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ADAPTIVE STABILIZATION FOR A CLASS OF PDE-ODE CASCADE
SYSTEMS WITH UNCERTAIN HARMONIC DISTURBANCES ∗

Zaihua Xu1, Yungang Liu1 and Jian Li2

Abstract. Adaptive boundary stabilization is investigated for a class of PDE-ODE cascade systems
with general uncertain harmonic disturbances. The essential difference between this paper and the
existing related literature is the presence of the uncertain disturbances belonging to an unknown inter-
val, which makes the problem unsolved so far. Motivated by the existing related literature, the paper
develops the adaptive boundary stabilization for the PDE-ODE cascade system in question. First, an
adaptive boundary feedback controller is constructed in two steps by adaptive and Lyapunov tech-
niques. Then, it is shown that the resulting closed-loop system is well-posed and asymptotically stable,
by the semigroup approach and LaSalle’s invariance principle, respectively. Moreover, the parameter
estimates involved in the designed controller are shown to ultimately converge to their own real values.
Finally, the effectiveness of the proposed method is illustrated by a simulation example.

Mathematics Subject Classification. 93C20, 93D15, 93D21.

Received February 13, 2015. Revised November 27, 2015. Accepted December 9, 2015.

1. Introduction and problem formulation

In this paper, we consider the adaptive boundary stabilization for the following PDE-ODE cascade system
with general uncertain harmonic disturbance:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t) − (a(x)wx(x, t))x = 0,

wx(0, t) = qwt(0, t),
w(L, t) = X1(t),
Ẋ1(t) = X2(t),
Ẋ2(t) = λa(L)wx(L, t) + 1

M u(t) + d(t),
w(x, 0) = w0(x), wt(x, 0) = w1(x),

(1.1)

where w : [0, L] × R+ → R and X = [X1, X2]T : R+ → R2 are the states of the PDE and ODE subsystems,
respectively; x takes values in [0, L] on which the PDE subsystem evolves, called the spatial variable; u : R

+ → R
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nique, semigroup approach.
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is the control input of the entire system; wx (resp. wxx) and wt (resp. wtt) denote the (resp. second) partial
derivatives of w with respect to x and t, respectively; q, λ and M are positive constants; a : [0, L] → R+ is
defined as follows:

a(x) = a1x + a2 (1.2)

for positive constants a1 and a2; d : R+ → R is the general uncertain harmonic disturbance given by:

d(t) =
n∑

i=1

(θi sin ωit + ϕi cosωit) (1.3)

with ωi’s and θi’s, ϕi’s being known and unknown nonnegative constants, called frequencies and amplitudes of
the harmonic disturbance, respectively.

System (1.1) can describe the motion of a crane with flexible cable [2,4]. The boundary stabilization of such
systems has received much effort in the past decades (see, e.g., [2–4,8,13–15,20,28,29] and references therein),
since cranes are widely used in new buildings, assembly plants, nuclear waste-handling facilities, shipyards and
so on. It is necessary to point out that, systems considered in [2–4, 8, 20, 28, 29] don’t allow any disturbance.
Although systems with disturbances have been investigated in [13–15], the involved disturbances are required to
belong to a known interval. However, in practice, due to the uncontrollable conditions, such as wind, rain and
complex terrains for cranes, disturbances cannot be ignored and the bounds are usually difficult to be obtained.
Consequently, how to stabilize system (1.1) with disturbance d(t) which doesn’t belong to a known interval is
of much interest from both practical and theoretical viewpoints, and deserves intensive investigation.

Much attention has been made on the control of PDE-ODE cascade systems, see, e.g., [1–4, 6, 8–15, 20, 21,
23, 24, 26, 28, 29, 31] and references therein, where the uncertain disturbances are limited in a known interval
or aren’t involved at all. Quite differently, system (1.1) allows the general uncertain harmonic disturbance to
belong to an unknown interval, which makes the problem under discussion unsolved so far. It is worth pointing
out, the case with the uncertain harmonic disturbance satisfying (1.3) has been studied in [16, 17], but the
proposed approaches are to PDE systems, rather than to PDE-ODE cascade systems. Motivated by [2, 17],
the paper develops the adaptive boundary stabilization for PDE-ODE cascade system (1.1). First, an adaptive
boundary feedback controller is constructed in two steps by adaptive and Lyapunov techniques. Then, it is
shown that the resulting closed-loop system is well-posed and asymptotically stable, by the semigroup approach
and LaSalle’s invariance principle, respectively. Moreover, the parameter estimates involved in the designed
controller are shown to ultimately converge to their own real values. It is worth mentioning that, as [2, 4], the
designed adaptive controller depends merely on the measures at the end x = L of system (1.1), which makes
the controller much easier to implement.

The remainder of the paper proceeds as follows. Section 2 provides the procedure of the adaptive control
design. Section 3 shows the well-posedness of the closed-loop system. Section 4 presents the main results of the
paper. Section 5 gives a numerical example to illustrate the effectiveness of the theoretical results. Section 6
addresses some concluding remarks. The paper ends with an appendix which gives the proof of a proposition
and several useful inequalities.

Notations. Throughout the paper, L2(0, L) denotes the space of all measurable functions on (0, L) with the
property that

∫ L

0
|f(x)|2 dx < +∞; L∞(0, +∞) denotes the space of all bounded measurable functions on

(0, +∞) with the property that ess supt∈(0, +∞)|f(t)| < +∞; C
∞
0 (0, L) denotes the space of all real-valued

functions on [0, L] having continuous derivatives of all orders and having compact support contained in (0, L);
Hi(0, L) denotes the usual Sobolev space of functions in L2(0, L) with derivatives up to ith order also in L2(0, L);
L∞(0, +∞; Hi(0, L)) denotes the space of all bounded measurable functions f(x, t) : (0, +∞) → Hi(0, L) with
the property that |f(x, t)|Hi(0, L) ∈ L∞(0, +∞); W1,∞(0, +∞; H1(0, L)) denotes the space of all functions t →
f(x, t) in L

∞(0, +∞; H1(0, L)) with first derivative with respect to t also in L
∞(0, +∞; H1(0, L)). Moreover,

for simplicity of expression, we sometimes drop the arguments of a function if no confusion is caused.
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2. Adaptive boundary control design

