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EVENTUAL DIFFERENTIABILITY OF A STRING WITH LOCAL
KELVIN–VOIGT DAMPING ∗

Kangsheng Liu1, Zhuangyi Liu2 and Qiong Zhang3,4,∗∗

Abstract. In this paper, we study a wave equation with local Kelvin–Voigt damping, which models
one-dimensional wave propagation through two segments consisting of an elastic and a viscoelastic
medium. Under the assumption that the damping coefficients change smoothly near the interface, we
prove that the semigroup corresponding to the system is eventually differentiable.
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1. Introduction

In this paper, we consider one-dimensional wave propagation through two segments consisting of an elastic
and a Kelvin–Voigt medium. The latter material is a viscoelastic material having the properties both of elasticity
and viscosity. The mathematical model is the following partial differential equation.⎧⎪⎪⎪⎨

⎪⎪⎪⎩

utt(x, t) − [u′(x, t) + a(x)u′
t(x, t)]′ = 0 in (−1, 1) × R

+,

u(t,−1) = u(t, 1) = 0 in R+,

u(x, t) = u0(x), ut(x, 0) = u1(x) in [−1, 1],

(1.1)

where prime represents partial derivative with respect to x, and the damping coefficient function a(x) satisfies

a(x) ∈ C1([−1, 1]); a(x) = 0 for x ∈ [−1, 0]; a(x) > 0 for x ∈ (0, 1]. (A1)

Let H1
0 (−1, 1) be the space {u ∈ H1(−1, 1) | u(−1) = u(1) = 0}. We introduce a Hilbert space

H = H1
0 (−1, 1) × L2(−1, 1),
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whose inner product induced norm is given by

‖U‖H =
√
‖u‖2

H1
0(−1,1)

+ ‖v‖2
L2(−1,1), ∀ U = (u, v) ∈ H.

Define an unbounded operator A : D(A) ⊂ H → H by

AU =
(
v, (u′ + av′)′

)
, ∀ U = (u, v) ∈ D(A),

and
D(A) =

{
(u, v) ∈ H | v ∈ H1

0 (−1, 1), (u′ + av′)′ ∈ L2(−1, 1)
}

.

Then system (1.1) can be written as:

d
dt

(
u(·, t), ut(·, t)

)
= A(u(·, t), ut(·, t)

)
, ∀ t ≥ 0,

(
u(0), ut(0)

)
=
(
u0, u1

)
. (1.2)

It is known [5] that A generates a C0-semigroup of contractions exp(tA) on H if the coefficient function
a(·) ≥ 0 is piecewisely continuous, nonnegative, and strictly positive on a subinterval of [−1, 1].

The Kelvin–Voigt damping is much stronger than the viscous damping (i.e., the damping term is replaced
by −a(x)ut) in the sense that if the entire medium is of the Kelvin–Voigt type, the damping for the wave
equation not only induces exponential energy decay, but also restricts the spectrum of the associated semigroup
generator to a sector in the left half plane, and the associated semigroup is analytic; while if the entire medium
is of the viscous type, the associated semigroup is still exponentially stable, and the spectrum of the semigroup
generator has a vertical asymptote on the left half plane, hence does not have any smoothing property.

When the damping is local in an internal region of the domain, such a comparison is not valid anymore.
It is well known that the local viscous damping for the one-dimensional wave equation leads to exponential
energy decay even if the damping coefficient function has a jump discontinuity at the interface [4]. For the
high dimensional systems, we refer to [1] for the well-known “geometric optics” condition, which guarantees
the exact controllability, and consequently the exponential stability of the wave equation with local viscous
damping. However, the local Kelvin–Voigt damping model has much more interesting behavior. Let us recall
the following relevant results in the literature.

• In 1998, Chen, Liu and Liu [5] proved lack of the exponential stability for system (1.1) when the damping
coefficient is a step function, e.g., a(x) ≡ 1 on (0, 1] and satisfies condition (A1). This unexpected result reveals
that the Kelvin–Voigt damping does not follow the “geometric optics” condition. It turns out that the strong
damping leads to reflection of waves at the interface x = 0, which then fails to be effectively damped because
they do not enter the region of damping. In 2005, Liu and Rao [10] proved that the solution of this model
actually decays at a rate of 1

t2 (ln t)5/2. The log term can be removed without any change in their proof by using
the necessary and sufficient conditions for polynomial stability of a semigroup which appeared in 2010 [2].

