and the estimation of the model parameters from
measurements [15]. In control problems, the final goal is to design control strategies for a particular structural
system. The identification task is to identify a model which will adequately describe the input and output map.

Some models do not show a deterministic behaviour and present stochastic perturbations. These systems are
usually consisting of a deterministic part, captured by the system model; and a stochastic part, modelled as a
noise distortion. During the past years, the interest in the study of stochastic models has increased dramatically.
Intensified research activity in this area has been stimulated by the need to take into account random effects
in complicated physical systems [8]. The tools required to deal with these kinds of systems are fairly recent
developments [4].

The filtering and prediction theory developed by Wiener and Kolmogorov is one of the cornerstones in
stochastic control theory. This theory makes it possible to extract a signal from observations of signal and
disturbances.

For system identification in discrete time many techniques have been developed; this problem is often ad-
dressed by the least squares method (LSM) (see [10, 13]). The method of instrumental variables (IV) has
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traditionally been viewed as a response to a common problem in regression contexts, i.e., where one or more of
the regressors on the right-hand side of the proposed equation are correlated with the equation disturbance [1].

In [9], various instrumental variable-based methods are proposed for estimating continuous-time models
of systems operating in closed-loop, where the accuracy of these methods is also investigated leading to the
definition of the optimal IV estimator which gives minimum variance. A computationally efficient estimator of
continuous-time autoregressive (AR) process parameters from irregularly sampled data affected by discrete-time
white noise is presented in [14]. It is described how an instrumental variable approach can be used for estimating
the AR process parameters with high accuracy. The refined instrumental variable method for continuous-time
(RIVC) has been well accepted in many disciplines. In [12], it is shown a study that fills up a theoretical gap
by proving the convergence property of the RIVC method.

The use of a sliding mode (SM) control technique is beneficial in parameter estimation of deterministic dy-
namic models, since it can provide a global convergence of the estimation error to zero with immeasurable
deterministic bounded noise [5,18]. In some mechanical systems the, so-called, supertwisting second-order slid-
ing mode algorithms can be applied in order to design an observer (see [3]). These observers also permit the
identification of disturbances using the equivalent output injection which, under some circumstances, also pro-
vides the estimation of the system parameters via a continuous version of the least squares method (see for
example [17]). In [7], parameter estimation of continuous-time systems under colored perturbations using SM
and LSM is presented, where the sliding modes are used as a step to construct an auxiliary process that is
implemented in parallel with the LSM. This method, even when does not cancel the noise, permits to introduce
an additional term in the estimation algorithms, that will improve the performance and speed.

In this paper we deal with the problem of parameter estimation in continuous-time stochastic systems using
the instrumental variable method. The main idea is to compare the effectiveness of the IV method with the least
squares method (LSM) in continuous-time systems under white noise perturbations. The IV method combined
with the use of an observer based on the sliding mode (SM) technique, known as the “equivalent control”, is
performed too in order to analyze the benefits of variable structure techniques in parameter estimation. These
methods are very suitable for analogous, hybrid electronic devices and integral schemes since it does not require
an Analog-Digital converter that produces a loss of information and introduces additional uncertainties. The
continuous-time estimation algorithms also have shown to be useful in neuro-fuzz applications (see [2]).

2. Problem formulation

Consider the stochastic differential equation in continuous time

dxt = Atζ(xt)dt + ftdt + σtdWt (2.1)

where At is the matrix to estimate, and is assumed to be time varying and bounded (‖At‖ ≤ A+), ft is a bounded
excitation input (‖ft‖ ≤ f+), ζ(xt) is a measurable nonlinear Lipschitz vector function or, a “regressor”, σt is
a bounded matrix too, and Wt is a standard vector Wiener process. The following assumptions will be used in
the following sections

A1. For all x, the regressor ζ(x) is quasi-linear, i.e., it satisfies the global Lipschitz condition

‖ζ(x)‖ ≤ L ‖x‖
for some constant L.

A2. The parametric matrix At is differentiable and Ȧt is bounded for all t ≥ 0∥∥∥Ȧt

∥∥∥ ≤ δA.

A3. The noise power σt is bounded, i.e., for any t ≥ 0

tr
{
σtσ

�
t

} ≤ Dσ < ∞.

This is required in order to guarantee the existence of any moment more than 2.
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A4. The plant is considered to be L8-stable, i.e., the 8th moments exist and are bounded

supt>0 E
{
‖xt‖8

}
≤ X+

8 < ∞

independently of the initial condition.

