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BOUNDARY STABILIZATION OF A 2-D PERIODIC MHD CHANNEL FLOW,
BY PROPORTIONAL FEEDBACKS

Ionuţ Munteanu1

Abstract. We consider an electrically conducting 2-D channel fluid flow affected by a transverse mag-
netic field. The governing equations are the magnetohydrodynamics equations. We design an explicit
finite-dimensional exponentially stabilizing feedback, given in a very simple form, easily manageable
from the computational point of view, for the Hartmann−Poiseuille profile. Moreover, the stability is
assured independently of the value of the magnetic Reynolds number. The control acts on the normal
components of both velocity and magnetic field, on the upper wall only.
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1. Introduction

We are concerned here with the problem of normal boundary feedback stabilization of the
Hartmann−Poiseuille profile of a two-dimensional channel flow of an incompressible electrically conducting
fluid, affected by a constant transverse magnetic field B0 (first results on this kind of flows, both experimen-
tal and theoretical, were obtained by Hartmann [8]). The governing equations are the magnetohydrodynamics
equations (MHD, for short), which are a combination between the Navier−Stokes equations and the Maxwell
equations (we refer to [22] for details). They are given by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ(ut − νΔu + uux + vuy) + CCx − CBy = −px,

ρ(vt − νΔv + uvx + vvy) +BBy −BCx = −py,

Bt − 1
μσΔB + uBx + vBy −Bux − Cuy = 0,

Ct − 1
μσΔC + uCx + vCy −Bvx − Cvy = 0,

ux + vy = 0, Bx + Cy = 0, t ≥ 0, x ∈ R, y ∈ (−L,L),

(1.1)

where (u, v) is the velocity vector field, p is the (scalar) pressure, and (B,C) is the magnetic field. The positive
constants ρ, ν, μ and σ represent the fluid mass density, the kinematic viscosity, the magnetic permeability
and the electrical conductivity, respectively; 2L is the distance between the walls. This model is considered
a benchmark for applications such as liquid-metal cooling of nuclear reactors and supercomputers, plasma
confinement, electromagnetic casting, hypersonic flight and propulsion.
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For the sake of simplicity, we shall make some assumptions that do not alter the essential features of the
behaviour of the flow, but reduce the complexity of the problem. More exactly, we shall assume that the
velocity field, the magnetic field and the pressure of the fluid are 2π-periodic with respect to the x-coordinate.
Moreover, the magnetic Prandtl number of the fluid, i.e., Prm := νμσ, is assumed to be equal to one. Periodic
MHD with different Prandtl number may be also considered by appealing to the so-called Elsasser variables
(see for details [15], Rem. 2.1); however, periodic MHD channel flow, with magnetic Prandtl number equal to
unity, is often studied as an approximation to torus devices of plasma controlled fusion, such as the Tokamak
and the reversed field pinch, besides this, numerical simulations have shown that in the movement of this kind
of flow may appear turbulences, that is, the flow may become unstable (see, for example, [7]).

The aforementioned Hartmann−Poiseuille profile, that we are going to stabilize, is given by (see for de-
tails [22]):

Ue(y∗) =
1
Ha

1
tanh(Ha)

[
1 − cosh(Hay∗)

cosh(Ha)

]
and V e ≡ 0, (1.2)

Be(y∗) = − y∗

Ha
+

1
Ha

sinh(Hay∗)
sinh(Ha)

and Ce ≡ B0, (1.3)

where y∗ := y
L and Ha := B0L

√
σ
ρν is the Hartmann number.

We define the dimensionless variables: x∗ := x
L , (u∗, v∗) := 1

ν0
(u, v), t∗ := ν0t

L , (B∗, C∗) := 1
b0

(B,C)

with ν0 := L2

ρν (−∂xp
e) and b0 := μL2

√
σ
ρν (−∂xp

e), where pe is the pressure corresponding to the steady-state

solution (1.2). Taking into account that the Prandtl number is equal to unity, re-denoting by u, v,B,C the
fluctuation variables u − Ue, v − V e, B − Be and C − Ce, respectively, the linearisation of (1.1), around the
equilibrium profile (1.2)-(1.3), is given by (see for details [15], Eq. (5))⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut −Δu+ Ueux + Ue
yv +B0Cx −B0By −Be

yC = px,

vt −Δv + Uevx +Be
yB +BeBy −BeCx = py,

Bt −ΔB + UeBx +Be
yv −Beux −B0uy − (Ue)yC = 0,

Ct −ΔC + UeCx −Bevx −B0vy = 0,
ux + vy = 0, Bx + Cy = 0, t ≥ 0, x ∈ R, y ∈ (−1, 1),
u(t, x+ 2π, y) = u(t, x, y), v(t, x+ 2π, y) = v(t, x, y), p(t, x+ 2π, y) = p(t, x, y),
B(t, x + 2π, y) = B(t, x, y), C(t, x + 2π, y) = C(t, x, y), t ≥ 0, x ∈ R, y ∈ (−1, 1),
u(t, x,−1) = u(t, x, 1) = v(t, x,−1) = 0, v(t, x, 1) = Ψ(t, x),
B(t, x,−1) = B(t, x, 1) = Cy(t, x,−1) = Cy(t, x, 1) = 0, C(t, x, 1) = Ξ(t, x), t ≥ 0, x ∈ R,

(1.4)

and initial data u0, v0, B0, C0. (The star notation has been dropped for simplicity). Here, Ψ and Ξ are the
boundary controllers.