• In 2002, it was shown in [8] that exponential energy decay still holds if the damping coefficient in system (1.1)
is smooth enough, say a(x) ∈ C2[−1, 1] and satisfies condition (A1). This indicates that the asymptotic behavior
of the solution to system (1.1) depends on the regularity of the damping coefficient function, which is not the
case for the viscous damping model.

• An interesting property of (1.1) was revealed by Renardy [12] in 2004. He proved that the real part of the
eigenvalues of system (1.1) are not bounded below if the damping coefficient a(x) satisfies condition (A1) and

lim
x→0+

a′(x)
xα

= k > 0, for some α > 0, (A2)

which implies that a(x) behaves like xα+1 near the interface x = 0. Note that such a function is only of C1

when α ≤ 1. This property led to two conjectures on system (1.1). First, is a(x) ∈ C1[−1, 1] good enough to
ensure exponential stability? Second, does the solution of (1.1) have some kind of regularity?
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• Recently, Zhang [13] made progress on the first conjecture by showing that the semigroup associated with
system (1.1) is exponentially stable if the coefficient function a(·) ∈ C1([−1, 1]) satisfies (A1) and the following
conditions:

a′(0) = 0,

∫ x

0

|a′(s)|2
a(s)

ds ≤ C|a′(x)|, ∀x ∈ [0, 1], C > 0.

It is easy to verify that function a(x) = xα (α > 1) satisfies the above assumption.
• For the corresponding system on high dimensional spacial domain, exponential stability was obtained in [9]

with certain conditions.
• As for the second conjecture, it was pointed out by Renardy that the associated semigroup can never be

analytic since any initial disturbance with support in the interior of the elastic part of the medium must first
reach the viscoelastic part before it experiences any damping, hence there is no immediate smoothing effect. But
his findings leads us to conjecture that the local Kelvin–Voigt damping satisfying conditions (A1)–(A2) may
induce eventual differentiability. Numerical computation of the eigenvalues by Enbree [6] in 2008 showed that
the imaginary part of the eigenvalue grows exponentially with respect to this negative real part asymptotically
which is an indicator of possible eventual differentiability.

Our main result in this paper is the following.

Theorem 1.1. Suppose function a(·) satisfies assumption (A1) and (A2). Then the semigroup exp(tA) associ-
ated with system (1.1) is eventually differentiable, i.e., differentiable when t > t0 for some constant t0 > 0.

Hence, the system has the following desired dynamical properties: (a) Vibrations modes with higher frequency
decay at higher exponential rates; (b) the decay rate is determined by the spectrum of the semigroup generator.

In what follows, we denote ρ(A), σ(A) and R(λ, A) by the resolvent set, spectrum and resolvent operator of A,
respectively. Our proof is based on the following necessary and sufficient condition for eventually differentiable
semigroup.

Lemma 1.2 ([11], Thm. 4.7). Let exp(tA) be a C0 semigroup and let A be its infinitesimal generator. If
‖ exp(tA)‖ ≤ M exp(ωt), then the following two assertions are equivalent

1. There exists a t0 > 0 such that exp(tA) is differentiable for t > t0.
2. There exist real constants κ and b, C > 0 such that

ρ(A) ⊃ Θκ,b = {λ ∈ C : Reλ ≥ κ − b ln |Imλ|} (1.3)

and
‖R(λ, A)‖ ≤ C|Imλ|, for λ ∈ Θκ,b, Reλ < ω. (1.4)

We are going to verify (1.3) and (1.4) in the rest of the paper. The following one-dimensional Sobolev
inequality will be useful.

Lemma 1.3 ([12]). Let function a(·) satisfy (A1) and (A2). Assume y(·) ∈ H1(0, 1) satisfies y(1) = 0. Then
there is a positive constant a0, independent of y, such that

‖a′a− 1
2 y‖L2(−1,1) ≤ a0‖a 1

2 y′‖L2(−1,1). (1.5)

2. Spectrum property

In this section, we shall verify condition (1.3) for the operator A.

