GENERALIZED LI-YAU ESTIMATES AND HUISKEN'S MONOTONICITY FORMULA

Paul W.Y. Lee ${ }^{1}$

Abstract

We prove a generalization of the Li-Yau estimate for a broad class of second order linear parabolic equations. As a consequence, we obtain a new Cheeger-Yau inequality and a new Harnack inequality for these equations. We also prove a Hamilton- $\mathrm{Li}-\mathrm{Yau}$ estimate, which is a matrix version of the $\mathrm{Li}-\mathrm{Yau}$ estimate, for these equations. This results in a generalization of Huisken's monotonicity formula for a family of evolving hypersurfaces. Finally, we also show that all these generalizations are sharp in the sense that the inequalities become equality for a family of fundamental solutions, which however different from the Gaussian heat kernels on which the equality was achieved in the classical case.

Mathematics Subject Classification. 58J35.
Received August 20, 2015. Accepted March 25, 2016.

1. Introduction

The Harnack inequality is one of the most fundamental results in the regularity theory of non-linear elliptic and parabolic equations. In the case of linear parabolic equations in divergence form, this inequality was first done in [26]. A sharp version of this inequality which takes into account the geometry of the underlying manifold was first done in [24]. In fact, the key result in [24] is a sharp gradient estimate, now known as the Li-Yau estimate, for linear parabolic equations on Riemannian manifolds with a lower bound on the Ricci curvature. The sharp Harnack inequality can be obtained by integrating this estimate along geodesics. Because of this, this estimate and its generalizations are called differential Harnack inequalities.

There are numerous generalizations of the Li -Yau estimate. In the case of geometric evolution equations, this includes the evolution equations for hypersurfaces [2,14,21], the Yamabe flow [13], the Ricci flow [6,19] and its Kähler analogue [8,28]. For a more detail account of these generalizations as well as further developments, see [27].

In the case of the heat equation $\dot{\rho}_{t}=\Delta \rho_{t}$ on a Riemannian manifold of dimension n with non-negative Ricci curvature, the Li-Yau estimate is the following inequality for any positive solution ρ_{t}

$$
\begin{equation*}
\Delta \log \rho_{t} \geq-\frac{n}{2 t} \tag{1.1}
\end{equation*}
$$

for any time $t>0$.

[^0]This is sharp in the sense that the equality case of (1.1) is satisfied by the following solution of the heat equation on the Euclidean space:

$$
\rho_{t}(x)=\frac{1}{(4 \pi t)^{n / 2}} \exp \left(-\frac{|x|^{2}}{4 t}\right)
$$

where $|x|$ is the Euclidean norm of x in \mathbb{R}^{n}.
On the other hand, there are also generalizations of the inequality (1.1) to other second order linear parabolic equations under the, so called, curvature-dimension conditions (see for instance [4]). They are estimates of the form

$$
\begin{equation*}
L \log \rho_{t} \geq-\frac{n}{2 t} \tag{1.2}
\end{equation*}
$$

where L is a linear differential operator without constant term and ρ_{t} is a solution of the equation $\dot{\rho}_{t}=L \rho_{t}$.
However, the following

$$
\begin{equation*}
\rho_{t}(x)=\left(\frac{2 \pi(\exp (2 t k)-1)}{k \exp (2 t k)}\right)^{-n / 2} \exp \left(\frac{-k|x|^{2}}{2(\exp (2 t k)-1)}\right) \tag{1.3}
\end{equation*}
$$

is a solution of the equation

$$
\begin{equation*}
\dot{\rho}_{t}=\Delta \rho_{t}-k\left\langle x, \nabla \rho_{t}\right\rangle=\Delta \rho_{t}-\left\langle\nabla\left(\frac{k}{2}|x|^{2}\right), \nabla \rho_{t}\right\rangle \tag{1.4}
\end{equation*}
$$

where $k>0$ is a constant.
The solutions (1.3) never satisfy the equality case of (1.2). Motivated by this observation, we prove the following generalization of (1.1).

Theorem 1.1 (Generalized Li-Yau estimate). Assume that the Ricci curvature of the underlying Riemannian manifold M is non-negative. Let $U_{1}, U_{2}: M \rightarrow \mathbb{R}$ be two smooth functions and let

$$
V:=\Delta U_{1}+\frac{1}{2}\left|\nabla U_{1}\right|^{2}-2 U_{2}
$$

Assume that $|\nabla V|$ is bounded and $\Delta V \leq n k^{2}$. Let ρ_{t} be a positive solution of the equation

$$
\dot{\rho}_{t}=\Delta \rho_{t}+\left\langle\nabla U_{1}, \nabla \rho_{t}\right\rangle+U_{2} \rho_{t}
$$

Then ρ_{t} satisfies

$$
\begin{equation*}
\Delta \log \rho_{t}+\frac{1}{2} \Delta U_{1} \geq-\frac{n k}{2} \operatorname{coth}(k t) \tag{1.5}
\end{equation*}
$$

By letting $U_{1} \equiv 0, U_{2} \equiv 0$ and k goes to 0 , we recover the estimate (1.1). Note also that the solution (1.3) achieves the equality case of (1.5) and the assumptions of Theorem 1.1 with $U_{1}=-\frac{k}{2}|x|^{2}$ and $U_{2} \equiv 0$.

Recall that we can obtain the Harnack inequality by integrating (1.1) along geodesics. An analogue of this fact also holds true in our setting. However, instead of integrating along geodesics, the correct paths in this case are the minimizers of the following functional:

$$
\begin{equation*}
c_{s, t}(x, y)=\inf _{\gamma(s)=x, \gamma(t)=y} \int_{s}^{t} \frac{1}{2}|\dot{\gamma}(\tau)|^{2}+V(\gamma(\tau)) \mathrm{d} \tau \tag{1.6}
\end{equation*}
$$

where the infimum is taken over all paths $\gamma:[s, t] \rightarrow M$ joining x and y and $V=\Delta U_{1}+\frac{1}{2}\left|\nabla U_{1}\right|^{2}-2 U_{2}$. The idea of considering functionals of the form (1.6) already appeared in [24]. In the case of the Ricci flow, a version of the cost function (1.6), called L-distance, appeared in [29].

Theorem 1.2 (Generalized Harnack inequality). Under the same assumptions as in Theorem 1.1 and that V is bounded below, the following estimate holds:

$$
\frac{\rho_{t}(y)}{\rho_{s}(x)} \geq\left(\frac{\sinh (k t)}{\sinh (k s)}\right)^{-\frac{n}{2}} \exp \left(-\frac{1}{2}\left(c_{s, t}(x, y)+U_{1}(y)-U_{1}(x)\right)\right)
$$

By letting $U_{1} \equiv 0, U_{2} \equiv 0$, and k goes to 0 , we recover the following Harnack estimate.
Corollary 1.3 (The Harnack inequality $[24,26]$). Assume that the Ricci curvature of the underlying Riemannian manifold M is non-negative. Then any positive solution ρ_{t} of the equation $\dot{\rho}_{t}=\Delta \rho_{t}$ satisfies the following estimate:

$$
\frac{\rho_{t}(y)}{\rho_{s}(x)} \geq\left(\frac{t}{s}\right)^{-n / 2} \mathrm{e}^{-\frac{d^{2}(x, y)}{4(t-s)}}
$$

It is also known that Corollary 1.3 recovers the heat kernel comparison theorem of Cheeger-Yau [11] if we let ρ_{t} be the heat kernel and letting s goes to 0 . The same principle also works for Theorem 1.2.

Theorem 1.4 (Generalized Cheeger-Yau comparison theorem). Under the same assumptions as in Theorem 1.2, the following estimate holds for the fundamental solution p_{t} of the equation $\dot{\rho}_{t}=\Delta \rho_{t}+\left\langle\nabla U_{1}, \nabla \rho_{t}\right\rangle+$ $U_{2} \rho_{t}$:

$$
\begin{equation*}
p_{t}(x, y) \geq\left(\frac{k}{4 \pi \sinh (k t)}\right)^{\frac{n}{2}} \exp \left(-\frac{1}{2}\left(c_{0, t}(x, y)+U_{1}(y)-U_{1}(x)\right)\right) \tag{1.7}
\end{equation*}
$$

In the case $U_{1}=-\frac{k|x|^{2}}{2}$ and $U_{2} \equiv 0$, the cost function is given by

$$
c_{0, t}(0, y)=\frac{k|y|^{2} \operatorname{coth}(k t)}{2}-k n t
$$

(see the proof of Thm. 3.4) and right hand side of (1.7) becomes the fundamental solution (1.3). Therefore, all inequalities in Theorem 1.4 become equalities in this case.

Again, by setting $U_{1} \equiv 0, U_{2} \equiv 0$ and letting k goes to 0 , we recover the Cheeger-Yau estimate.
Corollary 1.5. [11] (The Cheeger-Yau heat kernel comparison). Assume that the Ricci curvature of the underlying Riemannian manifold M is non-negative. Then the heat kernel $p_{t}(x, y)$ of the equation $\dot{\rho}_{t}=\Delta \rho_{t}$ satisfy the following estimate:

$$
p_{t}(x, y) \geq \frac{1}{(4 \pi t)^{n / 2}} \mathrm{e}^{-\frac{d^{2}(x, y)}{4 t}}
$$

As another consequence of Theorem 1.1, we obtain the following Liouville type theorem.
Corollary 1.6 (A Liouville type theorem). Assume that the Ricci curvature of the underlying Riemannian manifold M is non-negative. Suppose that $|\nabla V|$ is bounded and $\Delta V \leq n k^{2}$. Then any positive solution ρ of the equation

$$
\begin{equation*}
\Delta \rho+\left\langle\nabla U_{1}, \nabla \rho\right\rangle+U_{2} \rho=0 \tag{1.8}
\end{equation*}
$$

satisfies

$$
\left|\nabla \log \rho+\frac{1}{2} \nabla U_{1}\right|^{2} \leq \frac{1}{2} V
$$

In particular, if $V(x)<0$ at some point x in M, then equation (1.8) does not admit any positive solution. If $V \equiv 0$, then there is a positive constant C such that

$$
\rho=C \mathrm{e}^{-\frac{1}{2} U_{1}}
$$

As a special case of Corollary 1.7, we recover the following result in [33].
Corollary 1.7 (The Liouville theorem). Assume that the Ricci curvature of the underlying Riemannian manifold M is non-negative. Then any non-negative harmonic function is a constant.

In [18], Hamilton proved a matrix version of (1.1) for the heat equation, called the Hamilton-Li-Yau estimate (see also a Kähler analogue in [27]). Another matrix version of the differential Harnack inequality also appeared in [19] which is one of the most fundamental result in the theory of the Ricci flow (see also an interesting generalization in [6] and a Kähler analogue in [9]). The following is a matrix version of (1.1).

Theorem 1.8 (Generalized Hamilton-Li-Yau estimate). Assume that the sectional curvature of the underlying compact Riemannian manifold M is non-negative and the Ricci curvature is parallel. Let $U_{1}, U_{2}: M \rightarrow \mathbb{R}$ be two smooth functions satisfying the following condition for some non-negative constant k :

$$
\nabla^{2}\left(\Delta U_{1}+\frac{1}{2}\left|\nabla U_{1}\right|^{2}-2 U_{2}\right) \leq k^{2} I
$$

Then any positive solution ρ_{t} of the equation $\dot{\rho}_{t}=\Delta \rho_{t}+\left\langle\nabla U_{1}, \nabla \rho_{t}\right\rangle+U_{2} \rho_{t}$ satisfies the following estimate:

$$
\nabla^{2} \log \rho_{t}+\frac{1}{2} \nabla^{2} U_{1} \geq-\frac{k \operatorname{coth}(k t)}{2} I
$$

where ∇^{2} denotes the Hessian operator.
Once again, if the underlying manifold is $\mathbb{R}^{n}, U_{1}(x)=-\frac{k}{2}|x|^{2}$, and $U_{2} \equiv 0$, then

$$
\nabla^{2}\left(\Delta U_{1}+\frac{1}{2}\left|\nabla U_{1}\right|^{2}\right)=k^{2} I
$$

and

$$
\nabla^{2} \log \rho_{t}+\frac{1}{2} \nabla^{2} U_{1}=-\frac{k}{2} \operatorname{coth}(k t) I
$$

Therefore, the inequalities in Theorem 1.8 are equalities in this case.
By setting $U_{1} \equiv 0, U_{2} \equiv 0$, and letting $k \rightarrow 0$, we recover
Theorem 1.9 (The Hamilton-Li-Yau estimate [18]). Assume that the sectional curvature of the underlying compact Riemannian manifold M is non-negative and the Ricci curvature is parallel. Then any positive solution ρ_{t} of the equation $\dot{\rho}_{t}=\Delta \rho_{t}$ satisfies the following estimate:

$$
\nabla^{2} \log \rho_{t} \geq-\frac{1}{2 t} I
$$

In [20], Theorem 1.9 was used to prove a generalization of Huisken's monotonicity formula for the mean curvature flow [22]. More precisely, let M be a m-dimensional sub-manifold of a n-dimensional Riemannian manifold N. Let $\varphi_{t}: M \rightarrow N$ be a family of immersions evolved according to the following equation

$$
\begin{equation*}
\dot{\varphi}_{t}=\mathfrak{H}_{t}\left(\varphi_{t}\right) \tag{1.9}
\end{equation*}
$$

where \mathfrak{H}_{t} is the mean curvature vector of the sub-manifold $M_{t}:=\varphi_{t}(M)$.
Theorem 1.10 (Huisken's monotonicity formula [20,22]). Assume that the sectional curvature of the underlying compact Riemannian manifold N is non-negative and the Ricci curvature is parallel. Let φ_{t} be a solution of (1.9)
and let ρ_{t} be a positive solution of the heat equation $\dot{\rho}_{t}=\bar{\Delta} \rho_{t}$ on N. Here $\bar{\Delta}$ denotes the Laplacian operator on N. Then

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left((T-t)^{\frac{n-m}{2}} \int_{\varphi_{t}(M)} \rho_{T-t} \mathrm{~d} \mu_{t}\right) \leq-(T-t)^{\frac{n-m}{2}} \int_{\varphi_{t}(M)} \rho_{T-t}\left(\left|\frac{\nabla_{t}^{\perp} u_{t}}{u_{t}}-\mathfrak{H}_{t}\right|^{2}\right) \mathrm{d} \mu_{t}
$$

where μ_{t} is the Riemannian volume of $M_{t}, \bar{\nabla} u$ is the gradient of u on N, and $\nabla_{t}^{\perp} u_{t}$ is the projection of $\bar{\nabla} u$ onto the normal bundle of M_{t}.

