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GENERALIZED LI−YAU ESTIMATES AND HUISKEN’S MONOTONICITY
FORMULA

Paul W.Y. Lee
1

Abstract. We prove a generalization of the Li−Yau estimate for a broad class of second order linear
parabolic equations. As a consequence, we obtain a new Cheeger−Yau inequality and a new Harnack
inequality for these equations. We also prove a Hamilton−Li−Yau estimate, which is a matrix version
of the Li−Yau estimate, for these equations. This results in a generalization of Huisken’s monotonicity
formula for a family of evolving hypersurfaces. Finally, we also show that all these generalizations are
sharp in the sense that the inequalities become equality for a family of fundamental solutions, which
however different from the Gaussian heat kernels on which the equality was achieved in the classical
case.

Mathematics Subject Classification. 58J35.

Received August 20, 2015. Accepted March 25, 2016.

1. Introduction

The Harnack inequality is one of the most fundamental results in the regularity theory of non-linear elliptic
and parabolic equations. In the case of linear parabolic equations in divergence form, this inequality was first
done in [26]. A sharp version of this inequality which takes into account the geometry of the underlying manifold
was first done in [24]. In fact, the key result in [24] is a sharp gradient estimate, now known as the Li−Yau
estimate, for linear parabolic equations on Riemannian manifolds with a lower bound on the Ricci curvature.
The sharp Harnack inequality can be obtained by integrating this estimate along geodesics. Because of this,
this estimate and its generalizations are called differential Harnack inequalities.

There are numerous generalizations of the Li−Yau estimate. In the case of geometric evolution equations,
this includes the evolution equations for hypersurfaces [2,14,21], the Yamabe flow [13], the Ricci flow [6,19] and
its Kähler analogue [8, 28]. For a more detail account of these generalizations as well as further developments,
see [27].

In the case of the heat equation ρ̇t = Δρt on a Riemannian manifold of dimension n with non-negative Ricci
curvature, the Li−Yau estimate is the following inequality for any positive solution ρt

Δ log ρt ≥ − n

2t
(1.1)

for any time t > 0.
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This is sharp in the sense that the equality case of (1.1) is satisfied by the following solution of the heat
equation on the Euclidean space:

ρt(x) =
1

(4πt)n/2
exp

(
−|x|2

4t

)
,

where |x| is the Euclidean norm of x in R
n.

On the other hand, there are also generalizations of the inequality (1.1) to other second order linear parabolic
equations under the, so called, curvature-dimension conditions (see for instance [4]). They are estimates of the
form

L log ρt ≥ − n

2t
, (1.2)

where L is a linear differential operator without constant term and ρt is a solution of the equation ρ̇t = Lρt.
However, the following

ρt(x) =
(

2π(exp(2tk) − 1)
k exp(2tk)

)−n/2

exp
( −k|x|2

2(exp(2tk) − 1)

)
· (1.3)

is a solution of the equation

ρ̇t = Δρt − k 〈x,∇ρt〉 = Δρt −
〈
∇
(
k

2
|x|2
)
,∇ρt

〉
(1.4)

where k > 0 is a constant.
The solutions (1.3) never satisfy the equality case of (1.2). Motivated by this observation, we prove the

following generalization of (1.1).

Theorem 1.1 (Generalized Li−Yau estimate). Assume that the Ricci curvature of the underlying Riemannian
manifold M is non-negative. Let U1, U2 : M → R be two smooth functions and let

V := ΔU1 +
1
2
|∇U1|2 − 2U2.

Assume that |∇V | is bounded and ΔV ≤ nk2. Let ρt be a positive solution of the equation

ρ̇t = Δρt + 〈∇U1,∇ρt〉 + U2ρt.

Then ρt satisfies

Δ log ρt +
1
2
ΔU1 ≥ −nk

2
coth(kt). (1.5)

By letting U1 ≡ 0, U2 ≡ 0 and k goes to 0, we recover the estimate (1.1). Note also that the solution (1.3)
achieves the equality case of (1.5) and the assumptions of Theorem 1.1 with U1 = −k

2 |x|2 and U2 ≡ 0.
Recall that we can obtain the Harnack inequality by integrating (1.1) along geodesics. An analogue of this

fact also holds true in our setting. However, instead of integrating along geodesics, the correct paths in this case
are the minimizers of the following functional:

cs,t(x, y) = inf
γ(s)=x,γ(t)=y

∫ t

s

1
2
|γ̇(τ)|2 + V (γ(τ))dτ, (1.6)

where the infimum is taken over all paths γ : [s, t] → M joining x and y and V = ΔU1 + 1
2 |∇U1|2 − 2U2. The

idea of considering functionals of the form (1.6) already appeared in [24]. In the case of the Ricci flow, a version
of the cost function (1.6), called L-distance, appeared in [29].
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Theorem 1.2 (Generalized Harnack inequality). Under the same assumptions as in Theorem 1.1 and that V
is bounded below, the following estimate holds:

ρt(y)
ρs(x)

≥
(

sinh(kt)
sinh(ks)

)−n
2

exp
(
−1

2
(cs,t(x, y) + U1(y) − U1(x))

)
.

By letting U1 ≡ 0, U2 ≡ 0, and k goes to 0, we recover the following Harnack estimate.

Corollary 1.3 (The Harnack inequality [24,26]). Assume that the Ricci curvature of the underlying Riemannian
manifold M is non-negative. Then any positive solution ρt of the equation ρ̇t = Δρt satisfies the following
estimate:

ρt(y)
ρs(x)

≥
(
t

s

)−n/2

e−
d2(x,y)
4(t−s) .

It is also known that Corollary 1.3 recovers the heat kernel comparison theorem of Cheeger−Yau [11] if we
let ρt be the heat kernel and letting s goes to 0. The same principle also works for Theorem 1.2.

Theorem 1.4 (Generalized Cheeger−Yau comparison theorem). Under the same assumptions as in Theo-
rem 1.2, the following estimate holds for the fundamental solution pt of the equation ρ̇t = Δρt + 〈∇U1,∇ρt〉 +
U2ρt:

pt(x, y) ≥
(

k

4π sinh(kt)

)n
2

exp
(
−1

2
(c0,t(x, y) + U1(y) − U1(x))

)
. (1.7)

In the case U1 = −k|x|2
2 and U2 ≡ 0, the cost function is given by

c0,t(0, y) =
k|y|2 coth(kt)

2
− knt

(see the proof of Thm. 3.4) and right hand side of (1.7) becomes the fundamental solution (1.3). Therefore, all
inequalities in Theorem 1.4 become equalities in this case.

Again, by setting U1 ≡ 0, U2 ≡ 0 and letting k goes to 0, we recover the Cheeger−Yau estimate.

Corollary 1.5. [11] (The Cheeger−Yau heat kernel comparison). Assume that the Ricci curvature of the un-
derlying Riemannian manifold M is non-negative. Then the heat kernel pt(x, y) of the equation ρ̇t = Δρt satisfy
the following estimate:

pt(x, y) ≥ 1
(4πt)n/2

e−
d2(x,y)

4t .

As another consequence of Theorem 1.1, we obtain the following Liouville type theorem.

Corollary 1.6 (A Liouville type theorem). Assume that the Ricci curvature of the underlying Riemannian
manifold M is non-negative. Suppose that |∇V | is bounded and ΔV ≤ nk2. Then any positive solution ρ of the
equation

Δρ+ 〈∇U1,∇ρ〉 + U2ρ = 0 (1.8)

satisfies ∣∣∣∣∇ log ρ+
1
2
∇U1

∣∣∣∣
2

≤ 1
2
V.

In particular, if V (x) < 0 at some point x in M , then equation (1.8) does not admit any positive solution. If
V ≡ 0, then there is a positive constant C such that

ρ = Ce−
1
2 U1 .
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As a special case of Corollary 1.7, we recover the following result in [33].