We look to find functions Ψ, Ξ, in a feedback form (that is, depending on u, v,B,C), such that, for every
initial data u0, v0, B0, C0 in L2((0, 2π) × (−1, 1)), once inserted into (1.4), the corresponding solution of the
closed-loop system (1.4) satisfies the exponential decay∫∫

(0,2π)×(−1,1)

(|u(t, x, y)|2 + |v(t, x, y)|2 + |B(t, x, y)|2 + |C(t, x, y)|2) dxdy

≤ Ce−ηt

∫∫
(0,2π)×(−1,1)

(|u0(x, y)|2 + |v0(x, y)|2 + |B0(x, y)|2 + |C0(x, y)|2) dxdy, t ≥ 0,

for some positive constants C, η (these constants will be refereed as the constants of the exponential decay),
that is, we globally exponentially stabilize the linearised system (1.4).

Concerning the stabilization of this kind of flows, we emphasize the results obtained in the works [15,26]. The
first one provides stabilizing feedback controllers, via the backstepping method, that can be easily numerically
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computed, unlike to the results in [15], where, the Riccati approach designs feedbacks that are not easily
manageable from the computational point of view. On the other hand, the result in [26] holds true only for
flows with low magnetic Reynolds number, Rm := μσ(L2/ρν)(−∂pe/∂x)L, while, in [15] the algorithm works
equally well for any value of Rm. In the present paper, we design finite-dimensional stabilizing feedbacks Ψ,Ξ,
(see (2.6) below) given in an explicit simple form, so-called of proportional type, being easy to manipulate from
the computational point of view, without any require on the magnetic Reynolds number Rm. This represents an
important step forward concerning this problem, since, usually in the literature, explicit results are obtained only
under the require of a low magnetic Reynolds number, reducing so the MHD equations to the so-called SMHD
(simplified MHD) equations, which are nothing but the Navier−Stokes system perturbed by Nu in the first
equation, where N is a positive constant. Therefore, each result of feedback stabilization for the Navier−Stokes
system has high chances to work equally-well for the SMHD model too. This is totally not the case for the MHD
equations.

Here, the ideas are based on the results in [3, 17], where similar feedbacks were constructed for stabilizing
steady-states solutions corresponding to parabolic type equations. We aim to construct proportional-type sta-
bilizing feedbacks in the same manner as in [3]. We stress that, in order to apply for our case such a design,
the requirement of linear independence of the derivatives of order three of a certain system of functions, com-
puted in y = 1 is needed(more precisely, the derivative of order three of the one variable eigenfunctions system{
φk∗

j = φk∗
j (y)

}
j

of the dual operator −A∗
k of −Ak defined in (2.5) below). Since these derivatives are just

numbers, in order for this assumption to be full-filed the system must contain only one function. However, this
is not applicable for what we need here. Instead, we shall use the results in [17], which overcome the problem
of the linear independence assumption in [3].

Another important results on this subject are [1,10,12,16,21,23,25] and the references therein. For more details
on the magnetohydrodynamic flows one may consult the books [6, 13, 14]. Finally, similar type of stabilizing
feedbacks, as those in the present work based on the ideas in [3, 17], have been constructed for the phase field
equations in [18], for the Navier−Stokes equations with fading memory in [19] and for parabolic equations with
memory in [20].

The paper is organized as follows: in the next section, taking advantage of the periodicity assumption, we
decompose system (1.4) into Fourier series, obtaining so an infinite parabolic system; then, after some notations,
we give a priori the form of the stabilizing feedbacks Ψ,Ξ. Finally, in Theorem 3.1 we show that indeed they
assure stability of (1.4) by showing the stability of the infinite parabolic system at each level k ∈ Z.

2. Fourier decomposition of the system and the form of the stabilizing
feedbacks

Let L2(Q), Q = (0, 2π) × (−1, 1), be the space of all functions u ∈ L2
loc(R × (−1, 1)), that are 2π−periodic

in x. These functions are characterized by their Fourier series

u(x, y) =
∑
k∈Z

uk(y) exp(ikx), uk = u−k, ∀k ∈ Z,

such that ∑
k∈Z

∫ 1

−1

|uk(y)|2dy <∞.

(Here, z stands for the complex conjugate of z ∈ C.) The norm in L2(Q) is defined as ‖u‖ :=(
2π
∑
k∈Z

∫ 1

−1

|uk|2dy
) 1

2

.

We shall consider H the complexified space of L2(−1, 1). We denote also by ‖ · ‖ the norm in H and by
〈·, ·〉, the scalar product. The product space H ×H is defined as a complex Hilbert space, in the standard way.
Finally, we shall denote by Hm(−1, 1), Hm

0 (−1, 1), m = 1, 2, . . . , the standard Sobolev spaces on (−1, 1).
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Now, we return to system (1.4) and decompose the velocity field, the magnetic field and the pressure in
Fourier series, to get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(uk)t − (−k2uk + u′′k) + ikUeuk + (Ue)′vk + ikB0ck −B0b
′
k − (Be)′ck = ikpk,

(vk)t − (−k2vk + v′′k ) + ikUevk + (Be)′bk +Beb′k − ikBeck = p′k,
(bk)t − (−k2bk + b′′k) + ikUebk + (Be)′vk − ikBeuk −B0u

′
k − (Ue)′ck = 0,

(ck)t − (−k2ck + c′′k) + ikUeck − ikBevk −B0v
′
k = 0,

ikuk + v′k = 0, ikbk + c′k = 0, t ≥ 0, y ∈ (−1, 1),
bk(−1) = bk(1) = ck(−1) = 0, uk(−1) = uk(1) = vk(−1) = 0,
vk(1) = ψk, ck(1) = ξk,