This section is to design an adaptive boundary feedback controller for system (1.1) to achieve the desired
stability of the resulting closed-loop system, which is presented in two steps. Specifically, in Step 1, as in the
famous backstepping technique for ODEs in the finite dimensional framework [22], we first design the controller
X∗

2 (t) for the following subsystem peeled from (1.1):⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wtt(x, t) − (a(x)wx(x, t))x = 0,

wx(0, t) = qwt(0, t),
w(L, t) = X1(t),
Ẋ1(t) = X∗

2 (t),
w(x, 0) = w0(x), wt(x, 0) = w1(x),

(2.1)

to ensure the asymptotic stability of the resulting closed-loop system of (2.1). Then, in Step 2, an adaptive
controller is successfully constructed for the original system, which guarantees that the error X2(t) − X∗

2 (t)
converges to zero and the resulting closed-loop system of (1.1) is asymptotically stable, and furthermore the
estimates of the parameters ultimately converge to their own real values.

Step 1. Motivated by [2], we introduce the following energy function for subsystem (2.1):

V1(t) =
1
2

∫ L

0

(
w2

t (x, t) + a(x)w2
x(x, t)

)
dx +

1
2
X2

1 (t),

which satisfies

V̇1(t) =
∫ L

0

(wt(x, t)wtt(x, t) + a(x)wx(x, t)wxt(x, t)) dx + X1(t)Ẋ1(t)

=
∫ L

0

(wt(x, t) (a(x)wx(x, t))x + a(x)wx(x, t)wxt(x, t)) dx + X1(t)Ẋ1(t)

= (a(x)wx(x, t)wt(x, t))
∣∣L
0

+ X1(t)Ẋ1(t)

= Ẋ1(t) (a(L)wx(L, t) + X1(t)) − qa(0)w2
t (0, t). (2.2)

Then, we can choose
X∗

2 (t) = −K (a(L)wx(L, t) + X1(t)) , (2.3)

where K is a positive constant, which makes (2.2) become

V̇1(t) = −K (a(L)wx(L, t) + X1(t))
2 − qa(0)w2

t (0, t) ≤ 0, (2.4)

noting q > 0 and a(0) = a2 > 0.
Based on (2.4), it will be shown that the following closed-loop system deriving from (2.1) and (2.3) is

asymptotically stable: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wtt(x, t) − (a(x)wx(x, t))x = 0,

wx(0, t) = qwt(0, t),
w(L, t) = X1(t),
Ẋ1(t) = −K (a(L)wx(L, t) + X1(t)) ,

w(x, 0) = w0(x), wt(x, 0) = w1(x),

(2.5)

in the sense

lim
t→∞

(∫ L

0

(
w2

t (x, t) + a(x)w2
x(x, t)

)
dx + X2

1 (t)

)
= 0.
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To see this, we introduce for system (2.5) the Hilbert space F1 =
{
(β, γ, ν) ∈ H1(0, L)×L2(0, L)×R

∣∣ ν = β(L)
}

with the following inner product:

〈
(β, γ, ν), (β′, γ′, ν′)

〉
F1

=
∫ L

0

(aβxβ′
x + γγ′) dx + νν′, (2.6)

and define the linear operator A1 : D1 → F1 as{
A1(β, γ, ν) = (γ, (aβx)x,−K(a(L)βx(L) + ν)) , ∀(β, γ, ν) ∈ D1,

D1 =
{
(β, γ, ν) ∈ H2(0, L) × H1(0, L) × R

∣∣ ν = β(L), βx(0) = qγ(0)
}
,

(2.7)

where a is defined the same as (1.2), and q and K have been specified in (1.1) and (2.3), respectively.
Thus, by (2.7), system (2.5) can be changed as the following evolution equation:

{
Yt(x, t) = A1Y (x, t),
Y (x, 0) = Y0(x),

where Y (x, t) = (w(x, t), wt(x, t), X1(t)) and Y0(x) = (w0(x), w1(x), w0(L)) ∈ F1. Then, for the weak solution
(see Def. 3.1.6, p. 105 of [7]) of system (2.5), there holds the following theorem, whose proof is so similar to that
of Theorem 2 in [4] and hence is omitted here.

Theorem 2.1. For any initial value Y0(x) ∈ F1, the weak solution Y (x, t) = S(t)Y0(x) of system (2.5) is
asymptotically stable in the following sense:

lim
t→∞ ‖Y (x, t)‖2

F1
= lim

t→∞

(∫ L

0

(
w2

t (x, t) + a(x)w2
x(x, t)

)
dx + X2

1 (t)

)
= 0,

where S(t) is the contraction semigroup on F1 generated by A1 and ‖Y (x, t)‖F1 is the inner product induced
norm given by (2.6).

Step 2. The estimates of unknown parameters θi’s and ϕi’s are denoted by θ̂i(t)’s and ϕ̂i(t)’s, respectively, whose
updating laws will be determined later. Accordingly, the parameter estimate errors are defined as θ̃i(t) = θi−θ̂i(t)

and ϕ̃i(t) = ϕi − ϕ̂i(t), and for late use Θ(t) �
(
θ̃1(t), . . . , θ̃n(t), ϕ̃1(t), . . . , ϕ̃n(t)

)T

.

To derive the suitable form of u(t) in this step, we define

V (t) = V1(t) +
1
2
X̃2

2 (t) +
1
2
ΘT(t)Θ(t), (2.8)

as the energy function for the entire system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wtt(x, t) − (a(x)wx(x, t))x = 0,

wx(0, t) = qwt(0, t),
w(L, t) = X1(t),
Ẋ1(t) = X∗

2 (t) + X̃2(t),
˙̃X2(t) = U(t) + d(t) − Ẋ∗

2 (t),

(2.9)

where X̃2 = X2 − X∗
2 , and U(t) simply denotes λa(L)wx(L, t) + 1

M u(t).
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By (1.1), (2.3) and similar to the derivation process of (2.2), there holds

V̇ (t) = V̇1(t) + X̃2(t)
(
U(t) + d(t) − Ẋ∗

2 (t)
)
−

n∑
i=1

(
θ̃i(t)

˙̂
θi(t) + ϕ̃i(t) ˙̂ϕi(t)

)

=
(
X∗

2 (t) + X̃2(t)
)