Corollary 1.7 (The Liouville theorem). Assume that the Ricci curvature of the underlying Riemannian man-
ifold M is non-negative. Then any non-negative harmonic function is a constant.

In [18], Hamilton proved a matrix version of (1.1) for the heat equation, called the Hamilton−Li−Yau estimate
(see also a Kähler analogue in [27]). Another matrix version of the differential Harnack inequality also appeared
in [19] which is one of the most fundamental result in the theory of the Ricci flow (see also an interesting
generalization in [6] and a Kähler analogue in [9]). The following is a matrix version of (1.1).

Theorem 1.8 (Generalized Hamilton−Li−Yau estimate). Assume that the sectional curvature of the underlying
compact Riemannian manifold M is non-negative and the Ricci curvature is parallel. Let U1, U2 : M → R be
two smooth functions satisfying the following condition for some non-negative constant k:

∇2

(
ΔU1 +

1
2
|∇U1|2 − 2U2

)
≤ k2I.

Then any positive solution ρt of the equation ρ̇t = Δρt + 〈∇U1,∇ρt〉 + U2ρt satisfies the following estimate:

∇2 log ρt +
1
2
∇2U1 ≥ −k coth(kt)

2
I,

where ∇2 denotes the Hessian operator.

Once again, if the underlying manifold is R
n, U1(x) = −k

2 |x|2, and U2 ≡ 0, then

∇2

(
ΔU1 +

1
2
|∇U1|2

)
= k2I,

and

∇2 log ρt +
1
2
∇2U1 = −k

2
coth(kt)I.

Therefore, the inequalities in Theorem 1.8 are equalities in this case.
By setting U1 ≡ 0, U2 ≡ 0, and letting k → 0, we recover

Theorem 1.9 (The Hamilton−Li−Yau estimate [18]). Assume that the sectional curvature of the underlying
compact Riemannian manifold M is non-negative and the Ricci curvature is parallel. Then any positive solution
ρt of the equation ρ̇t = Δρt satisfies the following estimate:

∇2 log ρt ≥ − 1
2t
I.

In [20], Theorem 1.9 was used to prove a generalization of Huisken’s monotonicity formula for the mean
curvature flow [22]. More precisely, let M be a m-dimensional sub-manifold of a n-dimensional Riemannian
manifold N . Let ϕt : M → N be a family of immersions evolved according to the following equation

ϕ̇t = Ht(ϕt), (1.9)

where Ht is the mean curvature vector of the sub-manifold Mt := ϕt(M).

Theorem 1.10 (Huisken’s monotonicity formula [20,22]). Assume that the sectional curvature of the underlying
compact Riemannian manifold N is non-negative and the Ricci curvature is parallel. Let ϕt be a solution of (1.9)
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and let ρt be a positive solution of the heat equation ρ̇t = Δ̄ρt on N . Here Δ̄ denotes the Laplacian operator
on N . Then

d
dt

(
(T − t)

n−m
2

∫
ϕt(M)

ρT−t dμt

)
≤ −(T − t)

n−m
2

∫
ϕt(M)

ρT−t

(∣∣∣∣∇⊥
t ut

ut
− Ht

∣∣∣∣
2
)

dμt,

where μt is the Riemannian volume of Mt, ∇̄u is the gradient of u on N , and ∇⊥
t ut is the projection of ∇̄u

onto the normal bundle of Mt.
In particular, the quantity (T − t)

n−m
2
∫

ϕt(M)
ρT−t dμt is monotone.

There is an analogue of this monotonicity formula in the setting of Theorem 1.8. In this case, the evolving
hypersurfaces Mt satisfy the following equation instead

ϕ̇t = Ht(ϕt) + ∇⊥
t U. (1.10)

We remark that the term Ht(ϕt) + ∇⊥
t U is a generalization of mean curvature first appeared in [17]. In

particular, equation (1.10) is the gradient flow of the weighted volume functional∫
ϕ(M)

e−Udν,

where ν is the Riemannian volume on ϕ(M) induced by the one on N .
Special cases of the equation was also studied in [5, 30].

Theorem 1.11 (Generalized Huisken’s monotonicity formula). Assume that the sectional curvature of the un-
derlying compact Riemannian manifold N is non-negative and the Ricci curvature is parallel. Let U : M → R be
a smooth function satisfying the following condition for some positive constant k:

∇̄2

(
−ΔU +

1
2
|∇U |2

)
≤ k2I,

where ∇̄2 is the Hessian operator on N . Let ϕt be a solution of (1.10) and let ρt be a positive solution of the
equation

ρ̇t = Δ̄ρt +
〈∇̄U, ∇̄ρt

〉
+ ρtΔ̄U

on N . Then

d
dt

(
sinh

n−m
2 (k(T − t))

∫
ϕt(M)

ρT−t dμt

)

≤ − sinh
n−m

2 (k(T − t))
∫

ϕt(M)

ρT−t

(
1
2
Δ⊥

t U +
∣∣∣∣∇̄⊥ut

ut
− Ht

∣∣∣∣
2
)

dμt,

where Δ⊥
t U is defined by Δ⊥

t U =
∑

k

〈∇̄nk(t)U,nk(t)
〉
.

As an immediate consequence, we have

Corollary 1.12. Assume that the sectional curvature of the underlying compact Riemannian manifold N is
non-negative and the Ricci curvature is parallel. Let U : M → R be a smooth function satisfying the following
condition for some constants K and k with k > 0:

∇̄2

(
−ΔU +

1
2
|∇U |2

)
≤ k2I and ∇̄2U ≥ KI.
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Let ϕt be a solution of (1.10) and let ρt be a positive solution of equation

ρ̇t = Δ̄ρt +
〈∇̄U, ∇̄ρt

〉
+ ρtΔ̄U

on N . Then

d
dt

(
e−

K(n−m)(T−t)
2 sinh

n−m
2 (k(T − t))

∫
ϕt(M)

ρT−t dμt

)

≤ −e−
K(n−m)(T−t)

2 sinh
n−m

2 (k(T − t))
∫

ϕt(M)

ρT−t

(∣∣∣∣∇t ⊥ ut

ut
− Ht

∣∣∣∣
2
)

dμt.

In particular, e−
K(n−m)(T−t)

2 sinh
n−m

2 (k(T − t))
∫

ϕt(M)
ρT−t dμt is monotone.

Remarkably, Corollary 1.12 is also sharp. In this case, we set M = R
n, U = −k

2 |x|2, and K = −k. Then

ρt(x) =
(

2π(exp(2tk) − 1)
k exp(2tk)

)−n/2

exp
( −k|x|2

2(exp(2tk) − 1)

)
exp(knt)

is a solution of the equation

ρ̇t = Δ̄ρt +
〈∇̄U, ∇̄ρt

〉
+ ρtΔ̄U = Δ̄ρt − k

〈
x, ∇̄ρt

〉− knρt.

It follows from the proof of Corollary 1.12 that all inequalities in the corollary are equalities in this case.
Assuming that the underlying manifold M is compact, Theorem 1.1 can be proved using the Bochner formula

and the maximum principle. However, instead of the Bochner formula, we will prove a general result (Thms. 2.1
and 2.3) using a moving frame argument motivated by the theory of optimal transportation (see [32]). This
allows a more unified treatment for Theorems 1.1 and 1.8 under the compactness assumption. In Sections 3
and 4, we show that the above generalization of the Li−Yau estimate and its matrix analogue are simple
consequences of Theorems 2.1 and 2.3. In Section 5, we give the proof of the generalized Huisken’s monotonicity
formula.

The Aronzon−Bénilan estimate is a differential Harnack inequality for the porous medium equation

ρ̇t = Δ(ρm
t ).