In particular, the quantity $(T-t)^{\frac{n-m}{2}} \int_{\varphi_{t}(M)} \rho_{T-t} \mathrm{~d} \mu_{t}$ is monotone.
There is an analogue of this monotonicity formula in the setting of Theorem 1.8. In this case, the evolving hypersurfaces M_{t} satisfy the following equation instead

$$
\begin{equation*}
\dot{\varphi}_{t}=\mathfrak{H}_{t}\left(\varphi_{t}\right)+\nabla_{t}^{\perp} U \tag{1.10}
\end{equation*}
$$

We remark that the term $\mathfrak{H}_{t}\left(\varphi_{t}\right)+\nabla_{t}^{\perp} U$ is a generalization of mean curvature first appeared in [17]. In particular, equation (1.10) is the gradient flow of the weighted volume functional

$$
\int_{\varphi(M)} \mathrm{e}^{-U} \mathrm{~d} \nu
$$

where ν is the Riemannian volume on $\varphi(M)$ induced by the one on N.
Special cases of the equation was also studied in [5,30].
Theorem 1.11 (Generalized Huisken's monotonicity formula). Assume that the sectional curvature of the underlying compact Riemannian manifold N is non-negative and the Ricci curvature is parallel. Let $U: M \rightarrow \mathbb{R}$ be a smooth function satisfying the following condition for some positive constant k :

$$
\bar{\nabla}^{2}\left(-\Delta U+\frac{1}{2}|\nabla U|^{2}\right) \leq k^{2} I
$$

where $\bar{\nabla}^{2}$ is the Hessian operator on N. Let φ_{t} be a solution of (1.10) and let ρ_{t} be a positive solution of the equation

$$
\dot{\rho}_{t}=\bar{\Delta} \rho_{t}+\left\langle\bar{\nabla} U, \bar{\nabla} \rho_{t}\right\rangle+\rho_{t} \bar{\Delta} U
$$

on N. Then

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\sinh ^{\frac{n-m}{2}}(k(T-t)) \int_{\varphi_{t}(M)} \rho_{T-t} \mathrm{~d} \mu_{t}\right) \\
& \leq-\sinh ^{\frac{n-m}{2}}(k(T-t)) \int_{\varphi_{t}(M)} \rho_{T-t}\left(\frac{1}{2} \Delta_{t}^{\perp} U+\left|\frac{\bar{\nabla}^{\perp} u_{t}}{u_{t}}-\mathfrak{H}_{t}\right|^{2}\right) \mathrm{d} \mu_{t}
\end{aligned}
$$

where $\Delta_{t}^{\perp} U$ is defined by $\Delta_{t}^{\perp} U=\sum_{k}\left\langle\bar{\nabla}_{n_{k}(t)} U, \boldsymbol{n}_{k}(t)\right\rangle$.
As an immediate consequence, we have
Corollary 1.12. Assume that the sectional curvature of the underlying compact Riemannian manifold N is non-negative and the Ricci curvature is parallel. Let $U: M \rightarrow \mathbb{R}$ be a smooth function satisfying the following condition for some constants K and k with $k>0$:

$$
\bar{\nabla}^{2}\left(-\Delta U+\frac{1}{2}|\nabla U|^{2}\right) \leq k^{2} I \quad \text { and } \quad \bar{\nabla}^{2} U \geq K I
$$

Let φ_{t} be a solution of (1.10) and let ρ_{t} be a positive solution of equation

$$
\dot{\rho}_{t}=\bar{\Delta} \rho_{t}+\left\langle\bar{\nabla} U, \bar{\nabla} \rho_{t}\right\rangle+\rho_{t} \bar{\Delta} U
$$

on N. Then

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\frac{K(n-m)(T-t)}{2}} \sinh ^{\frac{n-m}{2}}(k(T-t)) \int_{\varphi_{t}(M)} \rho_{T-t} \mathrm{~d} \mu_{t}\right) \\
& \leq-\mathrm{e}^{-\frac{K(n-m)(T-t)}{2}} \sinh ^{\frac{n-m}{2}}(k(T-t)) \int_{\varphi_{t}(M)} \rho_{T-t}\left(\left|\frac{\nabla_{t} \perp u_{t}}{u_{t}}-\mathfrak{H}_{t}\right|^{2}\right) \mathrm{d} \mu_{t} .
\end{aligned}
$$

In particular, $\mathrm{e}^{-\frac{K(n-m)(T-t)}{2}} \sinh ^{\frac{n-m}{2}}(k(T-t)) \int_{\varphi_{t}(M)} \rho_{T-t} \mathrm{~d} \mu_{t}$ is monotone.
Remarkably, Corollary 1.12 is also sharp. In this case, we set $M=\mathbb{R}^{n}, U=-\frac{k}{2}|x|^{2}$, and $K=-k$. Then

$$
\rho_{t}(x)=\left(\frac{2 \pi(\exp (2 t k)-1)}{k \exp (2 t k)}\right)^{-n / 2} \exp \left(\frac{-k|x|^{2}}{2(\exp (2 t k)-1)}\right) \exp (k n t)
$$

is a solution of the equation

$$
\dot{\rho}_{t}=\bar{\Delta} \rho_{t}+\left\langle\bar{\nabla} U, \bar{\nabla} \rho_{t}\right\rangle+\rho_{t} \bar{\Delta} U=\bar{\Delta} \rho_{t}-k\left\langle x, \bar{\nabla} \rho_{t}\right\rangle-k n \rho_{t} .
$$

It follows from the proof of Corollary 1.12 that all inequalities in the corollary are equalities in this case.
Assuming that the underlying manifold M is compact, Theorem 1.1 can be proved using the Bochner formula and the maximum principle. However, instead of the Bochner formula, we will prove a general result (Thms. 2.1 and 2.3) using a moving frame argument motivated by the theory of optimal transportation (see [32]). This allows a more unified treatment for Theorems 1.1 and 1.8 under the compactness assumption. In Sections 3 and 4 , we show that the above generalization of the $\mathrm{Li}-\mathrm{Yau}$ estimate and its matrix analogue are simple consequences of Theorems 2.1 and 2.3. In Section 5, we give the proof of the generalized Huisken's monotonicity formula.

The Aronzon-Bénilan estimate is a differential Harnack inequality for the porous medium equation

$$
\dot{\rho}_{t}=\Delta\left(\rho_{t}^{m}\right)
$$

In Section 5, we will prove a generalization of Aronzon-Bénilan estimate using Theorem 2.1 and 2.3. We will prove sharp Laplace and Hessian type comparison theorems for the cost function (7.1) in Section 6. In Section 7, a semigroup proof, in the spirit of [4], of the generalized $\mathrm{Li}-\mathrm{Yau}$ estimates will be discussed (again assuming M is compact). In Section 8, we give a proof of Theorem 1.1 without any compactness assumption.

2. Preliminaries

In this section, we state and prove general results which will be used in the next few sections. For this, we will introduce some notations. Let M be a n-dimensional compact manifold without boundary equipped with a Riemannian metric denoted by $\langle\cdot, \cdot\rangle$ or g. The corresponding Riemann curvature tensor is denoted by Rm. Let F be a function on the space of all $n \times n$ matrices. We assume that F is invariant under orthogonal changes of variables (i.e. $F\left(O^{T} A O\right)=F(A)$ for each orthogonal matrix O). For each linear map $W: T_{x} M \rightarrow T_{x} M$ of the tangent space $T_{x} M$ at a point x, we set $F(W)=F(\mathcal{W})$, where \mathcal{W} is the matrix with $i j$ th entry equal to $\left\langle W\left(v_{i}\right), v_{j}\right\rangle$ and $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal frame at x. This is well-defined since F is invariant under orthogonal changes of variables. Note that this condition is not needed or can be relaxed when the tangent bundle $T M$ of M is parallelizable. For instance, when the manifold is the flat torus, this condition can be completely removed. Finally, if u, v, and w are tangent vectors, then $u \otimes v$ denotes the linear map defined by $u \otimes v(w)=\langle v, w\rangle u$.

The following is a generalization of the $\mathrm{Li}-\mathrm{Yau}$ estimate [24].

Theorem 2.1. Assume that there is a non-negative function $b_{t}: M \rightarrow \mathbb{R}$, a time dependent vector field Y_{t} on a compact manifold M, and a fibre-preserving bundle homomorphism $W_{t}: T M \rightarrow T M$ of the tangent bundle TM such that
(1) $F^{\prime}(A)\left(B^{2}\right) \geq k_{1} F(B)^{2}$ for some non-negative constant k_{1};
(2) $F^{\prime}\left(\nabla X_{t}\right)\left(W_{t}+\boldsymbol{R m}\left(\cdot, X_{t}\right) X_{t}\right) \geq k_{3}$ for some constant k_{3};
(3) $F^{\prime}\left(\nabla X_{t}\right)\left(\nabla\left(\dot{X}_{t}+\nabla_{X_{t}} X_{t}\right)+W_{t}\right)+k_{2} F\left(\nabla X_{t}\right)^{2} \leq F^{\prime}\left(\nabla X_{t}\right)\left(b_{t} \nabla^{2}\left(F\left(\nabla X_{t}\right)\right)+\nabla\left(F\left(\nabla X_{t}\right)\right) \otimes Y_{t}\right)$;
(4) $k_{1}+k_{2}>0$.

Then

$$
F\left(\nabla X_{t}\right) \leq \frac{1}{k_{1}+k_{2}} a_{\left(k_{1}+k_{2}\right) k_{3}}(t)
$$

where

$$
a_{K}(t)= \begin{cases}\sqrt{K} \cot (\sqrt{K} t) & \text { if } K>0 \\ \frac{1}{t} & \text { if } K=0 \\ \sqrt{-K} \operatorname{coth}(\sqrt{-K} t) & \text { if } K<0\end{cases}
$$

Remark 2.2. Note that the above theorem can be further generalized to include situation considered in [4] if F is allowed to depend on X_{t}, not just ∇X_{t}. However, we will not pursue this here.

A matrix version of $\mathrm{Li}-$ Yau estimate was done by Hamilton [18]. The following is the corresponding matrix version of Theorem 2.1.

Theorem 2.3. Assume that there is a non-negative function $b_{t}: M \rightarrow \mathbb{R}$, a time dependent vector field Y_{t} on a compact manifold M, and a fibre-preserving bundle homomorphism $W_{t}: T M \rightarrow T M$ of the tangent bundle $T M$ such that
(1) $w \mapsto\left\langle X_{t}, w\right\rangle$ is a closed 1-form;
(2) $W_{t}+\boldsymbol{R} \boldsymbol{m}\left(\cdot, X_{t}\right) X_{t} \geq k_{3} I$ for some constant k_{3};
(3) $\left\langle\nabla_{v}\left(\dot{X}_{t}+\nabla X_{t}\left(X_{t}\right)\right), v\right\rangle+k_{2}\left\langle\nabla X_{t}\left(\nabla X_{t}(v)\right), v\right\rangle+\left\langle W_{t} v, v\right\rangle \leq b_{t}\left\langle\Delta \nabla X_{t}(v), v\right\rangle+\left\langle\nabla_{Y_{t}} \nabla_{v} X_{t}, v\right\rangle$ for each eigenvector of the linear map $w \mapsto \nabla_{w} X_{t}$ with the largest eigenvalue;
(4) $1+k_{2}>0$.

Then

$$
\nabla X_{t} \leq \frac{1}{1+k_{2}} a_{\left(1+k_{2}\right) k_{3}}(t) I
$$

As a consequence, we obtain the following estimate on the volume growth of a set under the flow of the vector field X_{t} if $F=\mathbf{t r}$.

