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Abstract. Based on the theory of semi-global classical solutions for quasilinear hyperbolic systems,
under suitable hypotheses, an iteration procedure given by a unified constructive method is presented
to establish the exact boundary synchronization for a coupled system of 1-D quasilinear wave equations
with boundary conditions of various types.
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1. Introduction and main result

Synchronization is a widespread natural phenomenon. How to describe the phenomenon of synchronization
for a coupled system has been widely studied by biologists, engineers and sociologists (see [4,18]). The previous
research activities, however, only focused on the systems governed by ordinary differential equations or complex
networks (see [1,17,21]). Recently, several kinds of exact synchronizations are introduced by Li et al. (see [3, 14])
for a coupled system of 1-D linear wave equations with boundary conditions of Dirichlet type, Neumann type,
coupled third type and coupled dissipative type in the framework of C2 solutions, and it is shown that these
synchronizations can be realized by means of a reduced number of boundary controls. For the multi-dimensional
case, by indirectly using the HUM method (see [15, 16]), a similar result for a coupled system of linear wave
equations with Dirichlet boundary controls can be also established in the framework of weak solutions (see [11]).
In this paper, based on the theory of semi-global classical solutions for quasilinear hyperbolic systems, under
suitable hypotheses, we will present an iteration procedure given by a unified constructive method to establish
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the local exact boundary synchronization for a coupled system of 1-D quasilinear wave equations with afore
mentioned boundary conditions.

Precisely speaking, we consider the following coupled system of quasilinear wave equations with a common
propagation speed

∂2U

∂t2
− c2(U,Ut, Ux)

∂2U

∂x2
+A(U,Ut, Ux)U = 0 (1.1)

on the domain R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, where L is the length of the space interval, T > 0 is a
suitable number, U = (u1, . . . , uN )T is an unknown vector function of (t, x), A(U,Ut, Ux) = (aij(U,Ut, Ux)) is
an N ×N coupling matrix, whose elements are C1 functions with respect to their arguments, c(U,Ut, Ux), the
common propagation speed for the coupled system, is also a C1 function with respect to its arguments, and

c(0, 0, 0) > 0. (1.2)

(1.1) can be written as:

∂2ui

∂t2
− c2(U,Ut, Ux)

∂2ui

∂x2
+

N∑
j=1

aij(U,Ut, Ux)uj = 0 (i = 1, . . . , N). (1.3)

For fixing the idea, we study only the case of one-sided controls, the case of two-sided controls can be similarly
treated (see Rem. 5.1). At the end x = 0, we prescribe any one of the following boundary conditions:

x = 0 : U = H(t) (Dirichlet type), (1.4a)
x = 0 : Ux = H(t) (Neumann type), (1.4b)
x = 0 : Ux −B(U)U = H(t) (Coupled third type), (1.4c)

where B(U) = (bij(U)) is an N ×N boundary coupling matrix with C1 elements, and

H(t) = (h1(t), . . . , hN (t))T (1.5)

are C2 (case (1.4a)) or C1 (cases (1.4b) and (1.4c)) functions of t, the components of which will be totally or
partially taken as boundary controls.

At the end x = L, since no boundary controls are concerned, we prescribe any one of the following homoge-
neous boundary conditions:

x = L : U = 0 (Dirichlet type), (1.6a)

x = L : Ux = 0 (Neumann type), (1.6b)

x = L : Ux +B(U)U = 0 (Coupled third type), (1.6c)

where B(U) = (bij(U)) is an N ×N boundary coupling matrix with C1 elements.
The initial condition is given by:

t = 0 : (U,Ut) = (Φ(x), Ψ(x)), 0 ≤ x ≤ L, (1.7)

in which Φ = (ϕ1, . . . , ϕN )T and Ψ = (ψ1, . . . , ψN )T are C2 and C1 vector functions of x on [0, L], respectively,
such that the conditions of C2 compatibility at the points (t, x) = (0, 0) and (0, L) are satisfied, respectively.
Moreover, we assume that