In Section 5, we will prove a generalization of Aronzon−Bénilan estimate using Theorem 2.1 and 2.3. We will
prove sharp Laplace and Hessian type comparison theorems for the cost function (7.1) in Section 6. In Section 7,
a semigroup proof, in the spirit of [4], of the generalized Li−Yau estimates will be discussed (again assuming
M is compact). In Section 8, we give a proof of Theorem 1.1 without any compactness assumption.

2. Preliminaries

In this section, we state and prove general results which will be used in the next few sections. For this, we
will introduce some notations. Let M be a n-dimensional compact manifold without boundary equipped with a
Riemannian metric denoted by 〈·, ·〉 or g. The corresponding Riemann curvature tensor is denoted by Rm. Let
F be a function on the space of all n × n matrices. We assume that F is invariant under orthogonal changes
of variables (i.e. F (OTAO) = F (A) for each orthogonal matrix O). For each linear map W : TxM → TxM
of the tangent space TxM at a point x, we set F (W ) = F (W), where W is the matrix with ijth entry equal
to 〈W (vi), vj〉 and {v1, . . . , vn} is an orthonormal frame at x. This is well-defined since F is invariant under
orthogonal changes of variables. Note that this condition is not needed or can be relaxed when the tangent
bundle TM of M is parallelizable. For instance, when the manifold is the flat torus, this condition can be
completely removed. Finally, if u, v, and w are tangent vectors, then u ⊗ v denotes the linear map defined by
u⊗ v(w) = 〈v, w〉 u.

The following is a generalization of the Li−Yau estimate [24].
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Theorem 2.1. Assume that there is a non-negative function bt : M → R, a time dependent vector field Yt on a
compact manifold M , and a fibre-preserving bundle homomorphism Wt: TM → TM of the tangent bundle TM
such that

(1) F ′(A)(B2) ≥ k1F (B)2 for some non-negative constant k1;
(2) F ′(∇Xt)(Wt + Rm(·, Xt)Xt) ≥ k3 for some constant k3;
(3) F ′(∇Xt)(∇(Ẋt + ∇XtXt) +Wt) + k2F (∇Xt)2 ≤ F ′(∇Xt)(bt∇2(F (∇Xt)) + ∇(F (∇Xt)) ⊗ Yt);
(4) k1 + k2 > 0.

Then
F (∇Xt) ≤ 1

k1 + k2
a(k1+k2)k3(t),

where

aK(t) =

⎧⎪⎨
⎪⎩
√
K cot(

√
K t) if K > 0

1
t if K = 0√−K coth(

√−K t) if K < 0.

Remark 2.2. Note that the above theorem can be further generalized to include situation considered in [4] if
F is allowed to depend on Xt, not just ∇Xt. However, we will not pursue this here.

A matrix version of Li−Yau estimate was done by Hamilton [18]. The following is the corresponding matrix
version of Theorem 2.1.

Theorem 2.3. Assume that there is a non-negative function bt : M → R, a time dependent vector field Yt on a
compact manifold M , and a fibre-preserving bundle homomorphism Wt: TM → TM of the tangent bundle TM
such that

(1) w �→ 〈Xt, w〉 is a closed 1-form;
(2) Wt + Rm(·, Xt)Xt ≥ k3I for some constant k3;

(3)
〈
∇v(Ẋt + ∇Xt(Xt)), v

〉
+k2 〈∇Xt(∇Xt(v)), v〉+〈Wtv, v〉 ≤ bt 〈Δ∇Xt(v), v〉+〈∇Yt∇vXt, v〉 for each eigen-

vector of the linear map w �→ ∇wXt with the largest eigenvalue;
(4) 1 + k2 > 0.

Then
∇Xt ≤ 1

1 + k2
a(1+k2)k3(t)I.

As a consequence, we obtain the following estimate on the volume growth of a set under the flow of the vector
field Xt if F = tr.

Corollary 2.4. Under the assumptions of Theorem 2.1 with F = tr,

(b(k1+k2)k3(t))
− 1

k1+k2 vol (ϕt(D))

is a decreasing function of time t, where

bK(t) =

⎧⎪⎨
⎪⎩

1√
K

sin(
√
Kt) if K > 0

t if K = 0
1√−K

sinh(
√−Kt) if K < 0.

The rest of this section is devoted to the proof of the above mentioned results.



834 PAUL W.Y. LEE

Proof of Theorem 2.1. Let ϕt be the one-parameter family of diffeomorphisms defined by the vector field Xt:
ϕ̇t = Xt(ϕt) and ϕ0(x) = x. Let γ(s) be a curve which start from x with initial velocity v: γ(0) = x and
γ′(0) = v. Then

D

dt
dϕt(v) =

D

ds
D

dt
ϕt(γ(s))

∣∣∣
s=0

= ∇dϕt(v)Xt.

Let v1(0), . . . , vn(0) be an orthonormal frame at a point x and let v1(t), . . . , vn(t) be the parallel transport
of v1(0), . . . , vn(0) along the path ϕt(x). Let A(t) be the matrix defined by

dϕt(vi(0)) =
n∑

j=1

Aij(t)vj(t).

It follows that
n∑

j=1

Ȧij(t)vj(t) =
n∑

j=1

Aij(t)∇vj(t)Xt.

Therefore, if Sij(t) =
〈∇vi(t)Xt, vj(t)

〉
, then S(t) = A(t)−1Ȧ(t) and we have

Ṡ(t) = −A(t)−1Ȧ(t)A(t)−1Ȧ(t) +A(t)−1Ä(t)

= −S(t)2 +A(t)−1Ä(t). (2.1)

On the other hand, if we differentiate the equation ϕ̇t = Xt(ϕt), then we get

D

dt
ϕ̇t = Ẋt(ϕt) + ∇XtXt(ϕt)

and
D

ds
D

dt
ϕ̇t(γ(s))

∣∣∣
s=0

= ∇dϕt(v)

(
Ẋt + ∇XtXt

)
.

By the definition of the Riemann curvature tensor Rm, it follows that

D2

dt2
dϕt(v) + Rm(dϕt(v), Xt(ϕt))Xt(ϕt) = ∇dϕt(v)

(
Ẋt + ∇XtXt

)
.

Therefore, by the definition of the matrix A(t), the following holds

Ä(t) +A(t)(R(t) −M(t)) = 0,

where
Rij(t) = 〈Rm(vi(t), Xt(ϕt(x)))Xt(ϕt(x)), vj(t)〉

and
Mij(t) =

〈
∇vi(t)

(
Ẋt + ∇XtXt

)
, vj(t)

〉
ϕt(x)

.

By combining this with (2.1), we obtain

Ṡ(t) + S(t)2 +R(t) = M(t). (2.2)

It follows that

d
dt
F (S(t)) + F ′(S(t))(S(t)2 +R(t)) = F ′(S(t))(M(t)). (2.3)
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Let t0 be the first time where F (∇Xt0(ϕt0(x))) = kaK(t0) for some point x, where k > 0. By assumption,
we have

F ′(∇Xt0)(∇(Ẋt0 + ∇Xt0
Xt0) +Wt) + k2F (∇Xt0)

2 ≤ 0 (2.4)

at ϕt0(x).
In the matrix notation, we have

F ′(S(t0))(M(t0) + W(t0)) + k2F (S(t0))2 ≤ 0,

where W(t0) be the matrix with ijth entry equal to 〈Wt(vi(t)), vj(t)〉.
By combining this with (2.3) and using the assumptions, we obtain

d
dt
F (S(t0)) + k1F (S(t0))2 + k3 ≤ d

dt
F (S(t0)) + k1F (S(t0))2 + F ′(S(t0))(R(t0) + W(t0))

≤ d
dt
F (S(t0)) + F ′(S(t0)2) + F ′(S(t0))(R(t0) + W(t0))

= F ′(S(t0))(M(t0) + W(t0))
≤ −k2F (S(t0))2.