Corollary 2.4. Under the assumptions of Theorem 2.1 with $F=\boldsymbol{t r}$,

$$
\left(b_{\left(k_{1}+k_{2}\right) k_{3}}(t)\right)^{-\frac{1}{k_{1}+k_{2}}} \boldsymbol{\operatorname { v o l }}\left(\varphi_{t}(D)\right)
$$

is a decreasing function of time t, where

$$
b_{K}(t)= \begin{cases}\frac{1}{\sqrt{K}} \sin (\sqrt{K} t) & \text { if } K>0 \\ t & \text { if } K=0 \\ \frac{1}{\sqrt{-K}} \sinh (\sqrt{-K} t) & \text { if } K<0\end{cases}
$$

The rest of this section is devoted to the proof of the above mentioned results.

Proof of Theorem 2.1. Let φ_{t} be the one-parameter family of diffeomorphisms defined by the vector field X_{t} : $\dot{\varphi}_{t}=X_{t}\left(\varphi_{t}\right)$ and $\varphi_{0}(x)=x$. Let $\gamma(s)$ be a curve which start from x with initial velocity $v: \gamma(0)=x$ and $\gamma^{\prime}(0)=v$. Then

$$
\frac{D}{\mathrm{~d} t} \mathrm{~d} \varphi_{t}(v)=\left.\frac{D}{\mathrm{~d} s} \frac{D}{\mathrm{~d} t} \varphi_{t}(\gamma(s))\right|_{s=0}=\nabla_{\mathrm{d} \varphi_{t}(v)} X_{t}
$$

Let $v_{1}(0), \ldots, v_{n}(0)$ be an orthonormal frame at a point x and let $v_{1}(t), \ldots, v_{n}(t)$ be the parallel transport of $v_{1}(0), \ldots, v_{n}(0)$ along the path $\varphi_{t}(x)$. Let $A(t)$ be the matrix defined by

$$
\mathrm{d} \varphi_{t}\left(v_{i}(0)\right)=\sum_{j=1}^{n} A_{i j}(t) v_{j}(t)
$$

It follows that

$$
\sum_{j=1}^{n} \dot{A}_{i j}(t) v_{j}(t)=\sum_{j=1}^{n} A_{i j}(t) \nabla_{v_{j}(t)} X_{t}
$$

Therefore, if $S_{i j}(t)=\left\langle\nabla_{v_{i}(t)} X_{t}, v_{j}(t)\right\rangle$, then $S(t)=A(t)^{-1} \dot{A}(t)$ and we have

$$
\begin{align*}
\dot{S}(t) & =-A(t)^{-1} \dot{A}(t) A(t)^{-1} \dot{A}(t)+A(t)^{-1} \ddot{A}(t) \\
& =-S(t)^{2}+A(t)^{-1} \ddot{A}(t) \tag{2.1}
\end{align*}
$$

On the other hand, if we differentiate the equation $\dot{\varphi}_{t}=X_{t}\left(\varphi_{t}\right)$, then we get

$$
\frac{D}{\mathrm{~d} t} \dot{\varphi}_{t}=\dot{X}_{t}\left(\varphi_{t}\right)+\nabla_{X_{t}} X_{t}\left(\varphi_{t}\right)
$$

and

$$
\left.\frac{D}{\mathrm{~d} s} \frac{D}{\mathrm{~d} t} \dot{\varphi}_{t}(\gamma(s))\right|_{s=0}=\nabla_{\mathrm{d} \varphi_{t}(v)}\left(\dot{X}_{t}+\nabla_{X_{t}} X_{t}\right)
$$

By the definition of the Riemann curvature tensor $\mathbf{R m}$, it follows that

$$
\frac{D^{2}}{\mathrm{~d} t^{2}} \mathrm{~d} \varphi_{t}(v)+\boldsymbol{R m}\left(\mathrm{d} \varphi_{t}(v), X_{t}\left(\varphi_{t}\right)\right) X_{t}\left(\varphi_{t}\right)=\nabla_{\mathrm{d} \varphi_{t}(v)}\left(\dot{X}_{t}+\nabla_{X_{t}} X_{t}\right)
$$

Therefore, by the definition of the matrix $A(t)$, the following holds

$$
\ddot{A}(t)+A(t)(R(t)-M(t))=0
$$

where

$$
R_{i j}(t)=\left\langle\mathbf{R m}\left(v_{i}(t), X_{t}\left(\varphi_{t}(x)\right)\right) X_{t}\left(\varphi_{t}(x)\right), v_{j}(t)\right\rangle
$$

and

$$
M_{i j}(t)=\left\langle\nabla_{v_{i}(t)}\left(\dot{X}_{t}+\nabla_{X_{t}} X_{t}\right), v_{j}(t)\right\rangle_{\varphi_{t}(x)}
$$

By combining this with (2.1), we obtain

$$
\begin{equation*}
\dot{S}(t)+S(t)^{2}+R(t)=M(t) \tag{2.2}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} F(S(t))+F^{\prime}(S(t))\left(S(t)^{2}+R(t)\right)=F^{\prime}(S(t))(M(t)) \tag{2.3}
\end{equation*}
$$

Let t_{0} be the first time where $F\left(\nabla X_{t_{0}}\left(\varphi_{t_{0}}(x)\right)\right)=k a_{K}\left(t_{0}\right)$ for some point x, where $k>0$. By assumption, we have

$$
\begin{equation*}
F^{\prime}\left(\nabla X_{t_{0}}\right)\left(\nabla\left(\dot{X}_{t_{0}}+\nabla_{X_{t_{0}}} X_{t_{0}}\right)+W_{t}\right)+k_{2} F\left(\nabla X_{t_{0}}\right)^{2} \leq 0 \tag{2.4}
\end{equation*}
$$

at $\varphi_{t_{0}}(x)$.
In the matrix notation, we have

$$
F^{\prime}\left(S\left(t_{0}\right)\right)\left(M\left(t_{0}\right)+\mathcal{W}\left(t_{0}\right)\right)+k_{2} F\left(S\left(t_{0}\right)\right)^{2} \leq 0
$$

where $\mathcal{W}\left(t_{0}\right)$ be the matrix with $i j$ th entry equal to $\left\langle W_{t}\left(v_{i}(t)\right), v_{j}(t)\right\rangle$.
By combining this with (2.3) and using the assumptions, we obtain

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} F\left(S\left(t_{0}\right)\right)+k_{1} F\left(S\left(t_{0}\right)\right)^{2}+k_{3} & \leq \frac{\mathrm{d}}{\mathrm{~d} t} F\left(S\left(t_{0}\right)\right)+k_{1} F\left(S\left(t_{0}\right)\right)^{2}+F^{\prime}\left(S\left(t_{0}\right)\right)\left(R\left(t_{0}\right)+\mathcal{W}\left(t_{0}\right)\right) \\
& \leq \frac{\mathrm{d}}{\mathrm{~d} t} F\left(S\left(t_{0}\right)\right)+F^{\prime}\left(S\left(t_{0}\right)^{2}\right)+F^{\prime}\left(S\left(t_{0}\right)\right)\left(R\left(t_{0}\right)+\mathcal{W}\left(t_{0}\right)\right) \\
& =F^{\prime}\left(S\left(t_{0}\right)\right)\left(M\left(t_{0}\right)+\mathcal{W}\left(t_{0}\right)\right) \\
& \leq-k_{2} F\left(S\left(t_{0}\right)\right)^{2}
\end{aligned}
$$

By the definition of t_{0}, we have $k a_{K}\left(t_{0}\right)=F\left(S\left(t_{0}\right)\right)$ and $k \dot{a}_{K}\left(t_{0}\right) \leq \frac{\mathrm{d}}{\mathrm{d} t} F\left(S\left(t_{0}\right)\right)$. Therefore, the above inequality becomes

$$
k \dot{a}_{K}\left(t_{0}\right)+\left(k_{1}+k_{2}\right) k^{2} a_{K}\left(t_{0}\right)^{2}+k_{3} \leq 0
$$

Since a_{K} satisfies

$$
\begin{equation*}
\dot{a}_{K}+a_{K}^{2}+K=0 \tag{2.5}
\end{equation*}
$$

it follows that

$$
k\left(\left(k_{1}+k_{2}\right) k-1\right) a\left(t_{0}\right)^{2}+k_{3}-k K \leq 0
$$

Therefore, we obtain a contradiction if $k=\frac{1}{k_{1}+k_{2}}$ and $K<\left(k_{1}+k_{2}\right) k_{3}$. Hence

$$
F\left(\nabla X_{t}\right)<\frac{1}{k_{1}+k_{2}} a_{K}(t)
$$

for all $K<\left(k_{1}+k_{2}\right) k_{3}$. By letting $K \rightarrow\left(k_{1}+k_{2}\right) k_{3}$, we obtain

$$
F\left(\nabla X_{t}\right) \leq \frac{1}{k_{1}+k_{2}} a_{\left(k_{1}+k_{2}\right) k_{3}}(t)
$$

Proof of Theorem 2.3. Here, we use the same notations as in the proof of Theorem 2.1. By assumption the one-form $v \mapsto\left\langle X_{t}, v\right\rangle$ is closed. This is equivalent to $\left\langle\nabla_{v} X_{t}, w\right\rangle=\left\langle v, \nabla_{w} X_{t}\right\rangle$. It follows that the matrices $S(t)$ are all symmetric. Let t_{0} be the first time such that there is a point x and a unit tangent vector v in the tangent space $T_{\varphi_{t}(x)} M$ at $\varphi_{t}(x)$ such that $\left\langle\nabla_{v} X_{t_{0}}, v\right\rangle=\left\langle S\left(t_{0}\right) v, v\right\rangle=k a_{K}\left(t_{0}\right)$. Here v denotes both the vector v and its matrix representation with respect to the orthonormal frame $v_{1}(t), \ldots, v_{n}(t)$. In particular, $k a_{K}\left(t_{0}\right)$ is the largest eigenvalue of $S\left(t_{0}\right)$ with eigenvector v. By parallel translating along geodesics, we extend v to a vector field still denoted by v. It follows that $\nabla v=0$ and $\Delta v=0$. Therefore, the following holds by assumption

$$
\begin{aligned}
& \left\langle\nabla_{v}\left(\dot{X}_{t_{0}}+\nabla X_{t_{0}}\left(X_{t_{0}}\right)\right), v\right\rangle+k_{2}\left\langle\nabla X_{t_{0}}\left(\nabla X_{t_{0}}(v)\right), v\right\rangle+\left\langle W_{t_{0}} v, v\right\rangle \\
& \leq b_{t_{0}}\left\langle\Delta \nabla X_{t_{0}}(v), v\right\rangle+\left\langle\nabla_{Y_{t_{0}}} \nabla_{v} X_{t_{0}}, v\right\rangle \\
& \leq b_{t_{0}} \Delta\left\langle\nabla X_{t_{0}}(v), v\right\rangle+\nabla_{Y_{t_{0}}}\left\langle\nabla_{v} X_{t_{0}}, v\right\rangle \leq 0
\end{aligned}
$$

In terms of the matrix notations, the above inequality becomes

$$
\left\langle\left(M\left(t_{0}\right)+k_{2} S\left(t_{0}\right)^{2}+\mathcal{W}\left(t_{0}\right)\right) v, v\right\rangle \leq 0
$$

This, together with (2.2) and (2.5), gives

$$
\begin{aligned}
0 & \leq\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left(\langle S(t) v, v\rangle-k a_{K}(t)\right)\right|_{t=t_{0}} \\
& =-\left\langle S\left(t_{0}\right)^{2} v, v\right\rangle+\left\langle\left(M\left(t_{0}\right)-R\left(t_{0}\right)\right) v, v\right\rangle+k a_{K}\left(t_{0}\right)^{2}+k K \\
& \leq-\left(1+k_{2}\right)\left\langle S\left(t_{0}\right)^{2} v, v\right\rangle-\left\langle\left(\mathcal{W}\left(t_{0}\right)+R\left(t_{0}\right)\right) v, v\right\rangle+k a_{K}\left(t_{0}\right)^{2}+k K
\end{aligned}
$$

By assumption, $\mathcal{W}(t)+R(t) \geq k_{3} I$. It follows that

$$
k\left(1-\left(1+k_{2}\right) k\right) a_{K}\left(t_{0}\right)^{2}+k K \geq k_{3} .
$$

Therefore, we obtain a contradiction if $k=\frac{1}{1+k_{2}}$ and $K<k_{3}\left(1+k_{2}\right)$. It follows that

$$
\nabla X_{t} \leq \frac{a_{k_{3}\left(1+k_{2}\right)}(t)}{1+k_{2}} I
$$

Proof of Corollary 2.4. If $F(\nabla X) \geq \operatorname{tr}(\nabla X)$, then

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \log \operatorname{det} A(t) \leq F\left(\nabla X_{\varphi_{t}(x)}\right)
$$

It follows that

$$
\frac{\operatorname{det}\left(\mathrm{d} \varphi_{t_{1}}\right)}{\operatorname{det}\left(\mathrm{d} \varphi_{t_{0}}\right)} \leq \exp \left(\int_{t_{0}}^{t_{1}} F\left(\nabla X_{\varphi_{t}(x)}\right) \mathrm{d} t\right) \leq \frac{b_{\left(k_{1}+k_{2}\right) k_{3}}^{\frac{1}{k_{1}+k_{2}}}\left(t_{1}\right)}{b_{\left(k_{1}+k_{2}\right) k_{3}}^{\frac{1}{k_{1}+k_{2}}}\left(t_{0}\right)}
$$

where

$$
b_{K}(t)= \begin{cases}\frac{1}{\sqrt{K}} \sin (\sqrt{K} t) & \text { if } K>0 \\ t & \text { if } K=0 \\ \frac{1}{\sqrt{-K}} \sinh (\sqrt{-K} t) & \text { if } K<0\end{cases}
$$