‖(Φ, Ψ)‖(C2[0,L])N×(C1[0,L])N ≤ ε, (1.8)

where ε > 0 is suitably small.
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Definition 1.1. The coupled system (1.1), (1.4) and (1.6) is said to possess the exact boundary synchro-
nization if there exist two positive constants T0 and T with T > T0, such that for any given initial state
(Φ(x), Ψ(x)) with small norm ‖(Φ, Ψ)‖(C2[0,L])N×(C1[0,L])N and satisfying the conditions of C2 compatibility at
the point (t, x) = (0, L), we can find some boundary controls with support on [0, T0] in H(t), such that the
corresponding mixed initial-boundary value problem (1.1), (1.4), (1.6) and (1.7) admits a unique C2 solution
U(t, x) = (u1(t, x), . . . , uN (t, x))T on the domain

R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, (1.9)

and as T0 ≤ t ≤ T we have

u1(t, x) ≡ . . . ≡ uN(t, x) def.= ˜̃u(t, x), 0 ≤ x ≤ L. (1.10)

˜̃u = ˜̃u(t, x), being a priori unknown, is called the corresponding synchronizable state.

Remark 1.2. The exact boundary null controllability of the coupled system (1.1), (1.4) and (1.6), which can be
obtained by N boundary controls (cf . [2,10]), provides a trivial example of the exact boundary synchronization.
In this paper, however, our attention is focused on the exact boundary synchronization realized by means of
only (N − 1) boundary controls.

For the exact boundary synchronization for a coupled system of 1-D linear wave equations, it is shown
(cf . [14]) that if the system is not exactly boundary null controllable, then there is a necessary condition that
the sum of the elements in every row of the coupling matrices A = (aij), B = (bij) and B = (b̄ij) should
be independent of i = 1, . . . , N . In this paper, for the corresponding quasilinear case, we impose the similar
assumption that

N∑
j=1

aij(U,Ut, Ux) def.= ˜̃a(U,Ut, Ux), (1.11)

N∑
j=1

bij(U) def.= ˜̃
b(U), (1.12)

N∑
j=1

b̄ij(U) def.=
˜̄̃
b(U), (1.13)

where ˜̃a, ˜̃b and
˜̄̃
b are all independent of i = 1, . . . , N .

Obviously, U = 0 is an equilibrium of system (1.1) with boundary conditions (1.4) (in which H ≡ 0)
and (1.6). Based on the theory of semi-global C2 solutions, using a unified constructive method for one-sided
exact boundary controllability (see [2, 6, 8, 9]), by a suitable iteration procedure as well as certain estimates for
coupled system of wave equations, we will establish the local exact boundary synchronization around U = 0.
The main result in this paper is:

Theorem 1.3. Suppose that c, aij , bij and b̄ij are all C1 functions with respect to their arguments on the
domain under consideration. Suppose furthermore that (1.2) and (1.11)–(1.13) hold. Let

T > T0 > 2
L

c(0, 0, 0)
· (1.14)

For any given initial state (Φ(x), Ψ(x)) ∈ (C2[0, L])N × (C1[0, L])N , satisfying simultaneously (1.8), the con-
ditions of C2 compatibility at the point (t, x) = (0, L), as well as the conditions of C2 compatibility at the
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point (t, x) = (0, 0) for the boundary conditions without controls in (1.4), there exist (N − 1) boundary con-
trols with support on [0, T0] in H(t) (for example, we take h2(t), . . . , hN (t) as controls with h1(t) ≡ 0) with
small (C2[0, T ])N norm (case (1.4a)) or (C1[0, T ])N norm (cases (1.4b)–(1.4c)), such that the mixed initial-
boundary value problem (1.1), (1.4) and (1.6)–(1.7) admits a unique C2 solution U = U(t, x) on the domain
R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, and as T0 ≤ t ≤ T , U = U(t, x) possesses the exact boundary
synchronization shown by (1.10).

The paper is organized as follows: in Section 2 we present the existence and uniqueness of semi-global
C2 solution to the coupled system of quasilinear wave equations with boundary conditions of various types.
Meanwhile, in Section 3 we establish the estimates on the C1, C2 norms and the continuity modulus of the
second order partial derivatives of C2 solutions for a coupled system of nonautonomous linear wave equations.
In Section 4, we use a suitable iteration scheme to establish the local exact boundary synchronization for a
coupled system of quasilinear wave equations. Some remarks are given in Section 5. Moreover, an appendix is
attached at the end for the precise proof of a technical lemma in the main text.

