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OPTIMALITY, DUALITY AND GAP FUNCTION FOR QUASI VARIATIONAL
INEQUALITY PROBLEMS

Hadi Mirzaee1 and Majid Soleimani-damaneh2,3

Abstract. This paper deals with the Quasi Variational Inequality (QVI) problem on Banach spaces.
Necessary and sufficient conditions for the solutions of QVI are given, using the subdifferential of
distance function and the normal cone. A dual problem corresponding to QVI is constructed and
strong duality is established. The solutions of dual problem are characterized according to the saddle
points of the Lagrangian map. A gap function for dual of QVI is presented and its properties are
established. Moreover, some applied examples are addressed.
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1. Introduction and terminology

Throughout this paper, E is a real Banach space with topological dual E∗, and 〈., .〉 denotes the duality
pairing between E and E∗, i.e. 〈x∗, x〉 = x∗(x) for x∗ ∈ E∗ and x ∈ E. The norm of the members of E∗ is
defined as

‖x∗‖ = sup {〈x∗, x〉 : x ∈ E, ‖x‖ ≤ 1} .
Let R̄ = R

⋃{−∞,+∞}. The function g : E → R̄ is called proper if g(x) > −∞ for all x ∈ E and dom(g) 	= ∅.
For proper function g and x ∈ dom(g), the (classic) subdifferential of g at x, in the sense of convex analysis, is
the convex set defined by

∂g(x) := {x∗ ∈ E∗ : g(x) + 〈x∗, y − x〉 ≤ g(y) for all y ∈ E} .
The Fenchel–Moreau conjugate of g (not necessarily convex) is the function g∗ : E∗ → R̄ defined by

g∗(x∗) := sup
x∈E

{〈x∗, x〉 − g(x)}.

Suppose that C ⊂ E is nonempty and convex. The support function of C is a map from E∗ into R̄ defined by

ψC(x∗) := sup
c∈C

〈x∗, c〉.
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We also adopt the following conventions

(+∞) − (+∞) = (−∞) − (−∞) = (+∞) + (−∞) = (−∞) + (+∞) = +∞,

(∞) + y = y + (∞) = ∞, for each y ∈ R.

The distance function corresponding to U ⊆ E, denoted by dU : E −→ R̄, is defined by

dU (x) = inf
u∈U

‖x− u‖, x ∈ E.

Let X be a nonempty, closed, and convex subset of E, and let K : X ⇒ X be a set-valued map such that
for every v ∈ X, the set K(v) is a nonempty and closed subset of X . Furthermore, let A : E ⇒ E∗ be a given
set-valued map. In this paper, we consider the following Quasi Variational Inequality (QVI) problem: finding
x ∈ K(x) and t∗ ∈ A(x) such that

〈t∗, v − x〉 ≥ 0, for all v ∈ K(x). (QV I). (1.1)

The point x is said to be a solution to (QV I) and we say that the pair (x, t∗) solves (QV I).
QVIs were introduced and investigated at first by Bensoussan and Lions [4, 5]. They introduced these prob-

lems in connection with impulse optimal control problems. After introducing QVIs by Bensoussan and Lions,
many scholars studied these problems from different standpoints, see, e.g., [3,10,12,14,22,25] and the references
therein. One of the most important aspects of these problems is their connections with and applications in var-
ious well-known problems in different fields of science, engineering, and economics, including complementarity
problems [14], filtration in continuum mechanics [3], contact problems with compliant obstacles [26], contact
problems with Coulomb friction [6,19], game theory [15,18,24], oligopolistic markets [24,26], traffic [12], compu-
tational biology [17], etc. QVIs are generalized forms of classic equilibrium problems which have been frequently
studied in recent years. Blum and Oettli [8] showed that equilibrium problems include optimization problems,
Nash equilibria, complementarity problems, fixed point problems and variational inequalities as particular cases.
Also, Iusem and Sosa [20] investigated that multiobjective optimization problems can be obtained by equilib-
rium problems. The results of the above-mentioned publications show that the QVIs are useful models of many
practical problems.

In this paper, some necessary and sufficient conditions are given to characterize the solutions of QVIs. It is
done using the subdifferential of distance function and also the normal cone. Also, a dual problem corresponding
to QVI is constructed and strong duality is established. A characterization for the solutions of dual problem
is proved using the saddle point notion. Furthermore, the gap function for dual of QVI is dealt with and its
properties are established.

The rest of the paper unfolds as follows: Sections 2 and 3 contain characterizations of the solutions of QVI
and its dual. The gap function and its properties are presented in Section 4. In Section 5, we present some
applied examples.

