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ERRATUM TO THE ARTICLE
HAMILTON–JACOBI EQUATIONS FOR OPTIMAL CONTROL ON JUNCTIONS

AND NETWORKS

Yves Achdou1, Salomé Oudet2 and Nicoletta Tchou2

Abstract. We correct a mistake which affects an intermediate result, namely the second part of
Lemma 4.5. The main results of the article are unchanged.
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The second part of Lemma 4.5, concerning subsolutions, is not correct in the published version of the paper.
Recall that we are interested in proving a comparison principle for sub and super solutions of

λu(x) + sup
(ζ,ξ)∈FL(x)

{−Du(x, ζ) − ξ} = 0 in G. (3.1)

Lemma 4.5 must be modified as follows:

Lemma 4.5. Let v : G → R be a viscosity supersolution of (3.1) in G. Then if x ∈ Ji\{0}, we have for all
t > 0,

v(x) ≥ inf
αi(·),θi

(∫ t∧θi

0

�i(yi
x(s), αi(s))e−λsds+ v(yi

x(t ∧ θi))e−λ(t∧θi)

)
, (4.8)

where αi ∈ L∞(0,∞;Ai), yi
x is the solution of yi

x(t) = x+
(∫ t

0 fi(yi
x(s), αi(s))ds

)
ei and θi is such that yi

x(θi) = 0

and θi lies in [τi, τ̄i], where τi is the exit time of yi
x from Ji\{O} and τ̄i is the exit time of yi

x from Ji.

Remark. Concerning subsolutions, the comparison results of Barles−Perthame [2] imply the following sub-
optimality principle for subsolutions that will not be needed in the sequel: let w be a continuous viscosity
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subsolution of (3.1) in G. If x ∈ Ji\{0}, we have for all t > 0,

w(x) ≤ inf
αi(·)

sup
θi

(∫ t∧θi

0

�i(yi
x(s), αi(s))e−λsds+ w(yi

x(t ∧ θi))e−λ(t∧θi)

)
, (4.9)

where αi ∈ L∞(0,∞;Ai), yi
x is the solution of yi

x(t) = x+
(∫ t

0 fi(yi
x(s), αi(s))ds

)
ei and θi is such that yi

x(θi) = 0

and θi lies in [τi, τ̄i], where τi is the exit time of yi
x from Ji\{O} and τ̄i is the exit time of yi

x from Ji.

Then, Theorem 4.6 should be very slightly modified as follows (the very minor changes in the proof do not
need to be written):

Theorem 4.6. Assume [H0], [H1], [H2] and [H3]. Let r > 0 be given by Lemma 4.2: any bounded subsolution
of (3.1) is Lipschitz continuous in B(O, r) ∩ G. Let v : G → R be a viscosity supersolution of (3.1), bounded
from below by −c|x| − C for two positive numbers c and C. Either [A] or [B] below is true:

[A] There exists a sequence (ηk)k∈N of positive real numbers such that limk→+∞ ηk = η > 0, an index i ∈
{1, . . . , N} and a sequence xk ∈ Ji such that xk ∈ Ji \{O} and limk→+∞ xk = O satisfying the following: for
any k ∈ N, there exists a control law αk

i such that the corresponding trajectory yxk
remains in Ji ∩B(O, r)

in the time interval [0, ηk], i.e. yxk
(s) ∈ Ji ∩B(O, r) for all s ∈ [0, ηk], and is such that

v(xk) ≥
∫ ηk

0

�i(yxk
(s), αk

i (s))e−λsds+ v(yxk
(η))e−ληk (4.10)

[B]
λv(O) +HT

O ≥ 0. (4.11)

A new lemma is needed to replace the second part of Lemma 4.5:

Lemma 4.7. Assume [H0], [H1], [H2] and [H3]. Let r > 0 be given by Lemma 4.2: any bounded subsolution
of (3.1) is Lipschitz continuous in B(O, r) ∩ G. Consider i ∈ {1, . . . , N}, x ∈ (Ji \ {O}) ∩ B(O, r), αi ∈
L∞(0,∞;Ai). Let η > 0 be such that yx(t) = x +

(∫ t

0 fi(yx(s), αi(s))ds
)
ei belongs to Ji ∩ B(O, r) for any

t ∈ [0, η]. For any bounded viscosity subsolution v of (3.1),

v(x) ≤
∫ η

0

�i(yx(t), αi(t))e−λtdt+ v(yx(η))e−λη . (a)

Proof. Since v is Lipschitz continuous in B(O, r) ∩ Ji, the function t 	→ v(yx(t))e−λt is Lipschitz continuous in
[0, η]. Let us define the sets KO = {t ∈ (0, η) : yx(t) = O} and Kc

O = [0, η]\KO. It is clear that KO is closed and
that Kc

O is an open subset of [0, η]. We first observe that, from Stampacchia’s theorem,∫ η

0

1KO(t)
d
dt
(
v(yx(t))e−λt)

)
dt = −λv(O)

∫ η

0

1KO(t)e−λtdt.

