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CONVEX COMBINATIONS OF LOW EIGENVALUES,
FRAENKEL ASYMMETRIES AND ATTAINABLE SETS ∗

Dario Mazzoleni1 and Davide Zucco2,3

Abstract. We consider the problem of minimizing convex combinations of the first two eigenvalues of
the Dirichlet–Laplacian among open sets of R

N of fixed measure. We show that, by purely elementary
arguments, based on the minimality condition, it is possible to obtain informations on the geometry of
the minimizers of convex combinations: we study, in particular, when these minimizers are no longer
convex, and the optimality of balls. As an application of our results we study the boundary of the
attainable set for the Dirichlet spectrum. Our techniques involve symmetry results à la Serrin, explicit
constants in quantitative inequalities, as well as a purely geometrical problem: the minimization of the
Fraenkel 2-asymmetry among convex sets of fixed measure.
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1. Introduction

Spectral optimization problems have received a lot of attention in the last years, with a particular emphasis
to extremum problems for eigenvalues of elliptic operators (see the books [11,23,25]). A typical problem consists
in the minimization of a functional defined in terms of the eigenvalues of the Laplace operator among sets of
fixed measure. Here to simplify the exposition we will always consider the measure constraint equal one. The
first issue for this kind of problems concerns the existence of an optimal shape: a result proved in the 1990s
by Buttazzo and Dal Maso [16] is even now a cornerstone of the matter, and, for a large class of functionals,
it ensures the existence of a solution in the class of quasi-open sets of fixed measure (a priori contained into a
given box, which provides the necessary compactness to prove existence). Moreover, the regularity of an optimal
shape is a highly difficult problem and a general regularity theory is nowadays not available: even a proof
which guarantees that an optimal shape is open, and not merely quasi-open, is far from being trivial, see [15].
Another important point consists in proving some geometric properties of optimal shapes, such as connectedness,
convexity, symmetry with respect to some axis, and so on. By the way, only for few special functionals optimal
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shapes are explicitly known: classical examples are the lowest eigenvalues of the Dirichlet–Laplacian. We recall
that, for a given integer N ≥ 2 and an open set Ω ⊂ R

N with finite measure, the first and second eigenvalues
of the Dirichlet–Laplacian can be defined as

λ1(Ω) := min
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u(x)|2dx∫

Ω |u(x)|2dx
, λ2(Ω) := min

u∈H1
0 (Ω)\{0}∫

Ω
uu1=0

∫
Ω
|∇u(x)|2dx∫

Ω |u(x)|2dx
,

where these minima are attained, respectively, by the first and second eigenfunctions u1 and u2 (which are
unique, up to a multiplicative constant).

The interest in the minimization of the first eigenvalue goes back to a conjecture due to Lord Rayleigh in
1877, then proved by Faber and Krahn in the 1920s. The Faber–Krahn inequality asserts that of all open sets
of fixed measure, the ball has the minimum first eigenvalue: in formula, for every open set Ω ⊂ R

N with unit
measure

λ1(Ω) ≥ λ1(B) = ω
2/N
N j2

N/2−1, (1.1)

where ωN denotes the measure of the ball in R
N with unit radius, jn the first positive zero of the Bessel function

Jn, and B the open ball of unit measure in R
N . Equality in (1.1) holds if and only if Ω is that ball (up to sets of

capacity zero). The same issue for the second eigenvalue is known as the Krahn–Szegö inequality, which asserts
that two disjoint open balls of half measure each are the unique (up to sets of capacity zero) minimizer, namely
for every open set Ω ⊂ R

N with unit measure

λ2(Ω) ≥ λ2(B− ∪ B+) = 22/Nλ1(B) = (2ωN)2/N j2
N/2−1, (1.2)

where B− ∪ B+ is the union of two equal and disjoint open balls of half measure each, and equality in (1.2)
holds if and only if Ω = B− ∪ B+.

Starting with the important work of Keller and Wolf [27], there was a strong interest for convex combinations
of the first two eigenvalues of the Dirichlet–Laplacian, namely the functional Ft defined, for every t ∈ (0, 1), as

Ft(Ω) := tλ1(Ω) + (1 − t)λ2(Ω), (1.3)

where Ω ⊂ R
N is an open set of finite measure. Then, the corresponding spectral optimization problem writes as

min
{
Ft(Ω) : Ω ⊂ R

N , Ω open, |Ω| = 1
}
. (1.4)

The existence of a minimizer for this problem is now well understood and is guaranteed by a general theory
recently developed in the works [10, 15, 29], all based on the above mentioned result [16], but with the new
difficulty of working in the entire space R

N . Notice that, all these results guarantee the existence of an optimal
shape in the larger class of quasi-open sets, and only a posteriori one proves that a minimizer of problem (1.4)
is in fact open, and so problem (1.4) is well-posed. Moreover, in [28] it was proved that, for every t ∈ (0, 1),
minimizers of (1.4) are connected (more generally, this topological property was studied for minimizers of convex
combinations of the first three eigenvalues). In two dimensions (N = 2), some numerical computations on the
shape of these minimizers appeared in [26]. We sum up all these results in the following theorem.

Theorem 1.1. For every t ∈ (0, 1), there exists a minimizer in (1.4). Moreover, every minimizer Ωt is a
connected set of finite perimeter with uniformly bounded diameter (depending only on the dimension N).

Our goal here is to show that, by purely elementary arguments essentially based on the minimality condition,
it is possible to obtain interesting informations on the geometry of the minimizers for problem (1.4), and to
recover some known results on the boundary of the attainable set for the Dirichlet spectrum (see [2, 3, 9, 27]).

Notice that, if t = 1 the convex combination (1.3) is minimized by the ball with unit measure (because
of the Faber–Krahn inequality (1.1)), while if t = 0, by two equal balls of half measure each (because of the
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Krahn–Szegö inequality (1.2)). Therefore, as t moves from 1 to 0, one expects the shape of a minimizer Ωt

deforming from a ball of unit measure to two balls of half measure each; in particular, it is natural to conjecture
that at some value of t the convexity of all the minimizers in (1.4) is lost (as was numerically observed in [26], in
two dimensions, the critical value for t is expected to be 1/2). This question also appeared in [23] as the Open
Problem 21. We give a first answer to this question, though non-optimal. All the results of this paper, unless
otherwise specified, will hold in every dimension N ≥ 2.

Theorem 1.2. There exists a threshold T > 0 such that, for all t ∈ (0, T ), every minimizer in (1.4) is no
longer convex.

We provide a quantitative proof of this theorem, namely we explicitly construct the threshold T via the
eigenvalues of the Dirichlet–Laplacian (3.12) (cf . with [14], Sect. 5.3 where a similar question was analyzed
in a different context, and whose strategy of proof could be adapted to prove Theorem 1.2, however without
getting an explicit value for T ). To be more concrete, in two dimensions, we provide a numerical lower bound
on T using a quantitative Krahn–Szegö inequality involving the so-called Fraenkel 2-asymmetry. Therefore,
we are naturally led to consider a purely geometrical problem, which is probably the most innovative part of
the paper: the minimization of the Fraenkel 2-asymmetry among convex sets of given area. We show that the
mobile, i.e., the intersection of the convex hull of two tangent balls with a strip, see Definition 2.2, is the unique
minimizer satisfying an isoperimetric inequality for the Fraenkel 2-asymmetry (2.10). An explicit value for the
constant in the quantitative Krahn–Szegö inequality will be also needed. This opens a new area of application
for quantitative inequalities.

As second question, we analyze the optimality of a special convex set: the ball, generalizing a result from [27].

