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CONTROL OF BIOLOGICAL RESOURCES ON GRAPHS

Rinaldo M. Colombo
1

and Mauro Garavello
2

Abstract. A biological resource is a population characterized by birth, aging and death, grown in
order to produce a profit. The evolution of this system is described by a structured population model,
modified to take into account the selection for reproduction or for the market. This selection is the
control that has to be optimized in order to maximize the profit. First we prove the well posedness
of the descriptive model. Then, the profit is shown to be Gâteaux differentiable with respect to the
controls. Finally, we ensure that the maximal profit can be reached by means of Bang–Bang controls.
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1. Introduction

In biological resource management, one typically rears/breeds a species up to a suitable stage, then part of
the population is kept for reproduction, while the rest goes to the market. Call J = J(t, a) the density of the
juveniles at time t of age or size a. Then, according to the standard modeling of a biological population with
age structure, see e.g. [1, 2, 19, 20], J solves

∂tJ + ∂a

(
gJ(t, a)J

)
= dJ (t, a)J. (1.1)

Here, gJ is the usual growth function and −dJ the mortality rate. When juveniles reach a given age/size ā,
they are selected: a portion is directed to the market, while the others are kept for reproduction purposes. By
S = S(t, a) we denote the density of the individuals that are going to be sold, while R = R(t, a) stands for the
density of those reserved for reproduction. Similarly to above, we obtain the equations{

∂tS + ∂a

(
gS(t, a)S

)
= dS(t, a)S

∂tR+ ∂a

(
gR(t, a)R

)
= dR(t, a)R. (1.2)

A key role is played by the control parameter η = η(t) specifying the ratio of the juveniles sent to the market
at time t. Clearly, 1 − η(t) then stands for the fraction kept for reproduction. Hence, (1.2) needs to be coupled
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Figure 1. A graph representing a possible framework for the exploitation of biological re-
sources: at the age/size ā, juveniles reach the adult stage, they are split into a part R used for
reproduction and a part S which is sold at the ages/sizes ā1, ā2, . . .

to (1.1) through the inflows at ā{
gS(t, ā)S(t, ā+) = η(t) gJ (t, ā)J(t, ā−)
gR(t, ā)R(t, ā+) =

(
1 − η(t)

)
gJ(t, ā)J(t, ā−). (1.3)

In turn, the inflow to (1.1) is provided by the fertility of the R population, so that

gJ(t, 0)J(t, 0+) =
∫ +∞

ā

w(α)R(t, α) dα ,

where the function w = w(a) describes the fertility of the adults R at age a.
We introduce now the selling procedure. It is reasonable to assume that the adults S can be sold at the

predetermined ages/sizes ā1, . . . , āN , with ā < ā1 < ā2 < · · · < āN , see Figure 1. The percentage of individuals
sold at the age āi is ϑi = ϑi(t), with ϑi ∈ [0, 1] for i = 1, . . . , N . Therefore, the evolution of S needs to be
modified inserting the conditions

S(t, āi+) =
(
1 − ϑi(t)

)
S(t, āi−) for i = 1, . . . , N. (1.4)

Without any lack of generality, we may impose that ϑN = 1, so that all individuals in the S population are
sold within age/size āN . Remark that condition (1.4) at āi prescribes that from the total salable individuals
S(t, āi−), the amount

(
1 − ϑi(t)

)
S(t, āi−) continues to be grown, while the amount ϑi(t)S(t, āi−) is sold and

disappears from the future evolution of S as solution to (1.2).
The graph representing the above framework is in Figure 1.
The above description of the populations’ evolution has to be completed with the economic part, specifying

the cost, income and profit functions. A natural shape for the breeding cost is

C(η, ϑ;T ) =
∫ T

0

∫ ā

0

CJ

(
t, a, J(t, a)

)
dadt+

∫ T

0

∫ āN

ā

CS

(
t, a, S(t, a)

)
da dt

+
∫ T

0

∫ +∞

ā

CR

(
t, a, R(t, a)

)
da dt .

(1.5)

The quantity Cu(t, a, u), for u = J, S,R, is the breeding cost of the population u, of age/size a, at time t.
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The income I is due to the amount of individuals sold at the various ages/sizes āi. Call Pi(t) the price at
which an individual of age/size āi is sold at time t. Therefore,

I(η, ϑ;T ) =
N∑

i=1

∫ T

0

Pi(t) ϑi(t) S(t, āi−) dt . (1.6)

Note that setting PN < 0 allows to comprehend the situation of unsold individuals causing an increase in the
cost.

A particular role is played by the time horizon T . Clearly, as long as the profit I − C does not depend on
what happens after time T , an optimal strategy is likely to consist in selling all individuals before time T . This
choice is not always reasonable and to avoid it we consider also a smooth penalization Φ whenever the total
amount of juveniles at time T falls below, say, the initial value

∫ ā

0 Jo(a) da, such as for instance

ϕ

Φ(η, ϑ;T ) = ϕ

(∫ ā

0

(
Jo(a) − J(T, a)

)
da

)
(1.7)

for a suitable smooth function ϕ : R → R
+.

The question that naturally arises is to find the strategies η� and ϑ� that maximize the net profit P , i.e., the
difference of the income I minus the costs C and Φ:

P(η, ϑ;T ) = I(η, ϑ;T ) − C(η, ϑ;T ) − Φ(η, ϑ;T ). (1.8)

In mathematical terms, we are lead to the optimization problem

find
η ∈ BV([0, T ]; [0, 1])

ϑ ∈ BV([0, T ]; [0, 1]N)
to maximize P(η, ϑ;T ) (1.9)

for given T > 0 and for a fixed initial datum (Jo, So, Ro). The choice of the space BV is motivated, a posteriori,
by Theorem 2.1 which ensures the well posedness of (1.1)−(1.4) under the condition that the total variation of
η and ϑ be bounded.

Thanks to Theorem 2.1, suitable regularity conditions on the costs (1.5), (1.7) and on the income (1.6), a
Weierstraß type argument can be used to ensure the existence of the optimal controls η� and ϑ�. We then
proceed seeking information that may ease the actual search for these optimal controls.

Remark that the dependence of P from the η and ϑ is highly nonlinear, differently from [6]. The standard
situation when dealing with conservation or balance laws is that solutions depend from data and parameters in
a merely Lipschitz continuous way, see ([10], Thms. 2.4 and 2.5) as well as Theorem 2.1 below. Here, we prove
that the income P is Gâteaux differentiable with respect to the controls, see Theorem 2.5. This result fully
justifies gradient methods in the search for η� and ϑ�. The case with η and ϑ both constant in time is settled
in [15], where it is shown that the net profit is differentiable with respect to both (fixed) control parameters.

However, since explicit analytic forms for the directional derivatives of P are in general practically useless,
we proceed considering Bang–Bang controls, i.e., controls that are piecewise constant on intervals and attain
only the values 0 and 1. In optimal control theory, the notion of Bang–Bang controls is widely used, since
optimal controls for several problems, such as minimum time problems, are indeed Bang–Bang; see [7, 21]. In
our case, Theorem 2.8 ensures that, in the search for η� and ϑ�, considering Bang–Bang controls is sufficient.
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This information significantly shortens the numerical procedures that can be used to find the global minimum
of P .

The description of structured population models is a well established research area, refer for instance to
the classical textbook [19], to the more recent [4, 13, 17, 20] and to the references therein. An introduction to
optimal control in structured population models is found, for instance, in [3], Chapter 3, [4], Chapter 4 or ([17],
Sect. 7.3). A different approach to natural resources modeling, based on viability theory, is in ([13], Chap. 5).
Control problems on renewable equations, through approximations based on ordinary differential equations, are
treated for instance in [9, 11, 16].

This paper is organized as follows: the next section deals with the analytic framework and presents the main
well posedness and differentiability results. Technical details are deferred to Section 4.

2. Main results

Let I be a real interval and u : I → R be measurable. The following norms are used in the sequel

‖u‖L1(I;R) =
∫

I

∣∣u(t)
∣∣ dt and ‖u‖L∞(I;R) = supesst∈I

∣∣u(t)
∣∣,

while in the case u : I × J → R, J being a real interval, we set

‖u‖C0(I;L1(J;R)) = sup
t∈I

∫
J

∣∣u(t, x)
∣∣ dx . (2.1)

Throughout, we fix the following notation:

N ∈ N \ {0}, 0 < ā = ā0 < ā1 < . . . < āN ,
IJ = [0, ā],
IS = [ā, āN ],
IR = [ā,+∞[ ,

IT = [0, T ], or
[0,+∞[ , (2.2)

the cases where T needs to be finite are explicitly signaled. As in [10], we consider the following model describing
the evolution of the species J, S,R:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tJ + ∂a

(
gJ(t, a)J

)
= dJ (t, a)J (t, a)∈ IT × IJ

∂tS + ∂a

(
gS(t, a)S

)
= dS(t, a)S (t, a)∈ IT ×

(
IS \ {ā1, . . . , āN}

)
∂tR+ ∂a

(
gR(t, a)R

)
= dR(t, a)R (t, a)∈ IT × IR

gJ(t, 0)J(t, 0+) =
∫ +∞

ā
w(α)R(t, α) dα t∈ IT

gS(t, ā)S(t, ā+) = η(t) gJ(t, ā)J(t, ā−) t∈ IT
gR(t, ā)R(t, ā+) =

(
1 − η(t)

)
gJ(t, ā)J(t, ā−) t∈ IT

S(t, āi+) =
(
1 − ϑi(t)

)
S(t, āi−) t∈ IT , i = 1, . . . , N − 1

J(0, a) = Jo(a) a∈ IJ
S(0, a) = So(a) a∈ IS
R(0, a) = Ro(a) a∈ IR.

(2.3)

The following assumptions are required on (2.3):

(A) There exist positive ǧ, ĝ such that, for u = J, S,R,

gu ∈ C1(IT × Iu; [ǧ, ĝ]) and

{
supt∈R+ TV

(
gu(t, ·)

)
< +∞ ;

supt∈R+ TV
(
∂xgu(t, ·)

)
< +∞ ;

du ∈ (C1 ∩ L∞)(IT × Iu; R) and supt∈R+ TV
(
du(t, ·)

)
< +∞ ;

(2.4)

while the fertility function w satisfies w ∈ C1
c([ā,+∞[ ; R+).
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(ID) Jo ∈ BV(IJ ; R), So ∈ BV(IS ; R) and Ro ∈ (L1 ∩ BV)(IR; R).