2. Necessary and sufficient conditions

In this section, we present some necessary and sufficient conditions for the solutions of QVI. To this end, we
use a penalty mechanism and some results from variational analysis and nonsmooth analysis.

The following proposition helps us in the sequel.

Proposition 2.1 ([11]). Let g : E → R be Lipschitz around x̄ with Lipschitz rank K. Assume that x̄ is a local
minimizer of g on the closed set U ⊆ E. Then x̄ is a local minimizer of g +KdU on E (unconstrained).

The following proposition provides a necessary and sufficient condition for the solutions of QVI using the
distance function.
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Proposition 2.2. Let X be a nonempty, closed, and convex subset of E. Let x ∈ K(x) and t∗ ∈ A(x). Assume
that f : E → R is a single-valued map defined by

f(z) = 〈t∗, z − x〉, z ∈ E.

Then, the following are equivalent:

(i) the pair (x, t∗) solves (QV I);
(ii) x is a minimizer of f + ‖t∗‖dK(x).

Proof. Assume that the pair (x, t∗) solves (QV I). Then, by definition of (QVI), the vector x is a minimizer of
f on K(x). It is not difficult to show that f is Lipschitz with rank ‖t∗‖. Therefore, by Proposition 2.1, x is a
minimizer of f + ‖t∗‖dK(x).

Conversely, assume that (ii) holds. Since x ∈ K(x), we have

f(x) + ‖t∗‖dK(x)(x) = 〈t∗, x− x〉 + ‖t∗‖dK(x)(x) = 0.

Let v ∈ K(x) be arbitrary. Since x is a minimizer of f + ‖t∗‖dK(x), we get

〈t, v − x〉 = 〈t, v − x〉 + ‖t∗‖dK(x)(v) ≥ 0.

This completes the proof. �

The following theorem gives a necessary and sufficient condition for the solutions of QVI using the normal
cone and distance function. For convex set A ⊆ E, NA(x̄) denotes the normal cone to A at x̄, defined as

NA(x̄) =
{
t∗ ∈ E∗ : 〈t∗, x− x̄〉 ≤ 0, ∀x ∈ A

}
.

Also, BE∗ stands for the closed unit ball in E∗.

Theorem 2.3. Let X be a nonempty, closed, and convex subset of E, and K : X ⇒ X be a set-valued map
such that K(v) is nonempty, closed and convex for each v ∈ X. Let A : E ⇒ E∗ be a given set-valued map.
Assume that x̄ ∈ K(x̄) and t∗ ∈ A(x̄). Then the following are equivalent:

(i) the pair (x̄, t∗) solves (QV I).
(ii) −t∗

‖t∗‖ ∈ ∂dK(x̄)(x̄).
(iii) −t∗ ∈ NK(x̄)(x̄).

Proof. If the pair (x̄, t∗) solves (QV I), then by Proposition 2.2, x̄ is a minimizer of the function 〈t∗, · − x̄〉 +
‖t∗‖dK(x̄)(·). Therefore, by Theorem 2.5.7 in [28],

0 ∈ ∂
(〈t, · − x̄〉 + ‖t∗‖dK(x̄)(·)

)
(x̄).

Since the distance function is continuous and ∂dK(x̄)(x̄) = NK(x̄)(x̄)
⋂

BE∗ (see [9]), we have

∂
(〈t∗, · − x̄〉 + ‖t∗‖dK(x̄)

)
(x̄) = t∗ + ‖t∗‖∂dK(x̄)(x̄) = t∗ + ‖t∗‖

(
NK(x̄)(x̄)

⋂
BE∗

)
. (2.1)

Hence, −t∗
‖t∗‖ ∈ ∂dK(x̄)(x̄).

Conversely, if −t∗
‖t∗‖ ∈ ∂dK(x̄)(x̄), for each y ∈ K(x̄),

0 = dK(x̄)(y) − dK(x̄)(x̄) ≥
〈 −t∗
‖t∗‖ , y − x̄

〉
.

Hence, we have 〈t∗, y− x̄〉 ≥ 0 for each y ∈ K(x̄), which implies that, (x̄, t∗) solves (QV I). Therefore, (i) and (ii)
are equivalent.

The equivalence of (ii) and (iii) is clear because of (2.1) and the fact that −t∗
‖t∗‖ ∈ BE∗ . �
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In the above theorem, we proved that, under convexity, −t∗ ∈ NK(x̄)(x̄) is a necessary and sufficient condition
for solvability of (QVI) by (x̄, t∗). The following theorem proves that it is a necessary condition even without
convexity assumption if we use Clarke normal cone instead of the usual normal cone. To this end, we use the
properties of Clarke generalized gradients.