Theorem 1.3. For all t ∈ (0, 1) the ball B is never a minimizer in (1.4).

We prove more generally that the second eigenvalue of a minimizer in (1.4) has to be simple and, as a
consequence of the multiplicity of the second eigenvalue over balls, we immediately get the result in Theorem 1.3.
The proof of the simplicity of the second eigenvalue relies on some ideas developed in [13, 23], with the help of
a classical symmetry result due to Serrin [31] (see also [20]).

As an application of our results, we show how to get informations on the shape of the attainable set, namely
the subset of the plane described by the range of the first two eigenvalues of the Dirichlet–Laplacian

E :=
{
(x, y) ∈ R

2 : x = λ1(Ω), y = λ2(Ω), Ω ⊂ R
N , Ω open, |Ω| = 1

}
. (1.5)

This set was introduced in [27], and then deeply studied in [12] (see also [2, 3, 9]), where several geometrical
properties of E were discussed (the closedness of E is important for the existence of optimal shapes for non
monotone functionals see [12]).

The link between problem (1.4) and the set E is the following: for a fixed t ∈ (0, 1) a minimizer Ωt in (1.4)
corresponds to the first point of E of coordinates (λ1(Ωt), λ2(Ωt)) that we reach with a line tx + (1 − t)y = a
increasing the value a, that is PΩt := (λ1(Ωt), λ2(Ωt)) is one of the intersection points of the tangent line
to E with slope t/(t − 1). In particular, if t = 1 the tangent line x = λ1(B) has a unique intersection point
corresponding to the ball B (because of the Faber–Krahn inequality (1.1)), while if t = 0, the tangent line
y = λ2(Θ) has a unique intersection point corresponding to the two balls B− ∪ B+ (because of the Krahn–
Szegö inequality (1.2)).

Therefore, in Theorem 4.2, we will present a new strategy for studying the asymptotic behavior of the
boundary of E near the points corresponding to B and B− ∪ B+, extending to all dimensions a result proved
in [27] only in two dimensions, and recovering the result proved in [9]. Indeed, according to [2, 3, 9, 27], the
common strategy to study the asymptotic behavior of ∂E consists of two steps: the construction, through a
parameter ε > 0, of an explicit perturbation of the set corresponding to the limit point on the boundary of E
(i.e., a ball or two balls) and then the computation of the corresponding limit as ε → 0. Here instead, to compute
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such a limit, we rely on the minimality condition of the minimizers of convex combinations (3.1) without any
explicit construction. Moreover, looking at the boundary of the attainable set through convex combinations is
very useful, since it works in all dimensions, and can be applied to other attainable sets with different constraints.

We suspect that to properly understand the boundary behavior of the attainable set, one has to carefully
analyze problem (1.4). For this reason we restate the long-standing conjecture about the convexity of the
attainable set in the language of the minimizers of convex combinations of the lowest Dirichlet eigenvalues.
Notice that the link of problem (1.4) with the attainable set is not new, in fact it was used in [27] (and more
recently in [2,3]) to draw numerically the boundary of the attainable set. However, up to our knowledge, it was
never used to study analytic results.

The paper is organized as follows. In Section 2 we derive an isoperimetric inequality for the Fraenkel 2-
asymmetry. In Section 3 we prove Theorems 1.2 and 1.3. In Section 4 we show some applications to the
attainable set. In Appendix A we compute explicit constants in quantitative inequalities.

Notation. Throughout the paper, we always denote by Ωt a minimizer of problem (1.4) for t ∈ (0, 1), by B the
open ball of unit measure and by B− ∪ B+ two open balls of half measure each, saving the particular notation
Θ when their centers are on the x-axis and they are tangent in the origin (i.e., their closures are touching in the
origin). We use the symbol ⊂ to denote the strict inclusion between sets, while ⊆ if the inclusion holds possibly
with the equality, and we use 	 for the symmetric difference between sets. We write diam (·) and hull(·) to
denote the diameter and the convex envelope of a set, respectively. We use ≈ to denote an approximate value
for a constant and we always consider only three decimal digits.

2. An isoperimetric inequality for the Fraenkel 2-asymmetry

Quantitative inequalities are refinements of isoperimetric inequalities: they measure how far a set is from the
optimal shape in terms of the deviation of the functional to its minimum value (for a brief overview on the topic
see Appendix A). It is then important to look at the right quantity that provides such a measure.

The most well-known example is the so called Fraenkel asymmetry, which is often used when balls are optimal
in an isoperimetric inequality: for an open set Ω ⊂ R

N with unit measure, it is defined as

A(Ω) := min {|Ω	B| : B open ball, |B| = 1}. (2.1)

In this paper we will rely on the Krahn–Szegö inequality (1.2) in a quantitative form, and, since in this case
two disjoint balls of equal measure are the optimal set, a different asymmetry is needed. According to [7], the
Fraenkel 2-asymmetry is, for an open set Ω ⊂ R

N with unit measure, defined as

A2(Ω) := min {|Ω	(B− ∪ B+)| : B−, B+ disjoint open balls, |B−| = |B+| = 1/2}. (2.2)

We point out that if Ω and E are two measurable sets of R
N of the same measure |Ω| = |E|, then

|Ω	E| = 2|Ω \ E| = 2|E \ Ω|, (2.3)

and this allows to write (2.1) and (2.2) in a slightly different way, choosing E = B or E = B− ∪ B+. The
relation (2.3) will be used several times in the sequel.

A quantitative Krahn–Szegö inequality was proved by Brasco and Pratelli in [7]: they showed the existence
of a constant CKS > 0 (depending on the dimension) such that for all open sets Ω ⊂ R

N of finite measure
|Ω| = |B− ∪ B+|,

λ2(Ω)
λ2(B− ∪ B+)

− 1 ≥ CKSA2(Ω)2(N+1). (2.4)

Notice that CKS can be explicitly computed, see Appendix A. In two dimensions a quantitative Faber–Krahn
inequality proved by Bhattacharya in [6], allows to improve the exponent of (2.4), still with a constant that
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can be explicitly computed: more precisely, if N = 2 there exists βKS > 0 such that for all open sets Ω ⊂ R
2 of

finite measure |Ω| = |B− ∪ B+|,
λ2(Ω)

λ2(B− ∪ B+)
− 1 ≥ βKSA2(Ω)9/2, (2.5)

where the constant βKS, according to Appendix A, can be chosen as

βKS =
1

24j2
0

π3/2

(π + 2 + 2π1/3)9/2
× 10−5 ≈ 3.331 × 10−11. (2.6)

In this section we analyze the following purely geometrical problem: minimize the Fraenkel 2-asymmetry
among convex sets

inf{A2(Ω) : Ω ⊂ R
N , Ω open and convex, |Ω| = 1}. (2.7)

The reason for studying problem (2.7) is to quantitatively answer to Theorem 1.2. We focus only on the two
dimensional case, since in this case we are able to identify the unique minimizer for this problem, although some
of the results that we prove hold in any dimension (see Rem. 2.5).

The condition for the balls B−, B+ to be disjoint in (2.2) prevents two balls to overlap, but not their closures
to be tangent. This occurs, in particular, whenever the set Ω is convex.

Lemma 2.1. Let Ω ⊂ R
2 be a convex open set with unit measure. The minimum in the definition of the

Fraenkel 2-asymmetry (2.2) is attained by two tangent balls (i.e. those whose closures are touching in a point).