3. A GEnERALIZATION OF THE Li-Yau EStimate: The case on compact manifolds

In this section, we prove the following generalization of the $\mathrm{Li}-\mathrm{Yau}$ estimate.
Theorem 3.1. Assume that the Ricci curvature of the underlying compact Riemannian manifold M is nonnegative. Let U_{1} and U_{2} be two functions on M satisfying

$$
\Delta\left(-\Delta U_{1}-\frac{1}{2}\left|\nabla U_{1}\right|^{2}+2 U_{2}\right) \geq k_{3}
$$

Then any positive solution ρ_{t} of the equation

$$
\begin{equation*}
\dot{\rho}_{t}=\Delta \rho_{t}+\left\langle\nabla \rho_{t}, \nabla U_{1}\right\rangle+U_{2} \rho_{t} \tag{3.1}
\end{equation*}
$$

satisfies

$$
2 \Delta \log \rho_{t}+\Delta U_{1} \geq-n a_{\frac{k_{3}}{n}}(t)
$$

By integrating the above generalization of Li-Yau estimate, one obtains a Harnack inequality. For this, we need to consider the following functional

$$
\int_{s_{0}}^{s_{1}} \frac{1}{2}|\dot{\gamma}(\tau)|^{2}+V(\gamma(\tau)) \mathrm{d} \tau
$$

where $\gamma:\left[s_{0}, s_{1}\right] \rightarrow M$ and $V=\Delta U_{1}+\frac{1}{2}\left|\nabla U_{1}\right|^{2}-2 U_{2}$.
Let $c_{s_{0}, s_{1}}$ be the corresponding cost function defined by

$$
\begin{equation*}
c_{s_{0}, s_{1}}(x, y)=\inf \int_{s_{0}}^{s_{1}} \frac{1}{2}|\dot{\gamma}(\tau)|^{2}+V(\gamma(\tau)) \mathrm{d} \tau \tag{3.2}
\end{equation*}
$$

where the infimum is taken over all paths γ satisfying $\gamma\left(s_{0}\right)=x$ and $\gamma\left(s_{1}\right)=y$.
Corollary 3.2. Under the assumptions of Theorem 3.1, the following holds

$$
\frac{\rho_{s_{1}}(y)}{\rho_{s_{0}}(x)} \geq\left(\frac{b_{\frac{k_{3}}{n}}\left(s_{1}\right)}{b_{\frac{k_{3}}{n}}\left(s_{0}\right)}\right)^{-\frac{n}{2}} \exp \left(-\frac{1}{2}\left(c_{s_{0}, s_{1}}(x, y)+U_{1}(y)-U_{1}(x)\right)\right)
$$

If we let ρ_{t} be the fundamental solution $p_{t}(x, y)$ of equation (3.1) and let $s \rightarrow 0$ in Corollary 3.2 , then we obtain the following generalization of Cheeger-Yau estimate [11].
Corollary 3.3. Let p_{t} be the fundamental solution of equation (3.1). Under the assumptions of Theorem 3.1, the following holds

$$
p_{t}(x, y) \geq\left(4 \pi b_{\frac{k_{3}}{n}}(t)\right)^{-\frac{n}{2}} \exp \left(-\frac{1}{2}\left(c_{0, t}(x, y)+U_{1}(y)-U_{1}(x)\right)\right)
$$

Finally, we will show that the equality case in Corollary 3.3 is achieved by (1.3). More precisely,
Theorem 3.4. Let ρ_{t} be defined by (1.3), $U_{1}(x)=-\frac{k}{2}|x|^{2}$, and $U_{2} \equiv 0$. Then

$$
p_{t}(0, x)=\exp \left(-\frac{1}{2}\left(c_{0, t}(0, x)+U_{1}(x)-U_{1}(0)\right)\right)\left(4 \pi b_{-k^{2}}(t)\right)^{-\frac{n}{2}}
$$

Proof of Theorem 3.1. If we specialize Theorem 2.1 to the case where $F=\mathbf{t r}$ and $X_{t}=\nabla h_{t}$, then the assumptions of Theorem 2.1 are satisfied if $k_{1}=\frac{1}{n}, \boldsymbol{\operatorname { t r }}\left(W_{t}\right)+\mathbf{R} \mathbf{c}\left(X_{t}, X_{t}\right) \geq k_{3}$, and

$$
\begin{equation*}
\Delta\left(\dot{h}_{t}+\frac{1}{2}\left|\nabla h_{t}\right|^{2}\right)+k_{2}\left(\Delta h_{t}\right)^{2}+\operatorname{tr}\left(W_{t}\right) \leq b_{t} \Delta \Delta h_{t}+\left\langle\nabla \Delta h_{t}, Y_{t}\right\rangle \tag{3.3}
\end{equation*}
$$

Let $h_{t}=-2 \log \rho_{t}-U_{1}$. Then the following holds

$$
\dot{h}_{t}+\frac{1}{2}\left|\nabla h_{t}\right|^{2}=\Delta h_{t}+\Delta U_{1}+\frac{1}{2}\left|\nabla U_{1}\right|^{2}-2 U_{2}
$$

Therefore, under the assumptions of the theorem, (3.3) holds with $k_{2}=0$ and $b_{t} \equiv 1$. Hence, the result follows from Theorem 2.1.

Proof of Corollary 3.2. Let γ be a minimizer of (3.2) which satisfies $\gamma\left(s_{0}\right)=x_{0}$ and $\gamma\left(s_{1}\right)=x_{1}$. Using the notations in the proof of Theorem 3.1, we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} h_{t}(\gamma(t))-\frac{1}{2}|\dot{\gamma}(t)|^{2} & \leq \frac{\mathrm{d}}{\mathrm{~d} t} h_{t}(\gamma(t))-\left\langle\nabla h_{t}(\gamma(t)), \dot{\gamma}(t)\right\rangle+\frac{1}{2}\left|\nabla h_{t}\right|_{\gamma(t)}^{2} \\
& =\Delta h_{t}(\gamma(t))+\Delta U_{1}(\gamma(t))+\frac{1}{2}\left|\nabla U_{1}\right|_{\gamma(t)}^{2}-2 U_{2}(\gamma(t)) \\
& \leq n a_{\frac{k_{3}}{n}}(t)+V(\gamma(t))
\end{aligned}
$$

In the last inequality above, we have used Theorem 3.1.

By integrating the above inequality and noting that $\dot{b}_{K}=b_{K} a_{K}$, we obtain

$$
h_{s_{1}}\left(x_{1}\right)-h_{s_{0}}\left(x_{0}\right) \leq c_{s_{0}, s_{1}}\left(x_{0}, x_{1}\right)+n \log \left(b_{\frac{k_{3}}{n}}\left(s_{1}\right)\right)-n \log \left(b_{\frac{k_{3}}{n}}\left(s_{0}\right)\right)
$$

By taking exponential of the above inequality, the result follows.

Proof of Corollary 3.3. By Corollary 3.2, we have

$$
\frac{p_{t}(x, y)}{p_{s}(x, x)} \geq \exp \left(-\frac{1}{2}\left(c_{s, t}(x, y)+U_{1}(y)-U_{1}(x)\right)\right)\left(\frac{b_{\frac{k_{3}}{n}}(t)}{b_{\frac{k_{3}}{n}}(s)}\right)^{-\frac{n}{2}}
$$

Since $\lim _{s \rightarrow 0}(4 \pi s)^{n / 2} p_{s}(x, x)=1$ (see $\left.[16,31]\right)$, the above inequality gives

$$
p_{t}(x, y) \geq \exp \left(-\frac{1}{2}\left(c_{0, t}(x, y)+U_{1}(y)-U_{1}(x)\right)\right)\left(4 \pi b_{\frac{k_{3}}{n}}(t)\right)^{-\frac{n}{2}}
$$

as claimed.

Proof of Theorem 3.4. In this special case, the cost function (3.2) is given by

$$
\begin{equation*}
c_{0, t}(0, y)=\inf \int_{0}^{t} \frac{1}{2}|\dot{\gamma}(s)|^{2}+V(\gamma(s)) \mathrm{d} s \tag{3.4}
\end{equation*}
$$

where $V(x)=-k n+\frac{1}{2} k^{2}|x|^{2}$ and the infimum is taken over all paths γ satisfying $\gamma(0)=0$ and $\gamma(t)=y$.
If $x(\cdot)$ is a minimizer of the above infimum, then it satisfies the following equations (see [15])

$$
\dot{x}=p, \quad \dot{p}=k^{2} x
$$

Since $x(0)=0$ and $x(t)=y$, it follows that

$$
x(s)=\frac{\sinh (k s)}{\sinh (k t)} x(t)
$$

If we substitute this back into (3.4), then we obtain

$$
c_{0, t}(0, y)=\frac{k|y|^{2} \operatorname{coth}(k t)}{2}-k n t
$$

A computation shows that

$$
\begin{aligned}
p_{t}(0, y) & =\exp \left(-\frac{1}{2}\left(c_{0, t}(0, y)-\frac{k}{2}|y|^{2}\right)\right)\left(4 \pi b_{-k^{2}}(t)\right)^{-\frac{n}{2}} \\
& =\exp \left(\frac{-k|y|^{2}}{2(\exp (2 k t)-1)}\right)\left(\frac{2 \pi(\exp (2 t k)-1)}{k \exp (2 k t)}\right)^{-\frac{n}{2}}
\end{aligned}
$$

as claimed.

4. A generalization of Hamilton's matrix Li-Yau estimate

In this section, we show that the following generalization of Hamilton $-\mathrm{Li}-\mathrm{Yau}$ estimate is a consequence of Theorem 2.3.

Theorem 4.1. Assume that the sectional curvature of the underlying compact Riemannian manifold M is non-negative and the Ricci curvature is parallel. Let U_{1} and U_{2} be two functions on M satisfying

$$
-\nabla^{2}\left(\Delta U_{1}+\frac{1}{2}\left|\nabla U_{1}\right|^{2}-2 U_{2}\right) \geq k_{3} I
$$

Then any solution ρ_{t} of Equation (3.1) satisfies

$$
-2 \nabla^{2} \log \rho_{t}-\nabla^{2} U_{1} \leq a_{k_{3}}(t) I
$$

Proof. We need the following lemma.

Lemma 4.2. Assume that the sectional curvature of a Riemannian manifold is non-negative at a point x and the Ricci curvature $\boldsymbol{R} \boldsymbol{c}$ satisfies $\nabla \boldsymbol{R} \boldsymbol{c}_{x}=0$. Then, for any smooth function f, the following holds

$$
\Delta\left(\nabla_{v} \mathrm{~d} f(v)\right)(x) \geq\left\langle\nabla_{v} \nabla \Delta f, v\right\rangle_{x}
$$

Here we consider the Hessian $\nabla \mathrm{d} f$ of f as a self-adjoint operator on $T_{x} M$. The vector field v is defined as an eigenvector of the operator $\nabla \mathrm{d} f$ at x corresponding to the largest eigenvalue and it is extended to a neighborhood of x by parallel translation along geodesics.