(a(L)wx(L, t) + X1(t)) − qa(0)wt
2(0, t)

+ X̃2(t)
(
U(t) + d(t) − Ẋ∗

2 (t)
)
−

n∑
i=1

(
θ̃i(t)

˙̂
θi(t) + ϕ̃i(t) ˙̂ϕi(t)

)
= −K (a(L)wx(L, t) + X1(t))

2 + X̃2(t) (a(L)wx(L, t) + X1(t)) − qa(0)wt
2(0, t)

+ X̃2(t)

(
U(t) − Ẋ∗

2 (t) +
n∑

i=1

(
θ̂i(t) sin ωit + ϕ̂i(t) cos ωit

))

+ X̃2(t)
n∑

i=1

(
θ̃i(t) sin ωit + ϕ̃i(t) cos ωit

)
−

n∑
i=1

(
θ̃i(t)

˙̂
θi(t) + ϕ̃i(t) ˙̂ϕi(t)

)
. (2.10)

Noting q > 0, a(0) = a2 > 0 and by the method of completing square, we have

V̇ (t) ≤ −K (a(L)wx(L, t) + X1(t))
2 +

K

2
(a(L)wx(L, t) + X1(t))

2 +
1

2K
X̃2

2 (t)

+ X̃2(t)

(
U(t) − Ẋ∗

2 (t) +
n∑

i=1

(
θ̂i(t) sin ωit + ϕ̂i(t) cosωit

))

+
n∑

i=1

(
θ̃i(t)

(
X̃2(t) sin ωit − ˙̂

θi(t)
)

+ ϕ̃i(t)
(
X̃2(t) cosωit − ˙̂ϕi(t)

))

≤ −K

2
(a(L)wx(L, t) + X1(t))

2 +
1

2K
X̃2

2 (t) + X̃2(t)
(
U(t) − Ẋ∗

2 (t)

+
n∑

i=1

(
θ̂i(t) sin ωit + ϕ̂i(t) cos ωit

) )
+

n∑
i=1

(
θ̃i(t)

(
X̃2(t) sin ωit − ˙̂

θi(t)
)

+ ϕ̃i(t)
(
X̃2(t) cos ωit − ˙̂ϕi(t)

))
. (2.11)

Thus, we choose the adaptive boundary feedback controller as follows:

u(t) = M

(
Ẋ∗

2 (t) − αX̃2(t) −
n∑

i=1

(
θ̂i(t) sin ωit + ϕ̂i(t) cos ωit

)
− λa(L)wx(L, t)

)

= −M
(
Ka(L)wxt(L, t) − K2 (a(L)wx(L, t) + X1(t)) + (K + α)X̃2(t)

)

− M

(
n∑

i=1

(
θ̂i(t) sin ωit + ϕ̂i(t) cosωit

)
+ λa(L)wx(L, t)

)
, (2.12)

where α is a design parameter satisfying α > 1
2K ; the corresponding updating laws for θ̂i(t)’s and ϕ̂i(t)’s are

given as ⎧⎨
⎩

˙̂
θi(t) = X̃2(t) sin ωit, i = 1, . . . , n,

˙̂ϕi(t) = X̃2(t) cosωit, i = 1, . . . , n.
(2.13)



502 Z. XU ET AL.

By (2.12) and noting that U(t) = λa(L)wx(L, t) + 1
M u(t), there is

U(t) = Ẋ∗
2 (t) − αX̃2(t) −

n∑
i=1

(
θ̂i(t) sin ωit + ϕ̂i(t) cos ωit

)
.

By substituting this and (2.13) into (2.10) (its first equation) and (2.11) (noting α > 1
2K ), we have{

V̇ (t) = V̇1(t) − αX̃2
2 (t),

V̇ (t) ≤ −K
2

(a(L)wx(L, t) + X1(t))
2 − (α − 1

2K

)
X̃2

2 (t) ≤ 0.
(2.14)

Next two sections are devoted to respectively address the well-posedness and the asymptotical stability of
the entire system (2.9) with the controller (2.12) and (2.13) in the loop.

3. Well-posedness of the closed-loop system

Let’s analyze the well-posedness of the following closed-loop system which consists of (2.9), (2.12) and (2.13):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t) − (a(x)wx(x, t))x = 0,

wx(0, t) = qwt(0, t),

w(L, t) = X1(t),

Ẋ1(t) = −K (a(L)wx(L, t) + X1(t)) + X̃2(t),

˙̃X2(t) = −αX̃2(t) +
∑n

i=1

(
θ̃i(t) sin ωit + ϕ̃i(t) cosωit

)
,

˙̃θi(t) = −X̃2(t) sin ωit, i = 1, . . . , n,

˙̃ϕi(t) = −X̃2(t) cos ωit, i = 1, . . . , n,

θ̃i(0) = θ̃i0, ϕ̃i(0) = ϕ̃i0, i = 1, . . . , n,

w(x, 0) = w0(x), wt(x, 0) = w1(x).

(3.1)

For this system, inspired by [2,18], we introduce Hilbert space F2 =
{
(f, g, h, k, Φ) ∈ H1(0, L)×L2(0, L)×R×

R × R2n
∣∣h = f(L)

}
with the inner product:

〈
(f, g, h, k, Φ), (f ′, g′, h′, k′, Φ′)

〉
F2

=
∫ L

0

(afxf ′
x + gg′) dx + hh′ + kk′ + ΦTΦ′, (3.2)

where a is defined the same as (1.2). Define the linear operator A2 : D2 → F2 as follows:⎧⎪⎪⎨
⎪⎪⎩
A2(f, g, h, k, Φ) =

(
g, (afx)x,−K (a(L)fx(L) + h) + k,−αk + ΦTΩ,−kΩ

)
, ∀(f, g, h, k, Φ) ∈ D2,

D2 =
{
(f, g, h, k, Φ) ∈ H2(0, L) × H1(0, L) × R × R × R2n

∣∣h = f(L), fx(0) = qg(0),

g(L) + K (a(L)fx(L) + h) = k
}
,

(3.3)

where Ω = (sin ω1t, . . . , sin ωnt, cosω1t, . . . , cosωnt)T; q, K and α have been specified in (1.1), (2.3) and (2.12),
respectively. Then system (3.1) can be formulated as the following abstract evolution equation:{

Zt(x, t) = A2Z(x, t),

Z(x, 0) = Z0(x),
(3.4)

where Z(x, t) =
(
w(x, t), wt(x, t), X1(t), X̃2(t), Θ(t)

)
and Z0(x) =

(
w0(x), w1(x), w0(L), X̃2(0), Θ(0)

)
∈ F2.
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Next, we show that linear operator A2 defined by (3.3) generates a contraction semigroup on Hilbert space F2.
By Lumer–Phillips theorem (see Thm. 4.3, p. 14 of [27]), we need to prove that A2 is dissipative and there exits
a λ0 > 0 such that the range of λ0I −A2 is F2, seeing Lemmas 3.1 and 3.3 below, respectively.