(2.1)

with initial data u0
k, v0

k, b0k, d0
k. Where {uk(t, y)}k∈Z

, {vk(t, y)}k∈Z
, {bk(t, y)}k∈Z

, {ck(t, y)}k∈Z
,{

u0
k(y)

}
k∈Z

,
{
v0

k(y)
}

k∈Z
,
{
b0k(y)

}
k∈Z

,
{
c0k(y)

}
k∈Z

, {ψk(t)}k∈Z
, {ξk(t)}k∈Z

are the Fourier modes of
u, v,B,C, u0, v0, B0, C0, Ψ and Ξ, respectively. Here, ′ denotes the derivative with respect to y, i.e., ∂

∂y .
Notice that, stabilizing system (1.4) is equivalent with stabilizing system (2.1), at each level k ∈ Z.
For latter purpose, likewise in [15], for each k ∈ Z∗, we introduce the operators

Lkv := −v′′ + k2v, D(Lk) = H2(−1, 1) ∩H1
0 (−1, 1), (2.2)

Lk(S D)T := (LkS LkD)T , D(Lk) =
(
H2(−1, 1) ∩H1

0 (−1, 1)
)2
, (2.3)

(here (· ·)T means the transpose matrix) and

Fk

(
S
D

)
:=
(
S′′′′ +B0S

′′′ − [2k2 + ikDe]S′′ − [ik(De)′ + k2B0]S′ + [(k4 + ik3De]S + ik[(Se)′D]′

D′′′′ −B0D
′′′ − [2k2 + ikSe]D′′ − [ik(Se)′ − k2B0]D′ + [(k4 + ik3Se]D + ik[(De)′S]′

)
,

(2.4)
D(Fk) =

(
H4(−1, 1) ∩H2

0 (−1, 1)
)2
,

respectively. We shall denote by Lk and by Fk the differential forms of the operators Lk and Fk, respectively.
Moreover, we define the operators

Ak := FkL−1
k , D(Ak) =

{
(S D)T : L−1

k (S D)T ∈ D(Fk)
}
. (2.5)

Regarding the operators −Ak, we have the following two key results.

Lemma 2.1. For each k ∈ Z∗, the operator −Ak generates a C0- analytic semi-group on H ×H and for each
λ ∈ ρ(−Ak) (the resolvent set of −Ak), (λI + Ak)−1 is compact. Moreover, there exists M > 0 such that

σ(−Ak) ⊂ {λ ∈ C : λ < 0} , ∀|k| > M.

Here σ(−Ak) is the spectrum of −Ak.

Proof. See the proof in ([15], Lem. 2.1). �

By Lemma 2.1, the operator −Ak has a countable set of eigenvalues, denoted by
{
λk

j

}∞
j=1

. Besides this, there

is only a finite number Nk of eigenvalues for which λk
j ≥ 0, j = 1, . . . , Nk, the unstable eigenvalues. Let{

φk
j := (φk

1j φ
k
2j)

T
}∞

j=1
and

{
φk∗

j := (φk∗
1j φ

k∗
2j )T

}∞
j=1

denote the corresponding eigenfunctions of the operator
−Ak and its dual −A∗

k, respectively.
Using (eventually) the Gram−Schmidt procedure, we may assume that the systems

{
φk

j

}Nk

j=1
and

{
φk∗

j

}Nk

j=1

are bi-orthogonal, that is 〈
φk

i , φ
k∗
j

〉
= δij , i, j = 1, . . . , Nk,

δij being the Kronecker symbol.
The last key result is stated below.
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Lemma 2.2. Let any 0 < |k| ≤ M . Then, the eigenfunctions system
{
φk∗

j

}Nk

j=1
can be chosen in such a way

that, for some μk ∈ C, it holds

(φk∗
1j )′′′(1) + μk(φk∗

2j )′′′(1) = 1, j = 1, . . . , Nk.

Proof. Due to ([15], Lem. 2.2), we can find some μk ∈ C such that (φk∗
1j )′′′(1)+μk(φk∗

2j )′′′(1) > 0. Then, replacing
(eventually) φk∗

j by 1
(φk∗

1j )′′′(1)+μk(φk∗
2j )′′′(1)φ

k∗
j , the claim follows immediately. It should be noticed that, in order

to keep the bi-orthogonality, one should replace as-well φk
j by [(φk∗

1j )′′′(1) + μk(φk∗
2j )′′′(1)]φk

j . �

We shall work under the next assumption

(H1∗) The unstable eigenvalues are simple,

that is, we have λk
i �= λk

j , ∀i, j = 1, . . . , Nk, i �= j. Even if this hypothesis is generic with respect to the
coefficients of −Ak, due to ([1], Thm. 3.16), the present algorithm can be equally-well applied to the general
case of eigenvalues (see [17]). We shall not develop this subject here since the presentation is very similar with
the simple eigenvalues case.