Proof. We prove that tangent balls are always better competitors than non-tangent balls. Let B− and B+ be
two admissible balls for (2.2) which are non-tangent. We may assume both Ω∩B− and Ω∩B+ to be non-empty
sets, otherwise the quantity |Ω	(B−∪B+)| can be decreased by any other couple of non-tangent balls satisfying
this property. Therefore, the boundary of the convex envelope hull

(
(Ω ∩B−)∪ (Ω ∩B+)

)
outside the balls B−

and B+ is made exactly by two segments. By moving and rotating the coordinate system we may assume these
segments to be onto the half lines y = ±mx with x ≥ 0, or in the limiting case y = ±m with x ≥ 0, for a suitable
choice of the constant m > 0. Possibly exchanging the role of B− and B+, we can also suppose B− to be on the
left with respect to B+. All these assumptions combined with the convexity of Ω guarantee the following fact:
to every point P1 = (x1, y) ∈ Ω ∩B− there exists a point (with the same ordinate) P2 = (x2, y) ∈ Ω ∩B+, and
moreover, the whole segment P1P2 ⊆ Ω. Therefore, if τ denotes the translation toward the right, mapping the
ball B− into the (left) tangent ball τ(B−) to B+, this means that τ(Ω ∩ B−) = τ(Ω) ∩ τ(B−) ⊆ Ω ∩ τ(B−).
In particular |Ω ∩ B−| = |τ(Ω ∩ B−)| ≤ |Ω ∩ τ(B−)|, and so passing to the complementary sets yields that
|(B− ∪B+) \Ω| ≥ |(τ(B−)∪B+) \Ω|, which, together with (2.3) for E = B− ∪B+, implies that the functional
to be minimized has been not increased on tangent balls. We remark that the configuration of the two optimal
balls is not always unique (one can think, for example to Ω as a long rectangle), but also in this case, two
tangent balls are one of the admissible optimal configuration, and we choose them for the next steps. �

We are ready to analyze in detail problem (2.7). Therefore, we introduce the following definition.

Definition 2.2. We call mobile the open convex set M given by the intersection of the stadium hull(Θ) (cen-
tered in the origin) with the horizontal strip {(x, y) ∈ R

2 : −h ≤ y ≤ h}, where h > 0 is chosen so that |M | = 1
(see Fig. 1).

For the sake of the reader we immediately compute the right value of h deducing the value of the Fraenkel
2-asymmetry for the mobile M .

Lemma 2.3. The height h in Definition 2.2 is approximately 0.336. Therefore, the Fraenkel 2-asymmetry for
the mobile M is

A2(M) =
16h√
2π

− 2 ≈ 0.147. (2.8)
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hull(Θ)
M

Figure 1. The stadium hull(Θ) and the mobile M .

Proof. From Lemma 2.1 and Definition 2.2 it is clear that A2(M) = |M	Θ|. Denoting by X the region delimited
by the points O, Q, S (see Fig. 2), and by Y the set {(x, y) ∈ Θ : x < 0, y > h} yields that |M \ Θ| = 4|X |
and |Θ \ M | = 4|Y |, therefore, to compute A2(M) it is sufficient to compute the area of X and of Y . To this
purpose, we introduce the smallest angle α made by the radius PQ and the segment PR, where the height h of
Definition 2.2 is linked to α by

h =
1√
2π

cosα, (2.9)

since Θ is made by two balls of radius 1/
√

2π. Now the area of the rectangle OPRS, of the triangle PQR and
of the circular sector OPQ are, respectively,

|OPRS| =
h√
2π

, |PQR| =
h

2

√
1
2π

− h2, |OPQ| =
1
4π

(π

2
− α

)
,

and then

|X | =
h√
2π

− h

2

√
1
2π

− h2 − 1
4π

(π

2
− α

)
, |Y | =

α

2π
− h

√
1
2π

− h2.

The constraint |M | = |Θ| = 1 yields (2.3) with E = Θ, thus imposing |X | = |Y | and recalling (2.9) the height
h have to satisfy the following equality:

h

√
1
2π

− h2 +
2h√
2π

− arccos(
√

2πh)
2π

=
1
4
,

which is solved by h ≈ 0.336. Moreover, plugging this equation and (2.9) into the formula for |Y | we obtain
A2(M) = 8|X | = 8|Y | which provides (2.8). �

Theorem 2.4 (Isoperimetric inequality for the Fraenkel 2-asymmetry). Among all convex open planar sets with
unit area, the mobile has the minimum Fraenkel 2-asymmetry, that is for every convex open set Ω ⊂ R

2 with
|Ω| = 1

A2(Ω) ≥ A2(M), (2.10)

and equality holds if and only if Ω = M .

Proof. For every convex and open set Ω, moving and rotating the coordinate system, from Lemma 2.1 we may
always assume the minimum in the definition of the Fraenkel 2-asymmetry to be reached by Θ, namely the two
balls of equal measure which are tangent in the origin and with centers on the x-axis. Therefore, recalling (2.3)
with E = Θ and noticing that A2(M) = 2|Θ \ M |, in order to prove (2.10) it is sufficient to prove the auxiliary
inequality

|Θ \ Ω| ≥ |Θ \ M | for every convex open set Ω ⊂ R
2 with |Ω| = 1. (2.11)
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X

Y

M

P
O

QR

α

S

h

Figure 2. The Fraenkel 2-asymmetry of the mobile M .

We show this inequality in several steps, starting with the existence result, and then listing several necessary
conditions that have to be satisfied by an optimal set.

(i) Existence of an optimal set.
The existence of an optimal set Ω∗ for the minimization problem

min{|Θ \ Ω| : Ω ⊂ R
2, Ω open and convex, |Ω| = 1}, (2.12)

is a straightforward consequence of the direct method of the Calculus of Variations. Indeed take a minimizing
sequence {Ωn} made of open and convex sets of unit area. The diameter diam (Ωn) is uniformly bounded,
otherwise from the area and the convexity constraints |Ωn ∩Θ| ↓ 0, and so |Θ \Ωn| ↑ 1, which is strictly greater
to the value attained by the mobile |Θ \ M | ≈ 0.073 (see Lem. 2.3).

Therefore, we can apply Proposition 2.4.3 and 2.4.4 of [11] to infer that we are minimizing a continuous
functional Ω �→ |Θ \ Ω| over a compact class of sets with respect to the uniform convergence.

(ii) An optimal set is included in the stadium hull(Θ).
Assume, by contradiction, that Ω∗ is not contained in the stadium hull(Θ), namely the following strict inclusion
holds:

Ω∗ ∩ hull(Θ) ⊂ Ω∗. (2.13)

Consider the non-decreasing (in the sense of set inclusion) family of dilated sets

Ω(r) := hull(rΩ∗ ∩ Θ), with r ∈ [1,∞). (2.14)