By the definition of t0, we have kaK(t0) = F (S(t0)) and kȧK(t0) ≤ d
dtF (S(t0)). Therefore, the above

inequality becomes
kȧK(t0) + (k1 + k2)k2aK(t0)2 + k3 ≤ 0.

Since aK satisfies
ȧK + a2

K +K = 0, (2.5)

it follows that
k((k1 + k2)k − 1)a(t0)2 + k3 − kK ≤ 0.

Therefore, we obtain a contradiction if k = 1
k1+k2

and K < (k1 + k2)k3. Hence

F (∇Xt) <
1

k1 + k2
aK(t)

for all K < (k1 + k2)k3. By letting K → (k1 + k2)k3, we obtain

F (∇Xt) ≤ 1
k1 + k2

a(k1+k2)k3(t). �

Proof of Theorem 2.3. Here, we use the same notations as in the proof of Theorem 2.1. By assumption the
one-form v �→ 〈Xt, v〉 is closed. This is equivalent to 〈∇vXt, w〉 = 〈v,∇wXt〉. It follows that the matrices S(t)
are all symmetric. Let t0 be the first time such that there is a point x and a unit tangent vector v in the tangent
space Tϕt(x)M at ϕt(x) such that 〈∇vXt0 , v〉 = 〈S(t0)v, v〉 = kaK(t0). Here v denotes both the vector v and
its matrix representation with respect to the orthonormal frame v1(t), . . . , vn(t). In particular, kaK(t0) is the
largest eigenvalue of S(t0) with eigenvector v. By parallel translating along geodesics, we extend v to a vector
field still denoted by v. It follows that ∇v = 0 and Δv = 0. Therefore, the following holds by assumption〈

∇v(Ẋt0 + ∇Xt0(Xt0)), v
〉

+ k2 〈∇Xt0(∇Xt0(v)), v〉 + 〈Wt0v, v〉
≤ bt0 〈Δ∇Xt0(v), v〉 +

〈∇Yt0
∇vXt0 , v

〉
≤ bt0Δ 〈∇Xt0(v), v〉 + ∇Yt0

〈∇vXt0 , v〉 ≤ 0.
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In terms of the matrix notations, the above inequality becomes〈
(M(t0) + k2S(t0)2 + W(t0))v, v

〉 ≤ 0.

This, together with (2.2) and (2.5), gives

0 ≤ d
dt

(〈S(t)v, v〉 − kaK(t))
∣∣∣
t=t0

= − 〈S(t0)2v, v
〉

+ 〈(M(t0) −R(t0))v, v〉 + kaK(t0)2 + kK

≤ −(1 + k2)
〈
S(t0)2v, v

〉− 〈(W(t0) +R(t0))v, v〉 + kaK(t0)2 + kK.

By assumption, W(t) +R(t) ≥ k3I. It follows that

k(1 − (1 + k2)k)aK(t0)2 + kK ≥ k3.

Therefore, we obtain a contradiction if k = 1
1+k2

and K < k3(1 + k2). It follows that

∇Xt ≤
ak3(1+k2)(t)

1 + k2
I. �

Proof of Corollary 2.4. If F (∇X) ≥ tr(∇X), then

d
dt

log detA(t) ≤ F
(∇Xϕt(x)

)
.

It follows that

det(dϕt1)
det(dϕt0)

≤ exp
(∫ t1

t0

F (∇Xϕt(x))dt
)

≤
b

1
k1+k2
(k1+k2)k3

(t1)

b
1

k1+k2
(k1+k2)k3

(t0)
,

where

bK(t) =

⎧⎪⎨
⎪⎩

1√
K

sin(
√
Kt) if K > 0

t if K = 0
1√−K

sinh(
√−Kt) if K < 0.

�

3. A generalization of the Li−Yau estimate: The case on compact manifolds

In this section, we prove the following generalization of the Li−Yau estimate.

Theorem 3.1. Assume that the Ricci curvature of the underlying compact Riemannian manifold M is non-
negative. Let U1 and U2 be two functions on M satisfying

Δ

(
−ΔU1 − 1

2
|∇U1|2 + 2U2

)
≥ k3.

Then any positive solution ρt of the equation

ρ̇t = Δρt + 〈∇ρt,∇U1〉 + U2ρt. (3.1)

satisfies
2Δ log ρt +ΔU1 ≥ −na k3

n

(t).
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By integrating the above generalization of Li−Yau estimate, one obtains a Harnack inequality. For this, we
need to consider the following functional ∫ s1

s0

1
2
|γ̇(τ)|2 + V (γ(τ))dτ,

where γ : [s0, s1] →M and V = ΔU1 + 1
2 |∇U1|2 − 2U2.

Let cs0,s1 be the corresponding cost function defined by

cs0,s1(x, y) = inf
∫ s1

s0

1
2
|γ̇(τ)|2 + V (γ(τ))dτ, (3.2)

where the infimum is taken over all paths γ satisfying γ(s0) = x and γ(s1) = y.

Corollary 3.2. Under the assumptions of Theorem 3.1, the following holds

ρs1(y)
ρs0(x)

≥
(
b k3

n

(s1)

b k3
n

(s0)

)−n
2

exp
(
−1

2
(cs0,s1(x, y) + U1(y) − U1(x))

)
.

If we let ρt be the fundamental solution pt(x, y) of equation (3.1) and let s → 0 in Corollary 3.2, then we
obtain the following generalization of Cheeger−Yau estimate [11].

Corollary 3.3. Let pt be the fundamental solution of equation (3.1). Under the assumptions of Theorem 3.1,
the following holds

pt(x, y) ≥
(
4πb k3

n
(t)
)−n

2
exp

(
−1

2
(c0,t(x, y) + U1(y) − U1(x))

)
.

Finally, we will show that the equality case in Corollary 3.3 is achieved by (1.3). More precisely,

Theorem 3.4. Let ρt be defined by (1.3), U1(x) = −k
2 |x|2, and U2 ≡ 0. Then

pt(0, x) = exp
(
−1

2
(c0,t(0, x) + U1(x) − U1(0))

)
(4πb−k2(t))−

n
2 .

Proof of Theorem 3.1. If we specialize Theorem 2.1 to the case where F = tr and Xt = ∇ht, then the assump-
tions of Theorem 2.1 are satisfied if k1 = 1

n , tr(Wt) + Rc(Xt, Xt) ≥ k3, and

Δ

(
ḣt +

1
2
|∇ht|2

)
+ k2(Δht)2 + tr(Wt) ≤ btΔΔht + 〈∇Δht, Yt〉 . (3.3)

Let ht = −2 log ρt − U1. Then the following holds

ḣt +
1
2
|∇ht|2 = Δht +ΔU1 +

1
2
|∇U1|2 − 2U2.

Therefore, under the assumptions of the theorem, (3.3) holds with k2 = 0 and bt ≡ 1. Hence, the result
follows from Theorem 2.1. �

Proof of Corollary 3.2. Let γ be a minimizer of (3.2) which satisfies γ(s0) = x0 and γ(s1) = x1. Using the
notations in the proof of Theorem 3.1, we have

d
dt
ht(γ(t)) − 1

2
|γ̇(t)|2 ≤ d

dt
ht(γ(t)) − 〈∇ht(γ(t)), γ̇(t)〉 +

1
2
|∇ht|2γ(t)

= Δht(γ(t)) +ΔU1(γ(t)) +
1
2
|∇U1|2γ(t) − 2U2(γ(t))

≤ na k3
n

(t) + V (γ(t)).

In the last inequality above, we have used Theorem 3.1.