Remark 1.4. Similar results are still valid for the boundary conditions of coupled dissipative type, see
Remark 5.2.

Remark 1.5. Precisely speaking, the conditions of C2 compatibility at the point (t, x) = (0, L) are given
respectively for the boundary conditions (1.6a)–(1.6c) as follows:⎧⎪⎨⎪⎩

Φ(L) = 0,
Ψ(L) = 0,
Φ′′(L) = 0;

(1.15a)

{
Φ′(L) = 0,
Ψ ′(L) = 0;

(1.15b)⎧⎪⎨⎪⎩
Φ′(L) +B(Φ(L))Φ(L) = 0,

ψ′
i(L) +

N∑
k,j=1

∂b̄ij

∂uk
(Φ(L))ψk(L)ϕj(L) +

N∑
j=1

b̄ij(Φ(L))ψj(L) = 0,
(1.15c)

where i = 1, . . . , N .
Similarly, for any given H(t), the conditions of C2 compatibility at the point (t, x) = (0, 0) are given by⎧⎪⎨⎪⎩

Φ(0) = H(0),
Ψ(0) = H ′(0),
c2(Φ(0), Ψ(0), Φ′(0))Φ′′(0) −A(Φ(0), Ψ(0), Φ′(0))Φ(0) = H ′′(0);

(1.16a)

{
Φ′(0) = H(0),
Ψ ′(0) = H ′(0);

(1.16b)⎧⎪⎨⎪⎩
Φ′(0) −B(Φ(0))Φ(0) = H(0),

ψ′
i(0) −

N∑
k,j=1

∂bij

∂uk
(Φ(0))ψk(0)ϕj(0) −

N∑
j=1

bij(Φ(0))ψj(0) = h′i(0),
(1.16c)

where i = 1, . . . , N , respectively. We point out that if some components in H(t) are known in advance, then
the conditions of C2 compatibility at the point (t, x) = (0, 0) involve only those formulas in (1.16) where the
corresponding components of H(t) are given. For example, suppose that h1(t) ≡ 0, and the other components
of H(t) are taken as boundary controls, the conditions of C2 compatibility at the point (t, x) = (0, 0) are just
given by the first formula of (1.16), the right-hand side of which is zero.
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Remark 1.6. For the boundary conditions of Neumann type (1.4b) and (1.6b), noting (1.15b) and (1.16b),
the conditions of C2 compatibility at the point (t, x) = (0, 0) and (0, L) are only related to the initial data and
do not depend on the coupled system of wave equations. This fact will play an important role in establishing a
unified constructive method independent of the iteration in what follows.

2. Semi-global classical solutions for a coupled system of quasilinear wave

equations

In order to get the well-posedness of the mixed initial-boundary value problem (1.1), (1.4), (1.6) and (1.7) in
the framework of C2 solutions, we first reduce the system to a first order quasilinear hyperbolic system, then
use the corresponding results of semi-global C1 solutions.

Let

V = (v1, . . . , vN )T =
∂U

∂x
,W = (w1, . . . , wN )T =

∂U

∂t
· (2.1)

System (1.1) can be reduced to the following first order quasilinear system:⎧⎪⎪⎨⎪⎪⎩
∂U
∂t = W,

∂V
∂t − ∂W

∂x = 0,
∂W
∂t − c2(U,W, V )∂V

∂x = −A(U,W, V )U.

(2.2)

Let IN be the identity matrix of order N . (2.2) can be written in the following matrix form:

∂

∂t

⎛⎝ U
V
W

⎞⎠+

⎛⎝0 0 0
0 0 −IN
0 −c2(U,W, V )IN 0

⎞⎠ ∂

∂x

⎛⎝ U
V
W

⎞⎠ =

⎛⎝ W
0

−A(U,W, V )U

⎞⎠ . (2.3)

The characteristic equation of (2.2) is

det

⎛⎝λIN 0 0
0 λIN IN
0 c2(U,W, V )IN λIN

⎞⎠ = λN |λ2IN − c2IN | = 0, (2.4)

whose solutions, the eigenvalues of system (2.2), are all real:

λ−i = −c, λ0
i = 0, λ+

i = c (i = 1, . . . , N), (2.5)

and the corresponding left eigenvectors, which constitute a complete set, can be chosen as

l−i = (0, c(U,W, V )ei, ei), l0i = (ei,0,0), l+i = (0,−c(U,W, V )ei, ei) (i = 1, . . . , N), (2.6)

where 0 = (0, . . . , 0) is the zero vector of order N , and ei = (0, . . . ,
(i)

1 , . . . , 0) is a unit row vector of order N .
Thus, (2.2) is a first order quasilinear hyperbolic system.

Let

Ũ =

⎛⎝ U
V
W

⎞⎠ (2.7)
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and ⎧⎪⎪⎨⎪⎪⎩
V −

i = l−i Ũ = cvi + wi,

V 0
i = l0i Ũ = ui,

V +
i = l+i Ũ = −cvi + wi

(i = 1, . . . , N). (2.8)

We have ⎧⎪⎪⎨⎪⎪⎩
V − = cV +W,

V 0 = U,

V + = −cV +W,

(2.9)

where V − = (V −
1 , . . . , V −

N )T , V 0 = (V 0
1 , . . . , V

0
N )T and V + = (V +

1 , . . . , V +
N )T . Then⎧⎪⎪⎨⎪⎪⎩

U = V 0,

V = 1
2c (V − − V +),

W = 1
2 (V − + V +).

(2.10)

Under the above transformation, the boundary condition (1.4) can be correspondingly replaced by

x = 0 : W = Ḣ(t), (2.11a)
x = 0 : V = H(t), (2.11b)
x = 0 : V −B(U)U = H(t). (2.11c)

Noting (2.10), in a neighborhood of Ũ = 0, i.e., Ṽ def.=

⎛⎝V −

V 0

V +

⎞⎠ = 0, the boundary conditions (2.11) on x = 0

can be rewritten as

x = 0 : V + = −V − + 2Ḣ(t), (2.12a)

x = 0 : V + = V − − 2c
(
V 0,

V − + V +

2
, H(t)

)
H(t), (2.12b)

x = 0 : V + = V − − 2c
(
V 0,

V − + V +

2
, B(V 0)V 0 +H(t)

)(
B(V 0)V 0 +H(t)

)
, (2.12c)

which can be uniformly expressed as

x = 0 : P (t, V −, V 0, V +) = 0, (2.13)

where

P (t, V −, V 0, V +) = V + + V − − 2Ḣ(t) for (2.12a), (2.14a)

P (t, V −, V 0, V +) = V + − V − + 2c
(
V 0,

V − + V +

2
, H(t)

)
H(t) for (2.12b), (2.14b)

P (t, V −, V 0, V +) = V + − V − + 2c
(
V 0,

V − + V +

2
, B(V 0)V 0 +H(t)

)(
B(V 0)V 0 +H(t)

)
for (2.12c). (2.14c)
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For the boundary conditions (2.13) on x = 0, regarding (t, V −, V 0, V +) as variables, noting (2.9), under the
hypothesis that ‖H‖C2 (case (1.4a)) or ‖H‖C1 (cases (1.4b) and (1.4c)) and ‖Ũ‖C0 are suitably small (the
validity of this hypothesis will be shown by Lem. 2.1), it is easy to see that

det

(
∂Pi

∂V +
j

)
�= 0, i, j = 1, . . . , N. (2.15)

Therefore, using the implicit function theorem, for any given T > 0, on the interval [0, T ] the boundary condition
on x = 0 can be locally rewritten around Ũ = 0 to the following unified form:

x = 0 : V + = G(t, V −, V 0) + H̃(t), (2.16)

where G and H̃ are C1 functions with respect to their arguments, and without loss of generality, we may assume
that

G(t, 0, 0) ≡ 0. (2.17)

Obviously, the C1 norm of H̃(t) is small enough.
Similarly, the boundary conditions (1.6a)–(1.6c) on x = L can be also locally rewritten around Ũ = 0 to the

following unified form:

x = L : V − = G(V 0, V +), (2.18)

in which G is a C1 function with respect to its arguments and

G(0, 0) ≡ 0. (2.19)