Proof. Let e_{1}, \ldots, e_{n} be an orthonormal frame at x and let us extend them to vector fields defined locally near x by parallel translation along geodesics. It follows that $\nabla v(x)=0$ and $\nabla_{e_{i}} \nabla_{e_{i}} v(x)=0$ (throughout this proof we sum over repeated indices without mentioning). Therefore,

$$
\Delta\left(\nabla_{v} \mathrm{~d} f(v)\right)=\nabla_{e_{i}} \nabla_{e_{i}} \nabla_{v} \mathrm{~d} f(v)
$$

Let α be a $(0,1)$-tensor and β be a $(0,2)$-tensor. By Ricci identity, we have
(1) $\nabla_{v_{1}} \nabla_{v_{2}} \alpha\left(v_{3}\right)=\nabla_{v_{2}} \nabla_{v_{1}} \alpha\left(v_{3}\right)-\alpha\left(\mathbf{R} \mathbf{m}\left(v_{1}, v_{2}\right) v_{3}\right)$;
(2) $\nabla_{v_{4}} \nabla_{v_{1}} \nabla_{v_{2}} \alpha\left(v_{3}\right)$ $=\nabla_{v_{4}} \nabla_{v_{2}} \nabla_{v_{1}} \alpha\left(v_{3}\right)-\nabla_{v_{4}} \alpha\left(\mathbf{R m}\left(v_{1}, v_{2}\right) v_{3}\right)-\alpha\left(\nabla_{v_{4}} \mathbf{R m}\left(v_{1}, v_{2}\right) v_{3}\right) ;$
(3) $\nabla_{v_{1}} \nabla_{v_{2}} \beta\left(v_{3}, v_{4}\right)$

$$
=\nabla_{v_{2}} \nabla_{v_{1}} \beta\left(v_{3}, v_{4}\right)-\beta\left(\mathbf{R m}\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right)-\beta\left(v_{3}, \mathbf{R m}\left(v_{1}, v_{2}\right) v_{4}\right)
$$

Here, for instance, $\nabla_{v_{4}} \nabla_{v_{1}} \nabla_{v_{2}} \alpha\left(v_{3}\right)$ denotes

$$
\nabla(\nabla(\nabla \alpha))\left(v_{4}, v_{1}, v_{2}, v_{3}\right)
$$

It follows that

$$
\begin{aligned}
\Delta\left(\nabla_{v} \mathrm{~d} f(v)\right)= & \nabla_{e_{i}}\left(\nabla_{v} \nabla_{e_{i}} \mathrm{~d} f(v)-\mathrm{d} f\left(\mathbf{R m}\left(e_{i}, v\right) v\right)\right) \\
= & \nabla_{e_{i}} \nabla_{v} \nabla_{v} \mathrm{~d} f\left(e_{i}\right)-\nabla_{e_{i}} \mathrm{~d} f\left(\mathbf{R m}\left(e_{i}, v\right) v\right) \\
& -\mathrm{d} f\left(\nabla_{e_{i}} \mathbf{R m}\left(e_{i}, v\right) v\right) \\
= & \nabla_{v} \nabla_{e_{i}} \nabla_{v} \mathrm{~d} f\left(e_{i}\right)-\nabla_{e_{i}} \mathrm{~d} f\left(\mathbf{R m}\left(e_{i}, v\right) v\right) \\
& -\nabla_{v} \mathrm{~d} f\left(\mathbf{R m}\left(e_{i}, v\right) e_{i}\right)-\nabla_{e_{i}} \mathrm{~d} f\left(\mathbf{R m}\left(e_{i}, v\right) v\right) \\
& -\mathrm{d} f\left(\nabla_{e_{i}} \mathbf{R m}\left(e_{i}, v\right) v\right) \\
= & \nabla_{v} \nabla_{v} \nabla_{e_{i}} \mathrm{~d} f\left(e_{i}\right)-\nabla_{v} \mathrm{~d} f\left(\mathbf{R m}\left(e_{i}, v\right) e_{i}\right) \\
& -\mathrm{d} f\left(\nabla_{v} \mathbf{R m}\left(e_{i}, v\right) e_{i}\right)-\nabla_{e_{i}} \mathrm{~d} f\left(\mathbf{R m}\left(e_{i}, v\right) v\right) \\
& -\nabla_{v} \mathrm{~d} f\left(\mathbf{R m}\left(e_{i}, v\right) e_{i}\right)-\nabla_{e_{i}} \mathrm{~d} f\left(\mathbf{R m}\left(e_{i}, v\right) v\right) \\
& -\mathrm{d} f\left(\nabla_{e_{i}} \mathbf{R m}\left(e_{i}, v\right) v\right) \\
= & \left\langle\nabla_{v} \nabla \Delta f, v\right\rangle-2 \nabla_{v} \mathrm{~d} f\left(\mathbf{R m}\left(e_{i}, v\right) e_{i}\right) \\
& -\mathrm{d} f\left(\nabla_{v} \mathbf{R m}\left(e_{i}, v\right) e_{i}\right)-2 \nabla_{e_{i}} \mathrm{~d} f\left(\mathbf{R m}\left(e_{i}, v\right) v\right) \\
& -\mathrm{d} f\left(\nabla_{e_{i}} \mathbf{R m}\left(e_{i}, v\right) v\right) .
\end{aligned}
$$

Since the Ricci curvature is parallel, we have, by the contracted Bianchi identity,

$$
\Delta\left(\nabla_{v} \mathrm{~d} f(v)\right)=\left\langle\nabla_{v} \nabla \Delta f, v\right\rangle-2 \nabla_{v} \mathrm{~d} f\left(\mathbf{R m}\left(e_{i}, v\right) e_{i}\right)-2 \nabla_{e_{i}} \mathrm{~d} f\left(\mathbf{R m}\left(e_{i}, v\right) v\right)
$$

If e_{i} is an eigenvector of the hessian of f with eigenvalue λ_{i} and v is an eigenvector of the hessian of f with the largest eigenvalue λ, then

$$
\begin{aligned}
\Delta\left(\nabla_{v} \mathrm{~d} f(v)\right) & =\left\langle\nabla_{v} \nabla \Delta f, v\right\rangle+2 \lambda \mathbf{R} \mathbf{c}(v, v)-2 \lambda_{i}\left\langle e_{i}, \mathbf{R m}\left(e_{i}, v\right) v\right\rangle \\
& \geq\left\langle\nabla_{v} \nabla \Delta f, v\right\rangle
\end{aligned}
$$

Here we use the assumption that the sectional curvature is non-negative.
When $X_{t}=\nabla h_{t}$, the conditions become $\mathcal{W}(t)+R(t) \geq k_{3} I$ and

$$
\left\langle\nabla_{v} \nabla\left(\dot{h}_{t}+\frac{1}{2}\left|\nabla h_{t}\right|^{2}\right), v\right\rangle+k_{2}\left\langle\left(\nabla^{2} h_{t}\right)^{2} v, v\right\rangle+\left\langle W_{t} v, v\right\rangle \leq b_{t}\left\langle\Delta \nabla^{2} h_{t}(v), v\right\rangle+\left\langle\nabla_{Y_{t}} \nabla^{2} h_{t}(v), v\right\rangle
$$

for each eigenvector v of the symmetric operator $\nabla^{2} h_{t}$ with the largest eigenvalue.
Recall that if ρ_{t} is a positive solution of the equation

$$
\dot{\rho}_{t}=\Delta \rho_{t}+\left\langle\nabla \rho_{t}, \nabla U_{1}\right\rangle+U_{2} \rho_{t}
$$

then $h_{t}=-2 \log \rho_{t}-U_{1}$ satisfies

$$
\dot{h}_{t}+\frac{1}{2}\left|\nabla h_{t}\right|^{2}=\Delta h_{t}+\Delta U_{1}+\frac{1}{2}\left|\nabla U_{1}\right|^{2}-2 U_{2}
$$

It follows that

$$
\nabla^{2}\left(\dot{h}_{t}+\frac{1}{2}\left|\nabla h_{t}\right|^{2}\right)+W_{t}=\nabla^{2} \Delta h_{t}
$$

where $W_{t}=-\nabla^{2}\left(\Delta U_{1}+\frac{1}{2}\left|\nabla U_{1}\right|^{2}-2 U_{2}\right)$.
Therefore, if we assume that the Ricci curvature is parallel, the sectional curvature is non-negative, and $W_{t} \geq k_{3} I$, then

$$
\left\langle\nabla^{2}\left(\dot{h}_{t}+\frac{1}{2}\left|\nabla h_{t}\right|^{2}\right)(v), v\right\rangle+\left\langle W_{t}(v), v\right\rangle \leq\left\langle\Delta \nabla^{2} h_{t}(v), v\right\rangle .
$$

It follows that

$$
\nabla^{2} h_{t}=-2 \nabla^{2} \log \rho_{t}-\nabla^{2} U_{1} \leq a_{k_{3}}(t) I
$$

5. A generalization of Huisken's monotonicity formula

This section is devoted to the proof of Theorem 1.1. First, let us recall the notations used. Let M be a submanifold of dimension m in a Riemannian manifold N of dimension n. The mean curvature flow is a family of immersions $\varphi_{t}: M \rightarrow N$ which satisfy

$$
\dot{\varphi}_{t}=\mathfrak{H}_{t}\left(\varphi_{t}\right)+\nabla_{t}^{\perp} U\left(\varphi_{t}\right)
$$

where \mathfrak{H}_{t} is the mean curvature vector of $M_{t}:=\varphi_{t}(M), \bar{\nabla} U$ denotes the gradient of U with respect to the Riemannian metric on N, and $\nabla \frac{\perp}{t} U$ is the projection of $\bar{\nabla}_{t} U$ onto the normal bundle of M_{t}. We also introduce the following notation for the part of the Laplacian in the normal bundle $\Delta_{t}^{\perp} U=\sum_{k}\left\langle\bar{\nabla}_{\mathbf{n}_{k}} \bar{\nabla} U, \mathbf{n}_{k}\right\rangle$.

Theorem 5.1. Assume that the sectional curvature of the underlying compact Riemannian manifold N is nonnegative and the Ricci curvature is parallel. Let $U: M \rightarrow \mathbb{R}$ be a smooth function satisfying the following condition for some positive constant k :

$$
\nabla^{2}\left(\Delta U-\frac{1}{2}|\nabla U|^{2}\right) \geq k_{3} I
$$

Let φ_{t} be a solution of (1.10) and let ρ_{t} be a positive solution of the equation

$$
\dot{\rho}_{t}=\bar{\Delta} \rho_{t}+\left\langle\bar{\nabla} U, \bar{\nabla} \rho_{t}\right\rangle+\rho_{t} \bar{\Delta} U
$$

on N. Then

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(b_{k_{3}}(T-t)^{\frac{n-m}{2}} \int_{\varphi_{t}(M)} u_{t} \mathrm{~d} \mu_{t}\right) \leq-b_{k_{3}}(T-t)^{\frac{n-m}{2}} \int_{\varphi_{t}(M)} u_{t}\left(\frac{1}{2} \Delta_{t}^{\perp} U+\left|\frac{\nabla_{t}^{\perp} u_{t}}{u_{t}}-\mathfrak{H}_{t}\right|^{2}\right) \mathrm{d} \mu_{t}
$$

The rest of this section is devoted to the proof of the above theorem. Next, we pick a convenient moving frame along φ_{t}.

Lemma 5.2. Let $\sigma(\cdot)$ be a path in N such that $\sigma(t)$ is contained in $M_{t}:=\varphi_{t}(M)$. Then there is a family of orthonormal frames

$$
\boldsymbol{n}_{1}\left(\psi_{t}\right), \ldots, \boldsymbol{n}_{n-m}\left(\psi_{t}\right), v_{1}(t), \ldots, v_{m}(t)
$$

defined along $\sigma(\cdot)$ such that
(1) $v_{1}(t), \ldots, v_{m}(t)$ are contained in the tangent bundle $T M_{t}$ of M_{t};
(2) $\boldsymbol{n}_{1}(t), \ldots, \boldsymbol{n}_{n-m}(t)$ are in the normal bundle $T M_{t}^{\perp}$ of M_{t};
(3) $\dot{v}_{1}(t), \ldots, \dot{v}_{m}(t)$ are in $T M_{t}^{\perp}$;
(4) $\dot{n}_{1}(t), \ldots, \dot{n}_{n-m}(t)$ are in $T M_{t}$.

Here $\dot{v}_{i}(t)$ denotes the covariant derivative of $v_{i}(t)$ with respect to the Riemannian metric $\langle\cdot, \cdot\rangle$ of N.
Moreover, if $\tilde{\boldsymbol{n}}_{1}(t), \ldots, \tilde{\boldsymbol{n}}_{n-m}(t), \tilde{v}_{1}(t), \ldots, \tilde{v}_{m}(t)$ is another such family, then there are orthogonal matrices $O^{(1)}$ and $O^{(2)}$ (independent of time) of size $(n-m) \times(n-m)$ and $m \times m$, respectively, such that

$$
\tilde{\boldsymbol{n}}_{i}(t)=\sum_{j=1}^{n-m} O_{i j}^{(1)} \boldsymbol{n}_{j}(t) \text { and } \tilde{v}_{i}(t)=\sum_{j=1}^{m} O_{i j}^{(2)} v_{j}(t)
$$

The proof of Lemma 5.2 and that of ([23], Lem. 3.1) is completely analogous and is therefore omitted. From now on, we call any orthonormal moving frame which satisfies the conditions in Lemma 5.2 a parallel adapted frame along $\sigma(\cdot)$.