For later use, we introduce the following assumptions on the functions defining the net profit (1.8):

(P) Pi ∈ L∞(IT ; R) for i = 1, . . . , N .
(C) For u = J, S,R, the function Cu : IT × Iu × R → R satisfies

(1) Cu is (L ⊗ B)-measurable, where L, resp. B, is the Lebesgue σ-algebra on IT × Iu, resp. the Borel
σ-algebra on R

+;
(2) the function s→ Cu(t, a, s) is upper semicontinuous and concave for a.e. (t, a) ∈ IT × Iu;
(3) there exist c ∈ L1 (IT × Iu; R) and b ∈ R such that∣∣Cu(t, a, s)

∣∣ ≤ c(t, a) + b|s|

for a.e. (t, a) ∈ IT × Iu and s ∈ R
+.

(ϕ) ϕ ∈ C0
(
R; R+

)
.

2.1. Well Posedness and Gâteaux Differentiability

As a first step, we extend ([10], Thms. 2.4, 2.5, and Prop. 2.6) to the case of time dependent controls η = η(t)
and ϑ = ϑ(t).

Theorem 2.1. Use the notation (2.2) and pose conditions (A), (ID). For any η ∈ BV(IT ; [0, 1]) and ϑ ∈
BV(IT ; [0, 1]N), system (2.3) admits a unique solution. Moreover,

if

⎧⎨⎩ Jo ≥ 0
So ≥ 0
Ro ≥ 0

then

⎧⎨⎩ J(t) ≥ 0
S(t) ≥ 0
R(t) ≥ 0

for all t ∈ IT

and there exists a function K ∈ C0(IT ; R+), with K(0) = 0, dependent only on gJ , gS, gR, dJ , dS, dR and w such
that for any initial data (J ′

o, S
′
o, R

′
o) and (J ′′

o , S
′′
o , R

′′
o ) and for any controls η′, η′′, ϑ′ and ϑ′′, the corresponding

solutions (J ′, S′, R′) and (J ′′, S′′, R′′) to (2.3) satisfy the following stability estimate:∥∥J ′(t) − J ′′(t)
∥∥
L1(IJ ;R)

+
∥∥S′(t) − S′′(t)

∥∥
L1(IS ;R)

+
∥∥R′(t) −R′′(t)

∥∥
L1(IR;R)

≤ K(t)
(∥∥J ′

o − J ′′
o

∥∥
L1(IJ ;R)

+
∥∥S′

o − S′′
o

∥∥
L1(IS ;R)

+
∥∥R′

o −R′′
o

∥∥
L1(IR;R)

)
+tK(t)

(∥∥J ′
o − J ′′

o

∥∥
L∞(IJ ;R)

+
∥∥S′

o − S′′
o

∥∥
L∞(IS ;R)

+
∥∥R′

o −R′′
o

∥∥
L∞(IR;R)

)
+K(t)

(∥∥η′ − η′′
∥∥
L∞([0,t];R)

+
∥∥ϑ′ − ϑ′′

∥∥
L∞([0,t];RN)

)
.

The proof is deferred to Section 4.1. The following corollary is then immediate.

Corollary 2.2. Use (2.2) and pose conditions (A), (ID). Then, for bounded T , the map

S : BV(IT ; [0, 1])×BV(IT ; [0, 1]N)→C0
(
IT ;BV(IJ ; R+)×BV(IS ; R+)×BV(IR; R+)

)
η , ϑ → J , S , R

(2.5)

where (J, S,R) is the solution to (2.3) with controls (η, ϑ), is Lipschitz continuous with respect to the L∞ norm
in (η, ϑ) and to the norm (2.1) in (J, S,R).

Clearly, under suitable regularity conditions on CJ , CS , CR, Pi, ϕ, the above result ensures the continuity of
the functionals defined in (1.5), (1.6), (1.7) and, consequently, in (1.8) as functions of the control parameters η
and ϑ.
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t

G−1
R

G0
R

G1
R

G2
R

G3
R

G4
R

G4
J

G3
J

G2
J

G1
J

G0
J

T1

T2

T3

T4

G2
S

G1
S

G0
S

G−1
S

G3
S

G4
S

G4
J

G3
J

G2
J

G1
J

G0
J

T4

T3

T2

T1

āN

Figure 2. Times Tn and regions Gn
J , G

n
S , G

n
R defined in (2.7) and in (2.8). Left, with reference

to the J and S populations, right with reference to the J and R populations. These regions
identify the life span of the different generations, separately for the J , S and R populations.

We proceed proving the Gâteaux differentiability of the profit (1.8). With reference to (2.3), for u = J, S,R,
introduce the following notation for the u-characteristic lines, with t ∈ R

+ and a, ao ∈ Iu:

t → Au(t; to, ao) is the solution to
{
ȧ = gu(t, a)
a(to) = ao

and

a→ Tu(a; to, ao) is its inverse, i.e., Au

(
Tu(a; to, ao); to, ao

)
= a for all a ∈ Iu.

(2.6)

Define Tn recursively for n ∈ N by

T0 = 0 and AJ (Tn;Tn−1, 0) = ā or, equivalently, TJ(ā;Tn−1, 0) = Tn. (2.7)

If gJ satisfies (A), then the sequence Tn is well defined and Tn → +∞ as n→ +∞. The interval [Tn−1, Tn] is the
time period when the juveniles of the n-th generation are born. Correspondingly, introduce also the following
regions, representing the life span of the different generations, see Figure 2:

Gi
J =

{
(t, a) ∈ IT × IJ : TJ(ā; t, a) ∈ [Ti−1, Ti]

}
i ∈ N \ {0}

G0
S =

{
(t, a) ∈ IT × IS : a > AS(t; 0, ā)

}
Gi

S =
{
(t, a) ∈ IT × IS : a ∈ [AS(t;Ti, ā),AS(t;Ti−1, ā)]

}
i ∈ N \ {0}

G0
R =

{
(t, a) ∈ IT × IR : a > AR(t; 0, ā)

}
Gi

R =
{
(t, a) ∈ IT × IR : a ∈ [AR(t;Ti, ā),AR(t;Ti−1, ā)]

}
i ∈ N \ {0}. (2.8)

The analytic expression of the solution to (2.3) is in principle available, though essentially unusable. Therefore,
we provide below a representation of the variations ΔJ , ΔS, ΔR corresponding to variations Δη, Δϑ in the
controls η, ϑ. To simplify the notation, fix

• the functions defining (2.3), i.e., gJ , gS , gR, dJ , dS , dR, w;
• the initial datum (Jo, So, Ro);
• the controls η and ϑ;
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and, for u = J, S,R, denote by

Υu = Υu(τ, t, a) with Υu ∈ BVloc(IT × IT × Iu; R)

a map whose actual value is unimportant in the present context, but it depends only on gJ , gS , gR, dJ , dS , dR,
w, Jo, So, Ro and η and ϑ, but does not depend on Δη or on Δϑ.

The following propositions, rather technical, provide the form of the dependence of the variation of the
solution to (2.3) from the variation on the controls. The proofs are in Section 4.1.

Proposition 2.3. Use the notation (2.2) and pose conditions (A), (ID). Choose controls η ∈ BV(IT ; [0, 1])
and ϑ ∈ BV(IT ; [0, 1]N). Call (J, S,R), respectively (J+ΔJ, S+ΔS,R+ΔR), the solution to (2.3) with control
η, respectively η +Δη, where

η +Δη ∈ BV(IT ; [0, 1]) and sptΔη ⊆ ]Th−1, Th] ,

for a fixed h ∈ N such that Th < T . Then,

ΔJ(t, a) =

⎧⎪⎨⎪⎩
∫ min{t,Th}

Th−1

Δη(τ) ΥJ (τ, t, a) dτ (t, a) ∈ ]Th−1, T [ × IJ

0 (t, a) ∈ [0, Th−1] × IJ

ΔS(t, a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ Th

Th−1

Δη(τ) ΥS(τ, t, a) dτ (t, a) ∈
⋃+∞

i=h+1G
i
S

Δη
(
TS(ā; t, a)

)
ΥS

(
TS(ā; t, a), t, a

)
(t, a) ∈ Gh

S

0 (t, a) ∈
⋃h−1

i=0 G
i
S

ΔR(t, a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ Th

Th−1

Δη(τ) ΥR(τ, t, a) dτ (t, a) ∈
⋃+∞

i=h+1G
i
R

Δη
(
TR(ā; t, a)

)
ΥR

(
TR(ā; t, a), t, a

)
(t, a) ∈ Gh

R

0 (t, a) ∈
⋃h−1

i=0 G
i
R

where ΥJ , ΥS , ΥR are independent from Δη.

Proposition 2.4. Use the notation (2.2), (2.7), (2.8) and pose conditions (A), (ID). Choose η ∈ BV(IT ; [0, 1])
and ϑ ∈ BV(IT ; [0, 1]N). Call (J, S,R), respectively (J+ΔJ, S+ΔS,R+ΔR), the solution to (2.3) with control ϑ,
respectively ϑ+Δϑ, where

ϑ+Δϑ ∈ BV(IT ; [0, 1]N)

Then,

ΔJ(t, a) = 0 (t, a) ∈ IT × IJ

ΔS(t, a) =
{

0 (t, a) ∈ IT × ]ā, ā1[
Υ i

S(t, a)M i
ϑ(Δϑ1, . . . , Δϑi) (t, s) ∈ IT × ]āi, āi+1[ i = 1, . . . , N

ΔR(t, a) = 0 (t, a) ∈ IT × IR

where Υ i
S is independent from ϑ and Δϑ, the function M i

ϑ is linear in each argument with coefficients dependent
on ϑ1, . . . , ϑi, for i = 1, . . . , N .

Below, for simplicity, we choose, as time interval where the profit is maximized, an interval of the form [0, Tn]
for some n ∈ N \ {0}.