At this stage we may introduce the stabilizing forms. They are

Ψ(t, x) :=
1
2

∑
0<|k|≤M

(1 + μk)Uk(t)eikx, Ξ(t, x) :=
1
2

∑
0<|k|≤M

(1 − μk)Uk(t)eikx. (2.6)

Here, μk, 0 < |k| ≤M , are the constants given in Lemma 2.2;

Uk(t) :=

−
〈
Λk

sumE
k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫∫
Q

[−(vyy(t, x, y) + cyy(t, x, y)) + k2(v(t, x, y) + c(t, x, y))
]
e−ikxφk∗

11 (y)

+
[−(vyy(t, x, y) − cyy(t, x, y)) + k2(v(t, x, y) − c(t, x, y))

]
e−ikxφk∗

21 (y)dxdy∫∫
Q

[−(vyy(t, x, y) + cyy(t, x, y)) + k2(v(t, x, y) + c(t, x, y))
]
e−ikxφk∗

12 (y)

+
[−(vyy(t, x, y) − cyy(t, x, y)) + k2(v(t, x, y) − c(t, x, y))

]
e−ikxφk∗

22 (y)dxdy
.........................................................................∫∫

Q

[−(vyy(t, x, y) + cyy(t, x, y)) + k2(v(t, x, y) + c(t, x, y))
]
e−ikxφk∗

1Nk
(y)

+
[−(vyy(t, x, y) − cyy(t, x, y)) + k2(v(t, x, y) − c(t, x, y))

]
e−ikxφk∗

2Nk
(y)dxdy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
. . .
. . .
. . .
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

〉

Nk

,

(2.7)
with Λk

sum := Λk
γk
1

+ . . .+ Λk
γk

Nk

, for

Λk
γk

i
:=

⎛
⎜⎜⎜⎝

1
γk

i +λk
1

0 . . . 0
0 1

γk
i +λk

2
. . . 0

. . . . . . . . . . . .
0 0 . . . 1

γk
i +λk

Nk

⎞
⎟⎟⎟⎠ , i = 1, . . . , Nk, (2.8)

for some 0 < γk
1 < . . . < γk

Nk
, Nk real constants, sufficiently large such as relation (3.6) below holds true.

Moreover,
Ek := (Gk

1 +Gk
2 + . . .+Gk

Nk
)−1, (2.9)

where
Gk

i := Λk
γk

i

GkΛk
γk

i
, i = 1, . . . , Nk, (2.10)
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Gk being the square matrix of order Nk with all the entries equal to one. In the Appendix, Lemma A.2, it is
shown that the sum Gk

1 + . . .+Gk
Nk

is indeed invertible, consequently Ek is well-defined. Finally, 〈·, ·〉Nk
stands

for the classical scalar product in CNk .

3. Main results

The main result is stated below.

Theorem 3.1. Once plugged the feedbacks Ψ,Ξ, defined in (2.6), into the linear equation (1.4) it yields the
asymptotic exponential decay of the corresponding solution to the closed-loop system (1.4). More precisely, for
any initial data (u0, v0, B0, C0) ∈ L2

loc((0, 2π) × (−1, 1))4, the corresponding solution of the closed-loop system
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut −Δu+ Ueux + Ue
yv +B0Cx −B0By −Be

yC = px,
vt −Δv + Uevx +Be

yB +BeBy −BeCx = py,

Bt −ΔB + UeBx +Be
yv −Beux −B0uy − (Ue)yC = 0,

Ct −ΔC + UeCx −Bevx −B0vy = 0,
ux + vy = 0, Bx + Cy = 0, t ≥ 0, x ∈ R, y ∈ (−1, 1),
u(t, x+ 2π, y) = u(t, x, y), v(t, x + 2π, y) = v(t, x, y), p(t, x+ 2π, y) = p(t, x, y),
B(t, x+ 2π, y) = B(t, x, y), C(t, x+ 2π, y) = C(t, x, y), t ≥ 0, x ∈ R, y ∈ (−1, 1),
u(t, x,−1) = u(t, x, 1) = v(t, x,−1) = 0, v(t, x, 1) = 1

2

∑
0<|k|≤M (1 + μk)Uk(t)eikx,

B(t, x,−1) = B(t, x, 1) = Cy(t, x,−1) = Cy(t, x, 1) = 0, C(t, x, 1) = 1
2

∑
0<|k|≤M (1 − μk)Uk(t)eikx,

t ≥ 0, x ∈ R,
(3.1)

satisfies the exponential decay∫∫
(0,2π)×(−1,1)

(|u(t, x, y)|2 + |v(t, x, y)|2 + |B(t, x, y)|2 + |C(t, x, y)|2) dxdy

≤ Ce−ηt

∫∫
(0,2π)×(−1,1)

(|u0(x, y)|2 + |v0(x, y)|2 + |B0(x, y)|2 + |C0(x, y)|2) dxdy, t ≥ 0,

for some positive constants C, η. Where, the feedbacks Uk, 0 < |k| ≤M, are defined in (2.7).

Proof. The idea is to show the stability of (2.1), at each level k ∈ Z, with the coefficients of the exponential
decay independent of the level. By the definition, we have that ψk = ξk = 0 for k = 0 and all |k| > M , and
ψk = 1

2 (1 + μk)Uk, ξk = 1
2 (1 − μk)Uk for 0 < |k| ≤M , Uk defined by (2.7).

Concerning k = 0, it is shown in ([15], Eqs. (8) and (9)) that at this level the system is stable. Furthermore,
as in [15], after Lemma 2.1, we have that system (2.1) is stable for all |k| > M . Hence, from now on, we consider
only 0 < |k| ≤M .