For r = 1, the corresponding set Ω(1) ⊂ Ω∗ and, in particular, |Ω(1)| < |Ω∗|. Indeed, the convex set Ω∗∩hull(Θ)
contains Ω∗ ∩Θ, thus, by definition of the convex envelope, hull(Ω∗ ∩Θ) ⊆ Ω∗ ∩ hull(Θ), which combined with
the assumption (2.13) provides the strict inclusion Ω(1) ⊂ Ω∗. For r = diamΘ, Ω(diam Θ) ⊃ hull(Θ), and, in
particular, |Ω(diamΘ)| > |Ω∗|. Since the function |Ω(r)| is continuous over [1, diam (Θ)], i.e. for a sequence of
real numbers rn → r, the convex sets Ω(rn) converge to Ω(r) for the L1 convergence of characteristic functions,
there exists r1 > 1 such that the convex set Ω(r1) defined by (2.14) with r = r1 satisfies the volume constraint
|Ω(r1)| = |Ω| = |Θ|. Therefore, Ω(r1) is an admissible competitor in (2.11) which, by definition (2.14), is so
that Ω∗ ∩Θ ⊂ Ω(r1)∩Θ (note that r1 is strictly greater than 1). Passing to the complementary sets, this strict
inclusion yields that

|Θ \ Ω∗| > |Θ \ Ω(r1)|,
contradicting the optimality of Ω∗.
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(iii) The closure of the boundary of an optimal set which is not included in ∂Θ is made by two connected
components, each of which is a segment.
From the previous step (ii), in particular (2.14), we know that the boundary of an optimal set which is not
included in the two balls Θ is made by exactly two connected components, each of which is a segment. Then,
we can consider the two supporting lines of Ω∗ passing through these two segments, denoting by E the region
between these two lines containing Ω∗. The region E is a strip, in the case the supporting lines are parallel,
otherwise a cone with a vertex outside hull(Θ) (if these lines would intersect in a point into hull(Θ), we would
have that |E ∩ hull(Θ)| < |Θ| and since Ω∗ ⊆ E ∩ hull(Θ) this would contradict the area constraint). Now
assuming, by contradiction, that point iii) does not hold, we would have the strict inequality

|E ∩ hull(Θ)| > |Ω∗|. (2.15)

Then, we consider the contracted family of convex sets

Ω(r) := rE ∩ hull(Θ), with r ∈ (0, 1), (2.16)

where now rE denotes the contraction of the cone E of factor r that keeps fixed its vertex, and we notice that
the function |Ω(r)| is continuous over (0, 1), i.e. for a sequence of real numbers rn → r in (0, 1), the convex sets
Ω(rn) converge to Ω(r) for the L1 convergence of characteristic functions. Moreover, as r → 1, from (2.15), we
have that |Ω(r)| > |Ω∗|, while as r → 0, the set rE shrinks to a line, thus in particular, |Ω(r)| → 0. Therefore,
there exists r2 < 1 such that the convex set Ω(r2) defined in (2.16) satisfies the area constraint |Ω(r2)| = |Ω|
and the strict inclusion Ω(r2) \ Θ ⊂ Ω∗ \ Θ gives |Ω(r2) \ Θ| < |Ω∗ \ Θ| (since r2 is strictly smaller than 1).
Recalling (2.3) with E = Θ yields

|Θ \ Ω∗| > |Θ \ Ω(r2)|,
contradicting the optimality of Ω∗.

(iv)The mobile is the optimal set.
Combining the steps (i) and (ii) with (iii) we know that an optimal set Ω∗ has the following form

Ω∗ = E ∩ hull(Θ), (2.17)

where E, as before, is a strip or a cone with a vertex outside hull(Θ) such that |E ∩ hull(Θ)| = 1. Now, the
boundary of this set is made by four pieces: two segments and two arc of circles. If for every cone Econe one
can find a strip Estrip which decreases the functional in (2.12), then optimizing among all sets of the form
Ω∗ = Estrip ∩ hull(Θ) would give that the symmetric strip is the best one, that is, according to Definition 2.2,
the mobile. Indeed, assume that the optimal set Ω∗ as in (2.17) is generated by a cone E = Econe, and, up to
a change of coordinates we may assume that it has on the boundary a segment which belongs to the half-plane
{y > 0} and that is not parallel to the line {y = 0}. We show how it is possible to rotate this segment decreasing
the functional in (2.12). Let us call l1 the supporting line generating this segment, P be the point on this line
with xP = 0, and assume that the following quantity is positive

d := |{y > 0} ∩ {x > 0} ∩ (E ∩ hull(Θ))| − |{y > 0} ∩ {x < 0} ∩ (E ∩ hull(Θ))| > 0.

Rotating the line l1 around the point P , so as to decrease d until d = 0, yields the line l2 parallel to {y = 0}.
Calling E2 the new set obtained from Econe with l2 in place of l1 we can see that the area has been increased,
namely |E2 ∩ hull(Θ)| > |Econe ∩ hull(Θ)|, and moreover |hull(Θ) \ E2| < |hull(Θ) \ Econe|. Now, we replace
the line l2 with a parallel line l3 and define a new set E3 so that |E3 ∩ hull(Θ)| = |Econe ∩ hull(Θ)|. Therefore
we have constructed a set E3 which satisfies the area constraint and so that the functional has been decreased
|hull(Θ) \ E3| < |hull(Θ) \ Econe|. The same strategy can be adapted if the quantity d < 0, and for the other
segment on the boundary.
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At the end, we constructed a better competitor Estrip and optimizing among all Estrip will provide that the
mobile is the unique minimizer, and the theorem is concluded. �

Remark 2.5. If N > 2 it seems more difficult to find the optimal set in (2.7). Nevertheless, some of the above
results can immediately generalized to all dimensions, such as Lemma 2.1 as well as the steps (i)–(iii) in the
proof of Theorem 2.4. As a by product, for N > 2, an optimal set Ω∗ in (2.7) is so that Ω∗ = E ∩hull(Θ) where
E is an N dimensional cone or strip.

3. Convex combinations of the lowest Dirichlet eigenvalues

3.1. Basic properties

We start discussing some properties of the functional Ft defined in (1.3) that follow from the definition of
minimality: we say that Ωt is a minimizer in (1.4) if for every admissible competitor Ω

tλ1(Ωt) + (1 − t)λ2(Ωt) ≤ tλ1(Ω) + (1 − t)λ2(Ω), (3.1)

and equivalently, rearranging the terms

λ1(Ωt) − λ1(Ω) + λ2(Ω) − λ2(Ωt) ≤ 1
t

(
λ2(Ω) − λ2(Ωt)

)
. (3.2)

Lemma 3.1. For s, t ∈ (0, 1) with s < t, let Ωs and Ωt be minimizers of the functionals Fs and Ft, respectively.
The following properties hold:

(i) the gap non-decreases λ2(Ωs) − λ1(Ωs) ≤ λ2(Ωt) − λ1(Ωt);
(ii) the first eigenvalue non-increases λ1(Ωs) ≥ λ1(Ωt);
(iii) the second eigenvalue non-decreases λ2(Ωs) ≤ λ2(Ωt);
(iv) a rescaled convex combination increases Fs(Ωs)/(1 − s) < Ft(Ωt)/(1 − t);
(v) the convex combination decreases Fs(Ωs) > Ft(Ωt).

Proof. The minimality (3.1) of Ωs for Fs with the competitor Ω = Ωt writes as

sλ1(Ωs) + (1 − s)λ2(Ωs) ≤ sλ1(Ωt) + (1 − s)λ2(Ωt), (3.3)

while the minimality (3.1) of Ωt for Ft with the competitor Ω = Ωs, as

tλ1(Ωt) + (1 − t)λ2(Ωt) ≤ tλ1(Ωs) + (1 − t)λ2(Ωs). (3.4)

Summing up (3.3) with (3.4) we get to

(t − s)(λ1(Ωt) − λ1(Ωs)) ≤ (t − s)(λ2(Ωt) − λ2(Ωs)), (3.5)

and by the assumption t − s > 0, we immediately obtain the first point i) of this lemma. If λ1(Ωs) < λ1(Ωt)
the right-hand side of (3.5) would be positive, hence λ2(Ωs) < λ2(Ωt), which would contradict (3.4). Then,
necessarily, the second point ii) of this lemma holds. Moreover, if λ2(Ωs) > λ2(Ωt), using point (ii) we get a
contradiction with (3.3), and so also the third point iii) holds. Now, from (3.3) and the fact that s/(1 − s) <
t/(1 − t), we have

s

(1 − s)
λ1(Ωs) + λ2(Ωs) ≤ s

(1 − s)
λ1(Ωt) + λ2(Ωt) <

t

(1 − t)
λ1(Ωt) + λ2(Ωt).