Theorem 2.5. Use the notation (2.2) and pose conditions (A), (ID). Choose η ∈ BV(IT ; [0, 1]) and ϑ ∈
BV(IT ; [0, 1]N). Moreover, with reference to (1.5)−(1.8),
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(C) CJ ∈ L∞(IT × IJ × R
+; R), CS ∈ L∞(IT × IS × R

+; R) and CR ∈ L∞(IT × IR × R
+; R) admit a constant

C > 0 such that for all t ∈ IT and J, S,R,ΔJ,ΔS,ΔR ∈ R,∣∣∣CJ(t, a, J +ΔJ) −
[
CJ (t, a, J) + ∂JCJ (t, a, J) ΔJ

]∣∣∣ ≤ C (ΔJ)2 (t, a) ∈ IT × IJ∣∣∣CS(t, a, S +ΔS) −
[
CS(t, a, S) + ∂SCS(t, a, S) ΔS

]∣∣∣ ≤ C (ΔS)2 (t, a) ∈ IT × IS∣∣∣CR(t, a, R+ΔR) −
[
CR(t, a, R) + ∂RCR(t, a, R) ΔR

]∣∣∣ ≤ C (ΔR)2 (t, a) ∈ IT × IR

and there exists λ ∈ L1(IR; R) such that
∣∣CR(t, a, R)

∣∣ ≤ λ(a) for all (t, a) ∈ IT × IR.
(Φ) ϕ ∈ C1(R; R).

Then, the functionals C, Φ, I and P defined in (1.5), (1.6), (1.7), and (1.8) are Gâteaux differentiable in η and
ϑ in any directions Δη and Δϑ such that η + Δη ∈ BV(IT ; [0, 1]), sptΔη ⊆ ]Th−1, Th] for some h ≥ 1 and
ϑ+Δϑ ∈ BV(IT ; [0, 1]N).

The proof is deferred to Section 4.1.

2.2. Bang–Bang controls

This paragraph is devoted to show that the supremum of the net profit P , defined in (1.8), can be arbitrarily
approximated by using the class of Bang–Bang controls ; see [5, 14]. Here, by a Bang–Bang control we mean a
step function, i.e., a finite sum of characteristic functions of intervals, taking values in the set {0, 1}. In classical
optimal control theory, various problems, especially minimum time problems, admit Bang–Bang controls as
optimal ones; see [21]. In this setting, instead, it is not clear if optimal controls are indeed Bang–Bang. However
they can be used in order to approximate the optimal cost.

To this aim, we first obtain further information on the regularity of the maps S defined in (2.5). Indeed,
Corollary 2.2 proves the continuity of S in the strong topology, whereas Bang–Bang controls may approximate
any control only in the weak∗ topology of L∞.

Proposition 2.6. Use the notation (2.2) and pose conditions (A), (ID). Fix η̄ ∈ BV(IT ; [0, 1]), ϑ̄ ∈
BV(IT ; [0, 1]N), i ∈ {1, . . . , n}, ι ∈ {1, . . . , N} and for any ηi ∈ BV([Ti−1, Ti]; [0, 1]), ϑι ∈ BV(IT ; [0, 1])
denote

η̂i(t) =
{
η̄(t) for t∈ IT \ [Ti−1, Ti],
ηi(t) for t∈ [Ti−1, Ti],

ϑ̂ι =
{
ϑ̄j for j ∈ {1, . . . , N} \ {ι},
ϑι for j= ι.

(2.9)

Then, using S as in (2.5), the maps

Si
η : BV([Ti−1, Ti]; [0, 1]) → C0

(
IT ;BV(IJ ; R+) × BV(IS ; R+) × BV(IR; R+)

)
ηi → S(η̂i, ϑ̄)

Sι
ϑ : BV(IT ; [0, 1]) → C0

(
IT ;BV(IJ ; R+) × BV(IS ; R+) × BV(IR; R+)

)
ϑι → S(η̄, ϑ̂ι)

are both sequentially continuous with respect to the weak∗ topology on ηi ∈ L∞([Ti−1, Ti]; R), on ϑι ∈ L∞(IT ; R)
and to the weak topology on (J, S,R) ∈ L1(IT × IJ ; R) × L1(IT × IS ; R) × L1(IT × IR; R).

The proof is in Section 4.2.
The next technical result ensures that Bang–Bang controls in λ : IT → {0, 1} can approximate any (measur-

able) control λ : IT → [0, 1] with respect to the weak∗ topology in L∞(IT ; [0, 1]).

Proposition 2.7. Fix T > 0. Let λ ∈ L∞(IT ; [0, 1]). Then, there exists a sequence of Bang–Bang controls

λm =
Nm∑
k=1

χ
[ak

m,bk
m[

with 0 ≤ a1
m < b1m < a2

m < b2m < · · · < am
m < bmm ≤ T
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such that λm
∗
⇀ λ in L∞(IT ; [0, 1]).

The proof is deferred to Section 4.2.
The following Theorem states that in the search for optimality, considering Bang–Bang controls is sufficient.

Theorem 2.8. Use the notation (2.2) and pose conditions (A), (ID), (P), (C), and (ϕ). Define

P�(T ) = sup
{
P(η, ϑ;T ) :

η ∈BV(IT ; [0, 1])
ϑ∈BV(IT ; [0, 1]N)

}
.

For every ε > 0 there exists a Bang–Bang control (ηε, ϑε) such that

P(ηε, ϑε;T ) ≥ P�(T ) − ε.

3. An Optimization procedure

The numerical procedure developed to actually find optimal controls and profits consists of two parts: the
integration of the partial differential equations (2.3) and the maximization of the profit (1.8).

The former can be accomplished on the basis of any of the numerical methods for balance laws currently
available. In the general form (2.3), due to the dependence of the growth functions on t and x, the classical
Lax−Friedrichs method ([18], Sect. 4.6) can be an effective choice. To deal with the source term, we use the
classical operator splitting method, see for instance ([18], Chap. 17). Whenever the growth functions gJ , gS, gR

and mortality functions dJ , dS , dR are constant, the explicit expressions of the solutions to the partial differential
equations in (2.3) are available and, obviously, faster and more precise computations are possible.

Once the solution is available, the computations of the cost (1.5), of the income (1.6) and of the penaliza-
tion (1.7) are straightforward.

We use the following iterative procedure to find an optimal control and the corresponding maximal profit.
Fix a finite mesh M ⊂ [0, 1] for the control variable. Call Δt the time step used in the numerical solution of
the partial differential equations in (2.3). Fix a positive n ∈ N and assume for simplicity that T = k nΔt, with
k ∈ N. Then, call PC(nΔt;M) the set of functions defined on [0, T ], attaining values in M and constant on
each of the intervals I1 = [0, nΔt], I2 = [nΔt, 2nΔt], . . ., Ik = [(k − 1)nΔt, T ].

We seek controls η and ϑ1, . . . , ϑN−1 in PC(nΔt;M) that maximize P as defined in (1.8). To this aim, as
Step 1 fix an arbitrary first guess η1, ϑ1 ≡ (ϑ1

1, . . . , ϑ
1
N−1) of the controls. We proceed iteratively as follows:

given a choice ηi, ϑi resulting from Step i, introduce a random permutation pi : {1, . . . , k} → {1, . . . , k}. Define
η

i+1,pi(1)
∗ ∈ M and ϑi+1,pi(1)

∗ ∈ MN−1, so that

(ηi+1,pi(1)
∗ , ϑ

i+1,pi(1)
∗ ) = argmax

η̃∈M, ϑ̃∈MN−1

P
(
ηi χ

[0,T ]\Ipi(1)
+ η̃ χ

Ipi(1)
, ϑi χ

[0,T ]\Ipi(1)
+ ϑ̃ χ

Ipi(1)
;T

)
η̂1 = ηi χ

[0,T ]\Ipi(1)
+ η

i+1,pi(1)
∗ χ

Ipi(1)

ϑ̂1 =ϑi χ
[0,T ]\Ipi(1)

+ ϑ
i+1,pi(1)
∗ χ

Ipi(1)

and, recursively for j = 2, . . . , k,

(ηi+1,pi(j)
∗ , ϑ

i+1,pi(j)
∗ ) = argmax

η̃∈M, ϑ̃∈MN−1

P
(
η̂ χ

[0,T ]\Ipi(1)
+ η̃ χ

Ipi(1)
, ϑ̂ χ

[0,T ]\Ipi(1)
+ ϑ̃ χ

Ipi(1)
;T

)
η̂j = η̂j−1 χ

[0,T ]\Ipi(j)
+ η

i+1,pi(j)
∗ χ

Ipi(j)

ϑ̂j = ϑ̂j−1 χ
[0,T ]\Ipi(j)

+ ϑ
i+1,pi(1)
∗ χ

Ipi(j)
,
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Figure 3. Graphs of the total amounts of the three populations:
∫
J in blue,

∫
S in green and∫

R in red in the solution to (2.3) with parameters (3.1)−(3.3), after 4 optimization steps as in
Table 1, right. Left, with a bang-bang control and, right, with a general one. (Color online).

obtaining at Step (i+ 1) the control parameters

ηi+1 = η̂k and ϑi+1 = ϑ̂k.

Remark that the present method applies to the search for both a bang–bang as well as a general control. Indeed,
in the former case it is sufficient to set M = {0, 1}. In the latter case, a natural choice is that M consists of a
number (80 in Tab. 1) of control values uniformly distributed in [0, 1].

As an example, consider problem (2.3) with

IJ = [0, 1] gJ(t, a) = 1.5 dJ(t, a) = 0 N = 1
IS = [1, 2] gS(t, a) = 1 dS(t, a) = 0 ā = 1
IR = [1, 2] gR(t, a) = 2 dR(t, a) = 0.5 ā1 = 2

T = 4,
w(α) = 4, (3.1)

and initial datum

Jo(a) = 1, So(a) = 0, Ro(a) = 0, (3.2)

while the cost and profit functions in (1.8) are defined through

CJ (t, a, j) = 0,
CS(t, a, s) = 0,
CR(t, a, r) = 5r.

P1(t) = 10 and ϕ(α) = 40 max{0,−α}. (3.3)

With the choices above, problem (2.3) can be explicitly integrated and the cost (1.8) can be computed. Nu-
merically, an optimal bang–bang control was obtained, see Figure 3. To compare the corresponding costs and
computation times, see Table 1.