Theorem 2.1. Suppose that function a(·) satisfies (A1) and (A2). Then, there exist κ ∈ R and b > 0 such that
Θκ,b ⊂ ρ(A).
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Proof. First, condition (1.3) is equivalent to

σ(A) ⊂ C \ Θκ,b = {λ ∈ C : Reλ < κ − b ln |Imλ|} for some κ ∈ R, b > 0. (2.1)

This clearly holds if λ ∈ σ(A) and |Imλ| is bounded since Reλ < 0 (Thm. 2.2 in [9]). Therefore, we only
need to deal with the case that the imaginary part of the spectrum of A is unbounded. We also note the fact
σ(A) \R = σp(A), where σp(A) is the point spectrum of A (Lem. 4.1 in [5]). Hence, it suffices to check that for
any λ ∈ σp(A) with |Imλ| > 1 (without loss of generality), there exist κ ∈ R and b > 0 such that

− Reλ
ln |Imλ| > − κ

ln |Imλ| + b. (2.2)

We are going to verify (2.2) by a contradiction argument. If (2.2) is false, then we have that for any κ ∈ R and

b > 0, there exists an eigenvalue λ such that − Reλ
ln |Imλ| ≤ − κ

ln |Imλ| + b. Especially, we take sequences of 0 <

κn < M (M > 0) and bn → 0 with bn > 0. As a result, there exist a sequence of eigenvalues λn
.= −μn +iωn ∈ C

with μn > 0 and ωn → ∞ (ωn > 1) such that

μn

ln ωn
≤ − κn

ln ωn
+ bn → 0, as n → ∞. (2.3)

Taking the normalized eigenfunction Un = (un, vn), we have

λnun − vn = 0, (2.4)

λnvn − T ′
n = 0, Tn

.= u′
n + av′n. (2.5)

Then, by the dissipativeness of the operator A, we conclude that

1
ln ωn

Re
(
(λnI −A)Un, Un

)
H

= − μn

ln ωn
‖Un‖2 +

1
ln ωn

‖a 1
2 v′n‖2

L2(−1,1) = 0. (2.6)

Noting that ‖Un‖H = 1 and lim
n→∞

μn

ln ωn
= 0, we obtain from (2.6) that

lim
n→∞

(
ln ωn)−

1
2 ‖a 1

2 v′n‖L2(−1,1) = 0. (2.7)

The rest of the proof is to show that lim
n→∞ ‖Un‖H = 0, which contradicts to the normality of ‖Un‖H. The main

idea and the majority of the work are to find a sequence ξn → 0+ such that lim
n→∞ ‖vn‖L2(−1,ξn) = 0. Then, we

can obtain the desired contradiction by showing that lim
n→∞ ‖vn‖L2(ξn,1) = 0 and lim

n→∞ ‖u′
n‖L2(−1,1) = 0. For the

clarity of presentation, the proof is divided into the following three steps.

Step 1. Firstly, we shall prove the following estimation based on (2.3)–(2.7).

lim
n→∞ ωn(ln ωn)−

1
2 ‖a 1

2 u′
n‖L2(−1,1) = 0, (2.8)

lim
n→∞ ωn(ln ωn)−

1
2 ‖a 1

2 vn‖L2(−1,1) = 0. (2.9)

In fact, from (2.4), we have

ωn

(
au′

n, u′
n

)
L2(−1,1)

− Im
(
av′n, u′

n

)
L2(−1,1)

= 0. (2.10)
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It follows that
ωn‖a 1

2 u′
n‖L2(−1,1) ≤ ‖a 1

2 v′n‖L2(−1,1). (2.11)

Then, (2.8) is reached by plugging (2.7) into (2.11).
Moreover, we multiply (2.5) by avn to get∫ 1

−1

λna|vn|2dx +
∫ 1

−1

Tn(avn)′dx = 0. (2.12)

Taking the imaginary part of (2.12) yields

ωn

∫ 1

−1

a|vn|2dx + Im
∫ 1

−1

(a′u′
nvn + aa′v′nvn + au′

nv′n)dx = 0. (2.13)

Note that we have the following estimations by using Lemma 1.3 and (2.7),

(ln ωn)−
1
2

∣∣∣ ∫ 1

−1

a′u′
nvndx

∣∣∣ ≤ a0(ln ωn)−
1
2 ‖a 1

2 u′
n‖L2(−1,1)‖a 1

2 v′n‖L2(−1,1) → 0. (2.14)