Let \mathbf{n}_{t} be a normal vector in $T M_{t}^{\perp}$ and let $\mathfrak{S}_{t}^{\mathbf{n}_{t}}: T M_{t} \rightarrow T M_{t}$ be the shape operator of the submanifold M_{t} defined by

$$
\left\langle\mathfrak{S}_{t}^{\mathbf{n}_{t}}\left(v_{1}\right), v_{2}\right\rangle=-\left\langle\bar{\nabla}_{v_{1}} \mathbf{n}_{t}, v_{2}\right\rangle
$$

Here $\bar{\nabla}$ denotes the Levi-Civita connection on N.
Recall that the mean curvature vector \mathfrak{H}_{t} of M_{t} is given by

$$
\mathfrak{H}_{t}=\sum_{i, j}\left\langle\mathfrak{S}_{t}^{\mathbf{n}_{i}(t)}\left(v_{j}(t)\right), v_{j}(t)\right\rangle \mathbf{n}_{i}(t)
$$

Lemma 5.3. Let $\boldsymbol{n}_{1}(t), \ldots, \boldsymbol{n}_{n-m}(t), v_{1}(t), \ldots, v_{m}(t)$ be a parallel adapted frame along $\varphi_{t}(x)$, where φ_{t} satisfies the following equation

$$
\dot{\varphi}_{t}=\sum_{i} F_{i}\left(t, \varphi_{t}\right) \boldsymbol{n}_{i}(t)
$$

Let $A(t)$ and $G^{k}(t)$ be families of matrices defined by

$$
\mathrm{d} \varphi_{t}\left(v_{i}(0)\right)=\sum_{j} A_{i j}(t) v_{j}(t) \text { and } G_{i j}^{k}(t)=\left\langle\mathfrak{S}_{t}^{n_{k}(t)}\left(v_{i}(t)\right), v_{j}(t)\right\rangle
$$

respectively. Then

$$
\dot{A}(t)=-\sum_{k} F_{k}\left(t, \varphi_{t}\right) A(t) G^{k}(t)
$$

where ∇_{t} is the gradient with respect to the induced metric on M_{t}.
Proof. Let $\gamma(s)$ be a curve in M such that $\left.\frac{\mathrm{d}}{\mathrm{d} s} \gamma(s)\right|_{s=0}=v_{i}(0)$. Then

$$
\frac{\bar{D}}{\mathrm{~d} t} \mathrm{~d} \varphi_{t}\left(v_{i}(0)\right)=\sum_{j}\left(\dot{A}_{i j}(t) v_{j}(t)+A_{i j}(t) \dot{v}_{j}(t)\right)
$$

On the other hand, we have

$$
\frac{\bar{D}}{\mathrm{~d} t} \mathrm{~d} \varphi_{t}\left(v_{i}(0)\right)=\left.\frac{\bar{D}}{\mathrm{~d} s} \dot{\varphi}_{t}(\gamma(s))\right|_{s=0}=\sum_{k}\left(\left\langle\nabla_{t} F_{k}\left(t, \varphi_{t}\right), \mathrm{d} \varphi_{t}\left(v_{i}(0)\right)\right\rangle \mathbf{n}_{k}(t)+F_{k}\left(t, \varphi_{t}\right) \bar{\nabla}_{\mathrm{d} \varphi_{t}\left(v_{i}(0)\right)} \mathbf{n}_{k}(t)\right)
$$

It follows that

$$
\dot{A}_{i j}(t)=-\sum_{l, k} A_{i l}(t) F_{k}\left(t, \varphi_{t}\right)\left\langle\mathfrak{S}_{t}^{\mathbf{n}_{k}(t)} v_{l}(t), v_{j}(t)\right\rangle
$$

Proof of Theorem 5.1. Let ρ_{t} be the density of $\varphi_{t}^{*} \mu_{t}$ with respect to $\mu_{0}: \rho_{t} \mu_{0}=\varphi_{t}^{*} \mu_{t}$. Let $\mathbf{n}_{1}(t), \ldots, \mathbf{n}_{n-m}(t), v_{1}(t), \ldots, v_{m}(t)$ be a parallel adapted frame along the path $\varphi_{t}(x)$ and let $A(t)$ be the family of matrices defined by

$$
\mathrm{d} \varphi_{t}\left(v_{i}(0)\right)=\sum_{j=1}^{n} A_{i j}(t) v_{j}(t)
$$

Then $\rho_{t}=\operatorname{det} A(t)$ and we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\varphi_{t}(M)} u_{t} \mathrm{~d} \mu_{t}=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{M} u_{t}\left(\varphi_{t}\right) \operatorname{det} A(t) \mathrm{d} \mu_{0} & =\int_{M}\left[\dot{u}_{t}\left(\varphi_{t}\right)+u_{t}\left(\varphi_{t}\right) \operatorname{tr}\left(A(t)^{-1} \dot{A}(t)\right)+\left\langle\bar{\nabla} u_{t}, \dot{\varphi}_{t}\right\rangle_{\varphi_{t}}\right] \operatorname{det} A(t) \mathrm{d} \mu_{0} \\
& =\int_{\varphi_{t}(M)}\left(\dot{u}_{t}+\sum_{k} F_{k}\left\langle\bar{\nabla} u_{t}, \mathbf{n}_{k}(t)\right\rangle-u_{t} \sum_{k} F_{k} \operatorname{tr}\left(G^{k}(t)\right)\right) \mathrm{d} \mu_{t}
\end{aligned}
$$

Let $u_{t}=\rho_{T-t}$. Then we have, by assumptions, $F_{k}(t, \cdot)=\operatorname{tr}\left(G^{k}(t)\right)+\left\langle\bar{\nabla} U, \mathbf{n}_{k}(t)\right\rangle$ and $\dot{u}_{t}=-\bar{\Delta} u_{t}-$ $\left\langle\bar{\nabla} U, \bar{\nabla} u_{t}\right\rangle-(\bar{\Delta} U) u_{t}$. Then the above equation becomes

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\varphi_{t}(M)} u_{t} \mathrm{~d} \mu_{t}=\int_{\varphi_{t}(M)}\left(-\bar{\Delta} u_{t}-\left\langle\nabla U, \nabla u_{t}\right\rangle-(\bar{\Delta} U) u_{t}-u_{t}\left|\mathfrak{H}_{t}\right|^{2}+\left\langle\nabla_{t}^{\perp} u_{t}, \mathfrak{H}_{t}\right\rangle-u_{t}\left\langle\nabla_{t}^{\perp} U, \mathfrak{H}_{t}\right\rangle\right) \mathrm{d} \mu_{t}, \tag{5.1}
\end{equation*}
$$

where $\nabla_{t}^{\perp} u$ is the projection of $\bar{\nabla} u$ onto the normal bundle of M_{t}.
A simple calculation shows that

$$
\begin{aligned}
\Delta u & =\sum_{i=1}^{n}\left\langle\bar{\nabla}_{v_{i}}\left(\bar{\nabla} u-\sum_{k}\left\langle\mathbf{n}_{k}, \bar{\nabla} u\right\rangle \mathbf{n}_{k}\right), v_{i}\right\rangle \\
& =\bar{\Delta} u-\sum_{k}\left\langle\bar{\nabla}_{\mathbf{n}_{k}} \bar{\nabla} u, \mathbf{n}_{k}\right\rangle+\sum_{k}\left\langle\mathbf{n}_{k}, \bar{\nabla} u\right\rangle \operatorname{tr}\left(G^{k}(t)\right) \\
& =\bar{\Delta} u-\Delta_{t}^{\perp} u+\left\langle\mathfrak{H}, \nabla_{t}^{\perp} u\right\rangle .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int_{\varphi_{t}(M)} u_{t} \mathrm{~d} \mu_{t}=\int_{\varphi_{t}(M)}\left(-\Delta u_{t}-\Delta_{t}^{\perp} u_{t}-u_{t} \Delta_{t}^{\perp} U\right. \\
& \left.-\left\langle\nabla U, \nabla u_{t}\right\rangle-\Delta U u_{t}-u_{t}\left|\mathfrak{H}_{t}\right|^{2}+2\left\langle\nabla_{t}^{\perp} u_{t}, \mathfrak{H}_{t}\right\rangle\right) \mathrm{d} \mu_{t} \\
& =\int_{\varphi_{t}(M)}\left(-\Delta_{t}^{\perp} u_{t}-u_{t} \Delta_{t}^{\perp} U-u_{t}\left|\mathfrak{H}_{t}\right|^{2}\right. \\
& \left.+2 u_{t}\left\langle\frac{\nabla_{t}^{\perp} u_{t}}{u_{t}}, \mathfrak{H}\right\rangle-u_{t}\left|\frac{\nabla_{t}^{\perp} u_{t}}{u_{t}}\right|^{2}+u_{t}\left|\frac{\nabla_{t}^{\perp} u_{t}}{u_{t}}\right|^{2}\right) \mathrm{d} \mu_{t} \\
& =-\int_{\varphi_{t}(M)} u_{t}\left(\Delta_{t}^{\perp} \log u_{t}+\Delta_{t}^{\perp} U+\left|\frac{\nabla_{t}^{\perp} u_{t}}{u_{t}}-\mathfrak{H}_{t}\right|^{2}\right) \mathrm{d} \mu_{t} . \\
& \quad-\Delta_{t}^{\perp} \log \rho_{T-t}-\frac{1}{2} \Delta_{t}^{\perp} U_{1} \leq \frac{n-m}{2} a_{k_{3}}(T-t) .
\end{aligned}
$$

By Theorem 4.1,

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\varphi_{t}(M)} u_{t} \mathrm{~d} \mu_{t}-\frac{n-m}{2} a_{k_{3}}(T-t) \int_{\varphi_{t}(M)} u_{t} \mathrm{~d} \mu_{t} \leq \int_{\varphi_{t}(M)} u_{t}\left(-\frac{1}{2} \Delta_{t}^{\perp} U-\left|\frac{\nabla_{t}^{\perp} u_{t}}{u_{t}}-\mathfrak{H}_{t}\right|^{2}\right) \mathrm{d} \mu_{t}
$$

Since $\dot{b}_{k}=a_{k} b_{k}$, the result follows.

6. A generalization of the Aronzon-BÉnilan estimate

The Aronzon-Bénilan estimate [3] is a differential Harnack inequality for the porous medium equation

$$
\dot{\rho}_{t}=\Delta\left(\rho_{t}^{m}\right)
$$

In this section, we apply Theorem 2.1 and prove the following generalization of the Aronzon-Bénilan estimate.
Theorem 6.1. Assume that the Ricci curvature of the underlying compact Riemannian manifold M is nonnegative. Let U be a function on M satisfying

$$
\Delta U \geq \frac{k_{3}}{2 m}
$$

where $m>1$. Then any smooth positive solution ρ_{t} of the equation

$$
\dot{\rho}_{t}=\Delta\left(\rho_{t}^{m}\right)+U \rho_{t}^{2-m}
$$

satisfies

$$
\frac{2 m}{m-1} \Delta\left(\rho_{t}^{m-1}\right) \leq \frac{2 n}{2+n(m-1)} a_{\frac{k_{3}(2+n(m-1))}{2 n}}(t)
$$

Proof. A computation shows that $h_{t}=\frac{2 m}{1-m} \rho_{t}^{m-1}$ satisfies

$$
\dot{h}_{t}+\frac{1}{2}\left|\nabla h_{t}\right|^{2}=\frac{1}{2}(1-m) h_{t} \Delta h_{t}-2 m U
$$

It follows that

$$
\Delta\left(\dot{h}_{t}+\frac{1}{2}\left|\nabla h_{t}\right|^{2}\right)+\frac{1}{2}(m-1)\left(\Delta h_{t}\right)^{2}+2 m \Delta U=(1-m)\left\langle\nabla h_{t}, \nabla \Delta h_{t}\right\rangle+m \rho_{t}^{m-1} \Delta \Delta h_{t}
$$

The rest follows from the assumptions and Theorem 2.1.

7. On Laplacian and Hessian comparison type theorems

In this section, we prove versions of Laplacian and Hessian type comparison theorems for the following cost function

$$
\begin{equation*}
c_{s, t}(x, y)=\inf _{\gamma(s)=x, \gamma(t)=y} \int_{s}^{t} \frac{1}{2}\left|\dot{\gamma}(\tau)-\nabla U_{1}(\gamma(\tau))\right|^{2}-U_{2}(\gamma(\tau)) \mathrm{d} \tau \tag{7.1}
\end{equation*}
$$

More precisely,
Theorem 7.1. Assume that
(1) the Ricci curvature of the underlying manifold M is non-negative;
(2) $\Delta\left(U_{2}-\frac{1}{2}\left|\nabla U_{1}\right|^{2}\right) \geq k_{3}$ for some negative constant k_{3}.

Then the cost function $c_{0, t}$ defined by (1.6) satisfies

$$
\Delta_{x} c_{0, t}\left(x_{0}, x\right) \leq \sqrt{-k_{3} n} \operatorname{coth}\left(\sqrt{-\frac{k_{3}}{n}} t\right)
$$

wherever $c_{0, t}\left(x_{0}, \cdot\right)$ is twice differentiable.
Theorem 7.2. Assume that
(1) the sectional curvature of the underlying manifold M is non-negative;
(2) $\nabla^{2}\left(U_{2}-\frac{1}{2}\left|\nabla U_{1}\right|^{2}\right) \geq k_{3} I$ for some negative constant k_{3}.

Then the cost function $c_{0, t}$ defined by (1.6) satisfies

$$
\nabla_{x}^{2} c_{0, t}\left(x_{0}, x\right) \leq \sqrt{-k_{3}} \operatorname{coth}\left(\sqrt{-k_{3}} t\right) I
$$

wherever $c_{0, t}\left(x_{0}, \cdot\right)$ is twice differentiable.
Remark 7.3. The function $x \mapsto c_{0, t}\left(x_{0}, x\right)$ is locally semi-concave. In particular, it is twice differentiable Lebesgue almost everywhere by Alexandrov's theorem. Therefore, the conclusions in Theorems 7.1 and 7.2 hold Lebesgue almost everywhere (see [32] for the definitions and the results).