A major reduction in the computational time is obtained thanks to the restriction of the search for the optimal
controls to bang-bang ones. Moreover, using a fine mesh for the control parameters (40 values between 0 and 1)
does not ensure a gain in the total income. Partly, this is also due to both the optimization procedure described
above and to the random choices of the optimization intervals.
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Table 1. Results and computational time of the optimization problem (1.9) with parame-
ters (3.1)−(3.3), using Bang–Bang or general controls, with 2 or 4 steps.

2 steps 4 steps

Bang–Bang No Bang–Bang Bang–Bang No Bang–Bang

C in (1.5) 7.638 7.282 7.666 7.306

I in (1.6) 17.602 17.191 17.675 17.219

Φ in (1.7) 0.000 0.000 0.000 0.000

P in (1.8) 9.964 9.909 10.009 9.914

Δt × 104 3.125 3.125 3.125 3.125

n◦ control switches 800 800 800 800

n◦ control values 2 40 2 40

Computation time 81 min 1753 min 160 min 3488 min

4. Technical details

To simplify the notation, for u = J, S,R we denote below

ψu(t1, t2, a) = exp
∫ t2

t1

(
du

(
s,Au(s; t2, a)

)
− ∂agu

(
s,Au(s; t2, a)

))
ds (4.1)

where the map t → Au (t, to, ao) is defined in (2.6). As in [10, 20], we recall that the initial – boundary value
problem for the renewal equation⎧⎨⎩∂tu+ ∂a

(
gu(t, a)u

)
= du(t, a)u

u(0, a) = uo(a)
gu(t, au)u(t, au+) = b(t)

t ≥ 0
a ≥ au

(4.2)

admits a unique solution that can be explicitly computed integrating along characteristics as

u(t, a) =

⎧⎨⎩uo

(
Au(0; t, a)

)
ψu(0, t, a) a≥Au(t; 0, au)

b(Tu(au;t,a))
gu(Tu(au;t,a),au) ψu

(
Tu(au; t, a), t, a

)
a<Au(t; 0, au), (4.3)

where the maps t→ Au(t, to, ao) and a→ Tu(a; to, ao) are defined as in (2.6). By the standard theory of ordinary
differential equations (e.g. [7], Sect. 2.3), we also have:

∂tAu(t; to, ao) = gu

(
t,Au(t; to, ao)

)
(4.4)

∂toAu(t; to, ao) = −gu(to, ao) exp
∫ t

to

∂agu

(
s,Au(s; to, ao)

)
ds (4.5)

∂aoAu(t; to, ao) = exp
∫ t

to

∂agu

(
s,Au(s; to, ao)

)
ds . (4.6)

4.1. Proofs related to Section 2.1

Lemma 4.1. Use the notation (2.2) and let gS , dS satisfy (A) for u = S. For every ϑ ∈ BV(IT ; [0, 1]N),
bS ∈ BV(IT ; R) and for any initial datum So ∈ BV(IS ; R), the initial boundary value problem⎧⎪⎪⎨⎪⎪⎩

∂tS + ∂a

(
gS(t, a)S

)
= dS(t, a)S (t, a) ∈ IT ×

(
IS \ {ā1, . . . , āN}

)
gS(t, ā+)S(t, ā+) = bS(t) t ∈ IT
S(t, āi+) =

(
1 − ϑi(t)

)
S(t, āi−) t ∈ IT , i = 1, . . . , N

S(0, a) = So(a) a ∈ IS

(4.7)
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admits a unique solution. If bS ≥ 0 and So ≥ 0, then also S ≥ 0. Moreover, if ϑ′, ϑ′′ ∈ BV(IT , [0, 1]),
b′S , b

′′
S ∈ BV(IT ; R) and S′

o, S
′′
o ∈ BV(IS ; R), then the solutions S′ and S′′ to⎧⎪⎪⎨⎪⎪⎩

∂tS + ∂a

(
gS(t, a)S

)
= dS(t, a)S

gS(t, ā+)S(t, ā+) = b′S(t)
S(t, āi+) =

(
1 − ϑ′i(t)

)
S(t, āi−)

S(0, a) = S′
o(a)

and

⎧⎪⎪⎨⎪⎪⎩
∂tS + ∂a

(
gS(t, a)S

)
= dS(t, a)S

gS(t, ā+)S(t, ā+) = b′′S(t)
S(t, āi+) =

(
1 − ϑ′′i (t)

)
S(t, āi−)

S(0, a) = S′′
o (a)

satisfy for all t ∈ IT the estimates:∥∥S′(t) − S′′(t)
∥∥
L1(IS ;R)

≤ C
(∥∥S′

o

∥∥
L∞(IS ;R)

+
∥∥b′S∥∥L∞([0,t];R)

)∥∥ϑ′ − ϑ′′
∥∥
L1([0,t];R)

eCt

+
(∥∥S′

o − S′′
o

∥∥
L1(IS ;R)

+
1
ǧ

∥∥b′S − b′′S
∥∥
L1([0,t];R)

)
eCt

∥∥S′(t) − S′′(t)
∥∥
L∞(IS ;R)

≤ C
(∥∥S′

o

∥∥
L∞(IS ;R)

+
∥∥b′S∥∥L∞([0,t];R)

)∥∥ϑ′ − ϑ′′
∥∥
L∞([0,t];R)

eCt

+
(∥∥S′

o − S′′
o

∥∥
L∞(IS ;R)

+
1
ǧ

∥∥b′S − b′′S
∥∥
L∞([0,t];R)

)
eCt

where C is a positive constant depending only on N , gS and dS.

Proof. Denote by S∗ the solution to (4.7) obtained setting ϑi(t) = 0 for all t ∈ IT and all i = 1, . . . , N . A direct
application of (4.3) allows to write the general solution to (4.7) as

S(t, a) = S∗(t, a)
∏

i∈Θ(t,a)

(
1 − ϑi(T (āi; t, a))

)
where

Θ(t, a) =
{
i ∈ {1, . . . , N} : ∃t∗ ∈ [0, t] with AS(t; t∗, āi) = a

}
.

To obtain the stability estimate, we use ([10], Lem. 2.2), so that∥∥S′
∗(t) − S′′

∗ (t)
∥∥
L1(IS ;R)

≤
(∥∥S′

o − S′′
o

∥∥
L1(IS ;R)

+
1
ǧ

∥∥b′S − b′′S
∥∥
L1([0,t];R)

)
eCt

∥∥S′
∗(t) − S′′

∗ (t)
∥∥
L∞(IS ;R)

≤
(∥∥S′

o − S′′
o

∥∥
L∞(IS ;R)

+
1
ǧ

∥∥b′S − b′′S
∥∥
L∞([0,t];R)

)
eCt.

Therefore ∥∥S′(t) − S′′(t)
∥∥
L1(IS ;R)

=
∫

IS

∣∣S′(t, a) − S′′(t, a)
∣∣ da

≤
∫

IS

∣∣S′
∗(t, a)

∣∣∣∣∣∣∣∣
∏

i∈Θ(t,a)

(
1 − ϑ′i

(
T (āi; t, a)

))
−

∏
i∈Θ(t,a)

(
1 − ϑ′′i

(
T (āi; t, a)

))∣∣∣∣∣∣ da
+

∫
IS

∣∣S′
∗(t, a) − S′′

∗ (t, a)
∣∣ ∏

i∈Θ(t,a)

(
1 − ϑ′′i

(
T (āi; t, a)

))
da

≤ C
∥∥S′

∗(t)
∥∥
L∞(IS ;R)

∫
IS

∑
i∈Θ(t,a)

∣∣∣ϑ′ (T (āi; t, a)
)
− ϑ′′

(
T (āi; t, a)

)∣∣∣da+
∥∥S′

∗(t) − S′′
∗ (t)

∥∥
L1(IS ;R)

≤ C

((∥∥S′
o

∥∥
L∞(IS ;R)

+
∥∥b′S∥∥L∞([0,t];R)

) ∥∥ϑ′ − ϑ′′
∥∥
L1([0,t];R)

)
eCt

+
(∥∥S′

o − S′′
o

∥∥
L1(IS ;R)

+
1
ǧ

∥∥b′S − b′′S
∥∥
L1([0,t];R)

)
eCt.
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Passing to the L∞ norm:

∣∣S′(t, a) − S′′(t, a)
∣∣ ≤ ∣∣S′

∗(t, a)
∣∣∣∣∣∣∣∣

∏
i∈Θ(t,a)

(
1 − ϑ′i

(
T (āi; t, a)

))
−

∏
i∈Θ(t,a)

(
1 − ϑ′′i

(
T (āi; t, a)

))∣∣∣∣∣∣
+
∣∣S′

∗(t, a) − S′′
∗ (t, a)

∣∣ ∏
i∈Θ(t,a)

(
1 − ϑ′′i

(
T (āi; t, a)

))
≤ C

∥∥S′
∗(t)

∥∥
L∞(IS ;R)

∥∥ϑ′ − ϑ′′
∥∥
L∞([0,t];R)

+
∥∥S′

∗(t) − S′′
∗ (t)

∥∥
L∞(IS ;R)

≤ C
(∥∥S′

o

∥∥
L∞(IS ;R)

+
∥∥b′S∥∥L∞([0,t];R)

)∥∥ϑ′ − ϑ′′
∥∥
L∞([0,t];R)

eCt

+
(∥∥S′

o − S′′
o

∥∥
L∞(IS ;R)

+
1
ǧ

∥∥b′S − b′′S
∥∥
L∞([0,t];R)

)
eCt

completing the proof. �

Proof of Theorem 2.1. The specific structure of (2.3) allows for a treatment simpler than the general one adopted
in ([10], Thm. 2.4). The positivity of the solution directly follows from ([10], Prop. 2.6).

Once (J, S,R) is known at time t = Tn (for n ≥ 0), the solution to (2.3) can then be constructed on ]Tn, Tn+1]
through the following three steps:

1. Define J for t ∈ ]Tn, Tn+1] and a ∈ [AJ (t;Tn, 0), ā] through

J(t, a) = J
(
Tn,AJ (Tn; t, a)

)
ψJ(Tn, t, a).

2. Define S for (t, a) ∈ ]Tn, Tn+1] × IS , by using Lemma 4.1, as the solution to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tS + ∂a

(
gS(t, a)S

)
= dS(t, a)S (t, a) ∈ ]Tn, Tn+1] ×

(
IS \ {ā1, . . . , āN}

)
gS(t, ā+)S(t, ā+) = η(t) gj(t, ā)(t)J(t, ā−) t ∈ ]Tn, Tn+1]

S(t, āi+) =
(
1 − ϑi(t)

)
S(t, āi−) t ∈ ]Tn, Tn+1] , i = 1, . . . , N

S(Tn+, a) = S(Tn−, a) a ∈ IS .