Lemma 3.1. Linea operator A2 defined by (3.3) is dissipative.

Proof. For any (f, g, h, k, Φ) ∈ D2, by (3.2) and integration by parts, we have

〈A2(f, g, h, k, Φ), (f, g, h, k, Φ)
〉

F2
=
∫ L

0

(afxgx + (afx)xg) dx + h (−K (a(L)fx(L) + h) + k)

+ k(−αk + ΦTΩ) − kΩTΦ

= g(L) (a(L)fx(L) + h) − qa(0)g2(0) − αk2,

= −K (a(L)fx(L) + h)2 + k (a(L)fx(L) + h) − qa(0)g2(0) − αk2.

Then, align to the derivation process of (2.11) and noting α > 1
2K , there holds

〈A2(f, g, h, k, Φ), (f, g, h, k, Φ)
〉

F2
≤ −K

2
(a(L)fx(L) + h)2 −

(
α − 1

2K

)
k2 ≤ 0. (3.5)

Hence, A2 is dissipative in F2. �

Motivated by [19], we obtain the following proposition.

Proposition 3.2. For any (p∗, η∗, r∗, v∗, Ψ∗) ∈ F2, there exists a p ∈ H2(0, L) such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(apx)x − p = −p∗ − η∗,

px(0) = q(p(0) − p∗(0)),

Ka(L)px(L) = −(K + 1)p(L) + r∗ + v∗+Ψ∗TΩ
1+α+ΩTΩ ,

(3.6)

where a is the same as (1.2), q, K, α and Ω have been specified in (1.1), (2.3), (2.12) and (3.3), respectively.

Proof. See Appendix of the paper. �

Based on Proposition (3.2), we establish the following lemma.

Lemma 3.3. Let A2 be defined by (3.3). Then the range of I −A2 is F2.

Proof. To prove that I −A2 is surjective, it suffices to prove that for any (p∗, η∗, r∗, v∗, Ψ∗) ∈ F2, there exists
a (p, η, r, v, Ψ) ∈ D2 such that

(I −A2)(p, η, r, v, Ψ) = (p∗, η∗, r∗, v∗, Ψ∗),

which together with the definition of A2 given by (3.3) yields that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p − η = p∗,

η − (apx)x = η∗,

r − v + K (a(L)px(L) + r) = r∗,

v + αv − ΨTΩ = v∗,

Ψ + vΩ = Ψ∗,

r = p(L),

px(0) = qη(0),

η(L) + K (a(L)px(L) + r) = v.

(3.7)
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For simplicity of presentation, the first, second, . . . , and eighth equations of (3.7) are denoted by 1©, 2©, . . . ,
and 8©, respectively.

From 4© and 5©, it follows that
v + αv + vΩTΩ = v∗ + Ψ∗TΩ,

by which and noting that 1 + α + ΩTΩ > 0, we arrive at

v =
v∗ + Ψ∗TΩ

1 + α + ΩTΩ
· (3.8)

Substituting (3.8) into 5© results in

Ψ = Ψ∗ − vΩ = Ψ∗ − v∗ + Ψ∗TΩ

1 + α + ΩTΩ
Ω. (3.9)

From 1©, we can directly conclude
η = p − p∗,

by which and p∗ ∈ H1(0, L), we have η ∈ H1(0, L) if there exists a p ∈ H2(0, L) satisfying (3.7). In addition,
by 6©, (3.8) and (3.9), we can directly conclude that (r, v, Ψ) ∈ R × R × R2n. Thus, the remainder of the proof
is to prove that there exists a p ∈ H2(0, L) satisfying (3.7).

First, from 1©, 2© and 7©, it follows that{
p − (apx)x = p∗ + η∗,

px(0) = q(p(0) − p∗(0)).
(3.10)

Then, by 3©, 6© and (3.8), there holds

Ka(L)px(L) + (K + 1)p(L) = r∗ +
v∗ + Ψ∗TΩ

1 + α + ΩTΩ
,

which together with (3.10) and Proposition 3.2 concludes that there exists a p ∈ H2(0, L) satisfying (3.7). Thus,
(p, η, r, v, Ψ) ∈ D2 and hence completes the proof. �

Now, similar to Theorem 1 in [2], we obtain the following theorem which mainly states the well-posedness of
the closed-loop system.

Theorem 3.4. Let A2 be a linear operator defined by (3.3). Then A2 generates a contraction semigroup T (t)
on F2. Therefore, for system (3.4), there hold

(i) For any Z0(x) ∈ F2, system (3.4) has a unique mild solution Z(x, t) = T (t)Z0(x).
(ii) For any Z0(x) ∈ D2, system (3.4) has a unique strong solution Z(x, t) = T (t)Z0(x), and furthermore

w(x, t) ∈ W1,∞(0,∞; H1(0, L)) ∩ L∞(0,∞; H2(0, L)).
(iii) For any Z0(x) ∈ D2, ‖Z(x, t)‖F2 and ‖A2Z(x, t)‖F2 are nonincreasing with respect to t, where ‖Z(x, t)‖F2

and ‖A2Z(x, t)‖F2 are the inner product induced norm given by (3.2) in F2.

Proof. We first prove that A2 generates a contraction semigroup T (t) on F2. By Lemmas 3.1, 3.3 and Lumer–
Phillips theorem, it suffices to show that the closure of D2 denoted by D2 is F2. Assume D2 
= F2, then there
exists Z∗(x, t) ∈ F2 such that, for all Z(x, t) ∈ D2,〈

Z∗(x, t), Z(x, t)
〉

F2
= 0. (3.11)

Noting I −A2 is surjective, we have that for Z∗(x, t), there exists a Z ′(x, t) ∈ D2 such that

(I −A2)Z ′(x, t) = Z∗(x, t), (3.12)
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which together with (3.11) results in 〈
(I −A2)Z ′(x, t), Z(x, t)

〉
F2

= 0.