Furthermore, from (2.4), (2.8) and (2.10),

lim
n→∞(ln ωn)−

1
2

∣∣∣Im ∫ 1

−1

au′
nv′ndx

∣∣∣ = lim
n→∞ωn(ln ωn)−

1
2

∫ 1

−1

a|u′
n|2dx = 0. (2.15)

Therefore, plugging (2.14) and (2.15) into (2.13) and using (2.7), we get

ωn(ln ωn)−
1
2

∫ 1

−1

a|vn|2dx ≤
[

max
x∈[−1,1]

a′(x)
]

(ln ωn)−
1
2 ‖a 1

2 v′n‖‖a
1
2 vn‖ → 0. (2.16)

Then, (2.9) is proved.

Step 2. By introducing variables

zn,±(x) = ±vn(x) +
√

1 + λna(x)u′
n(x), x ∈ [−1, 1], (2.17)

we deduce from (2.4) and (2.5) that

z′n,± == ±λnu′
n +

λnvn√
1 + λna

− λna′

2
√

1 + λna
u′

n

= ± λn√
1 + λna(x)

zn,±(x) − λna′(x)
4(1 + λna(x))

(
zn,+(x) + zn,−(x)

)
. (2.18)

Here complex square root
√

1 + λna(x) is well defined because 1 + λna(x) is in the right half-plane when n is
large enough. Consequently, for x ∈ [−1, 1],

zn,±(x) = exp
[± (qn(x) − qn(ξn)

)]
zn,±(ξn) −

∫ x

ξn

exp
[± (qn(x) − qn(s)

)]
φn(s)ds, (2.19)

where ξn ∈ (0, 1] will be specified later and

qn(x) .=
∫ x

−1

λn√
1 + λna(s)

ds, (2.20)

φn(x) .=
λna′(x)

4(1 + λna(x))
[
zn,+(x) + zn,−(x)

]
. (2.21)
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We are going to verify that lim
n→∞ ‖zn,±‖L1(−1,ξn) = 0 by choosing a proper sequence ξn → 0+ and estimating

each terms on the right hand side of (2.19).

i) First, to deal with zn,±(ξn), we pick constant γ > 0 such that

max
{ 1

1 + α
,

2
3 + α

}
< γ <

2
2 + α

· (2.22)

Then,
1 + bn − γ(1 + α), 1 − γ

2
(3 + α), bn +

γ

2
(2 + α) − 1 < 0, for n large enough. (2.23)

It follows that

lim
n→∞ω1+bn−γ(1+α)

n = lim
n→∞ω

1− γ
2 (3+α)

n = 0, (2.24)

lim
n→∞ω

bn+ γ
2 (2+α)−1

n (ln ωn)
1
2 = 0. (2.25)

Then, we have the following estimation on the interval
[

1
2ω−γ

n , ω−γ
n

]
:

min
x∈
[

1
2 ω−γ

n , ω−γ
n

] |vn(x)| ≤
√

2ω
γ
2
n

⎛
⎝ max

x∈
[

1
2 ω−γ

n ,ω−γ
n

] ∣∣a− 1
2 (x)|

⎞
⎠ ‖a 1

2 vn‖L2( 1
2 ω−γ

n , ω−γ
n ). (2.26)

Substituting (2.9) into (2.26) and using the fact that a(x) approximately equals to a constant multiple of x1+α

near x = 0 lead us to

min
x∈[ 12 ω−γ

n , ω−γ
n ]

|vn(x)| = ω
γ
2 (2+α)−1
n (ln ωn)

1
2 o(1), as n → ∞. (2.27)

Noting that from (2.24),
lim

n→∞ |λna(x)| ≤ C lim
n→∞ ωn(ω−γ

n )1+α = 0, (2.28)

for x ∈ [ 1
2ω−γ

n , ω−γ
n

]
. Thus, by using (2.8) and a similar estimate as (2.26), we obtain

min
x∈
[

1
2 ω−γ

n , ω−γ
n

] |√1 + λna(x)u′
n(x)| = ω

γ
2 (α+2)−1
n (ln ωn)

1
2 o(1). (2.29)

Therefore, from (2.27) and (2.29), there exists ξn ∈ [ 12ω−γ
n , ω−γ

n ] such that

|zn,±(ξn)| = ω
γ
2 (α+2)−1
n (ln ωn)

1
2 o(1). (2.30)