Meanwhile, the initial condition (1.7) can be correspondingly written as

t = 0 : Ũ(0, x) =

⎛⎝ Φ(x)
Φ′(x)
Ψ(x)

⎞⎠ def.= Ũ0(x), 0 ≤ x ≤ L. (2.20)

By the conditions of C2 compatibility at the points (t, x) = (0, 0) and (0, L) for the mixed initial-boundary
value problem (1.1), (1.4) and (1.6)–(1.7), it is easy to see that the conditions of C1 compatibility at these two
points are also satisfied for the mixed initial-boundary value problem (2.2), (2.20), (2.16) and (2.18). Based
on the theory of semi-global C1 solutions to the first order quasilinear hyperbolic system with zero eigenvalues
(see [5–7,11, 13, 14, 19, 20]), we get immediately the following lemma.

Lemma 2.1. Suppose that on the domain under consideration, c, aij , bij and b̄ij are C1 functions with respect
to their arguments. Suppose furthermore that the conditions of C2 compatibility (see (1.15) and (1.16)) are
satisfied at the points (t, x) = (0, 0) and (0, L), respectively. For any given and possibly quite large T > 0,
the forward mixed initial-boundary value problem (1.1), (1.4) and (1.6)–(1.7) admits a unique C2 solution
U = U(t, x) with small C2 norm on the domain

R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, (2.21)

provided that ‖(Φ, Ψ)‖(C2[0,L])N×(C1[0,L])N and ‖H‖(C2[0,T ])N (case (1.4a)) or ‖H‖(C1[0,T ])N (cases (1.4b)–(1.4c))
are suitably small (possibly depending on T ). More precisely, for any given ε > 0 small enough, if

‖(Φ, Ψ)‖(C2[0,L])N×(C1[0,L])N ≤ ε (2.22)
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and

‖H‖(C2[0,T ])N (case (1.4a)) or ‖H‖(C1[0,T ])N (cases (1.4b)–(1.4c)) ≤ ε, (2.23)

then

‖U‖(C2[R(T )])N ≤ G(ε), (2.24)

where G(ε) is a C0 function of ε > 0, satisfying G(0) = 0.

3. Estimates on the C1
, C2

norms of solutions and the continuity modulus

of the second order partial derivatives of solutions for a coupled system

of nonautonomous linear wave equations

In order to obtain the exact boundary synchronization for the quasilinear system (1.1), (1.4) and (1.6),
we have to investigate the C1, C2 norms of solutions and the continuity modulus of the second order partial
derivatives of solutions for a coupled system of nonautonomous linear wave equations. Here, the continuity
modulus of a function f(t, x) on R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L} is the following non-negative function:

ω(η) = ω(η|f) def.= sup
|t′−t′′|≤η, |x′−x′′|≤η
(t′,x′), (t′′,x′′)∈R(T )

|f(t′, x′) − f(t′′, x′′)|, η ≥ 0. (3.1)

Similarly, the continuity modulus of a vector function f = (f1, . . . fn) can be defined by

ω(η|f) def.= max
i=1,...,n

ω(η|fi), (3.2)

and the continuity modulus of a matrix function A = (aij)n×n can be defined by

ω(η|A) def.= max
i,j=1,...,n

ω(η|aij). (3.3)

In this section, we still denote U = U(t, x) as the unknown vector function, c = c(t, x) as the common
propagation speed and A = A(t, x), B = B(t) and B = B(t) as coupling matrices. Consider the following
coupled system of nonautonomous wave equations:

∂2U

∂t2
− c2(t, x)

∂2U

∂x2
+A(t, x)U = F (t, x), (3.4)

where U = (u1, . . . , uN )T is the unknown vector function of (t, x), A(t, x) = (aij(t, x)) is an N ×N matrix with
C1 elements, c(t, x) > 0, the common propagation speed for the coupled system, is a C1 function of (t, x),
while F (t, x) = (f1(t, x), . . . , fN (t, x))T is also a C1 vector function of (t, x).