Since Z(x, t) is arbitrary in D2, we take Z(x, t) = Z ′(x, t). Then by (3.5), it can be established that〈
Z ′(x, t), Z ′(x, t)

〉
F2

≤ 0,

which implies Z ′(x, t) = 0. By (3.12), we have Z∗(x, t) = 0. Thus, D2 = F2 is proved. By Lumer–Phillips
theorem, A2 generates a contraction semigroup T (t) on F2, and hence claim (i) can be directly concluded.

We next turn to prove claim (ii). By Lemma 3.3, it follows that −A2 is m-accretive. Hence, by Proposition 3.3
on page 102 of [5], we have

R1 = F2, for all λ > 0,

where R1 denotes the range of I − λA2, which implies that

R1 ⊃ D2, for all smallλ > 0.

Moreover, by Corollary 2.5 on page 5 of [27] and using the fact that any a contraction semigroup is a
C0-semigroup, we have that A2 is closed. Thus, noting F2 is a reflexive space and by Theorem 1.5 on page 216
of [5], for any Z0(x) ∈ D2, system (3.4) has a unique strong solution Z(x, t) ∈ W1,∞(0,∞; F2) which implies
that w(x, t) ∈ W1,∞(0,∞; H1(0, L)).

To prove w(x, t) ∈ L∞(0,∞; H2(0, L)), by Z0(x) ∈ D2 and Theorem 2.1.10.a on page 21 of [7], we have
Z(x, t) ∈ D2 which implies that w(x, t) : [0, +∞] → H2(0, L), so it remains to show |w(x, t)|H2(0,L) ∈ L∞(0, +∞).
For this, by (2.8) and (2.14), we have

sup
t≥0

(∫ L

0

(
w2

t (x, t) + a(x)w2
x(x, t)

)
dx + X2

1 (t) + X̃2
2 (t) +

n∑
i=1

(
θ̃2

i (t) + ϕ̃2
i (t)

))
< ∞,

which implies that ⎧⎨
⎩supt≥0

(∫ L

0
w2

x(x, t) dx
)

< ∞,

supt≥0 w(L, t) < ∞.
(3.13)

From (3.13) and Poincaré’s inequality (see Lem. A.1 of Appendix A in the paper), it follows that

sup
t≥0

(∫ L

0

w2(x, t) dx

)
< ∞. (3.14)

Thus, by (3.13), (3.14) and Agmon’s inequality (see Lem. A.2 of Appendix A in the paper), there holds

max
x∈[0, L]

|w(x, t)|2 < ∞,

and hence w(x, t) ∈ L∞(0,∞; H2(0, L)) is proved.
We then prove claim (iii). Noting ‖Z(x, t)‖2

F2
=
〈
(Z(x, t), Z(x, t)

〉
F2

and by (3.4), we can directly obtain

d‖Z(x, t)‖F2

dt
=

〈A2Z(x, t), Z(x, t)
〉

F2

‖Z(x, t)‖F2

,

which together with (3.5) yields
d‖Z(x, t)‖F2

dt
≤ 0. (3.15)

Thus, t → ‖Z(x, t)‖F2 is nonincreasing.
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Noting Z(x, t) ∈ D2 and by Theorem 2.1.10.b on page 21 of [7], we have A2Z(x, t) ∈ D2 whose proof is similar
to that of Theorem 2.1.10.a on page 21 of [7]. Then, again by Theorem 2.1.10.b, there holds

dA2Z(x, t)
dt

=
d2Z(x, t)

dt2
= A2

2Z(x, t),

by which and a similar argument as in deriving (3.15), it follows that

d‖A2Z(x, t)‖F2

dt
≤ 0,

and hence claim (iii) is proved. This completes the proof of the theorem. �

4. Main results

In this section, we adopt LaSalle’s invariance principle (see Thm. 3.64, p. 161 of [25]) to study the asymptotic
stability of closed-loop system (3.1). For this, the following lemma is required which will play a key role in the
later analysis.

Lemma 4.1. Let A2 be defined by (3.3). Then 0 ∈ R2 and (I −A2)−1 is compact, where R2 denotes the range
of A2.

Proof. From (3.3), it is easy to verify that
A2(0) = 0,

and hence 0 ∈ R2 is proved.
We next turn to prove that (I − A2)−1 is compact. For this, let

{
Z̄n∗(x, t)

∣∣ ‖Z̄n∗(x, t)‖F2 ≤ c, n∗ ∈ N
}

be a bounded sequence in F2. On the one hand, from Lemma 3.3 we know that there exists a sequence{
Zn∗(x, t)

∣∣Zn∗(x, t) ∈ D2

}
satisfying

(I −A2)Zn∗(x, t) = Z̄n∗(x, t). (4.1)

Therefore, we have〈
Z̄n∗(x, t), Zn∗(x, t)

〉
F2

=
〈
(I −A2)Zn∗(x, t), Zn∗(x, t)

〉
F2

=
〈
Zn∗(x, t), Zn∗(x, t)

〉
F2

− 〈A2Zn∗(x, t), Zn∗(x, t)
〉

F2
,

which together with (3.5) results in〈
Z̄n∗(x, t), Zn∗(x, t)

〉
F2

≥ 〈Zn∗(x, t), Zn∗(x, t)
〉

F2
. (4.2)

On the other hand, by (4.1), it follows that〈
Z̄n∗(x, t), Z̄n∗(x, t)

〉
F2

=
〈
Zn∗(x, t), Z̄n∗(x, t)

〉
F2

− 〈A2Zn∗(x, t), Zn∗(x, t)
〉

F2

+
〈A2Zn∗(x, t),A2Zn∗(x, t)

〉
F2

,

by which and (3.5), we arrive at〈
Zn∗(x, t), Z̄n∗(x, t)

〉
F2

≤ 〈Z̄n∗(x, t), Z̄n∗(x, t)
〉

F2
. (4.3)

Thus, by (4.2) and (4.3), there holds

‖Zn∗(x, t)‖F2 ≤ ‖Z̄n∗(x, t)‖F2 ≤ c,
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which together with Sobolev Imbedding Theorem implies that there exist a subsequence
{
Zn∗

k∗ (x, t)
∣∣ k∗ ∈ N}

of
{
Zn∗(x, t)

}
and Z0(x) ∈ F2, such that

Zn∗
k∗ (x, t) → Z0(x).