Let f be a function from E into R, locally Lipschitzian at x ∈ E. The Clarke directional derivative of f at x
in direction h ∈ E, denoted by f◦(x;h), is defined by

f◦(x;h) = lim sup
(t,y)→(0+,x)

f(y + th) − f(y)
t

·

The Clarke subdifferential of f at x, denoted by ∂cf(x), is defined by

∂cf(x) = {x∗ ∈ E∗ : 〈x∗, h〉 ≤ f◦(x;h), for all h ∈ E}.
Suppose that A is a subset of E. The Clarke tangent cone to A at x ∈ A is defined as

T c(A;x) = {h ∈ E : ∀({xn} ⊆ A, {tn} ⊆ R
)
; xn → x, tn ↓ 0,

∃{hn} ⊆ E;hn → h, xn + tnhn ∈ A ∀n}.
The Clarke normal cone to A at x ∈ A is defined as

N c(A;x) = {x∗ ∈ E∗ : 〈x∗, h〉 ≤ 0, for all h ∈ T c(A;x)}.
Now, we present the final result of this section. This theorem results from Proposition 2.1 and Corollary 2.4.3
in [11].

Theorem 2.4. Let X be a nonempty, closed, and convex subset of E, and K : X ⇒ X be a set-valued map
such that K(v) is nonempty and closed for each v ∈ X. Let A : E ⇒ E∗ be a given set-valued map. Assume that
x̄ ∈ K(x̄) and t∗ ∈ A(x̄). If the pair (x̄, t∗) solves (QVI), then −t∗ ∈ N c(K(x̄); x̄).

3. Duality in reflexive Banach spaces and saddle point

In some results of this section, we assume that E is a reflexive Banach space. Moreover, in the remainder
sections, assume that for every v ∈ X, the set K(v) is nonempty, closed and convex.

Our aim in this section is giving a dual problem corresponding to (QV I). By the next lemma, we obtain the
Fenchel–Moreau conjugate of the distance function dC(·) where C is closed and convex. This result may exist
in the literature, but here we present its proof from a different standpoint.

Lemma 3.1. Let f = dC , where C is closed and convex. Then for t∗ ∈ BE∗ , we have f∗(t∗) = supc∈C〈t∗, c〉.
Also, for t∗ /∈ BE∗ , we have f∗(t∗) = +∞.

Proof.

f∗(t∗) = sup
x∈E

{〈t∗, x〉 − inf
c∈C

‖x− c‖}

= sup
x∈E,c∈C

{〈t∗, x〉 − ‖x− c‖}

= sup
y∈E,c∈C

{〈t∗, y + c〉 − ‖y‖}

= sup
c∈C

〈t∗, c〉 + supy∈E{〈t∗, y〉 − ‖y‖}.

If t∗ ∈ BE∗ , then supy∈E{〈t∗, y〉 − ‖y‖} = 0, and desired result is derived. In the case t∗ /∈ BE∗ , there is y ∈ E
such that 〈t∗, y〉 > ‖y‖. Thus for each α > 0, we have 〈t∗, αy〉 > ‖αy‖ and hence α〈t∗, y〉 > α‖y‖. Consequently,
the result follows. �
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Now, we introduce the following dual problem corresponding to (QVI). This problem is denoted by (DQVI).
Recall that ψA(.) denotes the support function corresponding to the set A.

DQVI: finding x̄ ∈ E and t∗ ∈ A(x̄) such that

ψK(x̄)

(
− t∗

2‖t∗‖
)

+
〈

t∗

2‖t∗‖ , x̄
〉

≤ ψK(x̄)(h∗) − 〈h∗, x̄〉, for all h∗ ∈ BE∗ (DQV I). (3.1)

In this case, we say that the pair (x̄, t∗) solves (DQVI).
The following lemmas will be needed in the sequel.

Lemma 3.2 ([13]). Assume that Y is a reflexive Banach space. If f : Y → R̄ is a proper lower semi-continuous
convex function, then x∗ ∈ ∂f(x̄) if and only if

f(x̄) + f∗(x∗) = 〈x∗, x̄〉.

Lemma 3.3 ([13]). Assume that Y is a reflexive Banach space, and f : Y → R̄ is a lower semi-continuous
convex function. Then x∗ ∈ ∂f(x) if and only if x ∈ ∂f∗(x∗).

Now, we are ready to state one of the main results of this section.

Theorem 3.4. Let X be a nonempty, closed, and convex subset of E. Assume that E is reflexive. The pair
(x̄, t∗) solves (QVI) if and only if (x̄, t∗) solves (DQVI).