The main problem is to design an estimator of At using the instrumental variable method, compare the
performance of this with the LSM algorithm, and analyze which one is more suitable for estimation in
continuous-time.

First let us rewrite the system in a regressive form (since the parametric matrix to estimate is time varying
we cannot take it outside of the integral, and apply least squares method and instrumental variables directly
but we can change the integration interval making it equal to a window of width h, where (t ≥ h > 0)); from
this point, in order to simplify notation, we will define ζ(xt) = xt. Then the system is given by

xt − xt−h −
∫ t

t−h

fs′ds′ =
∫ t

t−h

As′xs′ds′ +
∫ t

t−h

σs′dWs′ (2.2)

and
Ft,t−h = AtXt,t−h + ξt,t−h (2.3)

where

Ft,t−h := xt − xt−h −
∫ t

t−h

fs′ds′, (2.4)

Xt,t−h :=
∫ t

s′=t−h

xs′ds′, (2.5)

and

ξt,t−h :=

t∫
t−h

σs′dWs′ +

t∫
t−h

(As′ − At)xs′ds′. (2.6)

Let us define an auxiliary system for the instrumental variable method as

dzt = Ãtztdt + ftdt

and let

Zt,t−h :=
∫ t

t−h

zs′ds′ (2.7)

be the chosen instrument for the IV method with

sup
t>0

E
{
‖zt‖8

}
≤ Z+

8 < ∞ (2.8)

as in assumption A4. Now integrating (2.4) from t − h to t and multiplying by Z�
t,t−h in the right hand side

yields

t∫
t−h

Fτ,τ−hZ�
τ,τ−hdτ =

t∫
t−h

AτXτ,τ−hZ�
τ,τ−hdτ +

t∫
t−h

ξτ,τ−hZ�
τ,τ−hdτ

= At

t∫
t−h

Xτ,τ−hZ�
τ,τ−hdτ + ξ̄t,t−h (2.9)
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where

ξ̄t,t−h =

t∫
t−h

([Aτ − At] Xτ,τ−h + ξτ,τ−h)Z�
τ,τ−hdτ. (2.10)

Equation (2.9), can be used as a starting point for the IV algorithm development.

3. Algorithm development

Using a similar approach as in [7], an estimator of At can be defined as

Ât :=

⎡⎣ t∫
t−h

Fτ,τ−hZ�
τ,τ−hdτ

⎤⎦Γt (3.1)

where

Γt :=

⎡⎣ t∫
t−h

Xτ,τ−hZ�
τ,τ−hdτ

⎤⎦−1

(3.2)

or expressed alternatively as

Ât :=

⎡⎣ t∫
0

Fτ,τ−hZ�
τ,τ−hχ (τ ≥ t − h) dτ

⎤⎦Γt (3.3)

Γt :=

⎡⎣ t∫
0

Xτ,τ−hZ�
τ,τ−hχ (τ ≥ t − h) dτ

⎤⎦−1

. (3.4)

Here χ (τ ≥ t − h) is the characteristic function defined by

χ (τ ≥ t − h) :=
{

1 if τ ≥ t − h
0 if τ < t − h

. (3.5)

This function characterizes the window [t − h, t]. Now, instead of χ (τ ≥ t − h), a different class of window can
be used, for example, an “extended window” corresponding to the forgetting factor that provides the following
estimation

Ât = YtΓt, t ≥ h (3.6)

with

Yt =

t∫
0

Fτ,τ−hZ�
τ,τ−hrt−τdτ (3.7)

and

Γ−1
t :=

t∫
0

Xτ,τ−hZ�
τ,τ−hrt−τdτ (3.8)

where r is the scalar forgetting factor 0 < r < 1.
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3.1. Differential form of the estimation algorithm

To be able to implement this estimation algorithm, it should be written in a differential form. Now, differen-
tiating (3.6)–(3.8) yields

d
dt

Ât = YtΓ̇t + ẎtΓt (3.9)

where

Ẏt = Fτ,τ−hZ�
τ,τ−h +

t∫
0

Fτ,τ−hZ�
τ,τ−h

d
dt

rt−τdτ. (3.10)

In this case d
dtr

t−τ = rt−τ ln r. Then, the equation can be rewritten as follows:

Ẏt = Fτ,τ−hZ�
τ,τ−h +

t∫
0

Fτ,τ−hZ�
τ,τ−h

d
dt

rt−τdτ

= Fτ,τ−hZ�
τ,τ−h + Yt ln r (3.11)

In order to calculate Γ̇t, the identity ΓtΓ
−1
t = I will be used. By differentiation we get the following equations

Γ̇tΓ
−1
t + Γt

d
dt

(
Γ−1

t

)
= 0 (3.12)

and
Γ̇t = −Γt

d
dt

(
Γ−1

t

)
Γt. (3.13)

Differentiation yields

d
dt

Γ−1
t = Xt,t−hZ�

t,t−h +

t∫
0

Xτ,τ−hZ�
τ,τ−h

d
dt

rt−τdτ

= Xt,t−hZ�
t,t−h+Γ−1

t ln r. (3.14)

Inserting d
dtΓ

−1
t in (3.13) we get

Γ̇t = −ΓtXt,t−hZ�
t,t−hΓt − ln rΓt. (3.15)

Now, replacing (3.11) and (3.15) in (3.9) gives

d
dt

Ât = −ÂtXt,t−hZ�
t,t−hΓt + Ft,t−hZ�

t,t−hΓt

= (−ÂtXt,t−h + Ft,t−h)Z�
t,t−hΓt. (3.16)

Finally, equations (3.15) and (3.16) will form the estimation algorithm:

d
dt

Ât = (−ÂtXt,t−h + Ft,t−h)Z�
t,t−hΓt

Γ̇t = −ΓtXt,t−hZ�
t,t−hΓt − (ln r) Γt

t ≥ t0 := inf
t

⎧⎨⎩t ≥ 0 : detΓ−1
t = det

⎛⎝ t∫
0

Xτ,τ−hZ�
τ,τ−hrt−τ dτ

⎞⎠ > 0

⎫⎬⎭
Γt0 =

⎡⎣ t0∫
0

Xτ,τ−hZ�
τ,τ−hrt0−τdτ

⎤⎦−1

, Ât0 = Yt0Γt0 . (3.17)

In fact, t0 is any time just after the moment when the matrix Γ−1
t is non-singular.
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3.2. Error estimation analysis

An upper bound for the estimation error ΔAt = Ât − At is presented in the following theorem:

Theorem 3.1. Under assumptions A1–A4 the estimation algorithm (3.17) provides the following upper bound
for the estimation error

E
{
tr
(
ΔA�

t Γ−2
t ΔAt

)} ≤
⎛⎝ 8
√

X+
8 Z+

8 h2δA

√√√√ 1
|2 ln r|

[
t2r2t − t

ln r
r2t − 1 − r2t

2 (ln r)2

]

+

[
4
√

Z+
4 h

√
Dσh

1 − r2t

|2 ln r| + 4
√

δaZ+
4 h

√
1 − r2t

|2 ln r|

])2

(3.18)

Proof. See Appendix. �

Let us now compare this bound with the one presented in [6] for LSM given by:

E
{
tr
(
ΔA�

t Γ−2
t ΔAt

)} ≤
⎛⎝ 4
√

X+
8 hδA

√√√√ 1
|2 ln r|

[
t2r2t − t

ln r
r2t − 1 − r2t

2 (ln r)2

]

+

[
8
√

X+
8 h

√
Dσh(1 − r2t)

|2 ln r| + 4
√

δa
8
√

X+
8 h

√
1 − r2t

|2 ln r|

])2

. (3.19)

The structure of both upper bounds is very similar but in (3.18) we have the terms Z+
8 and Z+

4 that correspond
to the 8th and 4th bounded moments of the chosen instrument zt. These terms, that are deterministic, replace
the bounded 8th moments of xt in the upper bound reducing the influence of the stochastic terms in the
estimation error, and as it will be shown in the numerical examples, this reduce the bias and the noise effects
on the parameter estimation. Using the IV method, the upper bound presents fewer variables related to the
stochastic noise, i.e., the upper bound is less noise dependent compared to the LSM, and so, this bound should
have less sensitivity to the color or level of noise. The dependence of the error estimation bound on the noise
level, as well as the case for stationary parameters and the sharpness of the upper bound, are presented in [6].