Hence, (I −A2)−1 is compact and the proof is complete. �

We are now in a position to address the main result of the paper, which is summarized in the following
theorem.

Theorem 4.2. For any initial value Z0(x) ∈ F2, if design parameters α and K satisfying α > 1
2K , then the

weak solution Z(x, t) = T (t)Z0(x) of closed-loop system (3.1) is asymptotically stable in the following sense:

lim
t→∞

(∫ L

0

(
w2

t (x, t) + a(x)w2
x(x, t)

)
dx + X2

1 (t)

)
= 0, (4.4)

lim
t→∞ X̃2

2 (t) = 0, (4.5)

and {
limt→∞ θ̂i(t) = θi, i = 1, . . . , n,

limt→∞ ϕ̂i(t) = ϕi, i = 1, . . . , n.
(4.6)

Proof. We first prove that (4.4), (4.5) and (4.6) hold for any initial value Z0(x) ∈ D2. For this, by Theorem 3.65
on page 162 of [25] and Lemma 4.1, we can directly conclude that the trajectory γ (Z0(x)) =

{
Z(x, t)

∣∣ t ≥ 0
}

of system (3.4) is precompact in F2. Then by using LaSalle’s invariance principle, any solution of system (3.4)
tends to the largest invariant set of the following:

S =
{(

w(x, t), wt(x, t), X1(t), X̃2(t), Θ(t)
) ∣∣ V̇ (t) = 0

}
.

For any
(
w̆(x, t), w̆t(x, t), X̆1(t),

˘̃X2(t), Θ̆(t)
)
∈ S, by the inequality of (2.14), we have⎧⎨

⎩
˘̃X2(t) = 0,

a(L)w̆x(L, t) + X̆1(t) = 0,
(4.7)

by which, the forth equation of (2.2), (2.3), (2.13) and (2.14), there holds⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X̆2(t) = 0,

w̆t(0, t) = 0,

˘̃θi(t) ≡ ˘̃θi(0), i = 1, . . . , n,

˘̃ϕi(t) ≡ ˘̃ϕi(0), i = 1, . . . , n.

(4.8)

Hence, by (3.1), (4.7) and (4.8), w̆(x, t) should satisfy⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w̆tt(x, t) − (a(x)w̆x(x, t))x = 0,

w̆x(0, t) = 0,

a(L)w̆x(L, t) + w̆(L, t) = 0,

w̆t(L, t) = 0.

(4.9)

Noting that Z0(x) ∈ D2 and by claim (ii) of Theorem 3.4, there holds

w̆(x, t) ∈ W
1,∞(0,∞; H1(0, L)) ∩ L

∞(0,∞; H2(0, L)),
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which together with Lemma 3 in [4] yields that, for system (4.9)

w̆(x, t) ≡ 0.

Moreover, by (3.1) and (4.8), we obtain that for any t ≥ 0

n∑
i=1

( ˘̃
θi(t) sin ωit + ˘̃ϕi(t) cosωit

)
= 0,

from which it follows that ˘̃θi(t) ≡ 0 and ˘̃ϕi(t) ≡ 0. Thus, we have

S =
{
(0, 0, 0, 0, 0)

}
.

By LaSalle’s invariance principle, the following result can be directly obtained:

lim
t→∞ ‖T (t)Z0(x)‖2

F2
= 0. (4.10)

This directly yields

lim
t→∞

(∫ L

0

(
w2

t (x, t) + a(x)w2
x(x, t)

)
dx + X2

1 (t) + X̃2
2 (t) +

n∑
i=1

(
θ̃2

i (t) + ϕ̃2
i (t)

))
= 0,

which implies that

lim
t→∞

(∫ L

0

(
w2

t (x, t) + a(x)w2
x(x, t)

)
dx + X2

1 (t)

)
= 0,

lim
t→∞ X̃2

2 (t) = 0,

and {
limt→∞ θ̂i(t) = θi, i = 1, . . . , n,

limt→∞ ϕ̂i(t) = ϕi, i = 1, . . . , n.

We next turn to prove that (4.4), (4.5) and (4.6) hold for any initial value Z0(x) ∈ F2. From D2 = F2, there
exists a sequence

{
Zj∗(x, t)

∣∣Zj∗(x, t) ∈ D2, j∗ ∈ N} such that

lim
j∗→∞

Zj∗(x, t) = Z0(x),

by which and noting that T (t) is a contraction semigroup defined on F2, we arrive at

‖T (t)Z0(x)‖2
F2

≤ ‖T (t)(Z0(x) − Zj∗(x, t))‖2
F2

+ ‖T (t)Zj∗(x, t)‖2
F2

≤ ‖Z0(x) − Zj∗(x, t)‖2
F2

+ ‖T (t)Zj∗(x, t)‖2
F2

.

Since Zj∗(x, t) ∈ D2 and (4.10) holds, we obtain

lim
t→∞ ‖T (t)Z0(x)‖2

F2
= 0,

and hence for any initial value Z0(x) ∈ F2, (4.4), (4.5) and (4.6) hold. This completes the proof. �

Remark 4.3. It is worth mentioning that, if d(t) in (1.1) is replaced by d(t)+ε(t) where ε(t) ∈ L2[0, +∞) is the
perturbation for d(t), then for any initial value Z0(x) ∈ F2, only the boundedness of the states w(x, t), X1(t),
X̃2(t) and Θ(t) of the resulting closed-loop system can be obtained under the adaptive controller consisting
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of (2.12) and (2.13). This is because when d(t) in (1.1) is replaced by d(t) + ε(t), by choosing α > 1
2K ,

function (2.8) satisfies

V̇ (t) ≤ −K

2
(a(L)wx(L, t) + X1(t))

2 − 1
2

(
α − 1

2K

)
X̃2

2 (t) +
K

2Kα − 1
ε2(t) ≤ K

2Kα− 1
ε2(t),

which can be derived similarly to the inequality in (2.14). Noting V (t) = ‖Z(x, t)‖2
F2

, we have

V (t) ≤ ‖Z0(x)‖2
F2

+
K

2Kα − 1

∫ t

0

ε2(t) dt.