Proof. Let the pair (x̄, t∗) solve (QV I). Following a manner similar to the proofs of Proposition 2.2 and The-
orem 2.3, we get − t∗

2‖t∗‖ ∈ ∂dK(x̄)(x̄). Since the map K is closed- and convex-valued, dK(x̄) is a lower semi-

continuous convex function. Thus, we may use Lemma 3.3 to conclude that x̄ ∈ ∂d∗K(x̄)(− t∗
2‖t∗‖ ). This implies,

d∗K(x̄)(h
∗) − d∗K(x̄)

(
− t∗

2‖t∗‖
)

≥
〈
h∗ −

(
− t∗

2‖t∗‖
)
, x̄

〉
, for all h∗ ∈ E∗. (3.2)

Hence,

d∗K(x̄)(h
∗) − d∗K(x̄)

(
− t∗

2‖t∗‖
)

≥
〈
h∗ −

(
− t∗

2‖t∗‖
)
, x̄

〉
, for all h∗ ∈ BE∗ . (3.3)

Now, using Lemma 3.1, we have

ψK(x̄)(h∗) − ψK(x̄)

(
− t∗

2‖t∗‖
)

≥
〈
h∗ −

(
− t∗

2‖t∗‖
)
, x̄

〉
, for all h∗ ∈ BE∗ . (3.4)

Thus (x̄, t∗) solves (DQVI).
Conversely, if (x̄, t∗) solves (DQVI), then inequality (3.4) holds, and hence by Lemma 3.1, inequality (3.2)

holds. Hence, by Lemma 3.3, − t∗
2‖t∗‖ ∈ ∂dK(x̄)(x̄). Since ‖− t∗

2‖t∗‖‖ < 1, by Theorem 1 in [9], we have x̄ ∈ K(x̄)
and the proof is completed. �

In the following propositions, K(x̄)+ denotes the nonnegative dual cone corresponding to K(x̄), defined by

K(x̄)+ = {x∗ ∈ E∗ : 〈x∗, v〉 ≥ 0, for each v ∈ K(x̄)}.

Proposition 3.5. Assume that X is a nonempty, closed, and convex subset of E, and the values of the set-
valued mapping K are cones. Also, let x̄ ∈ K(x̄) and t∗ ∈ A(x̄). The pair (x̄, t∗) solves (QV I) if and only if
t∗ ∈ K(x̄)+ and t∗(x̄) = 0.



302 H. MIRZAEE AND M. SOLEIMANI-DAMANEH

Proof. Let the pair (x̄, t∗) solve (QV I). Then

〈t∗, v〉 ≥ 〈t∗, x̄〉, for all v ∈ K(x̄).

Since K(x̄) is a cone, this inequality implies 〈t∗, v〉 ≥ 0 ≥ 〈t∗, x̄〉, for all v ∈ K(x̄). Hence, t∗ ∈ K(x̄)+.
Furthermore, x̄ ∈ K(x̄) implies t∗(x̄) = 0.

Conversely, assume t∗ ∈ K(x̄)+ and t∗(x̄) = 0. Hence

〈t∗, v − x̄〉 = 〈t∗, v〉 ≥ 0 for all v ∈ K(x̄).

Also, x̄ ∈ K(x̄) by assumption. Hence, (x̄, t∗) solves (QV I). �

Our analysis in the rest of this section is inspired by the approach used in [7]. Let us consider the optimization
problem

inf{〈t∗, z − x̄〉 : z ∈ K(x̄)}, (3.5)

where t∗ ∈ A(x̄), x̄ ∈ K(x̄) and the maps A,K are as considered before. The mapK is closed- and convex-valued.
Definition 3.6 is close to Definition 2.1 in [7]. A function f : E −→ R is called closed if epi f = {(x, α) ∈

E ×R : f(x) ≤ α} is a closed set in E ×R.

Definition 3.6. Assume that Ω is a real Banach space. The function L : E × Ω → [−∞,+∞] is said to be
a Lagrangian representation of (3.5) if for each z ∈ E the function −L(z, ·) is closed, the function L(z, ·) is
concave, and

sup{L(z, λ); λ ∈ Ω} = 〈t∗, z − x̄〉 + ‖t∗‖dK(x̄)(z). (3.6)

If (3.6) holds, then we have the equivalence between Problem (3.5) and the following problem

inf
z∈E

sup
λ∈Ω

L(z, λ).

The dual problem of (3.5) is defined as
sup
λ∈Ω

inf
z∈E

L(z, λ). (3.7)

A pair (x̄, θ̄) is called a saddle point of a Lagrangian map L if

L(x̄, λ) ≤ L(x̄, θ̄) ≤ L(z, θ̄) for all z ∈ E, λ ∈ Ω.

Theorem 3.7 helps us in sequel.