3.3. Numerical examples

Example A. The performance of the algorithm is shown in the following example where the system is defined
as follows

dxt = (−20xt + 5 sin(0.5t) + 12)dt + 0.6dWt, xt(0) = 2. (3.20)

The instrumental variable Zt is defined by

dzt = (−10zt + 5 sin(0.5t) + 12)dt. (3.21)

The numerical results are shown in Figures 1 and 2.
Choosing an instrumental variable identical to the original system is not realistic. In this case the parameter

differs from the original one and still the performance of the estimation algorithm is good enough for the
parameter estimation. In this example the forgetting factor for both methods is r = 0.85. From the figures it is
possible to appreciate that the IV method shows a better performance, since the bias for LSM is quite evident
compared to the IV method.

Example B. Now let us show the algorithm performance in a time-varying system defined by

dxt = ((sin(0.6πt) − 2)xt + 5 sin(0.5)t + 12)dt + 0.5dWt, x(0) = 1.2 (3.22)
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Figure 1. Parameter a and its estimates using LSM (âlsm) and IV (âiv).

Figure 2. Zoomed picture showing the estimated parameters.

Figure 3. Parameter at and its estimates using LSM (âlsm) and IV (âiv).

where the instrument is defined as follows

dzt = ((sin(0.6πt) − 1.7)zt + 5 sin(0.5)t + 12)dt. (3.23)

Figures 3 and 4 show the numerical results for this example.
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Figure 4. Zoomed picture showing the estimated parameters.

Here the forgetting factor for both algorithms is r = 0.25. Figures 3 and 4 show the performance of both
algorithms, and for this example the performance is very similar and there is no a visible difference between
this algorithms, like in the previous example, and both show a good performance. In the next section we will
present some examples where the bias is more evident.

4. Sliding modes for estimation

In the continuous-time LSM algorithm the so-called “equivalent control”, used in sliding modes techniques,
has shown to be very useful for parameter estimation since we can introduce additional information into the
algorithm that will improve its performance and speed.

The equivalent control method is a procedure suggested to obtain sliding equations along the intersection of a
set of discontinuity surfaces. From the geometric point of view, this point implies a replacement of the undefined
discontinued control on the discontinuity boundary with a continuous control which directs the velocity vector
in the system state space along the discontinuity surfaces intersection (see [19]).

In this method first we introduce an auxiliary process x̂t give by d
dt x̂t = ut or, in an equivalent form dx̂t. For

this first define the error vector Δt = xt − x̂t. This process ut, provides an additional input to the parameter
estimation algorithm that will improve the performance. Here the dynamic is covered by

dΔt = dxt − dx̂t = (Atxt − ut + ft)dt + σtdWt. (4.1)

In order to design ut the following Lyapunov-like function is suggested

V (Δ, x̂) =
1
2
‖Δ‖2 + β‖x̂‖, β > 0. (4.2)

By Ito’s formula its differential is

dVt =
(

∂

∂Δ
V (·), dΔt

)
+
(

∂

∂x̂
V (·), dx̂t

)
+

1
2
tr
{
σtσ

�
t �2 V (·)} dt

=

{
‖Δt‖ (A+ ‖xt‖ + f+) + (β

x̂t

‖x̂t‖ − Δt, ut) +
tr
{
σtσ

�
t

}
2

}
dt + (Δt, σtdWt) . (4.3)

In order to compensate the terms on (4.3) the following equivalent control is selected:

ut = Ft
Δt

‖Δt‖ + Gt
x̂t

‖x̂t‖· (4.4)
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By replacing (4.4) in (4.3) we get

dVt ≤
{
‖Δ‖ (A+L ‖xt‖ + f+) +

(
−Δt + β

x̂t

‖x̂t‖ , Ft
Δt

‖Δt‖ + Gt
x̂t

‖x̂t‖
)

+
tr
{
σtσ

�
t

}
2

}
dt + (Δt, σtdWt)

≤
{
‖Δ‖ (A+L ‖x‖ + f+ − Ft) + βFt

(
x̂t

‖x̂t‖ ,
Δt

‖Δt‖
)
− Gt

(
Δ,

x̂t

‖x̂t‖
)

+ βGt +
tr
{
σtσ

�
t

}
2

}
dt

+ (Δt, σtdWt) := Rtdt + (Δt, σtdWt) (4.5)

Taking in (4.5)
Ft := A+L ‖x‖ + f+ + ρ, ρ > 0 (4.6)

one can obtain

Rt ≤
{
−ρ ‖Δt‖ + βFt

(
x̂t

‖x̂t‖ ,
Δt

‖Δt‖
)