Therefore, Ft(Ω)/(1− t) = t/(1− t)λ1(Ω) + λ2(Ω) and we get point iv). To prove the last point v) we assume,
by contradiction, that Fs(Ωs) ≤ Ft(Ωt). Then recalling (3.4) we have

sλ1(Ωs) + (1 − s)λ2(Ωs) ≤ tλ1(Ωt) + (1 − t)λ2(Ωt) ≤ tλ1(Ωs) + (1 − t)λ2(Ωs),
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which leads to
(t − s)λ2(Ωs) ≤ (t − s)λ1(Ωs).

The assumption t − s > 0 implies that λ1(Ωs) = λ2(Ωs), contradicting the connectedness of Ωs proved
in [28]. �

Lemma 3.2. Let s, t ∈ (0, 1) with s < t. If X is a minimizer of both Fs and Ft, then X is also a minimizer of
Fr, for every r ∈ (s, t).

Proof. We assume, by contradiction, that X is not a minimizer of Fr, for some fixed r ∈ (s, t), and call by Y a
minimizer of the corresponding functional Fr. As in the proof of the previous lemma, using the minimality of
X for Fs and of Y for Fr we arrive to (3.5) with t = r, namely since s < r,

(λ1(Y ) − λ1(X)) < (λ2(Y ) − λ2(X)),

and, similarly, using the minimality of X for Ft and again of Y for Fr

(λ1(X) − λ1(Y )) < (λ2(X) − λ2(Y )),

where the strict inequalities are a consequence of the assumption Fr(Y ) < Fr(X). Summing up these two
inequalities, we reach a contradiction. �

3.2. On the non-convexity of the minimizers

Recently, Henrot and Oudet in [24] investigated the problem of minimizing the second eigenvalue of the
Dirichlet–Laplacian among sets of fixed measure and with an additional convexity contraint. Finding an explicit
minimizer in this class seems a very difficult problem: a possible candidate to be the optimum is the stadium
(i.e., the convex hull of two tangent balls), but this conjecture was refuted in [24]. Indeed any set which contains
on the boundary some pieces of balls can not be a minimizer. Nevertheless, in [24] it was proved the existence
of a convex minimizer ΩHO so that, for every open and convex set Ω ⊂ R

N with unit area,

λ2(Ω) ≥ λ2(ΩHO), (3.6)

(cf . (3.6) with the Krahn–Szegö inequality, where no-convexity constraint is required). Notice that, since ΩHO

has no pieces of balls on its boundary, in particular ΩHO �= B and

ω
2/N
N j2

N/2 = λ2(B) > λ2(ΩHO).

In two dimensions, Oudet in [30] and, more rencently, Antunes and Henrot in [2], made some numerical compu-
tations, showing the shape of the optimal set ΩHO and highlighting that ΩHO is very close to the stadium, both
from a geometrical and a numerical point of view; in particular

λ2(B− ∪ B+) = 2πj2
0 ≈ 36.336, λ2(ΩHO) ≈ 37.987, λ2(Ωstadium) ≈ 38.002, (3.7)

where Ωstadium is the stadium with |Ωstadium| = 1, i.e., a contracted version of the set hull(Θ).
We are now in position to prove Theorem 1.2.

Proof of Theorem 1.2. From the Krahn–Szegö inequality (1.2) and the connectedness of Ωt it follows that

λ2(B− ∪ B+) < λ2(Ωt), (3.8)

which plugged into (3.1) with Ω = B− ∪ B+ yields

λ1(Ωt) < λ1(B− ∪ B+). (3.9)
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Taking Ω = B− ∪ B+ also in (3.2) and dividing therein by the negative quantity λ2(B− ∪ B+) − λ2(Ωt)
(recall (3.8)) we get to

λ1(B− ∪ B+) − λ1(Ωt)
λ2(Ωt) − λ2(B− ∪ B+)

+ 1 ≥ 1
t
· (3.10)

From (3.8) and (3.9), the ratio on the left-hand side of this inequality turns out to be a positive number; therefore,
we can use the Faber–Krahn inequality (1.1) to estimate λ1(Ωt) at the numerator of this ratio. Moreover, if Ωt

would be a convex set, we could also use (3.6) to estimate λ2(Ωt) at the denominator of this ratio, obtaining
the following uniform bound on t:

t ≥ 1
λ1(B−∪B+)−λ1(B)

λ2(ΩHO)−λ2(B−∪B+) + 1
· (3.11)

Calling T the quantity on the right-hand side of this inequality, the Krahn–Szegö inequality for convex sets
gives λ2(ΩHO) − λ2(B− ∪ B+) > 0, thus T > 0. Therefore, if t < T , Ωt can not be convex. �

The proof of Theorem 1.2 is constructive and reveals an explicit expression for the threshold T in terms of
the eigenvalues of the Dirichlet–Laplacian.

Corollary 3.3. The threshold T in Theorem 1.2 has the following expression:

T = 1 − (22/N − 1)λ1(B)
λ2(ΩHO) − λ1(B)

, (3.12)

where ΩHO is a minimizer in (3.6). In two dimensions, it turns out that

T ≥ 1 − 1
1 + 2βKSA2(M)9/2

≈ 1.192 × 10−14, (3.13)

where the constants βKS and A2(M) are as in (2.6) and (2.10) respectively.

Proof. Define as T the quantity on the right-hand side of (3.11). Noticing that λ1(B− ∪B+) = λ2(B− ∪B+) =
22/Nλ1(B) and simplifying, we reach (3.12). Moreover, plugging, the quantitative Krahn–Szegö inequality (2.4)
into (3.12), yields a lower bound on T , which is independent on the eigenvalues of the Dirichlet–Laplacian

T ≥ 1 − (22/N − 1)
(22/N − 1) + 22/NCKSA2(ΩHO)2(N+1)

·

In two dimensions, on the other hand, one can use (2.5), (2.6) and Theorem 2.4 together with (2.8) to get the
explicit value in (3.13). �
Remark 3.4. The explicit value for the lower bound to the threshold T is not very accurate, mostly due to
the fact that the constant βKS is not the optimal one, but we believe it is important to show that a numerical
value can actually be provided. Moreover, if N = 2, plugging the numerical computation of λ2(ΩHO) recalled
in (3.7) into (3.12) and using λ1(B) = πj2

0 ≈ 18.168, reveals a numerical approximation for the threshold defined
by (3.12):

T ≈ 0.083.

3.3. The ball never minimizes the convex combination

For the proof of Theorem 1.3 we need the following result.