3. Define R for (t, a) ∈ ]Tn, Tn+1] × IR as solution to⎧⎪⎪⎨⎪⎪⎩
∂tR+ ∂a

(
gR(t, a)R

)
= dR(t, a)R (t, a) ∈ ]Tn, Tn+1] × IR

gR(t, ā)R(t, ā+) =
(
1 − η(t)

)
gJ(t, ā)J(t, ā−) t ∈ ]Tn, Tn+1]

R(Tn+, a) = R(Tn−, a) a ∈ IR.

4. Define J for t ∈ ]Tn, Tn+1] and a ∈ [0,AJ(t;Tn, 0)] through

J(t, a) =

∫
IR
w(α)R

(
TJ (α;Tn, 0), α

)
dα

gJ

(
TJ(α;Tn, 0)

) ψJ

(
TJ (α;Tn, 0), t, a

)
.

The proof is completed using the estimates ([10], Formulæ (2.15) and (2.18)). �
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Lemma 4.2. Use the notation (2.2) and pose conditions (A), (ID). For any controls η ∈ BV(R+; [0, 1]) and
ϑ ∈ BV(IT ; [0, 1]N),

J(t, a) = J(τ, 0) ψJ(τ, t, a)
{

(t, a) ∈ Gi
J , i ≥ 2

τ = TJ(0; t, a)

S(t, a) = ηi(τ)
gJ (τ,ā)
gS(τ,ā) J(τ, ā) ψS(τ, t, a)

⎧⎨⎩ (t, a) ∈ Gi
S , i ≥ 1

τ = TS(ā; t, a)
a ∈ [ā, ā1[

S(t, a) =
(
1 − ϑj(τ)

)
S(τ, āj) ψS(τ, t, a)

⎧⎪⎪⎨⎪⎪⎩
(t, a) ∈ Gi

S , i ≥ 1
τ = TS(āj ; t, a)
a ∈

[
āj , āj+1

[
j = 2, . . . , N − 1

R(t, a) =
(
1 − ηi(τ)

) gJ (τ,ā)
gR(τ,ā) J(τ, ā) ψR(τ, t, a)

{
(t, a) ∈ Gi

R, i ≥ 1
τ = TR(ā; t, a).

The proof is an immediate consequence of (2.3) and (4.3).

Proof of Proposition 2.3. Let t ∈ ]Tn−1, Tn] and proceed by induction on h and n.

h = 1 and n = 1: If a ∈ [AJ (t; 0, 0), ā], then ΔJ(t, a) = 0. Otherwise, by Lemma 4.2, for a ∈ [0,AJ(t; 0, 0)],

ΔJ(t, a) = ΔJ
(
TJ (0; t, a), 0

)
ψJ

(
TJ (0; t, a), t, a

)
=

∫
IR

w(α) ΔR
(
TJ (0; t, a), α

)
dα

ψJ

(
TJ (0; t, a), t, a

)
gJ

(
TJ (0; t, a), 0

)
= −

∫ AR(TJ (0;t,a);0,ā)

ā

w(α)Δη
(
TR(ā; TJ (0; t, a), α)

) gJ

(
TR(ā; TJ(0; t, a), α), ā

)
gR

(
TR(ā; TJ(0; t, a), α), ā

)
× J

(
TR(ā; TJ(0; t, a), α), ā

)
ψR(TR(ā; TJ(0; t, a), α), TJ (0; t, a), α) dα

ψJ

(
TJ(0; t, a), t, a

)
gJ

(
TJ (0; t, a), 0

)
=

∫ min{t,T1}

0

Δη(τ) Υ 1
J (τ, t, a) dτ

where we used the change of variable τ = TR(ā; TJ(0; t, a), α) and Υ 1
J is a suitable function in (BV ∩

L∞)([T0, T1]2 × IJ ; R+).

h = 1 and n > 1: Proceed by induction on n. Let (t, a) ∈ ]Tn−1, Tn]×IJ and consider first the case (t, a) ∈ Gn
J .

Then,

ΔJ(t, a) = ΔJ
(
Tn−1,AJ (Tn−1; t, a)

)
ψJ (Tn−1, t, a)

=
∫ T1

T0

Δη(τ) Υ 1
J

(
τ, Tn−1,AJ (Tn−1; t, a)

)
dτ ψJ (Tn−1, t, a)

=
∫ T1

T0

Δη(τ) Υ 1
J (τ, t, a) dτ ,

where the inductive assumption was used. In the case (t, a) ∈ Gn+1
J , then,

ΔJ(t, a) = ΔJ
(
TJ (0; t, a), 0

)
ψJ

(
TJ (0; t, a), t, a

)
=

∫
IJ

w(α) ΔR
(
TJ (0; t, a), α

)
dα

ψJ

(
TJ (0; t, a), t, a

)
gJ

(
TJ(0; t, a), 0

)
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=
∫ AR(TJ (0;t,a);ā,T0)

ā

w(α) ΔR
(
TJ (0; t, a), α

)
dα

ψJ

(
TJ(0; t, a), t, a

)
gJ

(
TJ (0; t, a), 0

)
=

∫ TJ (0;t,a)

0

w
(
AR(TJ (0; t, a); τ, ā)

)
ΔR

(
TJ (0; t, a),AR(TJ (0; t, a); τ, ā)

) dα
dτ

dτ

×
ψJ

(
TJ(0; t, a), t, a

)
gJ

(
TJ (0; t, a), 0

) ,

where we use the substitution τ = TR(ā; TJ(0; t, a), α) or equivalently α = AR

(
TJ (0; t, a) ; τ, ā

)
. Therefore the

difference ΔJ(t, a) can be written as

ΔJ(t, a) =
∫ T1

T0

w
(
AR(TJ (0; t, a); τ, ā)

)
ΔR

(
TJ (0; t, a),AR(TJ (0; t, a); τ, ā)

) dα
dτ

dτ
ψJ

(
TJ (0; t, a), t, a

)
gJ

(
TJ(0; t, a), 0

)
+

n−1∑
i=2

∫ Ti

Ti−1

w
(
AR(TJ (0; t, a); τ, ā)

)
ΔR

(
TJ(0; t, a),AR(TJ (0; t, a); τ, ā)

) dα
dτ

dτ
ψJ

(
TJ (0; t, a), t, a

)
gJ

(
TJ(0; t, a), 0

)
+

∫ TJ(0;t,a)

Tn−1

w
(
AR(TJ (0; t, a); τ, ā)

)
ΔR

(
TJ(0; t, a),AR(TJ(0; t, a); τ, ā)

) dα
dτ

dτ
ψJ

(
TJ (0; t, a), t, a

)
gJ

(
TJ(0; t, a), 0

)
= −

∫ T1

T0

w
(
AR(TJ(0; t, a); τ, ā)

)
Δη(τ)

gJ(τ, ā)
gR(τ, ā)

J (τ, ā)

×ψR

(
τ, TJ (0; t, a),AR(TJ (0; t, a); τ, ā)

) dα
dτ

dτ
ψJ

(
TJ (0; t, a), t, a

)
gJ

(
TJ (0; t, a), 0

)
+

n−1∑
i=2

∫ Ti

Ti−1

w
(
AR(TJ(0; t, a); τ, ā)

)
η(τ)

gJ(τ, ā)
gR(τ, ā)

ΔJ (τ, ā)

×ψR

(
τ, TJ (0; t, a),AR(TJ (0; t, a); τ, ā)

) dα
dτ

dτ
ψJ

(
TJ (0; t, a), t, a

)
gJ

(
TJ (0; t, a), 0

)
+

∫ TJ(0;t,a)

Tn−1

w
(
AR(TJ (0; t, a); τ, ā)

)
η(τ)

gJ(τ, ā)
gR(τ, ā)

ΔJ
(
Tn−1,AJ (Tn−1; τ, ā)

)
×ψJ (Tn−1, τ, ā)

dα
dτ

dτ
ψJ

(
TJ (0; t, a), t, a

)
gJ

(
TJ(0; t, a), 0

) ·

Using the inductive hypothesis, we obtain that ΔJ(t, a) can be written as

ΔJ(t, a) = −
∫ T1

T0

w
(
AR(TJ (0; t, a); τ, ā)

)
Δη(τ)

gJ(τ, ā)
gR(τ, ā)

J (τ, ā)

×ψR

(
τ, TJ(0; t, a),AR(TJ (0; t, a); τ, ā)

) dα
dτ

dτ
ψJ

(
TJ (0; t, a), t, a

)
gJ

(
TJ(0; t, a), 0

)
+

n−1∑
i=2

∫ Ti

Ti−1

w
(
AR(TJ (0; t, a); τ, ā)

)
η(τ)

gJ(τ, ā)
gR(τ, ā)

∫ T1

T0

Δη(r)ΥJ (r, τ, ā) dr

×ψR

(
τ, TJ(0; t, a),AR(TJ (0; t, a); τ, ā)

) dα
dτ

dτ
ψJ

(
TJ (0; t, a), t, a

)
gJ

(
TJ(0; t, a), 0

)
+

∫ TJ (0;t,a)

Tn−1

w
(
AR(TJ (0; t, a); τ, ā)

)
η(τ)

gJ(τ, ā)
gR(τ, ā)

∫ T1

T0

Δη(r)ΥJ

(
r, Tn−1,AJ (Tn−1; τ, ā)

)
dr
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×ψJ (Tn−1, τ, ā)
dα
dτ

dτ
ψJ

(
TJ(0; t, a), t, a

)
gJ

(
TJ (0; t, a), 0

)
=

∫ T1

T0

Δη(r)ΥJ (r, t, a) dr ,

completing the case h = 1 and n > 1.

h > 1 and n < h: clearly, ΔJ(t, a) = 0.

h > 1 and n = h: this case can be treated exactly as the case h = n = 1.

h > 1 and n > h: the translation t→ t− Th along the time axis allows to reduce to the computations related
to the already considered case h = 1 and n > 1.