As in [15], we set S1k := uk + bk, S2k := vk + ck and D1k := uk − bk, D2k := vk − ck, and, of course,
S0

1k := u0
k + b0k, S

0
2k := v0

k + c0k and D0
1k := u0

k − b0k, D
0
2k := v0

k − c0k. Then, following the steps in ([15],
Eq. (10)) we reduce the complexity of the problem (2.1) to the following boundary controlled system with just
two unknowns, S2k and D2k, namely,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(−S′′
2k + k2S2k)t + S′′′′

2k +B0S
′′′
2k − [2k2 + ikDe]S′′

2k − [ik(De)′ + k2B0]S′
2k

+ [(k4 + ik3De]S2k + ik[(Se)′D2k]′ = 0, y ∈ (−1, 1),
(−D′′

2k + k2D2k)t +D′′′′
2k −B0D

′′′
2k − [2k2 + ikSe]D′′

2k − [ik(Se)′ − k2B0]D′
2k

+ [(k4 + ik3Se]D2k + ik[(De)′S2k]′ = 0, y ∈ (−1, 1),
S′

2k(−1) = S′
2k(1) = S2k(−1) = 0, S2k(1) = ψS

k ,
D′

2k(−1) = D′
2k(1) = D2k(−1) = 0, D2k(1) = ψD

k ,

(3.2)
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and initial data S0
2k, D

0
2k, k ∈ Z \ {0}. Here Se := Ue +Be, De := Ue −Be and ψS

k := ψk + ξk = Uk, ψD
k :=

ψk − ξk = μkU
k.

In order to simplify the notations, since k is fixed, from now on we shall omit to write the index k, so, in
what follows, we shall use the notations from (2.2) to (2.10), but with the index k dropped. The corresponding
closed-loop system (3.2) writes as (see [15]){(L(S2 D2)T )

)
t
+ F(S2 D2)T = 0, y ∈ (−1, 1),

(S2 D2)T (1) = (U μU)T , (S2 D2)T (−1) = (S′
2 D

′
2)T (−1) = (S′

2 D
′
2)T (1) = 0.

(3.3)

In order to lift the boundary conditions into the equations, aiming to use the spectral decomposition method,
we introduce the Dirichlet operator as: let any α ∈ C, we denote by Dγα := w the solution to the equation⎧⎪⎨

⎪⎩
Fw + 2

N∑
j=1

λj

〈Lw, φ∗j 〉φj + γLw = 0, y ∈ (−1, 1),

w(1) = (α μα)T , w(−1) = w′(−1) = w′(1) = 0.

(3.4)

(It is known that for γ > 0 large enough, the above equation has a unique solution in (H
1
2 (−1, 1))2, see [9],

p. 6, line 16).
For latter purpose, let us compute 〈LDγα, φ

∗
m〉, for some 1 ≤ m ≤ N . To this end, we have from (3.4) scalarly

multiplied by φ∗m, and by the bi-orthogonality of the eigenfunction systems, that

0 = 〈Fw, φ∗m〉 + 2λm 〈Lw, φ∗m〉 + γ 〈Lw, φ∗m〉
= −α(φ∗1m)′′′(1) + μ(φ∗2m)′′′(1) + 〈w,F∗φ∗m〉 + (γ + 2λm) 〈Lw, φ∗m〉
(by Lem. 2.2)
= −α+ 〈Lw,A∗φ∗m〉 + (γ + 2λm) 〈Lw, φ∗m〉 .

It yields that
〈LDγα, φ

∗
m〉 =

α

γ + λm
, 1 ≤ m ≤ N. (3.5)

Next, we choose N constants 0 < γ1 < γ2 < . . . < γN , large enough, such that

Equation (3.4), corresponding to each γi, i = 1, . . . , N , has a solution , (3.6)

and denote by Dγi , i = 1, . . . , N, the corresponding solutions.
It is clear that the feedback U , given in (2.7), can be equivalently written as

U(t) := −
〈
ΛsumE

⎛
⎜⎜⎝
〈L(S2 D2)T (t), φ∗1

〉〈L(S2 D2)T (t), φ∗2
〉

. . .〈L(S2 D2)T (t), φ∗N
〉
⎞
⎟⎟⎠ ,

⎛
⎜⎝

1
1
. . .
1

⎞
⎟⎠
〉

N

. (3.7)

Now, let us introduce the feedbacks

Ui(t) := −
〈
E

⎛
⎜⎜⎝
〈L(S2 D2)T (t), φ∗1

〉〈L(S2 D2)T (t), φ∗2
〉

. . .〈L(S2 D2)T (t), φ∗N
〉
⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
γi+λ1

1
γi+λ2

. . .
1

γi+λN

⎞
⎟⎟⎠
〉

N

= −
〈
ΛγiE

⎛
⎜⎜⎝
〈L(S2 D2)T (t), φ∗1

〉〈L(S2 D2)T (t), φ∗2
〉

. . .〈L(S2 D2)T (t), φ∗N
〉
⎞
⎟⎟⎠ ,

⎛
⎜⎝

1
1
. . .
1

⎞
⎟⎠
〉

N

, t ≥ 0,

(3.8)
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for i = 1, 2, . . . , N . Thus, U = U1 + . . .+ UN .
For latter computations, we need to show that⎛

⎜⎜⎝
〈LDγiUi, φ

∗
1〉

〈LDγiUi, φ
∗
2〉

. . .
〈LDγiUi, φ

∗
N 〉

⎞
⎟⎟⎠ = −GiE

⎛
⎜⎜⎝
〈L(S2 D2)T , φ∗1

〉〈L(S2 D2)T , φ∗2
〉

. . .〈L(S2 D2)T , φ∗N
〉
⎞
⎟⎟⎠ , (3.9)

where Gi are introduced in (2.10) above, for i = 1, . . . , N . This is indeed so. We have, via relation (3.5),

〈LDγiUi, φ
∗
m〉 = Ui 〈LDγi1, φ

∗
m〉 = −

〈
E

⎛
⎜⎜⎝
〈L(S2 D2)T , φ∗1

〉〈L(S2 D2)T , φ∗2
〉

. . .〈L(S2 D2)T , φ∗N
〉
⎞
⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

1

(γi+λ1)(γi+λm)
1

(γi+λ2)(γi+λm)

. . .
1

(γi+λN )(γi+λm)

⎞
⎟⎟⎟⎠
〉

N

, m = 1, . . . , N,

from where (3.9) follows immediately.
Returning to the linear equation (3.3), we denote by

z := L
[
(S2 D2)T − Dγ1U1 − . . .− DγNUN

]
.