At the end x = 0, corresponding to (1.4a)–(1.4c), we prescribe any one of the following boundary conditions:

x = 0 : U = H(t) (Dirichlet type), (3.5a)
x = 0 : Ux = H(t) (Neumann type), (3.5b)
x = 0 : Ux −B(t)U = H(t) (Coupled third type), (3.5c)

in which B(t) = (bij(t)) is an N × N matrix with C1 elements, and H(t) = (h1(t), . . . , hN (t))T are C2

(case (3.5a)) or C1 (cases (3.5b) and (3.5c)) functions of t.
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At the end x = L, corresponding to (1.6a)–(1.6c), we prescribe any one of the following boundary conditions:

x = L : U = H(t) (Dirichlet type), (3.6a)

x = L : Ux = H(t) (Neumann type), (3.6b)

x = L : Ux +B(t)U = H(t) (Coupled third type), (3.6c)

in which B(t) = (bij(t)) is an N × N matrix with C1 elements, and H(t) = (h̄1(t), . . . , h̄N (t))T are C2

(case (3.6a)) or C1 (cases (3.6b) and (3.6c)) functions of t.
Denote

l =

{
1 case (3.5a),
0 cases (3.5b)–(3.5c),

l̄ =

{
1 case (3.6a),
0 cases (3.6b)–(3.6c),

(3.7)

s = l + 1, s̄ = l̄ + 1. (3.8)

Suppose that on the domain under consideration, we have

‖c‖1 + ‖A‖1 + ‖B‖1 + ‖B‖1 ≤ D < +∞, (3.9)

where D is a positive constant. Here and hereafter, for simplicity we denote ‖ · ‖0, ‖ · ‖1 and ‖ · ‖2 as as the
corresponding C0, C1 and C2 norms, respectively.

For the mixed initial-boundary value problem (3.4), (3.5), (3.6) and (1.7), by the estimates established in [6,7]
for C1 and C2 norms of solutions, as well as the continuity modulus of the second order partial derivatives of
solutions, obtained by a similar manner, we have

Lemma 3.1. For any given T > 0, suppose that c, aij , bij , b̄ij and fi (i, j = 1, . . . , N) are all C1 functions on
the domain R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}. Suppose furthermore that the conditions of C2 compatibility
are satisfied at the points (t, x) = (0, 0) and (0, L), respectively. Then the forward mixed initial-boundary value
problem (3.4)–(3.6) and (1.7) admits a unique C2 solution U = U(t, x) on the domain R(T ) = {(t, x)|0 ≤ t ≤
T, 0 ≤ x ≤ L}, and we have

‖U‖(C1[R(T )])N ≤C1

(
‖(Φ, Ψ)‖(C1[0,L])N×(C0[0,L])N + ‖(H,H)‖(Cl[0,T ])N×(C l̄[0,T ])N + ‖F‖(C0[R(T )])N

)
(3.10)

and

‖U‖(C2[R(T )])N ≤C2

(‖(Φ, Ψ)‖(C2[0,L])N×(C1[0,L])N + ‖(H,H)‖(Cs[0,T ])N×(C s̄[0,T ])N + ‖F‖(C1[R(T )])N

)
, (3.11)

where C1 = C1(T,D) and C2 = C2(T,D) are positive constants depending only on T and D. Moreover, if

F (t, x) ≡ 0, (3.12)

then for any given η with

0 < η ≤ min
(t,x)∈R(T )

L

c(t, x)
, (3.13)

we have

ω

(
η
∣∣∂2U

∂t2

)
+ ω

(
η
∣∣∂2U

∂x2

)
+ ω

(
η
∣∣ ∂2U

∂t∂x

)
≤ Ω(η), (3.14)
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where

Ω(η) = C3

(
ω
(
η
∣∣Φxx

)
+ ω

(
η
∣∣Ψx

)
+ ω

(
η
∣∣dsH

dts

)
+ ω

(
η
∣∣ds̄H

dts̄

)
+ (‖Φ‖2 + ‖Ψ‖1 + ‖H‖s + ‖H‖s̄)

· (η + ω(η|cx) + ω(η|ct) + ω(η|Ax) + ω(η|Bt) + ω(η|Bt)
))

,

(3.15)

and C3 = C3(T,D) is a positive constant depending on T and D.