+ Gt

[
β −

(
Δt,

x̂t

‖x̂t‖
)]

+
tr
{
σtσ

�
t

}
2

}
· (4.7)

Finally, Gt is selected for t > 0 as follows:

(a) if
∣∣∣(Δt,

x̂t

‖x̂t‖
)
− β

∣∣∣ ≥ δ > 0

Gt :=
βFt

(
x̂t

‖x̂t‖ , Δt

‖Δt‖
)

+
tr{σtσ�

t }
2 + ε[(

Δt,
x̂t

‖x̂t‖
)
− β

] , ε > 0 (4.8)

(b) if
∣∣∣(Δt,

x̂t

‖x̂t‖
)
− β

∣∣∣ < δ

Gt :=
βFt

(
x̂t

‖x̂t‖ , Δt

‖Δt‖
)

+
tr{σtσ�

t }
2 + ε

δ
· (4.9)

The small parameter δ plays the role of the, so-called, regularizing parameter which provides the possibility to
avoid the problems with a singularity of the term Gt. For the estimation algorithm, considering the equivalent
control ut = ueq

t , the next equality will be used

dΔt = (Atxt − ueq
t + ft)dt + σtdWt =︸︷︷︸

a.s.

0. (4.10)

Following the same procedure used in the previous section this yields the following estimation algorithm

d
dt

Ât = (−Âtxt + ft − ueq
t )z�t Γt

Γ̇t = −Γtxtz
�
t Γt − (ln r) Γt

t ≥ t0 := inf
t

⎧⎨⎩t ≥ 0 : detΓ−1
t = det

⎛⎝ t∫
0

xτz�τ rt−τdτ

⎞⎠ > 0

⎫⎬⎭
Γt0 =

⎡⎣ t0∫
0

xτz�τ rt−τdτ

⎤⎦−1

, Ât0 = Yt0Γt0 . (4.11)

The analysis of the upper bound for the estimation error is similar to the one shown in the previous section,
and is also presented in [16].
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Figure 5. Parameter a and its estimated using LSM and IV.

4.1. Numerical examples

Example A. Here we will show the performance of the algorithm using the same system from the previous
section but with σt = 0.8. The instrument is also the same used in the previous section and the numerical
results are shown in Figure 5.

The forgetting factor for both methods is r = 1, this means that when the “equivalent control” technique
is implemented we do not need to discard information while estimating constant parameters, whereas in the
previous section even for this type of estimation was necessary to discard some data. Figure 5 also shows that
the estimation improves significantly with the implementation of the variable structure technique. It is faster
and the effect of the noise is not as evident as in Figures 1 and 2. For the LSM it is still possible to see some
bias during the estimation while for IV this is not a problem.

Example B. The estimation algorithms were also tested on in a time-varying example given by

dxt = (sin(0.5t) − 2)xtdt + 0.8dWt (4.12)

with the instrument defined as follows

dzt = (sin(0.45t)− 2)ztdt. (4.13)

Figure 6 show the numerical results.
In this figure both algorithms have a forgetting factor r = 0.15, and while the IV is already performing

the estimation, the LSM would still need to decrease the value of the forgetting factor in order to improve its
performance. Here we can see that the “equivalent control” improves the performance of the estimation and
that is not necessary to discard as much information as in the previous section.

5. Conclusion

In this paper, an estimation algorithm using instrumental variables was implemented in a continuous-time
system under Gaussian perturbations, avoiding any preliminary discretization. The IV method was compared
with the least squares method showing a better performance under higher levels of noise. The quality of the
estimation is higher, and it is not necessary to discard much data with the forgetting factor. A second algorithm
using IV with an “equivalent control” technique was presented too, showing that variable structure techniques
can improve significantly the performance of a parameter estimation algorithm. With this method the LSM and
IV algorithms have a similar performance, but LSM still shows some bias in the estimation.
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Figure 6. at and its estimated using LSM and IV.

Appendix A.