In the rest of the proof, we shall use the sequence {ξn} chosen above.

ii) We estimate the function exp[±qn(·)]. First, it is clear that

Re qn(x) = −μn(x + 1) < 0, ∀ x ∈ (−1, 0]. (2.31)

When x ∈ (0, ξn], ∫ x

−1

−μn√
1 + λna(s)

ds = −μn − μn

∫ x

0

exp(iϕn(s))[
(1 − μna(s))2 + (ωna(s))2

] 1
4
ds, (2.32)

where
ϕn(x) = −1

2
arg(1 + λna(x)) − kπ, k = 0, 1.
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By setting n → ∞ and using (2.24), we have that ωna(x) → 0 when x ∈ (0, ξn]. Consequently,

∣∣∣Re
∫ x

0

cosϕn(s)[
(1 − μna(s))2 + (ωna(s))2

] 1
4
ds
∣∣∣ = O

(
ω−γ

n

)
, ∀ x ∈ (0, ξn].

Therefore, it follows from (2.32) that

Re
∫ x

−1

−μn√
1 + λna(s)

ds ≤ −μn

2
, ∀ x ∈ (0, ξn]. (2.33)

Furthermore, it follows that for any x ∈ (0, ξn],

Re
∫ x

−1

iωn√
1 + λna(s)

ds = Re
∫ x

0

iωn√
1 + λna(s)

ds

= −
∫ x

0

ωn sinϕn(s)[
(1 − μna(s))2 + (ωna(s))2

] 1
4
ds.

(2.34)

Note that

| sinϕn(x)| =
∣∣∣ sin [1

2
arg(1 + λna(x))

]∣∣∣ =

√√√√1
2
− 1 − μna(x)

2
[
(1 − μna(x))2 + (ωna(x))2

] 1
2
· (2.35)

Thus, for any x ∈ (0, ξn], we let n → ∞ and use (2.24) to obtain

| sinϕn(x)| =
(μn

2

) 1
2O
(
ω
− γ(α+1)

2
n

)
. (2.36)

By substituting (2.36) into (2.34) and noting ξn ∈ [12ω−γ
n , ω−γ

n ], we have that

∣∣∣Re
∫ x

−1

iωn√
1 + λna(s)

ds
∣∣∣ = O

(
ω

1−γ−γ(α+1)
2

n

)
, ∀ x ∈ (0, ξn]. (2.37)

Combining (2.24) and (2.37) yields

lim
n→∞

∣∣∣Re
∫ x

−1

iωn√
1 + λna(s)

ds
∣∣∣ = 0, ∀ x ∈ (0, ξn]. (2.38)

Finally, from (2.31), (2.33) and (2.38), we conclude that

Re qn(x) < 0, ∀ x ∈ (−1, ξn]. (2.39)

Therefore, by (2.39) and the fact that qn(−1) = 0, we get that

lim
n→∞| exp[qn(x)]| ≤ 1, ∀ x ∈ [−1, ξn]. (2.40)

On the other hand, by the similar argument, we have that there exists a positive constant c such that

−Re qn(x) ≤ μn + c, ∀ x ∈ (−1, ξn]. (2.41)

Consequently, it follows from (2.3) and (2.41) that

| exp[−qn(x)]| ≤ C′| exp μn| < Cωbn
n , ∀ x ∈ [−1, ξn]. (2.42)
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iii) Now, by substituting (2.30), (2.40) and (2.42) into (2.19), we conclude that for any n large enough,

|zn,±(x)| ≤ ω
bn+ γ

2 (α+2)−1
n (ln ωn)

1
2 o(1) + Cωbn

n mn

∫ ξn

−1

∣∣∣ λna′(s)
4(1 + λna(s))

∣∣∣ds, (2.43)

where x ∈ [−1, ξn] and
mn = max

x∈[−1,ξn]

(
|zn,+(x)| + |zn,−(x)|

)
.

From (A1) and (A2), we deduce that |λna(x)| = O
(
ω

1−γ(α+1)
n

)
and |λna′(x)| = O

(
ω1−γα

n

)
for n → ∞ and

x ∈ (0, ξn]. Consequently, by (2.24),

lim
n→∞ωbn

n

∫ ξn

−1

∣∣∣ λna′(s)
4(1 + λna(s))

∣∣∣ds = lim
n→∞ωbn

n

∫ ξn

0

∣∣∣ λna′(s)
4(1 + λna(s))

∣∣∣ds

≤ 1
2

lim
n→∞ωbn−γ−γα+1

n .