Then, by the definition of V (t) and noting ε(t) ∈ L2[0, +∞), it follows that states X1(t), X̃2(t) and Θ(t) of the
resulting closed-loop system are bounded, and moreover, w(x, t) satisfies (3.13). From (3.13) and the bounded-
ness of X1(t), we conclude that w(x, t) is bounded by using Poincaré’s inequality and Agmon’s inequality.

5. Simulation results

In this section, numerical results are given to illustrate the effectiveness of the theoretical results for the
following system: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t) − (a(x)wx(x, t))x = 0,

wx(0, t) = 0.03wt(0, t),

w(L, t) = X1(t),

Ẋ1(t) = X2(t),

Ẋ2(t) = λa(L)wx(L, t) + 1
M u(t) + d(t),

(5.1)

with scale initial conditions
w0(x) = w(x, 0) = 0.5(L − x)

and

w1(x) = wt(x, 0) =

{
0.1, 0 ≤ x ≤ L

2
,

0, else.

The values of the parameters are assumed as: L = 5m, M = 25kg, m = 2000kg, ρ = 5kg/m, g = 9.8m/s2, i = 2,
ω1 = 1, ω2 = π

4
, θ1 = 1.8, ϕ1 = 0.5, θ2 = 1.2 and ϕ2 = 0.3. Then, from (1.3), we have

d(t) = 1.8 sin t + 0.5 cos t + 1.2 sin
π

4
t + 0.3 cos

π

4
t.

From [2,4], by taking a(x) and λ as ⎧⎨
⎩

a(x) = gx + gm
ρ ,

λ = (m+ρL)g

Ma(L)
,

we obtain {
a(x) = 9.8x + 3920,

λ = 0.2.

Moreover, the initial values of the estimates of unknown parameters are chosen as: θ̂1(0) = 1.5, ϕ̂1(0) = 0.2,
θ̂2(0) = 0.8 and ϕ̂2(0) = 0.6.
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Figure 1. Trajectory of w(x, t)
when K = 0.1.
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Figure 2. Trajectories of X1(t) and
X2(t) when K = 0.1.
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Figure 3. Trajectories of θ̂1(t) and
ϕ̂1(t) when K = 0.1.
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Figure 4. Trajectories of θ̂2(t) and
ϕ̂2(t) when K = 0.1.

To derive the explicit form of the adaptive controller for system (5.1), we find suitable design parameters
K = 0.1 and α = 6.65. Then, by (2.12) and (2.13), we design the following adaptive controller:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = −25
(
396.9wxt(L, t) − 0.01 (3969wx(L, t) + X1(t)) + 6.75X̃2(t)

)
−25

(
θ̂1(t) sin t + ϕ̂1(t) cos t + θ̂2(t) sin π

4
t + ϕ̂2(t) cos π

4
t
)
− 19845wx(L, t),

˙̂
θ1(t) = X̃2(t) sin t,

˙̂ϕ1(t) = X̃2(t) cos t,

˙̂
θ2(t) = X̃2(t) sin π

4
t,

˙̂ϕ2(t) = X̃2(t) cos π
4
t.

By using the implicit backward Euler method and explicit central difference method (see e.g., p. 407 and 415
of [32], respectively) with the grid size is taken as N = 20 and time step dt = 10−3, four figures are obtained
for the closed-loop system signals. Specifically, Figures 1–2 show the trajectories of the PDE subsystem state
w(x, t), the ODE subsystem states X1(t) and X2(t), respectively, from which we can see that the closed-loop
system (3.1) is asymptotically stable; Figure 3 shows the parameter estimates θ̂1(t) and ϕ̂1(t), and Figure 4
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Figure 5. Trajectory of w(x, t)
when K = 0.08.
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Figure 6. Trajectories of X1(t) and
X2(t) when K = 0.08.
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Figure 7. Trajectories of θ̂1(t) and
ϕ̂1(t) when K = 0.08.
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Figure 8. Trajectories of θ̂2(t) and
ϕ̂2(t) when K = 0.08.

shows the parameter estimates θ̂2(t) and ϕ̂2(t), from the two figures we can see that θ̂1(t), ϕ̂1(t), θ̂2(t) and
ϕ̂2(t) ultimately converge to their own real values θ1 = 1.8, ϕ1 = 0.5, θ2 = 1.2 and ϕ2 = 0.3 (dashed lines),
respectively.

To show the effects of design parameters K and α on the theoretical results, we take K = 0.08 while α remains
the same, then we obtain Figures 5–8. These figures together with Figures 1–4 (especially Figs. 2 and 6) show
that the convergence time when K = 0.1 (t < 80 s in Fig. 2) is shorter than that when K = 0.08 (t > 100 s in
Fig. 6).

6. Concluding remarks

In this paper, the asymptotic stabilization has been investigated for a class of PDE-ODE cascade systems
with uncertain harmonic disturbances. A non-adaptive controller X∗

2 (t) is first designed for a PDE subsystem
of (1.1). Then, based on the obtained controller and the adaptive technique, an adaptive feedback controller is
successfully constructed for the entire system which guarantees that not only the error X2(t)−X∗

2 (t) converges
to zero, but also the closed-loop system is asymptotically stable and the parameter estimates converge to their
own real values. Moreover, the well-posedness of the closed-loop system is established through the semigroup
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approach. Our further research is to the output feedback boundary control design for the case of more gen-
eral unknown harmonic disturbances, such as those with not only unknown amplitudes but also unknown
frequencies.

Appendix A.