Proposition 3.5. For a fixed t ∈ (0, 1), let Ωt be a minimizer of problem (1.4). If the boundary of Ωt is of
class C2 and connected, then λ2(Ωt) is simple, namely λ1(Ωt) < λ2(Ωt) < λ3(Ωt). Moreover, on the boundary
of Ωt, the following optimality condition holds:

t |∇u1(x)|2 + (1 − t) |∇u2(x)|2 =
2Ft(Ωt)

N
, x ∈ ∂Ωt. (3.14)
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Proof. The fact that λ1(Ωt) < λ2(Ωt) holds since Ωt is connected, as it was proved in [28]. To prove that λ2(Ωt)
is simple we proceed as in ([13], Lem. 2.1) (see also [23], Lem. 2.5.9) assuming, by contradiction, that λ2(Ωt) is a
multiple eigenvalue, in the sense that λ2(Ωt) = · · · = λk(Ωt) for some k ≥ 3 (see [23] for a precise definition of the
higher eigenvalues). We use the results of derivability of multiple eigenvalues, see for instance ([23], Thm. 2.5.8).
We deform the domain Ωt with a regular vector field φε(x) = x + εV (x) and we denote with {ui}2≤i≤k the
orthonormal (for the L2 scalar product) family of eigenfunctions associated to λ2(Ωt). The directional derivative
of the map ε �→ λ2(φε(Ωt)) at ε = 0 is one of the eigenvalues of the (k − 1) × (k − 1) matrix

A =
(
−
∫

∂Ωt

∂ui

∂ν

∂uj

∂ν
V.ν dσ

)
2≤i,j≤k

, (3.15)

where V.ν denotes the normal displacement of the boundary induced by the vector field V . Moreover, as observed
before, the first eigenvalue is simple at Ωt, then it is differentiable and the derivative is a linear form in V.ν
supported on ∂Ωt (see e.g. [23], Thm. 2.5.1)

dλ1(Ωt; V ) = −
∫

∂Ωt

(
∂u1

∂ν

)2

V.ν dσ, (3.16)

while the derivative of the volume is given by

dVol(Ωt; V ) =
∫

∂Ωt

V.ν dσ. (3.17)

Now, since Ωt is a minimizer in (1.4), then it is also a minimizer for the Lagrangian

L(Ω) = tλ1(Ω) + (1 − t)λ2(Ω) + μ|Ω|, with μ :=
2Ft(Ωt)

N
· (3.18)

Indeed, for such a μ, the function f(s) = L(sΩ) of the real variable s > 0 achieves its minimum in s = 1, and since
Ωt minimizes Ft this implies that L(Ωt) ≤ L(Ω) for every bounded open set Ω ⊂ R

N (see for instance [18],
Rem. 3.6). Then, we can differentiate the lagrangian L without taking care of the volume constraint, and
from (3.15), (3.16) and (3.17) the derivative of (3.18) is the smallest eigenvalue of the matrix

At = tdλ1(Ωt; V ) Id+(1 − t)A + μdVol(Ω; V ) Id,

where Id is the (k−1)× (k−1) identity matrix. Therefore, in order to get a contradiction with the optimality of
Ωt, it is enough to prove that there is always a vector field V such that the matrix At has a negative eigenvalue.
To this purpose let us consider two points P and Q on ∂Ωt and two small neighborhoods γP and γQ of these
two points of same length, say 2δ. Let us choose any regular function ϕ defined on (−δ, δ), vanishing on the
boundary of the interval, and a deformation field V such that:

V.ν = ϕ on γP , V.ν = −ϕ on γQ, V.ν = 0 elsewhere on ∂Ωt.

With this choice of the field V , we have that the matrix A in (3.15) becomes the difference of two matrices

A = A(P ) − A(Q) :=
(
−
∫

γP

∂ui

∂ν

∂uj

∂ν
ϕdσ

)
2≤i,j≤k

+

(∫
γQ

∂ui

∂ν

∂uj

∂ν
ϕdσ

)
2≤i,j≤k

and so the matrix At becomes the difference of two matrices At(P ) − At(Q), where

At(P ) = −t

∫
γP

(
∂u1

∂ν

)2

ϕdσ Id + (1 − t)A(P ) + μ

∫
γP

ϕdσ Id,
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and At(Q) defined analogously. The only case in which we cannot choose two points P, Q and a function ϕ such
that the matrix has a negative eigenvalue is when At(P ) = At(Q), and this implies that, for every 2 ≤ i, j ≤ k∫

γP

∂ui

∂ν

∂uj

∂ν
ϕdσ =

∫
γQ

∂ui

∂ν

∂uj

∂ν
ϕdσ,

and ∫
γP

[(
∂ui

∂ν

)2

−
(

∂uj

∂ν

)2
]

ϕdσ =
∫

γQ

[(
∂ui

∂ν

)2

−
(

∂uj

∂ν

)2
]

ϕdσ,

for every P, Q ∈ ∂Ωt and for every regular function ϕ. It means, in particular, that the product
(∂u2/∂ν)(∂u3/∂ν) and the difference (∂u2/∂ν)2− (∂u3/∂ν)2 should be constant on ∂Ωt, and then (∂u2/∂ν)2 =
c2 is constant on ∂Ωt. If the constant c is equal to zero, we get a contradiction thanks to the Holmgren unique-
ness theorem. On the other hand, if c �= 0, we have that ∂u2/∂ν = c, because the boundary of Ωt is connected.
Then we can apply the classical Serrin Theorem [31] to u2 (or possibly to −u2), in the slightly more general
version ([20], Thm. 17), which gives that Ωt must be a ball, that is a contradiction since ∂u2/∂ν cannot be
constant on the boundary of a ball (see for example [23], Sect. 1.2.5). Then, also λ2(Ωt) has to be simple.

At Ωt the derivative of the Lagrangian (3.18) has to be zero: then (3.16), (3.17), and the corresponding
formula for the derivative of the second eigenvalue λ2 (3.15) with k = 2 (since it is simple) yields that

t

∫
∂Ωt

(
∂u1

∂ν

)2

V.ν dσ + (1 − t)
∫

∂Ωt

(
∂u2

∂ν

)2

V.ν dσ = μ

∫
∂Ωt

V.ν dσ

for every regular vector field V . From this, recalling that in the Dirichlet case |∇ui|2 = (∂ui/∂ν)2 with i = 1, 2,
we obtain (3.14). �

Remark 3.6. The simplicity of λ2(Ωt) can also be proved under other regularity assumptions on Ωt. The
weakest assumption that is needed in order to differentiate the domain is that the boundary ∂Ωt contains a
part

Γ which is nonempty, relatively open in ∂Ωt, connected and of class C1,1. (3.19)

Then, it is enough to repeat the same proof by taking care that the vector field V constructed therein is
chosen with support contained in Γ , and one obtains an overdetermined condition only along that part Γ of
the boundary. If a Serrin principle is also available for a partially overdetermined condition we are done. Indeed
Proposition 3.5 holds under different regularity assumptions on Ωt, for instance:

– if Ωt is convex with Γ as in (3.19) (using [20], Thm. 7);
– if ∂Ωt is connected with Γ as in (3.19) and analytically continuable (using [20], Thm. 1).

Proof of Theorem 1.3. The proof is a straightforward consequence of Proposition 3.5: in every dimension, the
second eigenvalue λ2(B) is not simple, therefore the ball B can not be a minimizer for any t ∈ (0, 1). �

Remark 3.7. In two dimensions, the fact that balls are never minimizers was implicitly contained in the
work [27]. For an arbitrary ε > 0 small enough, in [27] the authors constructed a nearly spherical competitor
Bε, with |Bε| = 1, such that

λ1(Bε) ≤ λ1(B) + d1ε
2, while λ2(Bε) ≤ λ2(B) − d2ε,

for some positive constants d1, d2. Therefore, for every t ∈ (0, 1), it is possible to find ε > 0 so small so that

tλ1(Bε) + (1 − t)λ2(Bε) < tλ1(B) + (1 − t)λ2(B).
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Figure 3. The attainable set for the lowest eigenvalues.

4. Remarks on the attainable set of the lowest Dirichlet eigenvalues

We start listing the most important properties that are known on the attainable set E defined in (1.5) (see
Fig. 3):

(1) lies above the bisector y = x (since by definition λ2(Ω) ≥ λ1(Ω) for every Ω ⊂ R
N ).