Obviously, z ∈ D(−A). Subtracting (3.3) and (3.4), corresponding to Dγi , i = 1, . . . , N , we arrive to

zt = −Az + 2
N∑

i,j=1

λj

〈LDγiUi, φ
∗
j

〉
φj +

N∑
i=1

γiLDγiUi −
(
L

N∑
i=1

DγiUi

)
t

. (3.10)

In terms of the new variable z, the feedbacks Ui, i = 1, .., N have the form

Ui(t) = −1
2

〈
E

⎛
⎜⎜⎝

〈z(t), φ∗1〉
〈z(t), φ∗2〉

. . .
〈z(t), φ∗N 〉

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
γi+λ1

1
γi+λ2

. . .
1

γi+λN

⎞
⎟⎟⎠
〉

N

. (3.11)

To see this, we do the following straightforward computations

1
2

〈
E

⎛
⎜⎜⎝

〈z(t), φ∗1〉
〈z(t), φ∗2〉

. . .
〈z(t), φ∗N 〉

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
γi+λ1

1
γi+λ2

. . .
1

γi+λN

⎞
⎟⎟⎠
〉

N

=
1
2

〈
E

⎛
⎜⎜⎝
〈L(S2 D2)T , φ∗1

〉〈L(S2 D2)T , φ∗2
〉

. . .〈L(S2 D2)T , φ∗N
〉
⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
γi+λ1

1
γi+λ2

. . .
1

γi+λN

⎞
⎟⎟⎠
〉

N

− 1
2

N∑
j=1

〈
E

⎛
⎜⎜⎝
〈LDγjUj, φ

∗
1

〉〈LDγjUj, φ
∗
2

〉
. . .〈LDγjUj , φ

∗
N

〉
⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
γi+λ1

1
γi+λ2

. . .
1

γi+λN

⎞
⎟⎟⎠
〉

N

(taking into account relation (3.9))

=
1
2

〈
[I + E(G1 + . . .+GN )]E

⎛
⎜⎜⎝
〈L(S2 D2)T , φ∗1

〉〈L(S2 D2)T , φ∗2
〉

. . .〈L(S2 D2)T , φ∗N
〉
⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
γi+λ1

1
γi+λ2

. . .
1

γi+λN

⎞
⎟⎟⎠
〉

N

= −Ui,

,
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since E = (G1 + . . .+GN )−1. Moreover, likewise in (3.9), we have now⎛
⎜⎜⎝

〈LDγiUi, φ
∗
1〉

〈LDγiUi, φ
∗
2〉

. . .
〈LDγiUi, φ

∗
N 〉

⎞
⎟⎟⎠ = −1

2
GiE

⎛
⎜⎝

〈z(t), φ∗1〉〈z(t), φ∗2〉
. . .

〈z(t), φ∗N 〉

⎞
⎟⎠ , i = 1, . . . , N. (3.12)

Next, we decompose system (3.10) into its stable and unstable part. More precisely, we denote by Zu
N :=

span {φj}N
j=1, and Zs

N := span {φj}∞j=N+1. Then introduce the projections, PN , and its dual P ∗
N , defined by

PN := − 1
2πi

∫
Γ

(λI + A)−1dλ; P ∗
N := − 1

2π i

∫
Γ̄

(λI + A∗)−1dλ,

where Γ (its conjugate Γ̄ , respectively) separates the unstable spectrum from the stable one of −A (−A∗,
respectively). We set

−Au
N := PN (−A), −As

N := (I − PN )(−A), (3.13)

for the restrictions of −A to Zu
N and Zs

N , respectively. This projections commute with −A. We then have that
the spectra of −A on Zu

N and Zs
N coincide with {λj}N

j=1 and {λj}∞j=N+1, respectively.
Moreover, since −A generates a C0−analytic semigroup on H , its restriction −As

N to Zs
N generates likewise

a C0−analytic semigroup on Zs
N . This implies that −As

N satisfies the spectrum determined growth condition
on Zs

N , and so, we have
‖e−As

N t‖L(H,H) ≤ Cα0e
−α0t, ∀t ≥ 0, (3.14)

for some α0 < |λN+1|.
The system (3.10) can accordingly be decomposed as

z = zN + ζN , zN := PNz, ζN := (I − PN )z,

where applying PN and (I − PN ) on (3.10), we obtain

on Zu
N :

d
dt
zN + Au

NzNk
= PN

⎡
⎣2

N∑
i,j=1

λj

〈LDγiUi, φ
∗
j

〉
φj +

N∑
i=1

γiLkDγiUi −
(
L

N∑
i=1

DγiUi

)
t

⎤
⎦ (3.15)

on Zs
N :

d
dt
ζN + As

NζN = (I − PN )

⎡
⎣2

N∑
i,j=1

λj

〈LDγiUi, φ
∗
j

〉
φj +

N∑
i=1

γiLDγiUi −
(
L

N∑
i=1

DγiUi

)
t

⎤
⎦ (3.16)

respectively.
Let us write zN as

zN (t, y) =
N∑

j=1

〈
z(t), φ∗j

〉
φj(y).