Proof of Theorem 3.1. Define first the error equation

ΔAt = Ât − At = YtΓt − At. (A.1)

By replacing Yt in (A.1) we get

ΔAt =
(∫ t

0

Fτ,τ−hZ�
τ,τ−hrt−τdτ

)
Γt − At (A.2)

and by replacing equation (2.3) in the previous equation

ΔAt =
(∫ t

0

(AτXτ,τ−h + ξτ,τ−h)Z�
τ,τ−hrt−τdτ

)
Γt − At

=
(∫ t

0

AτXτ,τ−hZ�
τ,τ−hrt−τdτ

)
Γt +

(∫ t

0

(∫ τ

τ−h

σsdWs

)
Z�

τ,τ−hrt−τ dτ

)
Γt

+
(∫ t

0

(∫ τ

τ−h

(As′ − Aτ )xs′ds′
)

Z�
τ,τ−hrt−τdτ

)
Γt − At

=
(∫ t

0

(Aτ − At)Xτ,τ−hZ�
τ,τ−hrt−τdτ

)
Γt +

(∫ t

0

(∫ τ

τ−h

σsdWs

)
Z�

τ,τ−hrt−τdτ

)
Γt

+
(∫ t

0

(∫ τ

τ−h

(As′ − Aτ )xs′ds′
)

Z�
τ,τ−hrt−τdτ

)
Γt (A.3)
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or in equivalent form

Γ−1
t ΔAt = P1 + P ′

2

P ′
2 = P2 + P3

P1 = −
∫ t

0

(At − Aτ )Xτ,τ−hZ�
τ,τ−hrt−τdτ

P2 =
∫ t

0

(∫ τ

τ−h

σsdWs

)
Z�

τ,τ−hrt−τ dτ

P3 =
∫ t

0

(∫ τ

τ−h

(As′ − Aτ )xs′ds′
)

Z�
τ,τ−hrt−τdτ

the next inequality it is applied to get the upper bound for the estimation error

E
{
ΔA�

t Γ−2
t ΔAt

} ≤ (1 + λ)E
{
tr
(
P1P

�
1

)}
+
(
1 + λ−1

)
E
{
tr
(
P ′

2P
′�
2

)}
where

E
{
tr
(
P ′

2P
′�
2

)}
≤ (1 + λ′)E

{
tr
(
P2P

�
2

)}
+
(
1 + (λ′)−1

)
E
{
tr
(
P3P

�
3

)}
For the first term E

{
tr
(
P1P

�
1

)}
we have

E
{
tr
(
P1P

�
1

)}
=

t∫
0

t∫
0

Etr
{
[(At-Aτ )] Xτ,τ−hZ�

τ,τ−hZτ ′,τ ′−hX�
τ ′,τ ′−h(At-Aτ ′)�rt−τ rt−τ ′

dτdτ ′
}

≤
t∫

0

t∫
0

4

√
E
{
‖At-Aτ‖4 E

{
‖At-Aτ ′‖4

}}

× 4

√
E

{∥∥∥Xτ,τ−hZ�
τ,τ−h

∥∥∥4
}

E

{∥∥∥Xτ ′,τ ′−hZ�
τ ′,τ ′−h

∥∥∥4
}

rt−τ rt−τ ′
dτdτ ′

≤
⎡⎣ t∫

0

4

√
E
{
‖At-Aτ‖4

}
4

√
E

{∥∥∥Xτ,τ−hZ�
τ,τ−h

∥∥∥4
}

rt−τdτ

⎤⎦2

.

Taking into account that (At − Aτ ) =
t∫

x=τ

Ȧxdx, we get

‖At − Aτ‖ ≤ δA (t − τ) . (A.4)

This yields the following inequality
E
{
‖At-Aτ‖4

}
≤ δ4

A (t − τ)4

for the term

E
{∥∥Xτ,τ−hZ�

τ,τ−h

∥∥4
}
≤
√

E
{
‖Xτ,τ−h‖8

}√
E
{
‖Zτ,τ−h‖8

}
and from equations (2.5) and (2.7) we get

E
{
‖Xτ,τ−h‖8

}
≤ E

{∫ t

t−h

‖xs′‖8 ds′
}

E
{
‖Zτ,τ−h‖8

}
≤ E

{∫ t

t−h

‖zs′‖8 ds′
}

.
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Considering assumption A4

E
{
‖xs′‖8

}
≤ X+

8 and E
{
‖zs′‖8

}
≤ Z+

8

E
{
‖Xτ,τ−h‖8

}
≤ X+

8 h

E
{
‖Zτ,τ−h‖8

}
≤ Z+

8 h (A.5)