Therefore, we deduce from Lemma 4.3 that∫ η

0

1KO(t)
d
dt
(
v(yx(t))e−λt)

)
dt ≥ HT

O

∫ η

0

1KO(t)dt ≥ −
∫ η

0

�i(O,αi(t))1KO(t)dt = −
∫ η

0

�i(yx(t), αi(t))1KO (t)dt.

(b)
On the other hand, since Kc

O is an open subset of [0, η], there exists a countable family of disjoint intervals
(ωj)j∈J , ωj ⊂ [0, η] such that Kc

O =
⋃

j∈J ωj . Let aj < bj be the lower and upper endpoints of ω̄j. We can
assume that [aj , bj ] ∩ [ak, bk] = ∅ if j �= k.
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From a classical suboptimality principle, see ([1], Thm. III.2.33), we see that for any j ∈ J ,

v(yx(bj))e−λbj − v(yx(aj))e−λaj ≥ −
∫ bj

aj

�i(yx(t), αi(t))e−λtdt.

Noting that

v(yx(bj))e−λbj − v(yx(aj))e−λaj =
∫ η

0

d
dt
(
v(yx(t))e−λt

)
1(aj,bj)(t)dt,

and summing over j ∈ J , we obtain that∫ η

0

1Kc
O
(t)

d
dt
(
v(yx(t))e−λt)

)
dt ≥ −

∫ η

0

�i(yx(t), αi(t))1Kc
O
(t)dt. (c)

We get (a) by summing (b) and (c). �

The main comparison result holds but its proof is modified.

Theorem 5.1. Assume [H0], [H1], [H2] and [H3]. Let u : G → R be a bounded viscosity subsolution of (3.1),
and v : G → R be a bounded viscosity supersolution of (3.1). Then u ≤ v in G.

Proof. It is a simple matter to check that there exists a positive real number M such that the function ψ(x) =
−|x|2 −M is a viscosity subsolution of (3.1.). For 0 < μ < 1, μ close to 1, the function uμ = μu+ (1 − μ)ψ is a
viscosity subsolution of (3.1), which tends to −∞ as |x| tends to +∞. Let Mμ be the maximal value of uμ − v
which is reached at some point x̄μ.

We want to prove that Mμ ≤ 0.

(1) If x̄μ �= O, then we introduce the function uμ(x)− v(x)− d2(x, x̄μ), which has a strict maximum at x̄μ, and
we double the variables, i.e. for 0 < ε 1, we consider

uμ(x) − v(y) − d2(x, x̄μ) − d2(x, y)
ε2

·

Classical arguments then lead to the conclusion that uμ(x̄μ) − v(x̄μ) ≤ 0, thus Mμ ≤ 0.
(2) If x̄μ = O. We use Theorem 4.6; we have two possible cases:

[B] λv(O) ≥ −HT
O .

From Lemma 4.3, λu(O) +HT
O ≤ 0. Therefore, we obtain that uμ(O) ≤ v(O), thus Mμ ≤ 0.

[A] With the notations of Theorem 4.6,

v(xk) ≥
∫ ηk

0

�i(yxk
(s), αk

i (s))e−λsds+ v(yxk
(ηk))e−ληk .

Moreover, since yxk
(s) ∈ Ji ∩B(O, r) for all s ∈ [0, ηk], Lemma 4.7 can be applied and yields that

uμ(xk) ≤
∫ ηk

0

�i(yxk
(s), αk

i (s))e−λsds+ uμ(yxk
(ηk))e−ληk .

Therefore
uμ(xk) − v(xk) ≤ (uμ(yxk

(ηk)) − v(yxk
(ηk)))e−ληk .

Letting k tend to +∞, we find that Mμ ≤Mμe−λη, which implies that Mμ ≤ 0

We conclude by letting μ tend to 1. �
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