(2.44)

Substituting (2.24) into (2.44) yields

lim
n→∞ωbn

n

∫ ξn

−1

∣∣∣ λna′(s)
4(1 + λna(s))

∣∣∣ds = 0, (2.45)

It then follows from (2.43) and (2.45) that

mn = ω
bn+ γ

2 (α+2)−1
n (ln ωn)

1
2 o(1), (2.46)

which further leads to
lim

n→∞mn = 0, (2.47)

due to (2.25).

Step 3. By (2.47), we conclude

lim
n→∞ ‖vn‖L2(−1,ξn) =

1
2

lim
n→∞ ‖zn,+ − zn,−‖L2(−1,ξn) ≤ C lim

n→∞mn = 0. (2.48)

From (2.9) and (2.25), it is easy to get that

‖vn(x)‖L2(ξn,1) ≤ ‖a 1
2 (x)vn(x)‖L2(ξn,1) max

x∈(ξn,1)

[
a− 1

2 (x)
]

= ω
−1+ γ

2 (α+1)
n

(
ln ωn

) 1
2 o(1) = o(1). (2.49)

Combining (2.48) and (2.49) yields
lim

n→∞ ‖vn‖L2(−1,1) = 0. (2.50)

On the other hand, it is easy to prove that

lim
n→∞ ‖u′

n‖L2(−1,1) = lim
n→∞ ‖vn‖L2(−1,1). (2.51)

In fact, we multiply (2.5) by vn to get

λn‖vn‖2
L2(−1,1) +

(
u′

n + av′n, v′n
)
L2(−1,1)

= 0. (2.52)
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Similarly, multiplying (2.4) by u′
n yields

λn‖u′
n‖2

L2(−1,1) −
(
u′

n, v′n
)
L2(−1,1)

= 0. (2.53)

Therefore, we obtain (2.51) by adding (2.52) to (2.53) and taking the imaginary part of the result. Finally, it
follows from (2.50) and (2.51) that lim

n→∞ ‖Un‖H = 0, which contradicts to the assumption ‖Un‖H = 1. The proof
of Theorem 2.1 is completed. �

3. Estimate for the resolvent operator

In the last section, we prove that Θκ,b ⊂ ρ(A) for some κ ∈ R and b > 0. It is clear that Θκ,b′ ⊂ ρ(A) for any
0 < b′ < b. In this section, we shall prove condition (1.3), i.e., there exists a positive constant C such that

‖(λI − A)−1‖ ≤ C
∣∣Imλ

∣∣, (3.1)

for any λ ∈ Θκ,b′ with Reλ ≤ ω, where ω is the growth type of exp(tA). We will specify the choice of b′ later.
If condition (3.1) is false, then there exist a sequence of λn

.= −μn + iωn ∈ ρ(A) with μn > 0, ωn → ∞
(assume ωn > 1) and a sequence of vector {Un}∞n=1 = {(un, vn)}∞n=1 ⊂ D(A) with ‖Un‖H = 1 such that

lim
n→∞ωn‖(λnI −A)Un‖H = 0, (3.2)

i.e., as n → ∞,

fn
.= ωn

(
λnun − vn

)→ 0, in H1
0 (−1, 1), (3.3)

gn
.= ωn

(
λnvn − T ′

n

)→ 0, in L2(−1, 1), (3.4)

where Tn is defined by (2.5). Note that for convenience, here we use the same notation {Un}∞n=1 = {(un, vn)}∞n=1

as in Section 2, but it isn’t the sequence of eigenvectors. From ωnRe
(
(λnI −A)Un, Un

)→ 0, we conclude that
as n → ∞,

−ωnμn‖Un‖2
H + ωn‖a 1

2 v′n‖2
L2(−1,1) → 0.