838 PAUL W.Y. LEE

By integrating the above inequality and noting that ḃK = bKaK , we obtain

hs1(x1) − hs0(x0) ≤ cs0,s1(x0, x1) + n log(b k3
n

(s1)) − n log(b k3
n

(s0)).

By taking exponential of the above inequality, the result follows. �

Proof of Corollary 3.3. By Corollary 3.2, we have

pt(x, y)
ps(x, x)

≥ exp
(
−1

2
(cs,t(x, y) + U1(y) − U1(x))

)( b k3
n

(t)

b k3
n

(s)

)−n
2

.

Since lims→0(4πs)n/2ps(x, x) = 1 (see [16, 31]), the above inequality gives

pt(x, y) ≥ exp
(
−1

2
(c0,t(x, y) + U1(y) − U1(x))

)(
4πb k3

n

(t)
)−n

2

as claimed. �

Proof of Theorem 3.4. In this special case, the cost function (3.2) is given by

c0,t(0, y) = inf
∫ t

0

1
2
|γ̇(s)|2 + V (γ(s))ds, (3.4)

where V (x) = −kn+ 1
2k

2|x|2 and the infimum is taken over all paths γ satisfying γ(0) = 0 and γ(t) = y.
If x(·) is a minimizer of the above infimum, then it satisfies the following equations (see [15])

ẋ = p, ṗ = k2x.

Since x(0) = 0 and x(t) = y, it follows that

x(s) =
sinh(ks)
sinh(kt)

x(t).

If we substitute this back into (3.4), then we obtain

c0,t(0, y) =
k|y|2 coth(kt)

2
− knt.

A computation shows that

pt(0, y) = exp
(
−1

2

(
c0,t(0, y) − k

2
|y|2
))

(4πb−k2(t))−
n
2

= exp
( −k|y|2

2(exp(2kt) − 1)

)(
2π(exp(2tk) − 1)

k exp(2kt)

)−n
2

as claimed. �
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4. A generalization of Hamilton’s matrix Li−Yau estimate

In this section, we show that the following generalization of Hamilton−Li−Yau estimate is a consequence of
Theorem 2.3.

Theorem 4.1. Assume that the sectional curvature of the underlying compact Riemannian manifold M is
non-negative and the Ricci curvature is parallel. Let U1 and U2 be two functions on M satisfying

−∇2

(
ΔU1 +

1
2
|∇U1|2 − 2U2

)
≥ k3I.

Then any solution ρt of Equation (3.1) satisfies

−2∇2 log ρt −∇2U1 ≤ ak3(t)I.

Proof. We need the following lemma.

Lemma 4.2. Assume that the sectional curvature of a Riemannian manifold is non-negative at a point x and
the Ricci curvature Rc satisfies ∇Rcx = 0. Then, for any smooth function f , the following holds

Δ(∇vdf(v))(x) ≥ 〈∇v∇Δf, v〉x .

Here we consider the Hessian ∇df of f as a self-adjoint operator on TxM . The vector field v is defined as an
eigenvector of the operator ∇df at x corresponding to the largest eigenvalue and it is extended to a neighborhood
of x by parallel translation along geodesics.

Proof. Let e1, . . . , en be an orthonormal frame at x and let us extend them to vector fields defined locally near
x by parallel translation along geodesics. It follows that ∇v(x) = 0 and ∇ei∇eiv(x) = 0 (throughout this proof
we sum over repeated indices without mentioning). Therefore,

Δ(∇vdf(v)) = ∇ei∇ei∇vdf(v).

Let α be a (0, 1)-tensor and β be a (0, 2)-tensor. By Ricci identity, we have

(1) ∇v1∇v2α(v3) = ∇v2∇v1α(v3) − α(Rm(v1, v2)v3);
(2) ∇v4∇v1∇v2α(v3)

= ∇v4∇v2∇v1α(v3) −∇v4α(Rm(v1, v2)v3) − α(∇v4Rm(v1, v2)v3);
(3) ∇v1∇v2β(v3, v4)

= ∇v2∇v1β(v3, v4) − β(Rm(v1, v2)v3, v4) − β(v3,Rm(v1, v2)v4).

Here, for instance, ∇v4∇v1∇v2α(v3) denotes

∇(∇(∇α))(v4 , v1, v2, v3).
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It follows that
Δ(∇vdf(v)) = ∇ei(∇v∇eidf(v) − df(Rm(ei, v)v))

= ∇ei∇v∇vdf(ei) −∇eidf(Rm(ei, v)v)
− df(∇eiRm(ei, v)v)

= ∇v∇ei∇vdf(ei) −∇eidf(Rm(ei, v)v)
−∇vdf(Rm(ei, v)ei) −∇eidf(Rm(ei, v)v)
− df(∇eiRm(ei, v)v)

= ∇v∇v∇eidf(ei) −∇vdf(Rm(ei, v)ei)
− df(∇vRm(ei, v)ei) −∇eidf(Rm(ei, v)v)

−∇vdf(Rm(ei, v)ei) −∇eidf(Rm(ei, v)v)
− df(∇eiRm(ei, v)v)

= 〈∇v∇Δf, v〉 − 2∇vdf(Rm(ei, v)ei)
− df(∇vRm(ei, v)ei) − 2∇eidf(Rm(ei, v)v)
− df(∇eiRm(ei, v)v).

Since the Ricci curvature is parallel, we have, by the contracted Bianchi identity,

Δ(∇vdf(v)) = 〈∇v∇Δf, v〉 − 2∇vdf(Rm(ei, v)ei) − 2∇eidf(Rm(ei, v)v).

If ei is an eigenvector of the hessian of f with eigenvalue λi and v is an eigenvector of the hessian of f with
the largest eigenvalue λ, then

Δ(∇vdf(v)) = 〈∇v∇Δf, v〉 + 2λRc(v, v) − 2λi 〈ei,Rm(ei, v)v〉
≥ 〈∇v∇Δf, v〉 .

Here we use the assumption that the sectional curvature is non-negative.

When Xt = ∇ht, the conditions become W(t) +R(t) ≥ k3I and〈
∇v∇

(
ḣt +

1
2
|∇ht|2

)
, v

〉
+ k2

〈
(∇2ht)2v, v

〉
+ 〈Wtv, v〉 ≤ bt

〈
Δ∇2ht(v), v

〉
+
〈∇Yt∇2ht(v), v

〉
for each eigenvector v of the symmetric operator ∇2ht with the largest eigenvalue.

Recall that if ρt is a positive solution of the equation

ρ̇t = Δρt + 〈∇ρt,∇U1〉 + U2ρt,

then ht = −2 log ρt − U1 satisfies

ḣt +
1
2
|∇ht|2 = Δht +ΔU1 +

1
2
|∇U1|2 − 2U2.

It follows that

∇2

(
ḣt +

1
2
|∇ht|2

)
+Wt = ∇2Δht,

where Wt = −∇2
(
ΔU1 + 1

2 |∇U1|2 − 2U2

)
.

Therefore, if we assume that the Ricci curvature is parallel, the sectional curvature is non-negative, and
Wt ≥ k3I, then 〈

∇2

(
ḣt +

1
2
|∇ht|2

)
(v), v

〉
+ 〈Wt(v), v〉 ≤

〈
Δ∇2ht(v), v

〉
.

It follows that
∇2ht = −2∇2 log ρt −∇2U1 ≤ ak3(t)I. �
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5. A generalization of Huisken’s monotonicity formula

This section is devoted to the proof of Theorem 1.1. First, let us recall the notations used. Let M be a
submanifold of dimension m in a Riemannian manifold N of dimension n. The mean curvature flow is a family
of immersions ϕt : M → N which satisfy

ϕ̇t = Ht(ϕt) + ∇⊥
t U(ϕt),

where Ht is the mean curvature vector of Mt := ϕt(M), ∇̄U denotes the gradient of U with respect to the
Riemannian metric on N , and ∇⊥

t U is the projection of ∇̄tU onto the normal bundle of Mt. We also introduce
the following notation for the part of the Laplacian in the normal bundle Δ⊥

t U =
∑

k

〈∇̄nk
∇̄U,nk

〉
.