We introduce that zN in equation (3.15), multiply it successively by φ∗j , j = 1, . . . , N , take account of the
bi-orthogonality of the eigenfunctions systems, notice that we may assume that P ∗

Nφ
∗
j = φ∗j (since P ∗

N is
idempotent) and take advantage of relation (3.12), to get that

Zt = ΛZ −
N∑

i=1

ΛGiEZ − 1
2

N∑
i=1

γiGiEZ +
1
2

N∑
i=1

GiEZt, t ≥ 0,
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where Z :=

⎛
⎜⎝

〈z(t), φ∗1〉〈z(t), φ∗2〉
. . .

〈z(t), φ∗N 〉

⎞
⎟⎠ and Λ := diag(λ1, λ2, . . . , λN ).

Recalling that E = (G1 + . . .+GN )−1, the above relation yields

Zt = −γ1Z +
N∑

i=2

(γ1 − γi)GiEZ, t ≥ 0. (3.17)

Notice that Gi, i = 1, . . . , N, are positive semi-definite symmetric matrices (by the definition ofGi, Λγi and G;
in fact, one can see in the proof of Lemma A.2 that this is true), therefore, 〈Giq, q〉N ≥ 0, ∀q ∈ CN , i = 1, . . . , N.
Consequently, E = (G1 + . . .+GN )−1 is a positive definite symmetric matrix, thus one can define another
positive definite symmetric matrix, denoted by E

1
2 , such that E

1
2E

1
2 = E (the square root of E; for details

see [5]). Let us scalarly multiply equation (3.17) by EZ, to get

1
2

d
dt

‖E 1
2Z(t)‖2

N = −γ1‖E 1
2Z(t)‖2

N +
N∑

i=2

(γ1 − γi) 〈GiEZ(t), EZ(t)〉N , (3.18)

that leads to
1
2

d
dt

‖E 1
2Z(t)‖2

N ≤ −γ1‖E 1
2Z(t)‖2

N , t ≥ 0,

since γ1 − γi < 0, i = 2, . . . , N (here, ‖ · ‖N stands for the euclidean norm in CN ). The above relation implies
the exponential decay of Z in the ‖E 1

2 · ‖N -norm, i.e.,

‖E 1
2Z(t)‖2

N ≤ e−2γ1t‖E 1
2Zo‖2

N , t ≥ 0,

where using the fact that E
1
2 is a positive definite symmetric matrix, we finally arrive to

‖Z(t)‖2
N ≤ Ce−2γ1t‖Zo‖2

N , t ≥ 0, (3.19)

for some positive constant C. Thus, we obtain that the first N modes are exponentially stable. It is easy to
deduce that this is enough to show that, in fact, the solution to (3.3) is exponentially stable, by appealing to
classical arguments related to this spectral decomposition method, similarly as in [15]. Recalling the equivalence
between (3.2), (2.1) and (1.4), the theorem follows immediately. The details are omitted. �

4. Conclusions

The main result of this paper provides simple finite-dimensional stabilizing feedbacks for the
Hartmann−Poiseuille profile of a 2-D periodic MHD channel, with the stability assured independently on the
value of the magnetic Reynolds number (see (2.6)). These feedback laws are easy to manipulate from the com-
putational point of view. However, in practice, they require full-state knowledge of the normal components of
the velocity field and of the magnetic field, together with their second order spatial derivatives. But, once we
notice that∫∫

Q

(vyy(t, x, y) + cyy(t, x))e−ikxφk∗
ij (y)dxdy =

∫∫
Q

(v(t, x, y) + c(t, x, y))eikx(φk∗
ij (y))yydxdy,

for all i = 1, 2 and j = 1, . . . , Nk, it follows that the second spatial derivatives of the velocity and magnetic field
are, in fact, not needed to be known. But, of course, one has to solve the eigenfunction problem associated to
the operator −A∗

k, for |k| ≤ M . We point out that, for each level |k| ≤ M , these operators have similar form.
That simplifies a lot this problem.
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Thus, for implementation of these kind of feedbacks, it remains to measure the normal components of both the
velocity field and the magnetic field in the whole channel. We stress that, all the results on stabilization of MHD
channel flows, presented in the Introduction, also require full-state knowledge. The particle imaging velocimetry
technique can be applied to this end. However, this way one obtains only local data about these targets. One
way to overcome this problem, is to design an observer for estimation the velocity and electromagnetic fields
of the Hartmann flow, based on boundary measurements of pressure, current and skin friction. Then, together
with the feedback laws (2.6) one obtains an output feedback stabilizing boundary controller that only needs
boundary measurements. This idea is due to the work [25], that treats the three-dimensional case of the SMHD
channel, based on the observer designed in [24] (see Fig. 4 in [25]). In those papers, the backstepping technique is
used. So, it remains, as a subsequent work, to design such an observer, this time, via the algorithm we presented
here.