Remark 7.4. We can see that the above theorems are sharp by looking at the case $M=\mathbb{R}^{n}, U_{1} \equiv 0$, and $U_{2}(x)=-\frac{k^{2}}{2}|x|^{2}$. We have

$$
\nabla^{2}\left(U_{2}-\frac{1}{2}\left|\nabla U_{1}\right|^{2}\right)=-k^{2} I, \quad \Delta\left(U_{2}-\frac{1}{2}\left|\nabla U_{1}\right|^{2}\right)=-k^{2} n
$$

which is the equality case in the second conditions of Theorems 7.1 and 7.2 . We also have

$$
\nabla_{x}^{2} c_{0, t}(0, x)=k \operatorname{coth}(k t) I, \quad \Delta_{x} c_{0, t}(0, x)=k n \operatorname{coth}(k t)
$$

which gives the equality case in the conclusions of Theorems 7.1 and 7.2.
Remark 7.5. A Bishop-Gromov type volume comparison theorem follows from Corollary 2.4.

The proof of Theorem 7.2 is similar to that of Theorem 7.1 and will be omitted.

Proof of Theorem 7.1. If $c_{0, t}\left(x_{0}, x\right)$ is smooth, then the result follows from Theorems 2.1 and 2.3. Indeed, the Legendre transform of the Lagrangian

$$
L(x, v)=\frac{1}{2} g_{i j}(x)\left(v^{i}-g^{i l}(x)\left(U_{1}\right)_{x_{l}}(x)\right)\left(v^{j}-g^{j k}(x) U_{x_{k}}(x)\right)-U_{2}(x)
$$

is given by

$$
\begin{aligned}
H(x, p) & =\sup _{v \in T_{x} M}[p(v)-L(x, v)] \\
& =\frac{1}{2} g^{i j}(x) p_{i} p_{j}+g^{i j}(x) p_{i}\left(U_{1}\right)_{x_{j}}(x)+U_{2}(x)
\end{aligned}
$$

Here we sum over repeated indices.
The corresponding Hamilton-Jacobi equation is given by

$$
\begin{equation*}
\dot{f_{t}}+\frac{1}{2}\left|\nabla f_{t}\right|^{2}+\left\langle\nabla U_{1}, \nabla f_{t}\right\rangle+U_{2}=0 \tag{7.2}
\end{equation*}
$$

and $c_{0, t}\left(x_{0}, x\right)$ is a particular solution (see [1]).
If we set $X_{t}=\nabla\left(c_{0, t}\left(x_{0}, \cdot\right)+U_{1}\right)$, then

$$
\operatorname{tr}\left(\nabla\left(\dot{X}_{t}+\nabla_{X_{t}} X_{t}\right)+\nabla^{2}\left(U_{2}-\frac{1}{2}\left|\nabla U_{1}\right|^{2}\right)\right)=0
$$

Therefore,

$$
\Delta_{x} c_{0, t}\left(x_{0}, x\right) \leq n a_{\frac{k_{3}}{n}}(t)=\sqrt{-k_{3} n} \operatorname{coth}\left(\sqrt{-\frac{k_{3}}{n}} t\right)
$$

by Theorem 2.1.
In general, if x is a point where $c_{0, t}\left(x_{0}, \cdot\right)$ is twice differentiable, then there is a unique minimizer γ to the infimum (1.6) joining x_{0} and x. Moreover, $c_{0, s}\left(x_{0}, \cdot\right)$ is smooth at $\gamma(s)$ for each s in $(0, t)$ (see [7]). Therefore, the proof of Theorem 2.1 still applies. Note that, in this case, (2.4) is an equality.

8. On the semigroup approach

In this section, we give a semigroup proof of Theorems 3.1 and 6.1 which does not require any use of maximum principle. Such a proof was first given by [4], assuming that the equation

$$
\begin{equation*}
\dot{\rho}_{t}=L \rho_{t} \tag{8.1}
\end{equation*}
$$

is given by an operator L without constant term which is self-adjoint with respect to a weighted L^{2} inner-product.
In the case of the heat equation, the key idea is to consider expressions of the form

$$
P_{T-t}\left(\rho_{t}\left|\nabla \rho_{t}\right|^{2}\right) \quad \text { and } \quad P_{T-t} \dot{\rho}_{t}
$$

where P_{t} is the heat semigroup.
Since the heat semi-group is symmetric, it is equivalent to consider the followings instead

$$
\begin{equation*}
\int_{M} \rho_{t}\left|\nabla \rho_{t}\right|^{2} \varrho_{T-t} \mathrm{~d} \mathbf{v o l} \quad \text { and } \quad \int_{M} \dot{\rho}_{t} \varrho_{T-t} \mathrm{~d} \mathbf{v o l}, \tag{8.2}
\end{equation*}
$$

where ϱ_{t} ranges over all solutions of (8.1).
When L is not self-adjoint but still linear, we also consider the expressions in (8.2). However, in this case, ϱ_{t} ranges over solutions of the equation

$$
\dot{\varrho}_{t}=L^{*} \varrho_{t}
$$

instead, where L^{*} is the adjoint of L.
Proof of Theorem 3.1. Let ϱ_{t} be a positive solution of the equation

$$
\dot{\varrho}_{t}=\Delta \varrho_{t}-\left\langle\nabla U_{1}, \nabla \varrho_{t}\right\rangle+\left(U_{2}-\Delta U_{1}\right) \varrho_{t} .
$$

Let k_{t} be a one-parameter family of smooth functions. A computation shows that

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int_{M} \rho_{t} k_{t} \varrho_{T-t} \mathrm{~d} \mathbf{v o l}=\int_{M} \dot{\rho}_{t} k_{t} \varrho_{T-t}+\rho_{t} \dot{k}_{t} \varrho_{T-t}-\rho_{t} k_{t} \dot{\varrho}_{T-t} \mathrm{~d} \mathbf{v o l} \\
& =\int_{M} \rho_{t}\left(\dot{k}_{t}-\Delta k_{t}-2\left\langle\nabla f_{t}, \nabla k_{t}\right\rangle\right) \varrho_{T-t} \mathrm{~d} \mathbf{v o l}
\end{aligned}
$$

where $f_{t}=\log \rho_{t}+\frac{1}{2} U_{1}$.
It follows that $c:=\int_{M} \rho_{t} \varrho_{T-t} \mathrm{~d} \mathbf{v o l}$ is independent of t. By Bochner formula, we also have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{M} \rho_{t}\left(\Delta f_{t}\right) \varrho_{T-t} \mathrm{~d} \mathbf{v o l} & =\int_{M} \rho_{t}\left(2\left|\nabla^{2} f_{t}\right|^{2}+2 \mathbf{R c}\left(\nabla f_{t}, \nabla f_{t}\right)-\frac{1}{2} \Delta V\right) \varrho_{T-t} \mathrm{~d} \mathbf{v o l} \\
& \geq \int_{M} \rho_{t}\left(\frac{2}{n}\left(\Delta f_{t}\right)^{2}-\frac{k^{2} n}{2}\right) \varrho_{T-t} \mathrm{~d} \mathbf{v o l} \\
& \geq \int_{M} \rho_{t}\left(\frac{4 a(t) \Delta f_{t}}{n}-\frac{2 a(t)^{2}}{n}-\frac{k^{2} n}{2}\right) \varrho_{T-t} \mathrm{~d} \mathbf{v o l}
\end{aligned}
$$

So $b(t):=\int_{M} \rho_{t}\left(\Delta h_{t}\right) \varrho_{T-t} \mathrm{~d}$ vol satisfies

$$
\dot{b} \geq \frac{4 a(t)}{n} b(t)-\frac{2 a(t)^{2} c}{n}-\frac{k^{2} n c}{2}
$$

If $a(t)=-\frac{k n}{2} \operatorname{coth}(k t)$, then

$$
\dot{b}(t) \geq-2 k b(t) \operatorname{coth}(k t)-\frac{k^{2} n\left(\operatorname{coth}^{2}(k t)+1\right) c}{2}
$$

It follows that

$$
\begin{aligned}
\int_{M} \rho_{t}\left(\Delta f_{t}\right) \varrho_{T-t} \mathrm{~d} \mathbf{v o l} & =b(t) \geq-\frac{k n}{2} \operatorname{coth}(k t) c \\
& =-\frac{k n}{2} \operatorname{coth}(k t) \int_{M} \rho_{t} \varrho_{T-t} \mathrm{~d} \mathbf{v o l}
\end{aligned}
$$

By setting $t=T$, we obtain

$$
\int_{M} \rho_{T}\left(\Delta f_{T}\right) \varrho_{0} \mathrm{~d} \mathbf{v o l}=-\frac{k n}{2} \operatorname{coth}(k t) \int_{M} \rho_{T} \varrho_{0} \mathrm{~d} \mathbf{v o l} .
$$

Since ϱ_{0} is arbitrary, we must have

$$
\dot{f_{t}}-\left|\nabla f_{t}\right|^{2}+\frac{1}{2} V=\Delta f_{t} \geq-\frac{k n}{2} \operatorname{coth}(k t)
$$

9. The generalized Li-Yau estimate without compactaness assumption

In this section, we give another prove of Theorem 1.1 without making any compactness assumption. The proof uses the standard localization argument as in [24].

Proof of Theorem 1.1. Let ρ_{t} be a positive solution of the equation $\dot{\rho}_{t}=\Delta \rho_{t}+\left\langle\nabla U_{1} \nabla \rho_{t}\right\rangle+U_{2} \rho_{t}$ and let $f_{t}=\log \rho_{t}+\frac{1}{2} U_{1}$. Then $\dot{f}_{t}=\left|\nabla f_{t}\right|^{2}+U_{2}-\frac{1}{4}\left|\nabla U_{1}\right|^{2}-\frac{1}{2} \Delta U_{1}+\Delta f_{t}=\left|\nabla f_{t}\right|^{2}+\Delta f_{t}-\frac{1}{2} V$, where $V=$ $-2 U_{2}+\frac{1}{2}\left|\nabla U_{1}\right|^{2}+\Delta U_{1}$. It follows that

$$
\ddot{f}_{t}-\Delta \dot{f}_{t}-2\left\langle\nabla f_{t}, \nabla \dot{f}_{t}\right\rangle=0
$$

and

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left|\nabla f_{t}\right|^{2}-\Delta\left|\nabla f_{t}\right|^{2}-\left.2\left\langle\nabla f_{t}, \nabla\right| \nabla f_{t}\right|^{2}\right\rangle \leq-\left\langle\nabla f_{t}, \nabla V\right\rangle-\frac{2}{n}\left(\dot{f}_{t}-\left|\nabla f_{t}\right|^{2}+\frac{1}{2} V\right)^{2}
$$

Let $F_{t}=a_{1} \dot{f_{t}}+a_{2}\left|\nabla f_{t}\right|^{2}+a_{3} V+a_{4}$, where

$$
a_{2}=\frac{(\exp (2 t k)-1)^{2}}{\exp (2 t k)}=(\exp (t k)-\exp (-t k))^{2}
$$

$a_{1}=-\alpha a_{2}, a_{3}=-\frac{\alpha}{2} a_{2}, \alpha>1 . a_{4}$ is a function of time t to be determined.
Then

$$
\begin{aligned}
\dot{F}_{t}-\Delta F_{t}-2\left\langle\nabla f_{t}, \nabla F_{t}\right\rangle \leq & -a_{2}\left\langle\nabla f_{t}, \nabla V\right\rangle-\frac{2 a_{2}}{n}\left(\dot{f}_{t}-\left|\nabla f_{t}\right|^{2}+\frac{1}{2} V\right)^{2} \\
& -a_{3} \Delta V-2 a_{3}\left\langle\nabla f_{t}, \nabla V\right\rangle-\alpha \dot{a}_{2} \dot{f}_{t}+\dot{a}_{2}\left|\nabla f_{t}\right|^{2}+\dot{a}_{3} V+\dot{a}_{4} \\
\leq & -\frac{2 a_{2}}{n}\left(\frac{1}{\alpha a_{2}} F_{t}+\left(1-\frac{1}{\alpha}\right)\left|\nabla f_{t}\right|^{2}-\left(\frac{a_{3}}{\alpha a_{2}}+\frac{1}{2}\right) V-\frac{a_{4}}{\alpha a_{2}}\right)^{2} \\
& -a_{3} \Delta V-\left(a_{2}+2 a_{3}\right)\left\langle\nabla f_{t}, \nabla V\right\rangle+\frac{\dot{a}_{2}}{a_{2}} F_{t}+\left(\dot{a}_{3}-\frac{\dot{a}_{2} a_{3}}{a_{2}}\right) V+\dot{a}_{4}-\frac{\dot{a}_{2} a_{4}}{a_{2}}
\end{aligned}
$$

Let $G_{t}=\eta F_{t}$, where η is a cut off function. Let us fix a time t. At a maximum point of G_{t}, we have

$$
\nabla F_{t}=-\frac{F_{t}}{\eta} \nabla \eta, \quad \Delta F_{t} \leq \frac{2 F_{t}}{\eta^{2}}|\nabla \eta|^{2}-\frac{F_{t}}{\eta} \Delta \eta, \quad \dot{F}_{t} \geq 0
$$