Theorem 5.1. Assume that the sectional curvature of the underlying compact Riemannian manifold N is non-
negative and the Ricci curvature is parallel. Let U : M → R be a smooth function satisfying the following
condition for some positive constant k:

∇2

(
ΔU − 1

2
|∇U |2

)
≥ k3I,

Let ϕt be a solution of (1.10) and let ρt be a positive solution of the equation

ρ̇t = Δ̄ρt +
〈∇̄U, ∇̄ρt

〉
+ ρtΔ̄U

on N . Then

d
dt

(
bk3(T − t)

n−m
2

∫
ϕt(M)

ut dμt

)
≤ −bk3(T − t)

n−m
2

∫
ϕt(M)

ut

(
1
2
Δ⊥

t U +
∣∣∣∣∇⊥

t ut

ut
− Ht

∣∣∣∣
2
)

dμt.

The rest of this section is devoted to the proof of the above theorem. Next, we pick a convenient moving
frame along ϕt.

Lemma 5.2. Let σ(·) be a path in N such that σ(t) is contained in Mt := ϕt(M). Then there is a family of
orthonormal frames

n1(ψt), . . . ,nn−m(ψt), v1(t), . . . , vm(t)

defined along σ(·) such that

(1) v1(t), . . . , vm(t) are contained in the tangent bundle TMt of Mt;
(2) n1(t), . . . ,nn−m(t) are in the normal bundle TM⊥

t of Mt;
(3) v̇1(t), . . . , v̇m(t) are in TM⊥

t ;
(4) ṅ1(t), . . . , ṅn−m(t) are in TMt.

Here v̇i(t) denotes the covariant derivative of vi(t) with respect to the Riemannian metric 〈·, ·〉 of N .
Moreover, if ñ1(t), . . . , ñn−m(t), ṽ1(t), . . . , ṽm(t) is another such family, then there are orthogonal matrices

O(1) and O(2) (independent of time) of size (n−m) × (n−m) and m×m, respectively, such that

ñi(t) =
n−m∑
j=1

O
(1)
ij nj(t) and ṽi(t) =

m∑
j=1

O
(2)
ij vj(t).

The proof of Lemma 5.2 and that of ([23], Lem. 3.1) is completely analogous and is therefore omitted. From
now on, we call any orthonormal moving frame which satisfies the conditions in Lemma 5.2 a parallel adapted
frame along σ(·).



842 PAUL W.Y. LEE

Let nt be a normal vector in TM⊥
t and let Snt

t : TMt → TMt be the shape operator of the submanifold Mt

defined by
〈Snt

t (v1), v2〉 = − 〈∇̄v1nt, v2
〉
.

Here ∇̄ denotes the Levi−Civita connection on N .
Recall that the mean curvature vector Ht of Mt is given by

Ht =
∑
i,j

〈
S

ni(t)
t (vj(t)), vj(t)

〉
ni(t).

Lemma 5.3. Let n1(t), . . . ,nn−m(t), v1(t), . . . , vm(t) be a parallel adapted frame along ϕt(x), where ϕt satisfies
the following equation

ϕ̇t =
∑

i

Fi(t, ϕt)ni(t).

Let A(t) and Gk(t) be families of matrices defined by

dϕt(vi(0)) =
∑

j

Aij(t)vj(t) and Gk
ij(t) =

〈
S

nk(t)
t (vi(t)), vj(t)

〉
,

respectively. Then
Ȧ(t) = −

∑
k

Fk(t, ϕt)A(t)Gk(t),

where ∇t is the gradient with respect to the induced metric on Mt.

Proof. Let γ(s) be a curve in M such that d
dsγ(s)

∣∣∣
s=0

= vi(0). Then

D

dt
dϕt(vi(0)) =

∑
j

(
Ȧij(t)vj(t) +Aij(t)v̇j(t)

)
.

On the other hand, we have

D

dt
dϕt(vi(0)) =

D

ds
ϕ̇t(γ(s))

∣∣∣
s=0

=
∑

k

(〈∇tFk(t, ϕt), dϕt(vi(0))〉nk(t) + Fk(t, ϕt)∇̄dϕt(vi(0))nk(t)
)
.

It follows that
Ȧij(t) = −

∑
l,k

Ail(t)Fk(t, ϕt)
〈
S

nk(t)
t vl(t), vj(t)

〉
. �

Proof of Theorem 5.1. Let ρt be the density of ϕ∗
tμt with respect to μ0: ρtμ0 = ϕ∗

tμt. Let
n1(t), . . . ,nn−m(t), v1(t), . . . , vm(t) be a parallel adapted frame along the path ϕt(x) and let A(t) be the family
of matrices defined by

dϕt(vi(0)) =
n∑

j=1

Aij(t)vj(t).

Then ρt = detA(t) and we have

d
dt

∫
ϕt(M)

ut dμt =
d
dt

∫
M

ut(ϕt) detA(t) dμ0 =
∫

M

[
u̇t(ϕt) + ut(ϕt)tr(A(t)−1Ȧ(t)) +

〈∇̄ut, ϕ̇t

〉
ϕt

]
detA(t) dμ0

=
∫

ϕt(M)

(
u̇t +

∑
k

Fk

〈∇̄ut,nk(t)
〉− ut

∑
k

Fktr(Gk(t))

)
dμt.
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Let ut = ρT−t. Then we have, by assumptions, Fk(t, ·) = tr(Gk(t)) +
〈∇̄U,nk(t)

〉
and u̇t = −Δ̄ut −〈∇̄U, ∇̄ut

〉− (Δ̄U)ut. Then the above equation becomes

d
dt

∫
ϕt(M)

ut dμt =
∫

ϕt(M)

(
− Δ̄ut − 〈∇U,∇ut〉 − (Δ̄U)ut − ut|Ht|2 +

〈∇⊥
t ut,Ht

〉− ut

〈∇⊥
t U,Ht

〉 )
dμt, (5.1)

where ∇⊥
t u is the projection of ∇̄u onto the normal bundle of Mt.

A simple calculation shows that

Δu =
n∑

i=1

〈
∇̄vi(∇̄u−

∑
k

〈
nk, ∇̄u

〉
nk), vi

〉

= Δ̄u−
∑

k

〈∇̄nk
∇̄u,nk

〉
+
∑

k

〈
nk, ∇̄u

〉
tr(Gk(t))

= Δ̄u−Δ⊥
t u+

〈
H,∇⊥

t u
〉
.

Therefore, we have

d
dt

∫
ϕt(M)

ut dμt =
∫

ϕt(M)

(
−Δut −Δ⊥

t ut − utΔ
⊥
t U

− 〈∇U,∇ut〉 −ΔUut − ut|Ht|2 + 2
〈∇⊥

t ut,Ht

〉 )
dμt

=
∫

ϕt(M)

(
−Δ⊥

t ut − utΔ
⊥
t U − ut|Ht|2

+ 2ut

〈∇⊥
t ut

ut
,H

〉
− ut

∣∣∣∣∇⊥
t ut

ut

∣∣∣∣
2

+ ut

∣∣∣∣∇⊥
t ut

ut

∣∣∣∣
2 )

dμt

= −
∫

ϕt(M)

ut

(
Δ⊥

t log ut +Δ⊥
t U +

∣∣∣∣∇⊥
t ut

ut
− Ht

∣∣∣∣
2
)

dμt.