Theorem 3.7 ([7,27]). A pair (x̄, θ̄) ∈ E×Ω is a saddle point of L if and only if x̄ solves (3.5), θ̄ solves (3.7)
and the two problems have the same optimal value.

Remark 3.8 ([7]). Consider the following Optimization problem:

inf{g1(x) + g2(x) : x ∈ E}, (3.8)

where g1 and g2 are two given proper functions. The Fenchel dual is defined by

sup{−g∗1(x∗) − g∗2(−x∗) : x∗ ∈ E∗}.
Due to (3.7), this dual problem may be obtained invoking the Lagrangian representation [7]:

L(x, x∗) = g1(x) − 〈x∗, x〉 − g∗2(−x∗). (3.9)
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Definition 3.9. Considering t∗ ∈ A(x̄) and x̄ ∈ K(x̄), the pair (x̄, t∗) satisfies condition (Δ) if −t∗ ∈
‖t∗‖∂dK(x̄)(x̄).

Assume that x̄ ∈ K(x̄). Because of Proposition 2.2, the pair (x̄, t∗) solves the (QV I) if and only if x̄ solves
the following optimization problem:

inf
{〈t∗, z − x̄〉 + ‖t∗‖dK(x̄)(z); z ∈ E

}
.

Hence, (x̄, t∗) solves the (QV I) if and only if x̄ solves

inf
{〈

t∗

‖t∗‖ , z − x̄

〉
+ dK(x̄)(z); z ∈ E

}
. (3.10)

From Remark 3.8, one can easily see that the following map gives a Lagrangian representation for the optimiza-
tion Problem (3.10) where x̄ ∈ K(x̄) and t∗ ∈ A(x̄):

Lq(x, x∗) =
〈

t∗

‖t∗‖ , x− x̄

〉
− 〈x∗, x〉 − d∗K(x̄)(−x∗). (3.11)

By the next theorem, we show that condition (Δ) has a connection with the saddle points of the Lagrangian
function (3.11).

Theorem 3.10. Assume that E is a reflexive real Banach space, x̄ ∈ K(x̄) and t∗ ∈ A(x̄). Then the following
statements are equivalent:

(i) the pair (x̄, t∗) satisfies condition (Δ);
(ii) (x̄, t∗

‖t∗‖ ) is a saddle point of Lq.

Proof. Assume that (i) holds. Then −t∗ ∈ ‖t∗‖∂dK(x̄)(x̄). By Lemma 3.3, we get

x̄ ∈ ∂d∗K(x̄)

(
− t∗

‖t∗‖
)
.

This is equivalent to

d∗K(x̄)(−y∗) − d∗K(x̄)

(
− t∗

‖t∗‖
)

≥
〈

t∗

‖t∗‖ − y∗, x̄
〉
, for all y∗ ∈ E∗. (3.12)

On the other hand,

Lq(x̄, y∗) = −〈y∗, x̄〉 − d∗K(x̄)(−y∗),

Lq

(
x̄,

t∗

‖t∗‖
)

= −
〈

t∗

‖t∗‖ , x̄
〉
− d∗K(x̄)

(
− t∗

‖t∗‖
)
.

Therefore, by (3.12), we have Lq(x̄, y∗) ≤ Lq(x̄, t∗
‖t∗‖ ) for each y∗ ∈ E∗.

Moreover,

Lq

(
x,

t∗

‖t∗‖
)

= −
〈

t∗

‖t∗‖ , x̄
〉
− d∗K(x̄)

(
− t∗

‖t∗‖
)
, for all x ∈ E.

In other words, Lq(., t∗
‖t∗‖ ) is a constant function, and so Lq(x, t∗

‖t∗‖ ) = Lq(x̄, t∗
‖t∗‖ ). Therefore,

Lq(x̄, y∗) ≤ Lq

(
x̄,

t∗

‖t∗‖
)

≤ Lq

(
x,

t∗

‖t∗‖
)

for all x ∈ E, y∗ ∈ E∗.

Thus (x̄, t∗
‖t∗‖ ) is a saddle point of Lq.

Conversely, assume that (x̄, t∗
‖t∗‖ ) is a saddle point of Lq. Hence, inequality (3.12) holds and this implies

x̄ ∈ ∂d∗K(x̄)(− t∗
‖t∗‖ ). Applying Lemma 3.3, we get −t∗ ∈ ‖t∗‖∂dK(x̄)(x̄) and the proof is completed. �
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If one considers
inf

{〈t∗, z − x〉 + 2‖t∗‖dK(x̄)(z); z ∈ E
}

and

L
′
q(x, x

∗) =
〈

t∗

2‖t∗‖ , x− x̄

〉
− 〈x∗, x〉 − d∗K(x̄)(−x∗),

instead of (3.10) and (3.11), respectively, then the following result (Thm. 3.11) can be proved similar to
Theorem 3.10.