and then, replacing (A.5) and (A.4) in E
{
tr
(
P1P

�
1

)}

E
{
tr
(
P1P

�
1

)} ≤
⎡⎣ t∫

0

4
√

δ4
A (t − τ)4 8

√
X+

8 hZ+
8 rt−τdτ

⎤⎦2

= 4
√

X+
8 hZ8

8h

⎡⎣ t∫
0

δA (t − τ) rt−τdτ

⎤⎦2

≤ δ2
A

4
√

X+
8 hZ+

8 h

t∫
0

x2r2xdx

and since the integral in the previous equation can be expressed as follows

t∫
0

x2r2xdx = 1
2 ln r

[
t2r2t − t

ln rr2t −

1−r2t

2(ln r)2

]
we get

E
{
tr
(
P1P

�
1

)} ≤ 4
√

X+
8 Z+

8 h2
δ2
A

2 ln r

[
t2r2t − t

ln r
r2t − 1 − r2t

2 (ln r)2

]
·

The term E
{
tr
(
P2P

�
2

)}
is estimated in the following way

E
{
tr
(
P2P

�
2

)} ≤
∫ t

0

∫ t

0

E

{∫ τ

τ−h

∫ τ

τ−h

σs′dWs′Z�
τ,τ−hZτ,τ−hdW�

s σ�
s

}
r2t−τ−τ ′

dτdτ ′

≤
t∫

0

t∫
0

E

⎧⎪⎨⎪⎩∥∥Z�
τ,τ−h

∥∥2

∥∥∥∥∥∥
τ∫

τ−h

σs′dWs′

∥∥∥∥∥∥
2
⎫⎪⎬⎪⎭ r2t−τ−τ ′

dτdτ ′

≤
t∫

0

t∫
0

√
E

{∥∥∥Z�
τ,τ−h

∥∥∥4
}√√√√√√E

⎧⎪⎨⎪⎩
∥∥∥∥∥∥

τ∫
τ−h

σs′dWs′

∥∥∥∥∥∥
4
⎫⎪⎬⎪⎭r2t−τ−τ ′

dτdτ ′.
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To get the term E

⎧⎪⎨⎪⎩
∥∥∥∥∥∥

τ∫
τ−h

σs′dWs′

∥∥∥∥∥∥
4
⎫⎪⎬⎪⎭ we will represent it in the following way

E

⎧⎪⎨⎪⎩
∥∥∥∥∥∥

τ∫
τ−h

σsdWs

∥∥∥∥∥∥
4
⎫⎪⎬⎪⎭ ≤ E

⎧⎨⎩
τ∫

τ−h

τ∫
τ−h

τ∫
τ−h

τ∫
τ−h

∥∥σsσ
�
s′
∥∥∥∥σs′′σ�

s′′′
∥∥dWsdW�

s′ dWs′′dW�
s′′′

⎫⎬⎭
=

⎛⎝ τ∫
τ−h

∥∥σsσ
�
s

∥∥ds

⎞⎠2

≤
⎛⎝ τ∫

τ−h

tr
{
σsσ

�
s

}
ds

⎞⎠2

≤
⎛⎝ τ∫

τ−h

Dσds

⎞⎠2

= D2
σh2

where Dσ ≤ tr
{
σsσ

�
s

}
. Taking into account assumption A4 then E

{
‖Zτ,τ−h‖4

}
≤ Z+

4 h, E
{
tr
(
P2P

�
2

)}
can

be estimated as

E
{
tr
(
P2P

�
2

)} ≤
√

Z+
4 h
√

D2
σh2

t∫
0

t∫
0

r2t−τ−τ ′
dτdτ ′

=
√

Z+
4 hDσh

(1 − r2t)
|2 ln r| ·

The third term E
{
tr
(
P3P

�
3

)}
can be estimated in the following way

E
{
tr
(
P3P

�
3

)} ≤ E

⎧⎪⎨⎪⎩
⎡⎣ t∫

0

⎛⎝ τ∫
τ−h

‖(As′ -Aτ )xs′‖ ds′

⎞⎠∥∥Z�
τ,τ−h

∥∥ rt−τdτ

⎤⎦2
⎫⎪⎬⎪⎭

≤ E

⎧⎪⎨⎪⎩
⎛⎝ t∫

0

φτ

∥∥Z�
τ,τ−h

∥∥ rt−τdτ

⎞⎠2
⎫⎪⎬⎪⎭

where

φτ :=

τ∫
τ−h

‖(As′ -Aτ )xs′‖ds′.