A.1. Proof of Proposition 3.2

Define the following functional J(Γ ) on H1(0, L):

J(Γ ) =
1
2

∫ L

0

(
aΓ 2

x + Γ 2
)

dx −
∫ L

0

(p∗ + η∗)Γ dx +
qa(0)

2
(Γ (0) − p∗(0))2

+
K

2(K + 1)

((
1 +

1
K

)
Γ (L) − 1

K

(
r∗ +

v∗ + Ψ∗TΩ

1 + α + ΩTΩ

))2

, (A.1)

which together with Young’s Inequality yields

J(Γ ) ≥ 1
2

∫ L

0

aΓ 2
x dx +

1
2

∫ L

0

Γ 2 dx − 1
2

∫ L

0

(
(p∗ + η∗)2 + Γ 2

)
dx +

qa(0)
2

(Γ (0) − p∗(0))2

+
K

2(K + 1)

((
1 +

1
K

)
Γ (L) − 1

K

(
r∗ +

v∗ + Ψ∗TΩ

1 + α + ΩTΩ

))2

≥ 1
2

∫ L

0

aΓ 2
x dx − 1

2

∫ L

0

(p∗ + η∗)2 dx +
qa(0)

2
(Γ (0) − p∗(0))2

+
K

2(K + 1)

((
1 +

1
K

)
Γ (L) − 1

K

(
r∗ +

v∗ + Ψ∗TΩ

1 + α + ΩTΩ

))2

. (A.2)

For Γ ∈ H
1(0, L), define the norm ‖Γ‖H1(0,L) =

√∫ L

0
Γ 2(x) dx+

√∫ L

0
Γ 2

x (x) dx. Then, by Poincaré’s inequal-

ity, we have Γ (0) → ∞ or
∫ L

0
Γ 2

x (x) dx → ∞ as ‖Γ‖H1(0,L) → ∞. Hence, when ‖Γ‖H1(0,L) → ∞, from (A.2),
there holds J(Γ ) → ∞, which implies that J(Γ ) is coercive.

Moreover, from (A.1), it is easy to verify that J(Γ ) is convex and continuous on H
1(0, L). Noting that H

1(0, L)
is a closed, convex and reflexive space, by Proposition 38.15(a) on page 155 of [33] and choosing M = H1(0, L),
there exists a function p ∈ H1(0, L) such that

J(p) = inf
Γ∈H1(0,L)

J(Γ ),

which implies that the function Υ : μ → Υ (μ) = J(p + μΓ ) attained a minimum at the point μ = 0. Thus, for
any Γ ∈ H1(0, L), there holds

d (J(p + μΓ ))
dμ

∣∣∣∣
μ=0

= 0. (A.3)
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From (A.1) and (A.3), it follows that

d (J(p + μΓ ))
dμ

=
d
dμ

(
1
2

∫ L

0

(
a (px + μΓx)2 + (p + μΓ )2

)
dx −

∫ L

0

(p∗ + η∗) (p + μΓ ) dx

+
qa(0)

2
(p(0) + μΓ (0) − p∗(0))2 +

K

2(K + 1)

((
1 +

1
K

)
(p(L) + μΓ (L))

− 1
K

(
r∗ +

v∗ + Ψ∗TΩ

1 + α + ΩTΩ

))2
)

=
∫ L

0

(a (px + μΓx)Γx + (p + μΓ )Γ ) dx −
∫ L

0

(p∗ + η∗)Γ dx

+ qa(0) (p(0) + μΓ (0) − p∗(0))Γ (0) +
((

1 +
1
K

)
(p(L) + μΓ (L))

− 1
K

(
r∗ +

v∗ + Ψ∗TΩ

1 + α + ΩTΩ

))
Γ (L),

and hence

d (J(p + μΓ ))
dμ

∣∣∣∣
μ=0

=
∫ L

0

(apxΓx + pΓ ) dx −
∫ L

0

(p∗ + η∗)Γ dx + qa(0) (p(0) − p∗(0))Γ (0)

+

((
1 +

1
K

)
p(L) − 1

K

(
r∗ +

v∗ + Ψ∗TΩ

1 + α + ΩTΩ

))
Γ (L). (A.4)

For any Γ ∈ C∞
0 (0, L) which implies that Γ (0) = 0 and Γ (L) = 0, by (A.3) and (A.4), we have

∫ L

0

apxΓx dx +
∫ L

0

pΓ dx −
∫ L

0

(p∗ + η∗)Γ dx = 0,

which implies that
(apx)x − p = −p∗ − η∗, p ∈ H

2(0, L). (A.5)

Moreover, using integration by parts for (A.4), we obtain

d (J(p + μΓ ))
dμ

∣∣∣∣
μ=0

= −
∫ L

0

(apx)xΓ dx +
∫ L

0

pΓ dx −
∫ L

0

(p∗ + η∗)Γ dx

− a(0) (px(0) − q (p(0) − p∗(0)))Γ (0) +
(

a(L)px(L)

+
(

1 +
1
K

)
p(L) − 1

K

(
r∗ +

v∗ + Ψ∗TΩ

1 + α + ΩTΩ

))
Γ (L),

by which and (A.5) as well as the fact that Γ is arbitrary, there holds⎧⎨
⎩

px(0) = q(p(0) − p∗(0)),

a(L)px(L) = − (1 + 1
K

)
p(L) + 1

K

(
r∗ + v∗

+Ψ∗TΩ
1+α+ΩTΩ

)
.

Therefore, the existence of solutions of system (3.6) is proved. �
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A.2. Useful inequalities

The following two lemmas provide several useful inequalities. The proofs of these two lemmas are similar to
those of Lemmas B.1 and B.2 in [30] and hence are omitted here.

Lemma A.1 (Poincaré’s inequality). For any w ∈ H
1(0, L), the following inequalities hold:⎧⎪⎨

⎪⎩
∫ L

0
w2(x)dx ≤ 2Lw2(0) + 4L2

∫ L

0
w2

x(x)dx,

∫ L

0
w2(x)dx ≤ 2Lw2(L) + 4L2

∫ L

0
w2

x(x)dx.

Lemma A.2 (Agmon’s inequality). For any w ∈ H1(0, L), the following inequalities hold:⎧⎪⎪⎨
⎪⎪⎩

maxx∈[0,L] w
2(x) ≤ w2(0) + 2

√∫ L

0
w2(x)dx

∫ L

0
w2

x(x)dx,

maxx∈[0,L] w
2(x) ≤ w2(L) + 2

√∫ L

0
w2(x)dx

∫ L

0
w2

x(x)dx.
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[3] B. d’Andréa-Novel and J.M. Coron, Stabilization of an overhead crane with a variable length flexible cable. Comput. Appl.
Math. 21 (2002) 101–134.
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