Theorem 3.11. Let X be a nonempty, closed, and convex subset of E. Assume that E is reflexive, and t∗ ∈
A(x̄). Then the following statements are equivalent:

(i) the pair (x̄, t∗) solves (DQVI);
(ii) (x̄, t∗

2‖t∗‖ ) is a saddle point of L
′
q.

4. Gap function for dual quasi variational inequality

A set-valued map A : E ⇒ E∗ is said injective if for any r, s ∈ E with r 	= s, A(r)
⋂
A(s) = ∅. In this situation,

the inverse map of A, i.e. A−1 : RangeA→ E, is such that x ∈ A−1(u) if and only if u ∈ A(x). It is easy to see
that if a set-valued map A is injective, then A−1 is single-valued. The adjoint map A′ : −RangeA→ E of A is
defined as A′(u) = −A−1(−u), for u ∈ −RangeA = domA′.

In this section, we are going to introduce a gap function for (DQV I), and then getting necessary and sufficient
conditions for the existence of solutions to (QV I) and its dual.

The following set, which is defined corresponding to the set-valued map K, is used is sequel. It is assumed
that this set is nonempty:

X1 = {x ∈ X | x ∈ K(x)}.
The definition below is well-known in reference [2].

Definition 4.1. A set-valued mapping η : X1 → R is said to be a gap function for (QV I) if it satisfies the
following properties:

(i) η(x) ≥ 0, for each x ∈ X1,
(ii) η(x̂) = 0 if and only if x̂ solves (QV I).

In the sequel, we assume that the set-valued map A is injective and compact-valued. The Auslender gap function
for (QVI) [2] is

g(x) = inf
t∗∈A(x)

sup
x′∈K(x)

〈t∗, x− x′〉, for all x ∈ X1.

Let A′ be the adjoint map of A defined as above.

Definition 4.2. A set-valued map ξ : E∗ → R is said to be a gap function for (DQV I) if it satisfies the
following properties:

(i) ξ(s∗) ≥ 0, for each s∗ ∈ E∗;
(ii) ξ(t∗) = 0 if and only if (A′(t∗), t∗) solves (DQV I). Notice that when t∗ = 0, we replace (A′(t∗), t∗) with

(A′(0), 0) in the definition.

Along the lines of [23], we define a gap function G : E∗ → R for the dual quasi variational inequality problem
(DQVI) as follows: for t∗ = 0,

G(0) = sup
h∗∈BE∗

(
d∗K(A′(0))(0) − d∗K(A′(0))(h

∗) + 〈h∗, A′(0)〉
)
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and for t∗ 	= 0,

G(t∗) := sup
h∗∈BE∗

(
d∗K(A′(t∗))

(
− t∗

2‖t∗‖
)

+
〈

t∗

2‖t∗‖ , A
′(t∗)

〉
− d∗K(A′(t∗))(h

∗) + 〈h∗, A′(t∗)〉
)
. (4.1)

Theorem 4.3. Let X be a nonempty, closed, and convex subset of E. The mapping G is a gap function for the
problem (DQV I).

Proof. Assume that t∗ is an arbitrary element of E∗. We assume that t∗ 	= 0 (in the case t∗ = 0 we apply a
similar analysis). Then we have

sup
h∗∈BE∗

(
d∗K(A′(t∗))

(
− t∗

2‖t∗‖
)

+
〈

t∗

2‖t∗‖ , A
′(t∗)

〉
− ψK(A′(t∗))(h∗) + 〈h∗, A′(t∗)〉

)

≥ d∗K(A′(t∗))

(
− t∗

2‖t∗‖
)

+
〈

t∗

2‖t∗‖ , A
′(t∗)

〉
− ψK(A′(t∗))

(
− t∗

2‖t∗‖
)

+
〈
− t∗

2‖t∗‖ , A
′(t∗)

〉
= 0.

Hence, we have G(t∗) ≥ 0 for each t∗ ∈ E∗.
Now, suppose that G(t̂∗) = 0. We assume that t̂∗ 	= 0 (in the case t̂∗ = 0 one can apply the same manner).

We have

ψK(A′(t̂∗))

(
− t̂∗

2‖t̂∗‖

)
+

〈
t̂∗

2‖t̂∗‖ , A
′(t̂∗)

〉
≤ ψK(A′(t̂∗))(h

∗) − 〈h∗, A′ (t̂∗)〉, for all h∗ ∈ BE∗ .