Consequently,

lim
n→∞

1
ln ωn

‖a 1
2 v′n‖2

L2(−1,1) = lim
n→∞

μn

ln ωn
· (3.5)

By using (1.3), we substitute μn ≤ −κ + b′ ln ωn into (3.5) to get

lim
n→∞(ln ωn)−

1
2 ‖a 1

2 v′n‖L2(−1,1) ≤
√

b′. (3.6)

Similar to the Step 1 in the proof of Theorem 2.1, we have the following estimates under assumptions (A1),
(A2) and (3.6).

lim
n→∞ωn(ln ωn)−

1
2 ‖a 1

2 u′
n‖L2(−1,1) < C, (3.7)

lim
n→∞ωn(ln ωn)−

1
2 ‖a 1

2 vn‖L2(−1,1) < C, (3.8)

where C is a positive constant depending on a(·) and b.
For any ζn ∈ [−1, 1], we integrate (3.4) on (x, ζn) and combine the result with (3.3) to get

(
λn√

1 + λna(x)

)2 ∫ ζn

x

vn(τ)dτ + v′n(x) − λn

1 + λna
Tn(ζn) = Fn(x, ζn), (3.9)
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where

Fn(x, ζn) .= − f ′
n(x)

ωn(1 + λna(x))
+

λn

ωn(1 + λna(x))

∫ ζn

x

gn(τ)dτ.

Let

wn,±(x) .=
λn√

1 + λna(x)

∫ ζn

x

vn(τ)dτ ± vn(x).

Then,

w′
n,±(x) =

∓λnwn,±(x)√
1 + λna(x)

− λna′(x)
4(1 + λna(x))

(
wn,+(x) + wn,−(x)

) ± λnTn(ζn)
1 + λna(x)

± Fn(x, ζn). (3.10)

Consequently,

wn,±(x) = exp
[∓ (qn(x) − qn(ζn)

)]
wn,±(ζn) −

∫ x

ζn

exp
[∓ (qn(x) − qn(s)

)]
φ̃n(s)ds

±
∫ x

ζn

exp
[∓ (qn(x) − qn(s)

)][ λnTn(ζn)
1 + λna(s)

+ Fn(s, ζn)
]
ds, (3.11)

where qn is the same variable defined in (2.20) and φ̃n is defined by:

φ̃n(x) .=
λna′(x)

4(1 + λna(x))
[
wn,+(x) + wn,−(x)

]
.

In what follows, we shall estimate each terms in the right hand side of (3.11).
First, Let ζn ∈ [12ω−γ

n , ω−γ
n

]
, where γ is a positive constant satisfying (2.22). We choose b′ small enough.

Then, by the same idea as (2.23) and (2.25), we conclude that

lim
n→∞ω1+b′−γ(1+α)

n = lim
n→∞ω

1−γ
2 (3+α)

n = 0, (3.12)

lim
n→∞ω

b′+ γ
2 (α+2)−1

n (ln ωn)
1
2 = 0. (3.13)

Consequently, by the same argument as Step 2(ii) in the proof of Theorem 2.1, we obtain that when x ∈ [−1, ζn],

lim
n→∞

∣∣ exp[qn(x)]
∣∣ ≤ 1,

∣∣ exp[−qn(x)]
∣∣ ≤ Cωb′

n , C > 0. (3.14)

Furthermore, it is easy to obtain

min
x∈
[

1
2 ω−γ

n , ω−γ
n

] (|vn(x)| + |u′
n(x)| + |a(x)v′n(x)|

)

≤ Cω
γ
2 (α+2)
n

(
‖a 1

2 vn‖L2(−1,1) + ‖a 1
2 u′

n‖L2(−1,1)

)
+ Cω

− γα
2

n ‖a 1
2 v′n‖L2(−1,1). (3.15)

Replacing (3.6), (3.7) and (3.8) into (3.15) and noting that γ
2 (α +2)− 1 > −γα

2 from (3.12), we have that there
exists a positive constant C depend on κ, b and a(·) such that for n large enough

min
x∈
[

1
2 ω−γ

n , ω−γ
n

] (|vn(x)| + |u′
n(x)| + |a(x)v′n(x)|

)
≤ Cω

γ
2 (α+2)−1
n (ln ωn)

1
2 . (3.16)
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Therefore, there exists ζn ∈ [ 1
2ω−γ

n , ω−γ
n

]
such that

|wn,±(ζn)| + |Tn(ζn)| ≤ Cω
γ
2 (α+2)−1
n (ln ωn)

1
2 . (3.17)

Now, substituting (3.14) and (3.17) into (3.11) yields

|wn,±(x)| ≤ Cωb′
n

[
ω

γ
2 (α+2)−1
n (ln ωn)