Consider now the population S. If (t, a) ∈ Gi
S with i < h, then ΔS(t, a) = 0. Otherwise, if (t, a) ∈ Gh

S , then
by Lemma 4.2, in the case a ∈ [ā, ā1[

ΔS(t, a) = ΔS
(
TS(ā; t, a), ā

)
ψS

(
TS(ā; t, a), t, a

)
= Δη

(
TS(ā; t, a)

) gJ

(
TS(ā; t, a), ā

)
gS

(
TS(ā; t, a), ā

) J (
TS(ā; t, a), ā

)
ψS

(
TS(ā; t, a), t, a

)
= Δη

(
TS(ā; t, a)

)
ΥS

(
TS(ā; t, a), t, a

)
,

where TS(ā; t, a) ∈ [Th−1, Th]. In the case (t, a) ∈ Gi
S with i > h and a ∈ [ā, ā1[, by Lemma 4.2,

ΔS(t, a) = ΔS
(
TS(ā; t, a), ā

)
ψS

(
TS(ā; t, a), t, a

)
= η

(
TS(ā; t, a)

) gJ

(
TS(ā; t, a), ā

)
gS

(
TS(ā; t, a), ā

) ΔJ (
TS(ā; t, a), ā

)
ψS

(
TS(ā; t, a), t, a

)
= η

(
TS(ā; t, a)

) gJ

(
TS(ā; t, a), ā

)
gS

(
TS(ā; t, a), ā

) ∫ Th

Th−1

Δη(τ) ΥJ(τ, t, a) dτ ψS

(
TS(ā; t, a), t, a

)
=

∫ Th

Th−1

Δη(τ) ΥS(τ, t, a) dτ .

Whenever (t, a) ∈ Gh
S and a ∈

[
āj , āj+1

[
with j ≥ 1, by Lemma 4.2,

ΔS(t, a) =
(
1 − ϑj

(
TS(āj ; t, a)

))
ΔS

(
TS(āj ; t, a), āj

)
= ΥS

(
TS(ā; t, a), t, a

)
ΔS

(
TS(ā; t, a), ā

)
.

The proof is completed treating the population R in a similar way. �

Proof of Proposition 2.4. Clearly, ΔJ = ΔR = 0 by construction, as also ΔS(t, a) = 0 for a ∈ ]ā, ā1[. In the
case a ∈ ]āi, āi+1[, apply (4.3) and (1.4). �

Proof of Theorem 2.5. Call (J, S,R), respectively (J +ΔεJ, S +ΔεS,R+ΔεR), the solution to (2.3) with the
control η, respectively η + εΔη, with ε ∈ ]0, 1[. Denote for u = J, S,R

C̄u(η) =
∫ Tn

0

∫
Iu

Cu

(
t, a, u(t, a)

)
dadt .
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Using (C), with ΥJ as in Proposition 2.3 and by Theorem 2.1, compute:∣∣∣∣∣(C̄J(η + εΔη) − C̄J(η)
)
− ε

∫ Tn

0

∫
IJ

∫ Th

Th−1

∂JCJ

(
t, a, J(t, a)

)
Δη(τ) ΥJ (τ, t, a) dτ da dt

∣∣∣∣∣
=

∣∣∣∣∣∣
∫ Tn

0

∫
IJ

[
CJ

(
t, a, (J +ΔεJ)(t, a)

)
− CJ

(
t, a, J(t, a)

)

−ε
∫ Th

Th−1

∂JCJ

(
t, a, J(t, a)

)
Δη(τ)ΥJ (τ, t, a) dτ

]
da dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ Tn

0

∫
IJ

∂JCJ

(
t, a, J(t, a)

)(
ΔεJ(t, a) − ε

∫ Th

Th−1

Δη(τ)ΥJ (τ, t, a) dτ

)
dadt

∣∣∣∣∣∣
+C

∣∣∣∣∣
∫ Tn

0

∫
IJ

(
ΔεJ(t, a)

)2 da dt

∣∣∣∣∣
≤ C ε2

∫ Tn

0

∫
IJ

(∫ Th

Th−1

Δη(τ) ΥJ (τ, t, a) dτ

)2

da dt

≤ C ε2
(
‖Δη‖L∞([Th−1,Th];R)

)2
∫ Tn

0

∫
IJ

(∫ Th

Th−1

ΥJ (τ, t, a) dτ

)2

dadt

proving that in the limit ε→ 0+, we have

lim
ε→0+

1
ε

(
C̄J(η + εΔη) − C̄J(η)

)
=

∫ Tn

0

∫
IJ

∫ Th

Th−1

∂JCJ

(
t, a, J̃(t, a)

)
Δη(τ) ΥJ (τ, t, a) dτ dadt .

which shows the Gâteaux differentiability of C̄J .
The computations for C̄S are entirely similar. The computations for C̄R can be reduced to the ones above,

noting that a→ ΔεR(t, a) vanishes outside the bounded interval [0,AR(t; ā, 0)].
Finally, the Gâteaux differentiability of the profit with respect to ϑ directly follows from Proposition 2.4. �

4.2. Proofs related to Section 2.2

Lemma 4.3. Use the notation (2.2) and pose conditions (A), (ID). Fix i ∈ N. For all k ∈ N, let
ηk

i ∈ BV([Ti−1, Ti]; [0, 1]) be such that ηk
i

∗
⇀ ηi in L∞([Ti−1, Ti]; R), as k → +∞. Call (J, S,R), respec-

tively (Jk, Sk, Rk), the solution to (2.3) corresponding to η̂i, respectively to η̂k
i , as defined in (2.9). Then, for

j = i, i+ 1, i+ 2, . . ., in the limit k → +∞

Jk(t, a) → J(t, a) for all t ∈
]
Tj−1, Tj

]
and for a.e. a ∈ [0, ā],

Sk(t) ⇀ S(t) weakly in L1(IS ; R) for all t ∈
]
Tj−1, Tj

]
,

Sk(·, a−) ⇀ S(·, a−) weakly in L1([Tj−1, Tj ]; R) for all a ∈ IS ,
Rk(t) ⇀ R(t) weakly in L1(IR; R) for all t ∈

]
Tj−1, Tj

]
,

Sk ⇀ S weakly in L1([Tj−1, Tj ] × IS ; R),
Rk ⇀ R weakly in L1([Tj−1, Tj ] × IR; R).

(4.8)

Proof. By construction,
(Jk, Sk, Rk)(t) = (J, S,R)(t) for all t ∈ [0, Ti−1].
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We now prove by induction on j = i, i+ 1, i+ 2, . . . that, as k → +∞, the convergences in (4.8) hold. To this
aim, fix

(ϕJ , ϕS , ϕR) ∈
(
L1(IT × IJ ; R) × L1(IT × IS ; R) × L1(IT × IR; R)

)∗

= L∞(IT × IJ ; R) × L∞(IT × IS ; R) × L∞(IT × IR; R) ;

(ΦJ , ΦS , Φ̃S , ΦR) ∈
(
L1(IJ ; R) × L1(IS ; R) × L1(IT ; R) × L1(IR; R)

)∗

= L∞(IJ ; R) × L∞(IS ; R) × L∞(IT ; R) × L∞(IR; R).

Let j = i. If t ∈ ]Ti−1, Ti], then by (4.3) and with the notation (4.1),

Sk(t, a) =

⎧⎨⎩
ηk

i (TS(ā;t,a))gJ(TS(ā;t,a),ā)J(TS(ā;t,a),ā)
gS(TS(ā;t,a),ā) ψS

(
TS(ā; t, a), t, a

)
a ∈ [ā,AS(t;Ti−1, ā)]

S(t, a) a>AS(t;Ti−1, ā)

Rk(t, a) =

⎧⎨⎩
[
1−ηk

i (TR(ā;t,a))
]
gJ(TR(ā;t,a),ā)J(TR(ā;t,a),ā)

gR(TR(ā;t,a),ā) ψR

(
TR(ā; t, a), t, a

)
a ∈ [ā,AR(t;Ti−1, ā)]

R(t, a) a>AR(t;Ti−1, ā)

and analogous expressions hold for S and R. Therefore, using (4.5),∫
IS

(
Sk(t, a) − S(t, a)

)
ΦS(a) da

=
∫ AS(t;Ti−1,ā)

ā

(
ηk

i

(
TS(ā; t, a)

)
− ηi

(
TS(ā; t, a)

))
gJ

(
TS(ā; t, a), ā

)
J
(
TS(ā; t, a), ā

)
gS

(
TS(ā; t, a), ā

)
×ψS

(
TS(ā; t, a), t, a

)
ΦS(a) da

=
∫ t

Ti−1

(
ηk

i (τ) − ηi(τ)
)
gJ(τ, ā)J (τ, ā)ψS

(
τ, t,AS(t; τ, ā)

)
ΦS

(
AS(t; τ, ā)

)
× exp

(∫ t

τ

∂agS

(
s,AS(s; τ, ā)

)
ds

)
dτ

→ 0 as k → +∞

since the map

τ → gJ(τ, ā) J (τ, ā) ψS

(
τ, t,AS(t; τ, ā)

)
ΦS

(
AS(t; τ, ā)

)
exp

(∫ t

τ

∂agS

(
s,AS(s; τ, ā)

)
ds

)

is in L∞([Ti−1, Ti]; R) ⊂ L1([Ti−1, Ti]; R), proving that Sk(t) ⇀ S(t) weakly in L1(IS ; R). The convergence
Rk(t) ⇀ R(t) weakly in L1(IR; R) is proved analogously.