So, the pair (A′(t̂∗), t̂∗) solves (DQV I). Also, one can easily check that if the pair (A′(t̂∗), t̂∗) solves (DQV I),
then G(t̂∗) = 0. �

From Theorems 3.4 and 4.3, we may obtain the following result:

Theorem 4.4. Let X be a nonempty, closed, and convex subset of E. Assume that E is reflexive and A is
injective. Let g and G be gap functions for (QV I) and (DQV I), as in the above. Suppose that t∗ ∈ E∗. Then
the following assertions are equivalent:

(i) G(t∗) = 0;
(ii) A′(t∗) ∈ X1, g(A′(t∗)) = 0;
(iii) dK(A′(t∗))(A′(t∗)) + d∗K(A′(t∗))(

t∗
2‖t∗‖) = 〈 t∗

2‖t∗‖ , A
′(t∗)〉.

Proof. Since g is a gap function for (QV I), the results follow from Theorem 4.3 and Lemma 3.2. �

5. Examples

In this section, we provide some practical examples to clarify the main results of the paper.

Example 1. We consider a variational inequality with obstacles [16, 21, 25]. Let Ω be a bounded domain in
Rn, n ≥ 2, with Lipschitz continuous boundary.

We use the standard notations:

H1(Ω) =
{
u ∈ L2(Ω) :

∂u

∂xi
∈ L2(Ω), i = 1, . . . , n

}

in which ∂u
∂xi

(for 1 ≤ i ≤ n) is the first generalized derivative of the map u. Here, H1(Ω) is equipped with the
norm:

‖ u ‖2
H1(Ω)=‖ u ‖2

0,2 +
n∑

i=1

∥∥∥∥ ∂u∂xi

∥∥∥∥
2

0,2
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where ‖ · ‖0,2 is the usual norm on L2(Ω). Note that H1(Ω) is a separable and reflexive Banach space (see [1]
for more information). Also,

H1
0 (Ω) = {u ∈ H1(Ω) : u|∂Ω ≡ 0}

is a reflexive Banach space (∂Ω stands for the boundary of Ω).
Let φ and ψ be two elements of H1

0 (Ω). The inequality φ ≤ ψ means φ(x) ≤ ψ(x) for almost every x in Ω.
Let M be a mapping from H1

0 (Ω) into itself, and let Δ : H1
0 (Ω) → H−1(Ω) be the so-called Laplacian

operator, where H−1(Ω) is the topological dual space of the Sobolev space H1
0 (Ω). Consider the following

quasi-variational inequality problem: find u ∈ H1
0 (Ω) such that u ≤M(u) in H1

0 (Ω) and

〈−Δu, v − u〉 ≥ 0, ∀v ∈ H1
0 (Ω), v ≤M(u). (5.1)

If u solves (5.1), then
〈�u,M(u) − u〉 = 0.

We construct the corresponding dual problem and we prove the above equality by duality results given in the
present paper.

Setting A(f) := −Δ(f) and K(f) := {g ∈ H1
0 (Ω) : g ≤ M(f)} for each f ∈ H1

0 (Ω), we may construct the
following dual problem and apply our main results.

Find g ∈ H1
0 (Ω) such that

ψK(g)

(
Δ(g)

2‖Δ(g)‖
)
−

〈
Δ(g)

2‖Δ(g)‖ , g
〉

≤ ψK(g)(h∗) − 〈h∗, g〉, for all h∗ ∈ BH−1(Ω). (DQV I) (5.2)

Let Θ := {ϕ ∈ H1
0 (Ω) : ϕ ≥ 0, a.e. on Ω}. It is clear that Θ is a cone in H1

0 (Ω) with vertex at the origin. We
denote the polar cone of Θ by Θ+ which is defined as follows

Θ+ := {t ∈ H−1(Ω) : 〈t, ϕ〉 ≥ 0, ∀ϕ ∈ Θ}.
We are going to describe the associated dual problem. First, note that if v ∈ K(g), then there is an element
τ ∈ Θ such that v = M(g) − τ. Now, let h∗ ∈ H−1(Ω). Then we have

ψK(g)(h∗) = sup
v∈K(g)

〈v, h∗〉 = 〈M(g), h∗〉 + sup
τ∈Θ

〈−τ, h∗〉.