−Δ⊥
t log ρT−t − 1

2
Δ⊥

t U1 ≤ n−m

2
ak3(T − t).

By Theorem 4.1,

d
dt

∫
ϕt(M)

ut dμt − n−m

2
ak3(T − t)

∫
ϕt(M)

ut dμt ≤
∫

ϕt(M)

ut

(
−1

2
Δ⊥

t U −
∣∣∣∣∇⊥

t ut

ut
− Ht

∣∣∣∣
2
)

dμt.

Since ḃk = akbk, the result follows. �

6. A generalization of the Aronzon−Bénilan estimate

The Aronzon−Bénilan estimate [3] is a differential Harnack inequality for the porous medium equation

ρ̇t = Δ(ρm
t ).

In this section, we apply Theorem 2.1 and prove the following generalization of the Aronzon−Bénilan estimate.

Theorem 6.1. Assume that the Ricci curvature of the underlying compact Riemannian manifold M is non-
negative. Let U be a function on M satisfying

ΔU ≥ k3

2m
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where m > 1. Then any smooth positive solution ρt of the equation

ρ̇t = Δ(ρm
t ) + Uρ2−m

t .

satisfies
2m
m− 1

Δ(ρm−1
t ) ≤ 2n

2 + n(m− 1)
a k3(2+n(m−1))

2n

(t).

Proof. A computation shows that ht = 2m
1−mρ

m−1
t satisfies

ḣt +
1
2
|∇ht|2 =

1
2
(1 −m)htΔht − 2mU.

It follows that

Δ

(
ḣt +

1
2
|∇ht|2

)
+

1
2
(m− 1)(Δht)2 + 2mΔU = (1 −m) 〈∇ht,∇Δht〉 +mρm−1

t ΔΔht.

The rest follows from the assumptions and Theorem 2.1. �

7. On Laplacian and Hessian comparison type theorems

In this section, we prove versions of Laplacian and Hessian type comparison theorems for the following cost
function

cs,t(x, y) = inf
γ(s)=x,γ(t)=y

∫ t

s

1
2
|γ̇(τ) −∇U1(γ(τ))|2 − U2(γ(τ))dτ. (7.1)

More precisely,

Theorem 7.1. Assume that

(1) the Ricci curvature of the underlying manifold M is non-negative;
(2) Δ

(
U2 − 1

2 |∇U1|2
) ≥ k3 for some negative constant k3.

Then the cost function c0,t defined by (1.6) satisfies

Δxc0,t(x0, x) ≤
√
−k3n coth

(√
−k3

n
t

)
,

wherever c0,t(x0, ·) is twice differentiable.

Theorem 7.2. Assume that

(1) the sectional curvature of the underlying manifold M is non-negative;
(2) ∇2

(
U2 − 1

2 |∇U1|2
) ≥ k3I for some negative constant k3.

Then the cost function c0,t defined by (1.6) satisfies

∇2
xc0,t(x0, x) ≤

√
−k3 coth

(√
−k3 t

)
I

wherever c0,t(x0, ·) is twice differentiable.

Remark 7.3. The function x �→ c0,t(x0, x) is locally semi-concave. In particular, it is twice differentiable
Lebesgue almost everywhere by Alexandrov’s theorem. Therefore, the conclusions in Theorems 7.1 and 7.2 hold
Lebesgue almost everywhere (see [32] for the definitions and the results).
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Remark 7.4. We can see that the above theorems are sharp by looking at the case M = R
n, U1 ≡ 0, and

U2(x) = −k2

2 |x|2. We have

∇2

(
U2 − 1

2
|∇U1|2

)
= −k2I, Δ

(
U2 − 1

2
|∇U1|2

)
= −k2n

which is the equality case in the second conditions of Theorems 7.1 and 7.2. We also have

∇2
xc0,t(0, x) = k coth(kt)I, Δxc0,t(0, x) = kn coth(kt)

which gives the equality case in the conclusions of Theorems 7.1 and 7.2.

Remark 7.5. A Bishop-Gromov type volume comparison theorem follows from Corollary 2.4.

The proof of Theorem 7.2 is similar to that of Theorem 7.1 and will be omitted.

Proof of Theorem 7.1. If c0,t(x0, x) is smooth, then the result follows from Theorems 2.1 and 2.3. Indeed, the
Legendre transform of the Lagrangian

L(x, v) =
1
2
gij(x)(vi − gil(x)(U1)xl

(x))(vj − gjk(x)Uxk
(x)) − U2(x)

is given by

H(x, p) = sup
v∈TxM

[p(v) − L(x, v)]

=
1
2
gij(x)pipj + gij(x)pi(U1)xj (x) + U2(x).

Here we sum over repeated indices.
The corresponding Hamilton−Jacobi equation is given by

ḟt +
1
2
|∇ft|2 + 〈∇U1,∇ft〉 + U2 = 0 (7.2)

and c0,t(x0, x) is a particular solution (see [1]).
If we set Xt = ∇ (c0,t(x0, ·) + U1), then

tr
(
∇
(
Ẋt + ∇XtXt

)
+ ∇2

(
U2 − 1

2
|∇U1|2

))
= 0.

Therefore,

Δxc0,t(x0, x) ≤ na k3
n

(t) =
√
−k3n coth

(√
−k3

n
t

)

by Theorem 2.1.
In general, if x is a point where c0,t(x0, ·) is twice differentiable, then there is a unique minimizer γ to the

infimum (1.6) joining x0 and x. Moreover, c0,s(x0, ·) is smooth at γ(s) for each s in (0, t) (see [7]). Therefore,
the proof of Theorem 2.1 still applies. Note that, in this case, (2.4) is an equality. �
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8. On the semigroup approach

In this section, we give a semigroup proof of Theorems 3.1 and 6.1 which does not require any use of maximum
principle. Such a proof was first given by [4], assuming that the equation

ρ̇t = Lρt (8.1)

is given by an operator L without constant term which is self-adjoint with respect to a weighted L2 inner-product.
In the case of the heat equation, the key idea is to consider expressions of the form

PT−t(ρt|∇ρt|2) and PT−tρ̇t,

where Pt is the heat semigroup.
Since the heat semi-group is symmetric, it is equivalent to consider the followings instead∫

M

ρt|∇ρt|2�T−tdvol and
∫

M

ρ̇t�T−tdvol, (8.2)

where �t ranges over all solutions of (8.1).
When L is not self-adjoint but still linear, we also consider the expressions in (8.2). However, in this case, �t

ranges over solutions of the equation
�̇t = L∗�t

instead, where L∗ is the adjoint of L.

Proof of Theorem 3.1. Let �t be a positive solution of the equation

�̇t = Δ�t − 〈∇U1,∇�t〉 + (U2 −ΔU1)�t.

Let kt be a one-parameter family of smooth functions. A computation shows that

d
dt

∫
M

ρt kt �T−t dvol =
∫

M

ρ̇t kt �T−t + ρt k̇t �T−t − ρt kt �̇T−t dvol

=
∫

M

ρt (k̇t −Δkt − 2 〈∇ft,∇kt〉) �T−t dvol,

where ft = log ρt + 1
2U1.

It follows that c :=
∫

M ρt�T−t dvol is independent of t. By Bochner formula, we also have

d
dt

∫
M

ρt(Δft) �T−tdvol =
∫

M

ρt

(
2|∇2ft|2 + 2Rc(∇ft,∇ft) − 1

2
ΔV

)
�T−tdvol

≥
∫

M

ρt

(
2
n

(Δft)2 − k2n

2

)
�T−tdvol

≥
∫

M

ρt

(
4a(t)Δft

n
− 2a(t)2

n
− k2n

2

)
�T−tdvol.