1
2 + m̃n

∫ x

ζn

∣∣∣ λna′(s)
4(1 + λna(s))

∣∣∣ds

]

+
∣∣∣ ∫ x

ζn

[
I1(x, s, ζn) + I2(x, s) + I3(x, s, ζn)

]
ds
∣∣∣, x ∈ [−1, ζn], (3.18)

where

m̃n
.= max

x∈[−1,ζn]

(
|wn,+(x)| + |wn,−(x)|

)
,

I1(x, s, ζn) .= exp
[∓ (qn(x) − qn(s)

)] λnTn(ζn)
1 + λna(s)

,

I2(x, s) .= − exp
[∓ (qn(x) − qn(s)

)] f ′
n(s)

ωn(1 + λna(s))
,

I3(x, s, ζn) .= exp
[∓ (qn(x) − qn(s)

)] λn

ωn(1 + λna(s))

∫ ζn

s

gn(τ)dτ.

When x ∈ (−1, 0), it is easy to obtain∫ x

0

I1ds =
∫ x

0

exp
[∓ λn(x − s)

]
λnTn(ζn)ds = ∓

[
exp

(∓ λnx
)− 1

]
Tn(ζn), (3.19)

and

lim
n→∞

∫ 0

ζn

I1ds = ∓ lim
n→∞

[
1 − exp

(∓ λnζn

)]
Tn(ζn). (3.20)

Noting that μn ≤ −κ + b′ ln ωn. Therefore, plugging (3.17) into (3.19) and (3.20) yields

lim
n→∞

∣∣∣∣
∫ x

ζn

I1ds

∣∣∣∣ ≤ C lim
n→∞ω

b′+ γ
2 (α+2)−1

n (ln ωn)
1
2 . (3.21)

Similarly, by (3.14), ∣∣∣∣
∫ x

ζn

I2ds

∣∣∣∣ ≤
∫ x

ζn

exp
[∓ (μn(x − s)

)] ∣∣∣∣f ′
n(s)
ωn

∣∣∣∣ ds = ωb′−1
n o(1). (3.22)

Finally, for n large enough, ∣∣∣∣
∫ x

ζn

I3ds

∣∣∣∣ =
∣∣∣∣λn

ωn

∫ x

ζn

∫ τ

x

exp
[∓ λn(x − s)

]
gn(τ)dsdτ

∣∣∣∣
=

1
ωn

∣∣∣∣
∫ x

ζn

[
exp

(∓ λn(x − τ)
) − 1

]
gn(τ)dτ

∣∣∣∣
= ωb′−1

n o(1). (3.23)
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For the case x = −1 and x ∈ [0, ζn], we deduce the same estimation for the last integral in (3.18) by similar
argument. Thus, plugging (3.21) and (3.23) into (3.18), we obtain that for any x ∈ [−1, ζn],

|wn,±(x)| ≤ Cω
b′+γ

2 (α+2)−1
n (ln ωn)

1
2 + Cωb′

n m̃n

∫ x

ζn

∣∣∣ λna′(s)
4(1 + λna(s))

∣∣∣ds + ωb′−1
n o(1). (3.24)

By the same argument as (2.45) in (3.24),

m̃n ≤ C lim
n→∞ ω

b′+ γ
2 (α+2)−1

n (ln ωn)
1
2 + ωb′−1

n o(1). (3.25)

Hence, we conclude that
‖vn‖L2(−1,ζn) → 0 (3.26)

by choosing b′ and γ satisfies (3.12) and (3.13). Similar to (2.51), we can prove that

lim
n→∞ ‖u′

n‖L2(−1,1) = lim
n→∞ ‖vn‖L2(−1,1), (3.27)

Combining (3.8), (3.26) and (3.27) yields ‖Un‖H → 0, which contradicts to the assumption. Thus, we have
finished the proof for Theorem 1.1.

Remark 3.1. It follows from Theorem 1.1 that semigroup exp(tA) is differentiable for t > t0. Therefore, for
t > nt0 (n = 1, 2, . . .), exp(tA): H → D(An) and [exp(tA)](n) = An exp(tA) is a bounded linear operator.
This implies that the solution u of system (1.1) satisfies (u(·, t), ut(·, t)) ∈ D(An) for any (u0, u1) ∈ H and
t > nt0, n = 1, 2, . . .
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