Note that supτ∈Θ〈−τ, h∗〉 = 0 for h∗ ∈ Θ+. Hence,

ψK(g)(h∗) = 〈M(g), h∗〉 + IΘ+(h∗),

where

IΘ+(h∗) =

{
0, h∗ ∈ Θ+

+∞, h∗ /∈ Θ+

Hence, by Theorem 3.4, we deduce that the quasi variational problem (5.1) has a solution if and only if the
following variational problem has a solution⎧⎨

⎩
find t∗ ∈ H−1(Ω), g ∈ A−1(t∗) s.t. − t∗ ∈ Θ+,〈

− t∗
2‖t∗‖ ,M(g)

〉
+

〈
t∗

2‖t∗‖ , g
〉
≤ 〈s∗,M(g)〉 − 〈s∗, g〉, ∀s∗ ∈ Θ+ ∩ BH−1(Ω).

Now, assume that the pair (g, t∗) solves the last variational problem. Setting s∗ = 0, we get〈
− t∗

2‖t∗‖ ,M(g)
〉

+
〈

t∗

2‖t∗‖ , g
〉

≤ 0.

On the other hand, −t∗ ∈ Θ+. Hence, we conclude that 〈t∗,M(g) − g〉 = 0.
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Example 2 (Nash equilibria under constraint). Let C = [0,+∞) ⊂ R. Let ρi : Rn → R, i = 1, . . . , n be some
given maps. Let f1, f2, . . . , fn be real-valued functions on Rn in which each fi is convex in the ith variable.

Furthermore, we assume that for i = 1, . . . , n the map fi is Gateaux differentiable. The Gateaux derivative
of fi at x is denoted by dGfi(x). A Nash equilibrium is any vector u = (u1, . . . , un) ∈ Rn which satisfies the
following conditions {

ui ≤ ρi(u),

fi(u1, . . . , ui, . . . , un) ≤ fi(u1, . . . , yi, . . . , un), ∀yi ≤ ρi(u),

for each i = 1, . . . , n. We set Qi(u) := {w ∈ R : w ≤ ρi(u)} for i = 1, . . . , n. Then, the above problem takes the
following form: find u = (u1, . . . , un) ∈ Rn with the following properties:{

ui ∈ Qi(u),

fi(u1, . . . , ui, . . . , un) ≤ fi(u1, . . . , yi, . . . , un); ∀yi ∈ Qi(u),

for each i = 1, . . . , n.
Since each function fi is convex in the ith variable, it is easy to see that for each i ∈ {1, 2, . . . , n} and

u ∈ Qi(u), the above inequality holds true if and only if

〈dGhi(ui), yi − ui〉 ≥ 0, ∀yi ∈ Qi(u), (5.3)

in which hi : R → R is defined by hi(x) = fi(u1, . . . , ui−1, x, ui+1, . . . , un). Now, setting Ψ := dG(h1)×dG(h2)×
. . .× dG(hn) and Q(u) = Q1(u) ×Q2(u) × . . .×Qn(u), the above problem reduces to the following QV I :{

find u ∈ Q(u) s.t.

〈Ψ(u), y − u〉 ≥ 0, ∀y ∈ Q(u).

Hence, by an argument similar to Example 1, it can be seen that the corresponding (DQV I) takes the
following form: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

find t∗ ∈ Rn, ri ∈ (dG(hi))−1(t∗i ), i = 1, 2, . . . , n s.t. t∗ ∈ −Cn,

n∑
i=1

〈
− t∗i

2‖t∗i ‖
, ρi(r)

〉
+

n∑
i=1

〈
t∗i

2‖t∗i ‖
, ri

〉
≤

n∑
i=1

〈s∗i , ρi(r)〉 −
n∑

i=1

〈s∗i , ri〉 ,
∀s∗ ∈ Cn ∩ BRn .

If the pair (t∗, r) is a solution of this variational inequality, then setting s∗ = 0 we get

〈t∗i , ri − ρi(r)〉 = 0,

for i = 1, . . . , n.

We close the paper by a numerical example.

Example 3. Let K : [1,−1] ⇒ R and A : [1,−1] → R be two maps defined by K(x) := [−x2, x2] and
A(x) := −x for each x ∈ [−1, 1]. Consider the following quasi variational inequality: find x ∈ [−1, 1] such that
x ∈ K(x) and

〈−x, v − x〉 ≥ 0, for all v ∈ K(x). (5.4)

Let x be an arbitrary element of the interval [−1, 1]. It is obvious that −1 ∈ K(−1); and K(−1) is closed
and convex; and that −1 ∈ NK(−1)(−1) = N[−1,1](−1). Therefore we obtain that −1 ∈ ∂dK(−1)(−1). Hence,
Theorem 2.3 implies that the pair (−1, 1) solves the above QV I problem. Also, by Theorem 3.10 the pair (−1, 1)
is a saddle point of the Lagrangian map

Lq(x, x∗) = 〈1, x+ 1〉 − 〈x∗, x〉 − d∗[−1,1](−x∗)
= (x+ 1) − x∗x− |x∗|.
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