Pass now to∫ Ti

Ti−1

∫
IS

(
Sk(t, a) − S(t, a)

)
ϕS(t, a) da dt

=
∫ Ti

Ti−1

∫ AS(t;Ti−1,ā)

ā

(
ηk

i

(
TS(ā; t, a)

)
− ηi

(
TS(ā; t, a)

))
gJ

(
TS(ā; t, a), ā

)
J
(
TS(ā; t, a), ā

)
gS

(
TS(ā; t, a), ā

)
×ψS

(
TS(ā; t, a), t, a

)
ϕS(t, a) da dt



CONTROL OF BIOLOGICAL RESOURCES ON GRAPHS 1091

=
∫ Ti

Ti−1

∫ t

Ti−1

(
ηk

i (τ) − ηi(τ)
)
gJ(τ, ā)J (τ, ā)ψS

(
τ, t,AS(t; τ, ā)

)
ϕS

(
t,AS(t; τ, ā)

)
× exp

(∫ t

τ

∂agS

(
s,AS(s; τ, ā)

)
ds

)
dτ dt

=
∫ Ti

Ti−1

(
ηk

i (τ) − ηi(τ)
) ∫ Ti

τ

gJ(τ, ā)J (τ, ā)ψS

(
τ, t,AS(t; τ, ā)

)
ϕS

(
t,AS(t; τ, ā)

)
× exp

(∫ t

τ

∂agS

(
s,AS(s; τ, ā)

)
ds

)
dt dτ

→ 0 as k → +∞,

since the map

τ →
∫ Ti

τ

gJ(τ, ā)J (τ, ā)ψS

(
τ, t,AS(t; τ, ā)

)
ϕS

(
t,AS(t; τ, ā)

)
exp

[∫ t

τ

∂agS

(
s,AS(s; τ, ā)

)
ds

]
dt

is in L∞([Ti−1, Ti]; R) ⊂ L1([Ti−1, Ti]; R), proving that Sk ⇀ S in L1(IT × IS ; R). The convergence Rk ⇀ R in
L1(IT × IR; R) is proved analogously.

Moreover, by (2.3) and (4.3),

Jk(t, a) =

⎧⎨⎩
∫ +∞

ā
w(α) Rk(TJ (0;t,a),α)dα

gJ(TJ (0;t,a),0) ψJ

(
TJ (0; t, a), t, 0

)
a∈ [0,AJ(t;Ti−1, 0)]

J(t, a) a∈ [AJ (t;Ti−1, 0), ā]

so that, by the weak convergence Rk(t) ⇀ R(t) ∈ L1(IR; R), as k → +∞,

Jk(t, a) → J(t, a) for all t ∈ ]Ti−1, Ti] and for a.e. a ∈ [0, ā].

Let j > i. If t ∈
]
Tj−1, Tj

]
,

Sk(t, a) =

⎧⎨⎩
η̄(TS(ā;t,a))gJ(TS(ā;t,a),ā)Jk(TS(ā;t,a),ā)

gS(TS(ā;t,a),ā) ψS

(
TS(ā; t, a), t, a

)
a ∈ [ā,AS(t;Tj−1, ā)]

Sk

(
Tj−1,AS(Tj−1; t, a)

)
ψS(Tj−1, t, a) a>AS(t;Tj−1, ā)

Rk(t, a) =

⎧⎨⎩
[
1−η̄(TR(ā;t,a))

]
gJ(TR(ā;t,a),ā)Jk(TR(ā;t,a),ā)

gR(TR(ā;t,a),ā) ψR

(
TR(ā; t, a), t, a

)
a ∈ [ā,AR(t;Ti−1, ā)]

Rk

(
Tj−1,AR(Tj−1; t, a)

)
ψR(Tj−1, t, a) a>AR(t;Tj−1, ā)

Similarly to above, using (4.3) and (4.6)∫
IS

(
Sk(t, a) − S(t, a)

)
ΦS(a) da

=
∫ AS(t;Tj−1,ā)

ā

η̄
(
TS(ā; t, a)

)
gJ

(
TS(ā; t, a), ā

) (
Jk

(
TS(ā; t, a), ā

)
− J

(
TS(ā; t, a), ā

))
gS

(
TS(ā; t, a), ā

)
×ψS

(
TS(ā; t, a), t, a

)
ΦS(a) da

+
∫ +∞

AS(t;Tj−1,ā)

[
Sk

(
Tj−1,AS(Tj−1; t, a)

)
−S

(
Tj−1,AS(Tj−1; t, a)

)]
ψS(Tj−1, t, a)ΦS(a) da

=
∫ AS(t;Tj−1,ā)

ā

η̄
(
TS(ā; t, a)

)
gJ

(
TS(ā; t, a), ā

)
(Jk − J)

(
Tj−1,AJ

(
Tj−1; TS(ā; t, a), ā

))
gS

(
TS(ā; t, a), ā

)
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×ψJ

(
Tj−1, TS(ā; t, a), ā

)
ψS

(
TS(ā; t, a), t, a

)
ΦS(a) da

+
∫ AS(t;Ti−1,ā)

ā

(
Sk

(
Tj−1, α

)
− S

(
Tj−1, α

))
ψS

(
Tj−1, t,AS(t;Tj−1, α)

)
× exp

(∫ t

Tj−1

∂agS

(
s,AS(s;Tj−1, α)

)
ds

)
ΦS

(
AS(t;Tj−1, α)

)
dα

→ 0 as k → +∞,

since by the inductive hypothesis Jk(Tj−1) → J(Tj−1) a.e. in [0, ā] and the map

α→ ψS

(
Tj−1, t,AS(t;Tj−1, α)

)
exp

(∫ t

Tj−1

∂agS

(
s,AS(s;Tj−1, α)

)
ds

)
ΦS

(
AS(t;Tj−1, α)

)
is in L∞(IS ; R). The convergence Rk(t) ⇀ R(t) weakly in L1(IR; R) is proved analogously.

Repeating computations similar to the latter ones, we have:∫ Tj

Tj−1

∫
IS

(
Sk(t, a) − S(t, a)

)
ϕS(t, a) da dt

=
∫ Tj

Tj−1

∫ AS(t;Tj−1,ā)

ā

η̄
(
TS(ā; t, a)

)
gJ

(
TS(ā; t, a), ā

) (
Jk

(
TS(ā; t, a), ā

)
− J

(
TS(ā; t, a), ā

))
gS

(
TS(ā; t, a), ā

)
×ψS

(
TS(ā; t, a), t, a

)
ϕS(t, a) da dt

+
∫ Tj

Tj−1

∫ +∞

AS(t;Tj−1,ā)

(
Sk

(
Tj−1,AS(Tj−1; t, a)

)
− S

(
Tj−1,AS(Tj−1; t, a)

))
×ψS(Tj−1, t, a)ϕS(t, a) da dt

=
∫ Tj

Tj−1

∫ AS(t;Tj−1,ā)

ā

η̄
(
TS(ā; t, a)

)
gJ

(
TS(ā; t, a), ā

)
(Jk − J)

(
Tj−1,AJ

(
Tj−1; TS(ā; t, a), ā

))
gS

(
TS(ā; t, a), ā

)
×ψJ

(
Tj−1, TS(ā; t, a), ā

)
ψS

(
TS(ā; t, a), t, a

)
ϕS(t, a) da dt

+
∫ Tj

Tj−1

∫ AS(t;Ti−1,ā)

ā

(
Sk

(
Tj−1, α

)
− S

(
Tj−1, α

))
ψS

(
Tj−1, t,AS(t;Tj−1, α)

)
× exp

(∫ t

Tj−1

∂agS

(
s,AS(s;Tj−1, α)

)
ds

)
ϕS

(
t,AS(t;Tj−1, α)

)
dα dt

→ 0 as k → +∞,

by the inductive hypothesis. Indeed, the convergence Jk(Tj−1) → J(Tj−1) a.e. in [0, ā] ensures that the former
integral above vanishes by the Dominated Convergence Theorem. The weak convergence Sk(Tj−1) ⇀ S(Tj−1)
in L1(IS ; R) and the fact that the map

α→ ψS

(
Tj−1, t,AS(t;Tj−1, α)

)
exp

(∫ t

Tj−1

∂agS

(
s,AS(s;Tj−1, α)

)
ds

)
ϕS

(
t,AS(t;Tj−1, α)

)
is in L∞(IS ; R), proves that also the latter integral above vanishes, again by the Dominated Convergence
Theorem. This shows that Sk ⇀ S weakly in L1(

]
Tj−1, Tj

]
× IS ; R). The convergence Rk ⇀ R weakly in

L1(
]
Tj−1, Tj

]
× IR; R) is proved analogously.
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Moreover, by (2.3) and (4.3),

Jk(t, a) =

⎧⎨⎩
∫ +∞

ā
w(α) Rk(TJ (0;t,a),α)dα

gJ(TJ (0;t,a),0) ψJ

(
TJ(0; t, a), t, 0

)
a∈ [0,AJ(t;Tj−1, 0)]

Jk

(
Tj−1,AJ (Tj−1; t, a)

)
ψJ(Tj−1, t, a) a∈ [AJ (t;Tj−1, 0), ā].

The inductive hypothesis ensures the weak convergence Rk(t) ⇀ R(t) ∈ L1(IR; R) for t ≤ Tj−1 and the
a.e. convergence Jk(Tj−1) → J(Tj−1). Hence,

Jk(t, a) → J(t, a) for all t ∈ ]Ti−1, Ti] and for a.e. a ∈ [0, ā].

Finally fix a ∈ IS and define the set of indices

J =
{
j ∈ {1, . . . , N} : āj < a

}
.