(2) lies on the right of the line x = λ1(B) (for the Faber–Krahn inequality (1.1)).
(3) lies above the line y = λ2(B− ∪ B+) (for the Krahn–Szegö inequality (1.2)).
(4) lies below the line y = λ2(B)

λ1(B)x (for the Ashbaugh–Benguria inequality [4]).
(5) is conical with respect to the origin.

The numerical picture provided by Keller and Wolff suggests the evidence that the attainable set E is convex,
but this is a long-standing conjecture which is still unsolved.

Conjecture 4.1. The attainable set E is convex.

The most important result in the direction of this conjecture was proposed by Bucur et al. in [12]. These
authors proved that the attainable set (1.5), constructed through quasi-open set instead of open set, is convex
in the vertical and in the horizontal direction and, as a consequence, that it is closed. Nevertheless the vertical
and horizontal convexity do not imply convexity (think, for example to an L-shaped set).

From the properties of the set E listed above it is clear that the unique unknown part of the boundary of E
is the curve C connecting the points PB = (λ1(B), λ2(B)) and PB−∪B+ = (λ1(B− ∪ B+), λ2(B− ∪ B+)). The
convexity of E is then guaranteed as soon as C can be parametrized by a convex function. For this reason it is
important to have more informations on the curve C. In two dimensions, Keller and Wolf in [27] showed that
the tangent of C at the point PB corresponding to a ball B is vertical. They constructed a nearly spherical
perturbation of B, as recalled in Remark 3.7, and then they computed the slope of the tangent to C as ε → 0.
Moreover, in all dimensions, Brasco, Nitsch and Pratelli showed that the tangent of C at the point PB−∪B+
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corresponding to two balls B− ∪ B+ is horizontal. In this case the limit as ε → 0 was computed by overlapping
the two balls B− and B+ of a quantity measured in terms of the parameter ε. In the following proposition we
recover these limits relying on the minimality condition of the minimizers of convex combinations (3.1) without
any explicit construction. Notice that the strategy that we adopt holds in all dimensions.

Theorem 4.2. For every dimension N ≥ 2 and t ∈ (0, 1), let Ωt be a minimizer of problem (1.4). Then we
have:

i) the tangent of C at the point PB corresponding to one ball is vertical, namely

lim
t→1

λ2(Ωt) − λ2(B)
λ1(Ωt) − λ1(B)

= −∞ (4.1)

ii) the tangent of C at the point PB−∪B+ corresponding to two identical balls is horizontal, namely

lim
t→0

λ2(Ωt) − λ2(B− ∪ B+)
λ1(Ωt) − λ1(B− ∪ B+)

= 0. (4.2)

Moreover, the following limits holds

lim
t→0

λ2(Ωt) = λ2(B− ∪ B+) and lim
t→1

λ1(Ωt) = λ1(B). (4.3)

Proof. From the Faber–Krahn inequality (1.1) and Theorem 1.3 we find that

λ1(B) < λ1(Ωt), (4.4)

which plugged into (3.1) with Ω = B yields

λ2(Ωt) < λ2(B). (4.5)

Taking Ω = B in (3.2) and dividing therein by λ2(B) − λ2(Ωt) (which from (4.5) is a strictly positive value)
yields

λ1(Ωt) − λ1(B)
λ2(B) − λ2(Ωt)

+ 1 ≤ 1
t
·

From (4.4) and (4.5) one can see that the ratio on the left-hand side of this inequality is a positive number,
therefore, letting t ↑ 1, necessarily, it holds the limit in (4.1). Moreover, repeating the computations made in
the proof of Theorem 1.2 and letting t ↓ 0 in (3.10), it follows the limit in (4.2).

Finally, the limits in (4.3) are a consequence of (4.1), (4.2) and of the boundedness of the denominator in (4.2)
(because of (3.9)) and of the numerator in (4.1) (because of (4.5)). �

Remark 4.3. The strategy of looking at the boundary of the attainable set through convex combinations can
be applied to other attainable sets with different constraints, for instance to the attainable set with a perimeter
constraint [3]

Ep :=
{
(x, y) ∈ R

2 : x = λ1(Ω), y = λ2(Ω), Ω ⊂ R
N , Ω open, P(Ω) = 1

}
,

or to the attainable set with a convexity constraint [2]

Ec :=
{
(x, y) ∈ R

2 : x = λ1(Ω), y = λ2(Ω), Ω ⊂ R
N , Ω open and convex, |Ω| = 1

}
.

In particular, as in Theorem 4.2, it is possible to show that the tangent of ∂Ep (or of ∂Ec) at the point PB is
vertical.
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We finish this discussion formulating an isospectral conjecture on the minimizers of problem (1.4), which
could be used to prove the convexity of the attainable set E .

Conjecture 4.4. Let t ∈ (0, 1) and assume X, Y ⊂ R
N to be minimizers of problem (1.4) with Ft(X) = Ft(Y ).

Then, the lowest eigenvalues of X and Y coincide, namely

λ1(X) = λ1(Y ) and λ2(X) = λ2(Y ).

Proposition 4.5. The validity of Conjecture 4.4 implies that Conjecture 4.1 holds true.

Proof. If E is not convex, then we can find two points PX , PY ∈ C, corresponding, respectively, to X, Y , and a
straight line l passing through these points such that the curve C lies above l. Therefore, it is clear that l will be
of the form tx + (1 − t)y = a for some fixed t ∈ (0, 1) and a real number a. Hence the sets X, Y are minimizers
in (1.4) for such a t, but λ1(X) �= λ1(Y ) and λ2(X) �= λ2(Y ), a contradiction with Conjecture 4.4. �

Appendix A. Explicit constants in quantitative inequalitites

In the following we compute explicit constants in some quantitative inequalities. We focus in particular, on
the quantitative Krahn–Szegö inequality (2.4), having in mind its application in Corollary 3.3. We start with a
brief overview on the most important quantitative inequalities, without pretending of being exhaustive.

The quantitative isoperimetric inequality for the De Giorgi perimeter P in the sharp version was proved by
Fusco et al. in [21]: there exist a constant CI > 0 (depending on the dimension) such that for all open sets
Ω ⊂ R

N of finite measure |Ω| = |B|,
P(Ω)
P(B)

− 1 ≥ CIA(Ω)2, (A.1)

where A is as in (2.1). In this setting, a quantitative inequality is sharp when it has the least exponent on the
Fraenkel asymmetry, and a constant is optimal when it has the largest possible value. Moreover, the quantity
estimated from below through the asymmetry is the deficit of the functional.

The same authors later proved a quantitative Faber–Krahn inequality, with a proof based on (A.1): there
exists a constant CFK > 0 (depending on the dimension) such that for all open sets Ω ⊂ R

N of finite measure
|Ω| = |B|,

λ1(Ω)
λ1(B)

− 1 ≥ CFKA(Ω)4. (A.2)

Recently Brasco et al. proved a sharp quantitative Faber–Krahn inequality [8] with the exponent 2 instead of
4 in (A.2). Unfortunately, their proof relies on the so called selection principle, which does not allow to get an
explicit constant.

On the other hand a quantitative Krahn–Szegö inequality (2.4) was proved by Brasco and Pratelli in [7], based
on (A.2). Their proof has the good feature of being easily adaptable once a better quantitative Faber–Krahn
inequality is available.