Therefore,

$$
\begin{aligned}
-\frac{2 F_{t}}{\eta^{2}}|\nabla \eta|^{2}+\frac{F_{t}}{\eta} \Delta \eta+2 \frac{F_{t}}{\eta}\left\langle\nabla f_{t}, \nabla \eta\right\rangle & \leq-\frac{2 a_{2}}{n}\left(\frac{1}{\alpha a_{2}} F_{t}+\left(1-\frac{1}{\alpha}\right)\left|\nabla f_{t}\right|^{2}-\left(\frac{a_{3}}{\alpha a_{2}}+\frac{1}{2}\right) V-\frac{a_{4}}{\alpha a_{2}}\right)^{2} \\
& -a_{3} \Delta V-\left(a_{2}+2 a_{3}\right)\left\langle\nabla f_{t}, \nabla V\right\rangle+\frac{\dot{a}_{2}}{a_{2}} F_{t}+\left(\dot{a}_{3}-\frac{\dot{a}_{2} a_{3}}{a_{2}}\right) V+\dot{a}_{4}-\frac{\dot{a}_{2} a_{4}}{a_{2}} .
\end{aligned}
$$

Let $r:[0, \infty) \rightarrow[0,1]$ be a function such that $r(x)=1$ if $x \leq R, r(x)=0$ if $x \geq 2 R, r^{\prime} \leq 0, \frac{r^{\prime}(x)^{2}}{r(x)} \leq \frac{C}{R^{2}}$, and $\left|r^{\prime \prime}\right| \leq \frac{C}{R^{2}}$, where $C>0$ is a constant. Let us fix a point x_{0} and let us denote the ball of radius R centered at x_{0} by B_{R}. Let $\eta=r\left(d\left(x_{0}, x\right)\right)$, where $d\left(x_{0}, x\right)$ is the distance from x_{0} to x. It follows that

$$
\frac{|\nabla \eta|^{2}}{\eta} \leq \frac{C}{R^{2}} .
$$

Since the Ricci curvature is non-negative, we have

$$
\Delta \eta \geq-\frac{C}{R^{2}}
$$

by the Laplacian comparison theorem.
Then

$$
\begin{aligned}
-\frac{3 C F_{t}}{\eta R^{2}}-\frac{2 \sqrt{C} F_{t}^{3 / 2}}{\sqrt{\eta} R} \frac{\left|\nabla f_{t}\right|}{\sqrt{F_{t}}} & \leq-\frac{2 a_{2}}{n}\left(\frac{1}{\alpha a_{2}} F_{t}+\left(1-\frac{1}{\alpha}\right)\left|\nabla f_{t}\right|^{2}-\frac{a_{4}}{\alpha a_{2}}\right)^{2} \\
& +\frac{\alpha n k^{2}}{2} a_{2}+a_{2}(\alpha-1)\left|\nabla f_{t}\right||\nabla V|+\frac{\dot{a}_{2}}{a_{2}} F_{t}+\dot{a}_{4}-\frac{\dot{a}_{2} a_{4}}{a_{2}} .
\end{aligned}
$$

Let $H_{t}=\frac{\left|\nabla f_{t}\right|^{2}}{F_{t}}$ and assume that $|\nabla V| \leq C$, then

$$
\begin{aligned}
-\frac{3 C F_{t}}{\eta R^{2}}-\frac{2 \sqrt{C} \sqrt{H_{t}} F_{t}^{3 / 2}}{\sqrt{\eta} R} \leq & -\frac{2 a_{2} F_{t}^{2}}{n}\left(\frac{1}{\alpha a_{2}}+\left(1-\frac{1}{\alpha}\right) H\right)^{2}+\frac{4 a_{4} F_{t}}{n \alpha}\left(\frac{1}{\alpha a_{2}}+\left(1-\frac{1}{\alpha}\right) H_{t}\right) \\
& +a_{2} C(\alpha-1) \sqrt{F_{t} H_{t}}+\frac{\dot{a}_{2}}{a_{2}} F_{t}+\dot{a}_{4}-\frac{\dot{a}_{2} a_{4}}{a_{2}}-\frac{2 a_{4}^{2}}{\alpha^{2} n a_{2}}+\frac{\alpha n k^{2}}{2} a_{2} .
\end{aligned}
$$

Let us choose a_{4} such that $\frac{a_{4}}{a_{2}}=-\frac{n \alpha^{3 / 2} k}{2} \operatorname{coth}\left(\frac{k t}{\sqrt{\alpha}}\right)$. Note that $\frac{a_{4}}{a_{2}}$ satisfies the following Riccati equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{a_{4}}{a_{2}}\right)-\frac{2}{\alpha^{2} n}\left(\frac{a_{4}}{a_{2}}\right)^{2}+\frac{\alpha n k^{2}}{2}=0 .
$$

Then

$$
\begin{aligned}
0 \leq & -\frac{2 a_{2} G_{t}^{2}}{n}\left(\frac{1}{\alpha a_{2}}+\left(1-\frac{1}{\alpha}\right) H_{t}\right)^{2}+\frac{4 a_{4} \eta G_{t}}{n \alpha}\left(\frac{1}{\alpha a_{2}}+\left(1-\frac{1}{\alpha}\right) H_{t}\right) \\
& +a_{2} C(\alpha-1) \sqrt{G_{t} H_{t}}+\frac{\dot{a}_{2}}{a_{2}} \eta G_{t}+\frac{3 C G_{t}}{R^{2}}+\frac{2 \sqrt{C} \sqrt{H_{t}} G_{t}^{3 / 2}}{R} .
\end{aligned}
$$

Since $a_{4} \leq 0$, it follows that

$$
\begin{aligned}
0 \leq & -\frac{2 a_{2} G_{t}^{2}}{n}\left(\frac{1}{\alpha a_{2}}+\left(1-\frac{1}{\alpha}\right) H_{t}\right)^{2}+\left(\frac{\dot{a}_{2}}{a_{2}}+\frac{4 a_{4}}{n \alpha^{2} a_{2}}\right) \eta G_{t} \\
& +a_{2} C(\alpha-1) \sqrt{G_{t} H_{t}}+\frac{3 C G_{t}}{R^{2}}+\frac{2 \sqrt{C} \sqrt{H_{t} G_{t}^{3 / 2}}}{R} .
\end{aligned}
$$

Since $\alpha \geq 1$, a computation shows that

$$
\frac{\dot{a}_{2}}{a_{2}}+\frac{4 a_{4}}{n \alpha^{2} a_{2}}=2 k \operatorname{coth}(k t)-\frac{2 k}{\sqrt{\alpha}} \operatorname{coth}\left(\frac{k t}{\sqrt{\alpha}}\right) \geq 0
$$

Therefore,

$$
\begin{aligned}
0 \leq & -\frac{2 a_{2} G_{t}^{2}}{n}\left(\frac{1}{\alpha a_{2}}+\left(1-\frac{1}{\alpha}\right) H_{t}\right)^{2}+\left(\frac{\dot{a}_{2}}{a_{2}}+\frac{4 a_{4}}{n \alpha^{2} a_{2}}\right) G_{t} \\
& +a_{2} C(\alpha-1) \sqrt{G_{t} H_{t}}+\frac{3 C G_{t}}{R^{2}}+\frac{2 \sqrt{C} \sqrt{H_{t}} G_{t}^{3 / 2}}{R}
\end{aligned}
$$

It follows that G_{t} and hence the restriction of F_{t} to the ball B_{R} are less than or equal to the largest zero of the function

$$
\begin{aligned}
x \mapsto- & \frac{2 a_{2} x^{2}}{n}+\left(\frac{\dot{a}_{2}}{a_{2}}+\frac{4 a_{4}}{n \alpha^{2} a_{2}}\right) B x \\
& +a_{2} A C(\alpha-1) \sqrt{x}+\frac{3 B C x}{R^{2}}+\frac{2 A \sqrt{C} x^{3 / 2}}{R}
\end{aligned}
$$

where $A=\frac{\sqrt{H_{t}}}{\left(\frac{1}{\alpha a_{2}}+\left(1-\frac{1}{\alpha}\right) H_{t}\right)^{2}}$ and $B=\frac{1}{\left(\frac{1}{\alpha a_{2}}+\left(1-\frac{1}{\alpha}\right) H_{t}\right)^{2}}$
Since $B \leq \alpha^{2} a_{2}^{2}$ and $A \leq C$ are bounded independent of R, we can let $R \rightarrow \infty$. Therefore, F_{t} is less than or equal to the largest zero of the function

$$
\begin{equation*}
x \mapsto-\frac{2 a_{2} x^{2}}{n}+\left(\alpha^{2} a_{2} \dot{a}_{2}+\frac{4 a_{2} a_{4}}{n}\right) x+a_{2} A C(\alpha-1) \sqrt{x} \tag{9.1}
\end{equation*}
$$

Now let $\alpha \rightarrow 1$ in (9.1). Then we have $F_{t} \leq 0$. The result follows.

References

[1] A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint. Vol. 87 of Encyclopaedia of Mathematical Sciences, Control Theory and Optimization, II. Springer-Verlag, Berlin (2004).
[2] B. Andrews, Harnack inequalities for evolving hypersurfaces. Math. Z. 217 (1994) 179-197.
[3] D.G. Aronson and P. Bénilan, Régularité des solutions de l'q́uation des milieux poreux dans RN. C. R. Acad. Sci. Paris Sér. $A-B 288$ (1979) A103-A105.
[4] D. Bakry and M. Ledoux, A logarithmic Sobolev form of the Li-Yau parabolic inequality. Rev. Mat. Iberoam. 22 (2006) 683-702.
[5] A.A. Borisenko and V. Miquel, Gaussian mean curvature flow. J. Evol. Eqn. 10 (2010) 413-423.
[6] S. Brendle, A generalization of Hamilton's differential Harnack inequality for the Ricci flow. J. Differ. Geom. 82 (2009) 207-227.
[7] P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Vol. 58 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA (2004).
[8] H.-D. Cao, On Harnack's inequalities for the Kähler-Ricci flow. Invent. Math. 109 (1992) 247-263.
[9] H.-D. Cao and L. Ni, Matrix Li-Yau-Hamilton estimates for heat equation on Kähler manifolds. Math. Ann. 331 (2005) 795-807.
[10] H.-D. Cao and S.-T. Yau, Gradient estimates, Harnack inequalities and estimates for heat kernels of the sum of squares of vector fields. Math. Z. 211 (1992) 485-504.
[11] J. Cheeger and S.-T. Yau, A lower bound for the heat kernel. Commun. Pure Appl. Math. 34 (1981) 465-480.
[14] B. Chow, On Harnack's inequality and entropy for the Gaussian curvature flow. Commun. Pure Appl. Math. 44 (1991) $469-483$.
[13] B. Chow, The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature. Commun. Pure Appl. Math. 45 (1992) 1003-1014.
[14] B. Chow, On Harnack's Inequality and Entropy for the Gaussian curvature flow. Commun. Pure Appl. Math. 44 (1991) 469-483.
[15] L.C. Evans, Partial differential equations. Vol. 19 of Grad. Stud. Math., 2nd edition. American Mathematical Society, Providence, RI (2010).
[16] P.B. Gilkey, The spectral geometry of a Riemannian manifold. J. Differ. Geom. 10 (1975) 601-618.
[17] M. Gromov, Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. 13 (2003) 178-215.
[18] R. Hamilton, A matrix Harnack estimate for the heat equation. Commun. Anal. Geom. 1 (1993) $113-126$.
[19] R. Hamilton, The Harnack estimate for the Ricci flow. J. Differ. Geom. 37 (1993) 225-243.
[20] R. Hamilton, Monotonicity formulas for parabolic flows on manifolds. Commun. Anal. Geom. 1 (1993) $127-137$.
[21] R. Hamilton, Harnack estimate for the mean curvature flow. J. Differ. Geom. 41 (1995) 215-226.
[22] G. Huisken, Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31 (1990) 285-299.
[23] P.W.Y. Lee, Differential Harnack inequality for a family of sub-elliptic diffusion equations on Sasakian manifolds. Preprint arXiv:1302. 3315 (2013).
[24] P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator. Acta Math. 156 (1986) 153-201.
[25] P. Lu, L. Ni, J-L Vázquez and C. Villani, Local Aronson-Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds. J. Math. Pures Appl. 91 (2009) 1-19.
[26] J. Moser, A Harnack Inequality for Parabolic Differential Equations. Commun. Pure Appl. Math. 17 (1964) $101-134$.
[27] L. Ni, A matrix Li-Yau-Hamilton inequality for Kähler-Ricci flow. J. Differ. Geom. 75 (2007) 303-358.
[28] L. Ni, Monotonicity and Li-Yau-Hamilton inequalities. Geometric flows. Vol. 12 of Surv. Differ. Geom. Int. Press, Somerville, MA (2008) 251-301.
[29] G. Perelmann, The entropy formula for the Ricci flow and its geometric applications. Preprint arXiv:math/0211159 (2002).
[30] O.C. Schnürer and K. Smoczyk, Evolution of hypersurfaces in central force fields. J. Reine Angew. Math. 550 (2002) 77-95.
[31] R.T. Seeley, Complex powers of an elliptic operator. Singular Integrals Proc. of Sympos. Pure Math., Chicago, Ill., 1966. Amer. Math. Soc., Providence, R.I. (1967) 288-307.
[32] C. Villani, Optimal transport. Old and new. Vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (2009).
[33] S.T. Yau, Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28 (1975) $201-228$.

[^0]: Keywords and phrases. Differential Harnack inequality, monotonicity formula.
 1 Room 216, Lady Shaw Building, The Chinese University of Hong Kong, Shatin, Hong Kong, P.R. China. wylee@math.cuhk.edu.hk