This yields to the following inequality

E
{
tr
(
P3P

�
3

)} ≤
t∫

0

t∫
0

√
E

{
φ2

τ

∥∥∥Z�
τ,τ−h

∥∥∥2
}√

E

{
φ2

τ ′

∥∥∥Z�
τ ′,τ ′−h

∥∥∥2
}

rt−τ rt−τ ′
dτdτ ′.

The mathematical expectation

√
E

{
φ2

τ

∥∥∥Z�
τ,τ−h

∥∥∥2
}

can be rewritten as follows

E
{
φ2

τ

∥∥Z�
τ,τ−h

∥∥2
}
≤
√

E {φ4
τ}
√

E

{∥∥∥Z�
τ,τ−h

∥∥∥4
}
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and, as in the previous estimations, we can conclude that

E
{
φ4

τ

}
= E

⎧⎪⎨⎪⎩
⎛⎝ τ∫

τ−h

‖(As′ -Aτ )xs′‖ ds′

⎞⎠4
⎫⎪⎬⎪⎭ ≤

τ∫
τ−h

τ∫
τ−h

τ∫
τ−h

τ∫
τ−h

(
E
{
‖xs‖8

}
E
{
‖(As-Aτ )‖8

}
E
{
‖xs′‖8

}

×E
{
‖(As′ -Aτ )‖8

}
E
{
‖xs′′ ‖8

}
E
{
‖(As′′ -Aτ )‖8

}
E
{
‖xs′′′‖8

}
E
{
‖(As′′′ -Aτ )‖8

})1/8

dsds′ds′′ds′′′

=

⎡⎣ τ∫
τ−h

(
E
{
‖xs′‖8

}
E
{
‖(As′ -Aτ )‖8

})1/8

ds′

⎤⎦4

. (A.6)

From the equation (A.4) we can estimate As′ -Aτ

E
{
‖(As′ -Aτ )‖8

}
≤ δ8

A (s′ − τ)8

and for E
{
‖xs′‖8

}
we get

E
{
‖xs′‖8

}
≤ X+

8 .

From this point, we can rewrite (A.6) as follows

δa :=

⎡⎣ τ∫
τ−h

(
E
{
‖xs′‖8

}
E
{
‖(As′ -Aτ )‖8

})1/8

ds′

⎤⎦4

≤
√

X+
8

⎛⎝ τ∫
τ−h

δA (s′ − τ) ds′

⎞⎠4

= 8
√

X+
8

h8

16

taking into account

t∫
0

t∫
0

4
√

E {φ4
τ} 4

√
E

{∥∥∥Z�
τ,τ−h

∥∥∥4
}

4

√
E {φ4

τ ′} 4

√
E

{∥∥∥Z�
τ ′,τ ′−h

∥∥∥4
}

rt−τ rt−τ ′
dτdτ ′

=

⎡⎣ t∫
0

4
√

E {φ4
τ} 4

√
E

{∥∥∥Z�
τ,τ−h

∥∥∥4
}

rt−τdτ

⎤⎦2

≤
⎡⎣ 4
√

δa

t∫
0

4

√
E

{∥∥∥Z�
τ,τ−h

∥∥∥4
}

rt−τdτ

⎤⎦2

and using the Lyapunov inequality

E
{∥∥Z�

τ,τ−h

∥∥4
}
≤ Z+

4 h

we get ⎡⎣ 4
√

δa

t∫
0

4

√
E

{∥∥∥Z�
τ,τ−h

∥∥∥4
}

rt−τdτ

⎤⎦2

≤ √
δa

√
Z+

4 h

t∫
0

r2(t−τ)dτ.
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Then, the term E
{
tr
(
P3P

�
3

)}
can be estimated as follows

E
{
tr
(
P3P

�
3

)} ≤
√

δa

√
Z+

4 h

|2 ln r| 1 − r2t.

Now using the next inequality (1 + λ)a + (1 + λ−1b) ≥ (
√

a +
√

b)2, a, b > 0 where λ =
√

b/a, we get

E
{
tr
(
ΔA�

t Γ−2
t ΔAt

)} ≤
⎛⎝ 8
√

X+
8 Z+

8 h2δA

√√√√ 1
2 ln r

[
t2r2t − t

ln r
r2t − 1 − r2t

2 (ln r)2

]

+

[
4
√

Z+
4 h

√
Dσh

1 − r2t

|2 ln r| + 4
√

δaZ+
4 h

√
1 − r2t

|2 ln r|

])2

.
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