Another way to overcome this problem comes from the recent result [11]. There, a similar explicit stabilizing
feedback, as here, is designed, this time for the Fischer’s equation. The ideas are again based on those in [17].
Even if, for that case also, the form of the feedback requires full-state knowledge, the numerical simulations
performed there show that, in fact, only knowledge on a part of the space is sufficient. More precisely, on (a, 1),
not the whole (0, 1), where a ≤ 0.25. It is possible that this a can be chosen nearer to 1. However, rigorous
mathematical proof must be done for that case. So, it is possible that in our case the things are the same,
namely, numerical simulations may show that only local knowledge of the state is needed. However, this subject
remains also for a subsequent work, since it is not easy to deal with not even for the more simple Fischer’s
equation case.

Finally, one may suspect that global stability of the linearised system (which is what we proved here) implies
local stability for the non-linear system. This is also not a simple task since, in order to prove this, usually
one applies a fixed point argument. So, one is obliged to reduce the pressure from the system, and this is
usually done by applying the Leray projector. Here, we can not do this because of the non tangential boundary
conditions. This is also left for subsequent work, however, it should be noticed that, in practice, stability of the
linear approximation is usually enough.

Appendix A.

Lemma A.1. Under assumption (H1∗), for any 0 < γ1 < γ2 < . . . < γN , we have

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
γ1 + λ1

1
γ1 + λ2

. . .
1

γ1 + λN
1

γ2 + λ1

1
γ2 + λ2

. . .
1

γ2 + λN
. . . . . . . . . . . .
1

γN + λ1

1
γN + λ2

. . .
1

γN + λN

∣∣∣∣∣∣∣∣∣∣∣∣∣
�= 0. (A.1)

Proof. Let us prove this by mathematical induction over N .
Step 1. For N = 2, we have

∣∣∣∣∣∣∣
1

γ1 + λ1

1
γ1 + λ2

1
γ2 + λ1

1
γ2 + λ2

∣∣∣∣∣∣∣ =
(λ1 − λ2)(γ1 − γ2)

(γ1 + λ1)(γ2 + λ2)(γ2 + λ1)(γ1 + λ2)
�= 0,

since λ1 �= λ2 have positive real part, and γ1 < γ2.
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Step 2. We assume that for N − 1 the claim is true and prove it for N . To this end we have

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
γ1 + λ1

1
γ1 + λ2

. . .
1

γ1 + λN
1

γ2 + λ1

1
γ2 + λ2

. . .
1

γ2 + λN
. . . . . . . . . . . .
1

γN + λ1

1
γN + λ2

. . .
1

γN + λN

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(Subtracting from the first column the Nth one, . . ., from the (N − 1)th column the Nth one)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

λN − λ1

(γ1 + λ1)(γ1 + λN )
λN − λ2

(γ1 + λ2)(γ1 + λN )
. . .

λN − λN−1

(γ1 + λN−1)(γ1 + λN )
1

γ1 + λN
λN − λ1

(γ2 + λ1)(γ2 + λN )
λN − λ2

(γ2 + λ2)(γ2 + λN )
. . .

λN − λN−1

(γ2 + λN−1)(γ2 + λN )
1

γ2 + λN

. . . . . . . . . . . .
λN − λ1

(γN + λ1)(γN + λN )
λN − λ2

(γN + λ2)(γN + λN )
. . .

λN − λN−1

(γN + λN−1)(γN + λN )
1

γN + λN

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

γN + λN

N−1∏
k=1

λN − λk

γk + λN

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
γ1 + λ1

1
γ1 + λ2

. . .
1

γ1 + λN−1
1

1
γ2 + λ1

1
γ2 + λ2

. . .
1

γ2 + λN−1
1

. . . . . . . . . . . .
1

γN + λ1

1
γN + λ2

. . .
1

γN + λN−1
1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(Subtracting the Nth line from the first one, . . . , the Nth line from the (N − 1)th one)

=
1

γN + λN

N−1∏
k=1

(λN − λk)(γN − γk)
(γk + λN )(γN + λk)

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
γ1 + λ1

1
γ1 + λ2

. . .
1

γ1 + λN−1
1

γ2 + λ1

1
γ2 + λ2

. . .
1

γ2 + λN−1

. . . . . . . . . . . .
1

γN−1 + λ1

1
γN−1 + λ2

. . .
1

γN−1 + λN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
�= 0

by the inductive hypothesis and the fact that λi, i = 1, . . . , N are mutually distinct, have positive real part,
and 0 < γ1 < γ2 < . . . < γN . �

Lemma A.2. The sum G1 +G2 + . . .+GN is an invertible matrix, where Gm, m = 1, . . . , N, are introduced
in relation (2.10).

Proof. Arguing by contradiction, let us assume that there is z =

⎛
⎜⎝
z1
z2
. . .
zN

⎞
⎟⎠ ∈ CN , non-zero, such that (G1 + . . .+

GN )z = 0. It follows that

N∑
m=1

〈Gmz, z〉N = 0,
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or, equivalently,
N∑

m=1

∣∣∣∣∣
N∑

i=1

zi
1

γm + λi

∣∣∣∣∣
2

= 0.

We arrive to the following homogeneous system⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
γ1 + λ1

z1 +
1

γ1 + λ2
z2 + . . .+

1
γ1 + λN

zN = 0
1

γ2 + λ1
z1 +

1
γ2 + λ2

z2 + . . .+
1

γ2 + λN
zN = 0

. . .
1

γN + λ1
z1 +

1
γN + λ2

z2 + . . .+
1

γN + λN
zN = 0,

with the unknowns z1, . . . , zN and with non-zero determinant of the matrix of the system, by Lemma A.1.
Hence, necessarily z = 0. This is in contradiction with our assumption. We conclude that the sum G1 + . . .+GN

is indeed an invertible matrix. �
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