Finding optimal constants in quantitative inequalities is a quite difficult task. Indeed, up to our knowledge,
even the optimal constant for the quantitative isoperimetric inequality (A.1) in the plane is not explicitly
known (see, for instance [5, 17]). The optimal constant for the quantitative isoperimetric inequality (A.1) is
explicitly known only among convex sets of the plane, as was proved in [1]. Moreover, it is also difficult to find
explicit non-optimal constants, since often the techniques used in the proofs do not allow to identify constants.
Nevertheless, a non-optimal constant for the quantitative isoperimetric inequality (A.1) was obtained in [19].
The constant for the quantitative isoperimetric inequality is important when looking for explicit constants in
the quantitative Faber–Krahn and Krahn–Szegö inequalities, since both proofs of (A.2) and (2.4) rely on the
quantitative isoperimetric inequality (A.1). With the path just outlined, it is then possible to find an explicit
constant for (2.4) for all N ≥ 2, although the computations are rather unpleasant and the constants are far
from being optimal.
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However, in two dimensions, we can follow a different strategy. In order to get an explicit constant for the
quantitative Krahn–Szegö inequality, we use the quantitative Faber–Krahn inequality provide by Bhattacharya
in [6]. The key point of this inequality is that it does not rely on a quantitative isoperimetric inequality. Therefore,
it can be obtained a better explicit constant βFK for the quantitative Faber–Krahn inequality, which plugged
into the proof of the quantitative Krahn–Szegö inequality (2.4) allows to improve the constant βKS as well. To
prove this result we go through the papers [6, 7] step-by-step and we highlight the points where an explicit
constant is needed, using, in particular, the same notation of the paper involved.

A.1. An explicit constant in the quantitative Faber–Krahn inequality

The quantitative Faber–Krahn inequality in the form proved by Bhattacharya [6] reads as: there exists a
constant βFK > 0 such that for all open sets Ω ⊂ R

2 of finite measure |Ω| = |B|,

fk(Ω) :=
λ1(Ω)
λ1(B)

− 1 ≥ βFKA(Ω)3. (A.3)

We show that the constant βFK in (A.3) can be chosen as follows:

βFK =
1

105 × 23 × j2
0

≈ 2.161× 10−7. (A.4)

We use the same notation of [6], noticing that the asymmetry α used there differs from (2.1) for a factor 2.
Indeed using (2.3) for an open set Ω ⊂ R

2 of unit measure and E = B we have that

α(Ω) =
A(Ω)

2
·

It is enough to study the case when fk(Ω) ≤ 1 since once

fk(Ω) ≥ Kα(Ω)3, if fk(Ω) ≤ 1, (A.5)

is established, then immediately (A.3) holds true with βFK = min{K, 1}/23 (recall that α(Ω) ≤ 1 by definition).
Therefore, let us assume the deficit fk(Ω) ≤ 1. The first point of [6] is Lemma 3.2: it is shown a bound on the
L∞-norm of the first eigenfunction u1, that is

‖u1‖L∞ ≤ λ1(Ω)
2π

≤ λ1(B)
π

= j2
0 , (A.6)

where the second inequality holds thanks to the assumption fk(Ω) ≤ 1, while the last equality comes from the
explicit value of λ1(B) recalled in (1.1).

Now we can directly pass to analyze Section 4 of [6], where the proof of the main result is carried out. We
recall the constants that will be used:

p = 2, k =
1

625
=

1
54

· (A.7)

Only Case 1 is of our interest, since Case 2 deals with p < 2. In subcase (i) one gets

fk(Ω) ≥ 1
105 j2

0

α(Ω)3, (A.8)

where we used (A.7) and M therein defined as an upper bound for ‖u1‖L∞ and so, according to (A.6), can be
taken as j2

0 . On the other hand, subcase (ii) gives

fk(Ω) ≥ 61
200

α(Ω) ≥ 61
200

α(Ω)3, (A.9)

where the second inequality holds since α(Ω) ≤ 1. Then, combining (A.8) with (A.9) we get (A.5) with K =
1/(105 × j2

0 ) < 1, and therefore, from the previous observation βFK = K/23, providing (A.4).
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A.2. An explicit constant in the quantitative Krahn–Szegö inequality

We can now derive an explicit constant βKS > 0 for (2.5). We go through the proof of the quantitative
Krahn–Szegö inequality of [7] and give the explicit value of the constants that are needed in the proofs, using
the quantitative Faber–Krahn (A.3) instead of (A.2), as it was originally done in that paper. First of all we
need to give an explicit constant for Lemma 3.3 of [7], such that (using their notations, but numerating the
constants ϑ1, ϑ2, . . . in order to keep track of them in all steps)

A2(Ω) ≤ ϑ1

(
A(Ω+) +

∣∣∣∣12 − |Ω+|
|Ω|

∣∣∣∣+ A(Ω−) +
∣∣∣∣12 − |Ω−|

|Ω|
∣∣∣∣)2/3

· (A.10)

This constant is deduced by putting together three main inequalities.

(i) First of all we call ε± = 1
2 − |Ω±|

|Ω| and call B± two balls centered in the origin such that |Ω±| = |B±|. Hence
there exist two points x± such that

A(Ω±) =
2|(B± + x±) \ Ω±|

|Ω±| ·

We then rescale the balls to measure |Ω|/2 each: B̃± = (1 − 2ε±)−1/2B±. We have now to translate the
new balls in the direction x+ − x− so that they are disjoint. It is easy to see that the width l of the set
(B̃+ + x+) ∩ (B̃− + x−) can be estimated by

l3/2|Ω|1/4 ≤ ϑ2|(B̃+ + x+) ∩ (B̃− + x−)|,
with the choice of ϑ2 = (8π)1/4.

(ii) The second intermediate inequality is

|(B̃+ + x+) ∩ (B̃− + x−)| ≤ ϑ3|Ω|(A(Ω+) + A(Ω−) + |ε+| + |ε−|),
and it is possible to see immediately that ϑ3 = 1 works.

(iii) We now have to translate B̃− so that it is tangent to B̃+ + x+, and we will call x the new center. It is
possible to prove that

|(B̃− + x−) ∩ (B̃− + x)| ≤ ϑ4l|Ω|1/2,

with the constant ϑ4 = π+2
(2π)1/2 .

At the end it is possible to put together the above inequalities and get (A.10) with ϑ1 = ϑ4(ϑ2ϑ3)2/3 + 2 =
π+2
π1/3 + 2.

In order to conclude the proof of the quantitative Krahn–Szegö inequality by Brasco and Pratelli we have to
prove a last intermediate inequality, when ks(Ω) ≤ 1:

ks(Ω) ≥ 1
ϑ5

max
{
A(Ω+)3 +

∣∣∣∣12 − |Ω+|
|Ω|

∣∣∣∣ ,A(Ω−)3 +
∣∣∣∣12 − |Ω−|

|Ω|
∣∣∣∣},

which works for ϑ5 = 3
βFK

, where βFK is the constant (A.4) of the quantitative Faber–Krahn inequality that we
computed in the paragraph above. We note that in [7] the exponent of the asymmetries is actually 4 instead of
3, since they use the quantitative Faber–Krahn (A.2) instead of the one proved by Bhattacharya, which is only
two dimensional. On the other hand, if ks(Ω) ≥ 1 it is enough to take ϑ5 = 23 + 1 = 9 since A(Ω±) ≤ 2 and
|ε±| ≤ 1/2. So we have that ϑ5 = max {9, 3/βFK} = 3/βFK. Putting all the inequalities together one arrives to

βKS =
1
ϑ5

1

ϑ
9/2
1

=
βFK

3
π3/2

(π + 2 + 2π1/3)9/2

=
π3/2

24(π + 2 + 2π1/3)9/2 · j2
0

× 10−5 ≈ 3.331 × 10−11.
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