So b(t) :=
∫

M
ρt(Δht) �T−tdvol satisfies

ḃ ≥ 4a(t)
n

b(t) − 2a(t)2c
n

− k2nc

2
·

If a(t) = −kn
2 coth(kt), then

ḃ(t) ≥ −2kb(t) coth(kt) − k2n(coth2(kt) + 1)c
2

·
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It follows that ∫
M

ρt(Δft) �T−tdvol = b(t) ≥ −kn
2

coth(kt)c

= −kn
2

coth(kt)
∫

M

ρt�T−t dvol.

By setting t = T , we obtain∫
M

ρT (ΔfT ) �0dvol = −kn
2

coth(kt)
∫

M

ρT�0 dvol.

Since �0 is arbitrary, we must have

ḟt − |∇ft|2 +
1
2
V = Δft ≥ −kn

2
coth(kt). �

9. The generalized Li−Yau estimate without compactness assumption

In this section, we give another prove of Theorem 1.1 without making any compactness assumption. The
proof uses the standard localization argument as in [24].

Proof of Theorem 1.1. Let ρt be a positive solution of the equation ρ̇t = Δρt + 〈∇U1∇ρt〉 + U2ρt and let
ft = log ρt + 1

2U1. Then ḟt = |∇ft|2 + U2 − 1
4 |∇U1|2 − 1

2ΔU1 + Δft = |∇ft|2 + Δft − 1
2V , where V =

−2U2 + 1
2 |∇U1|2 +ΔU1. It follows that

f̈t −Δḟt − 2
〈
∇ft,∇ḟt

〉
= 0

and
d
dt

|∇ft|2 −Δ|∇ft|2 − 2
〈∇ft,∇|∇ft|2

〉 ≤ −〈∇ft,∇V 〉 − 2
n

(
ḟt − |∇ft|2 +

1
2
V

)2

.

Let Ft = a1ḟt + a2|∇ft|2 + a3V + a4, where

a2 =
(exp(2tk) − 1)2

exp(2tk)
= (exp(tk) − exp(−tk))2,

a1 = −αa2, a3 = −α
2 a2, α > 1. a4 is a function of time t to be determined.

Then

Ḟt −ΔFt − 2 〈∇ft,∇Ft〉 ≤ −a2 〈∇ft,∇V 〉 − 2a2

n

(
ḟt − |∇ft|2 +

1
2
V

)2

− a3ΔV − 2a3 〈∇ft,∇V 〉 − αȧ2ḟt + ȧ2|∇ft|2 + ȧ3V + ȧ4

≤ −2a2

n

(
1
αa2

Ft +
(

1 − 1
α

)
|∇ft|2 −

(
a3

αa2
+

1
2

)
V − a4

αa2

)2

− a3ΔV − (a2 + 2a3) 〈∇ft,∇V 〉 +
ȧ2

a2
Ft +

(
ȧ3 − ȧ2a3

a2

)
V + ȧ4 − ȧ2a4

a2
·

Let Gt = ηFt, where η is a cut off function. Let us fix a time t. At a maximum point of Gt, we have

∇Ft = −Ft

η
∇η, ΔFt ≤ 2Ft

η2
|∇η|2 − Ft

η
Δη, Ḟt ≥ 0.
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Therefore,

−2Ft

η2
|∇η|2 +

Ft

η
Δη + 2

Ft

η
〈∇ft,∇η〉 ≤ −2a2

n

(
1
αa2

Ft +
(

1 − 1
α

)
|∇ft|2 −

(
a3

αa2
+

1
2

)
V − a4

αa2

)2

− a3ΔV − (a2 + 2a3) 〈∇ft,∇V 〉 +
ȧ2

a2
Ft +

(
ȧ3 − ȧ2a3

a2

)
V + ȧ4 − ȧ2a4

a2
·

Let r : [0,∞) → [0, 1] be a function such that r(x) = 1 if x ≤ R, r(x) = 0 if x ≥ 2R, r′ ≤ 0, r′(x)2

r(x) ≤ C
R2 , and

|r′′| ≤ C
R2 , where C > 0 is a constant. Let us fix a point x0 and let us denote the ball of radius R centered at

x0 by BR. Let η = r(d(x0, x)), where d(x0, x) is the distance from x0 to x. It follows that

|∇η|2
η

≤ C

R2
·

Since the Ricci curvature is non-negative, we have

Δη ≥ − C

R2

by the Laplacian comparison theorem.
Then

−3CFt

ηR2
− 2

√
CF

3/2
t√

ηR

|∇ft|√
Ft

≤ −2a2

n

(
1
αa2

Ft +
(

1 − 1
α

)
|∇ft|2 − a4

αa2

)2

+
αnk2

2
a2 + a2(α− 1)|∇ft||∇V | + ȧ2

a2
Ft + ȧ4 − ȧ2a4

a2
·

Let Ht = |∇ft|2
Ft

and assume that |∇V | ≤ C, then

−3CFt

ηR2
− 2

√
C
√
HtF

3/2
t√

ηR
≤ −2a2F

2
t

n

(
1
αa2

+
(

1 − 1
α

)
H

)2

+
4a4Ft

nα

(
1
αa2

+
(

1 − 1
α

)
Ht

)

+ a2C(α− 1)
√
FtHt +

ȧ2

a2
Ft + ȧ4 − ȧ2a4

a2
− 2a2

4

α2na2
+
αnk2

2
a2.

Let us choose a4 such that a4
a2

= −nα3/2k
2 coth

(
kt√
α

)
. Note that a4

a2
satisfies the following Riccati equation

d
dt

(
a4

a2

)
− 2
α2n

(
a4

a2

)2

+
αnk2

2
= 0.

Then

0 ≤− 2a2G
2
t

n

(
1
αa2

+
(

1 − 1
α

)
Ht

)2

+
4a4ηGt

nα

(
1
αa2

+
(

1 − 1
α

)
Ht

)

+ a2C(α− 1)
√
GtHt +

ȧ2

a2
ηGt +

3CGt

R2
+

2
√
C
√
HtG

3/2
t

R
·

Since a4 ≤ 0, it follows that

0 ≤− 2a2G
2
t

n

(
1
αa2

+
(

1 − 1
α

)
Ht

)2

+
(
ȧ2

a2
+

4a4

nα2a2

)
ηGt

+ a2C(α − 1)
√
GtHt +

3CGt

R2
+

2
√
C
√
HtG

3/2
t

R
·
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Since α ≥ 1, a computation shows that

ȧ2

a2
+

4a4

nα2a2
= 2k coth(kt) − 2k√

α
coth

(
kt√
α

)
≥ 0.

Therefore,

0 ≤ −2a2G
2
t

n

(
1
αa2

+
(

1 − 1
α

)
Ht

)2

+
(
ȧ2

a2
+

4a4

nα2a2

)
Gt

+ a2C(α− 1)
√
GtHt +

3CGt

R2
+

2
√
C
√
HtG

3/2
t

R
·

It follows that Gt and hence the restriction of Ft to the ball BR are less than or equal to the largest zero of
the function

x �→ − 2a2x
2

n
+
(
ȧ2

a2
+

4a4

nα2a2

)
Bx

+ a2AC(α− 1)
√
x+

3BCx
R2

+
2A

√
Cx3/2

R
,

where A =
√

Ht(
1

αa2
+(1− 1

α )Ht

)2 and B = 1(
1

αa2
+(1− 1

α )Ht

)2

Since B ≤ α2a2
2 and A ≤ C are bounded independent of R, we can let R → ∞. Therefore, Ft is less than or

equal to the largest zero of the function

x �→ −2a2x
2

n
+
(
α2a2ȧ2 +

4a2a4

n

)
x+ a2AC(α − 1)

√
x. (9.1)

Now let α→ 1 in (9.1). Then we have Ft ≤ 0. The result follows. �
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