Using again (4.5), we have∫
IT

(
Sk(t, a−) − S(t, a−)

)
Φ̃S(t) dt

=
∫ T

min{T,TS(a;0,ā)}
(
Sk(t, a−) − S(t, a−)

)
Φ̃S(t) dt

=
∫ T

min{T,TS(a;0,ā)}

[
ηk

(
TS(ā; t, a)

)
Jk

(
TS(ā; t, a), ā

)
− η

(
TS(ā; t, a)

)
J
(
TS(ā; t, a), ā

)]
×
gJ

(
TS(ā; t, a), ā

)
gS

(
TS(ā; t, a), ā

) ∏
j∈J

(
1 − ϑj

(
TS

(
āj ; t, a

)))
ψS

(
TS(ā; t, a), t, a

)
Φ̃S(t) dt

=
∫ max{0,TS(ā;T,a)}

0

[
ηk(τ)Jk(τ, ā) − η(τ)J(τ, ā)

] gJ(τ, ā)
gS

(
TS(a; τ, ā), a

)ψS

(
τ, TS (a; τ, ā) , a

)
×Φ̃S

(
TS (a; τ, ā)

) ∏
j∈J

(
1 − ϑj

(
TS

(
āj ; τ, ā

)))
exp

(∫ TS(a;τ,ā)

τ

∂agS

(
s,AS(s; τ, ā)

)
ds

)
dτ

→ 0 as k → +∞

since, Jk(τ, ā) → J(τ, ā) pointwise and consequently strongly in L1

([
0,max

{
0, TS (ā;T, a)

}]
; R

)
by the Dom-

inated Convergence Theorem, ηk ⇀ η in L1

([
0,max

{
0, TS (ā;T, a)

}]
; R

)
and the map

τ −→
gJ(τ, ā)ψS

(
τ, t,AS(t; τ, ā)

)
ΦS

(
AS(t; τ, ā)

)
gS

(
TS(a; τ, ā), a

) exp

(∫ t

τ

∂agS

(
s,AS(s; τ, ā)

)
ds

)

×
∏
j∈J

(
1 − ϑj

(
TS

(
āj ; τ, ā

)))

is in L∞
([

0,max
{
0, TS (ā;T, a)

}]
; R

)
⊂ L1

([
0,max

{
0, TS (ā;T, a)

}]
; R

)
, proving that the sequence

Sk(·, a−) weakly converges to S(·, a−) in L1(IT ; R). This completes the proof. �

Proof of Proposition 2.6. The weak sequential continuity of Si
η follows from Lemma 4.3.
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To prove the weak sequential continuity of Sι
ϑ with respect to ϑι, using the notation above, simply note that

Sk(t, a) =

{(
1 − ϑk

ι

(
TS(āι; t, a)

))
S
(
TS(āι; t, a), āι−

)
a ∈ [āι,AS(t; 0, āι)]

S(t, a) otherwise

while clearly Jk ≡ J and Rk ≡ R. Therefore,

Sk(t, a) − S(t, a) =

{[
ϑk

ι

(
TS(āι; t, a)

)
−ϑι

(
TS(āι; t, a)

)]
S
(
TS(āι; t, a), āι−

)
a ∈ [āι,AS(t; 0, āι)]

0 otherwise

and the weak sequential continuity immediately follows. �

Proof of Proposition 2.7. For m ∈ N \ {0}, partition IT through the points k
mT , for k = 0, 1, 2, . . . ,m. Define

τk
m =

k

m
T +

∫ k+1
m T

k
m T

λ(τ) dτ and λm =
m−1∑
k=0

χ
[ k

m T,τk
m[

(4.9)

so that τk
m ∈ [ k

mT,
k+1
m T ], λm(IT ) ⊆ {0, 1} and

∫ k+1
m T

k
m T

λm(τ) dτ =
∫ k+1

m T

k
m T

λ(τ) dτ for k = 0, . . . ,m− 1. (4.10)

We now check that for all ϕ ∈ L1(IT ; R), limm→+∞
∫

IT

(
λm(τ) − λ(τ)

)
ϕ(τ) dτ = 0.

Assume first that ϕ ∈ C0
c(IT ; R). Fix ε > 0. By Heine–Cantor Theorem, ϕ is uniformly continuous and there

exists an m ∈ N such that
∣∣ϕ(t′) − ϕ(t′′)

∣∣ < ε whenever τ ′, τ ′′ ∈ IT and
∣∣τ ′ − τ ′′

∣∣ < 1/m. Then, using (4.9)
and (4.10),

∫
IT

(
λm(τ) − λ(τ)

)
ϕ(τ) dτ =

m−1∑
k=0

⎛⎝∫ τk
m

k
m T

(
1 − λ(τ)

)
ϕ(τ) dτ −

∫ k+1
m T

τk
m

λ(τ)ϕ(τ) dτ

⎞⎠
≤

m−1∑
k=0

⎛⎝(
max

[ k
m T, k+1

m T ]
ϕ

)∫ τk
m

k
m T

(
1 − λ(τ)

)
dτ −

(
min

[ k
m T, k+1

m T ]
ϕ

)∫ k+1
m T

τk
m

λ(τ) dτ

⎞⎠
=

m−1∑
k=0

(
max

[ k
m T, k+1

m T ]
ϕ− min

[ k
m T, k+1

m T ]
ϕ

)∫ τk
m

k
m T

(
1 − λ(τ)

)
dτ

≤ ε

∫
IT

(
1 − λ(τ)

)
dτ

≤ ε T.

An entirely analogous procedure leads to

∫
IT

(
λm(τ) − λ(τ)

)
ϕ(τ) dτ ≥

m−1∑
k=0

⎛⎝(
min

[ k
m T, k+1

m T ]
ϕ

)∫ τk
m

k
m T

(
1 − λ(τ)

)
dτ −

(
max

[ k
m T, k+1

m T ]
ϕ

)∫ k+1
m T

τk
m

λ(τ) dτ

⎞⎠
≥ −ε T,

completing the case of a continuous ϕ.
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Let now ϕ ∈ L1(IT ; R) and fix ε > 0. Then, by ([8], Thm. 4.12) there exists a map ϕε ∈ C0
c(IT ; R) such that

‖ϕ− ϕε‖L1(IT ;R) < ε. Then, for a sufficiently large m, the computations above ensure that∣∣∣∣∣
∫

IT

(
λm(τ) − λ(τ)

)
ϕ(τ) dτ

∣∣∣∣∣ ≤
∣∣∣∣∣
∫

IT

(
λm(τ) − λ(τ)

)
ϕε(τ) dτ

∣∣∣∣∣ +
∫

IT

∣∣λm(τ) − λ(τ)
∣∣∣∣ϕ(τ) − ϕε(τ)

∣∣ dτ
≤ 2 ε T

completing the proof. �

Proof of Theorem 2.8. Assume for simplicity that T = Tn for some n ∈ N. Fix η̄ ∈ BV(IT ; [0, 1]), ϑ̄ ∈
BV(IT ; [0, 1]N), and, recalling the notation (2.9), define, for i ∈ {1, . . . , n} and for ι ∈ {1, . . . , N}, the maps

P i
η : BV([Ti−1, Ti]; [0, 1]) → R

ηi → P(η̂i, ϑ̄)
Pι

ϑ : BV(IT ; [0, 1]) → R

ϑι → P(η̄, ϑ̂ι).

It is sufficient to prove that they are sequentially lower semicontinuous with respect to the weak∗ topology on
L∞([Ti−1, Ti]; R) and on L∞(IT ; R).

(1) Lower semicontinuity of P i
η. Consider a sequence ηk

i
∗
⇀ η̄ in L∞ (

[Ti−1, Ti]; R
)
. By Proposition 2.6 and

by Lemma 4.3, we have that as k → +∞,

Jk ⇀ J L1 (IT × IJ ; R) Jk(T, a) → J(T, a) pointwise
Sk ⇀ S L1 (IT × IS ; R) Sk(·, āj−) ⇀ S(·, a−) L1 (IT ; R) , a ∈ IS ,
Rk ⇀ R L1 (IT × IR; R)

where (Jk, Sk, Rk) = S(η̂k
i , ϑ̄) and (J, S,R) = S

(
η̄, ϑ̄

)
. Therefore, by (C) and ([12], Example 1.23), we have

that
lim inf
k→+∞

∑
u=J,S,R

−
∫

IT

∫
Iu

Cu

(
t, a, uk(t, a)

)
da dt ≥

∑
u=J,S,R

−
∫

IT

∫
Iu

Cu

(
t, a, u(t, a)

)
da dt

and, by (P),

lim
k→+∞

N∑
j=1

∫
IT

Pj(t)ϑ̄j(t)Sk(t, āj−) dt =
N∑

j=1

∫
IT

Pj(t)ϑ̄j(t)S(t, āj−) dt

and, by (ϕ),

lim
k→+∞

ϕ

(∫
IJ

[
Jo(a) − Jk(T, a)

]
da

)
= ϕ

(∫
IJ

[
Jo(a) − J(T, a)

]
da

)
proving that P i

η is sequentially lower semicontinuous.
(2) Lower semicontinuity of Pι

ϑ. For ι ∈ {1, . . . , N}, consider a sequence ϑk
ι

∗
⇀ ϑ̄ι in L∞ (IT ; R). Denoting

with (Jk, Sk, Rk) = S(η̂k
i , ϑ̄) and (J, S,R) = S

(
η̄, ϑ̄

)
, we have that Jk = J , Rk = R, and Sk(t, a) = S(t, a)

for every t ∈ IT and every a ∈ IS with a < āι. Hence,∑
u=J,R

∫
IT

∫
Iu

Cu

(
t, a, uk(t, a)

)
da dt =

∑
u=J,R

∫
IT

∫
Iu

Cu

(
t, a, u(t, a)

)
da dt

ι−1∑
j=1

∫
IT

Pj(t)ϑ̄j(t)Sk(t, āj−) dt =
ι−1∑
j=1

∫
IT

Pj(t)ϑ̄j(t)S(t, āj−) dt

ϕ

(∫
IJ

[
Jo(a) − Jk(T, a)

]
da

)
= ϕ

(∫
IJ

[
Jo(a) − J(T, a)

]
da

)
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for every k ∈ N. Moreover, by (P),

lim
k→+∞

∫
IT

Pι(t)ϑ̄k
ι (t)Sk(t, āι−) dt = lim

k→+∞

∫
IT

Pι(t)ϑ̄k
ι (t)S(t, āι−) dt

=
∫

IT

Pι(t)ϑ̄ι(t)S(t, āι−) dt .

By Proposition 2.6, we deduce that Sk ⇀ S in L∞ (IT × IS ; R) as k → +∞, and this convergence implies,
by (C) and by ([12], Example 1.23), that

lim inf
k→+∞

−
∫

IT

∫
IS

CS

(
t, a, Sk(t, a)

)
da dt ≥ −

∫
IT

∫
IS

CS

(
t, a, S(t, a)

)
da dt .

Finally, noting as in the proof of Proposition 2.6, that

Sk(t, a) =

{(
1 − ϑk

ι

(
TS(āι; t, a)

))
S
(
TS(āι; t, a), āι−

)
a ∈ [āι,AS(t; 0, āι)]

S(t, a) otherwise,

we have that Sk(·, āj) ⇀ Sk(·, āj) in L∞ (IT ; R) for every j ∈ {ι+ 1, . . . , N} and so, by (P),

lim
k→+∞

N∑
j=ι+1

∫
IT

Pj(t)ϑ̄j(t)Sk(t, āj−) dt =
N∑

j=ι+1

∫
IT

Pj(t)ϑ̄j(t)S(t, āj−) dt ,

proving that Pι
ϑ is sequentially lower semicontinuous.

This completes the proof. �
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