Remark 3.2. For the backward mixed initial-boundary value problem (3.4)–(3.6) with the final condition

t = T : (U,Ut) = (Φ(x), Ψ(x)), 0 ≤ x ≤ L, (3.16)

satisfying the conditions of C2 compatibility at the points (t, x) = (T, 0) and (T, L), respectively, similar results
can be obtained.

4. Proof of Theorem 1.1

Arbitrarily choose H(0)(t)
(
in which h(0)

1 (t) ≡ 0
)

to be a C2 (case (1.4a)) or C1 (cases (1.4b)–(1.4c)) vector
function of t, satisfying

‖H(0)‖(Cs[0,T ])N ≤ ε, (4.1)

where

s =

{
2, case (1.4a),
1, cases (1.4b)–(1.4c),

. (4.2)

and ε > 0, given by (1.8), is a suitably small positive constant, such that the conditions of C2 compatibility are
satisfied at the point (t, x) = (0, 0), and

H(0)(t) ≡ 0, T0 ≤ t ≤ T. (4.3)

Remark 4.1. Since we have assumed h
(0)
1 (t) ≡ 0, by the conditions of C2 compatibility (cf . (1.15)) at the

point (t, x) = (0, 0), the initial condition (1.7) can not be arbitrarily given near x = 0. Although this is a special
case in Theorem 1.3, it is not an issue for the generality of the whole proof.

By Lemma 2.1, the initial-boundary value problem (1.1), (1.4) (in which H(t) = H(0)(t)) and (1.6)–(1.7)
admits a unique C2 solution U = U (0)(t, x) on the domain R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, satisfying

‖U (0)‖(C2[R(T )])N ≤ G(ε), (4.4)

where G(ε) is a C0 function of ε ≥ 0, satisfying

G(0) = 0. (4.5)

Since U (0) ∈ C2, there exists a non-negative function Ω0(η) of η (Ω0(η) → 0 as η → 0), such that

ω

(
η
∣∣∂2U (0)

∂t2

)
+ ω

(
η
∣∣∂2U (0)

∂x2

)
+ ω

(
η
∣∣∂2U (0)

∂t∂x

)
≤ Ω0(η). (4.6)

Here we point out that, being the first step of the iteration, U (0) is not asked to be synchronized for T0 ≤ t ≤ T .
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Let

U (−1)(t, x) def.= U (0)(t, x). (4.7)

For any given m ≥ 0, we use the following iteration procedure to get U (m)(t, x) from U (m−1)(t, x) on R(T ) =
{(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}:

∂2U (m)

∂t2
− c2(U (m−1), U

(m−1)
t , U (m−1)

x )
∂2U (m)

∂x2
+A(U (m−1), U

(m−1)
t , U (m−1)

x )U (m) = 0, (4.8)

the boundary condition on x = 0 is given by any one of

x = 0 : U (m) = H(m)(t), (4.9a)

x = 0 : U (m)
x = H(m)(t), (4.9b)

x = 0 : U (m)
x −B(U (m−1))U (m) = H(m)(t), (4.9c)

the boundary condition on x = L is given by any one of

x = L : U (m) = 0, (4.10a)

x = L : U (m)
x = 0, (4.10b)

x = L : U (m)
x −B(U (m−1))U (m) = 0, (4.10c)

and the initial condition is

t = 0 : (U (m), U
(m)
t ) = (Φ(x), Ψ(x)), 0 ≤ x ≤ L. (4.11)

In this iteration scheme, for m = 0, since H(0)(t) has been chosen, the corresponding solution is just U (0)(t, x);
while, for each m ≥ 1, H(m)(t) is a C2 (case (4.9a)) or C1 (cases (4.9b) and (4.9c)) function of t to be
determined. Our goal is to find a suitable H(m)(t) (in which h

(m)
1 (t) ≡ 0) for each m ≥ 1, such that the

corresponding mixed initial-boundary value problem (4.8)–(4.11) admits a C2 solution U (m) = U (m)(t, x) on
the domain R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, satisfying the exact boundary synchronization (1.10). Notice
that in the whole iteration procedure, the form of the conditions of C2 compatibility (1.15)–(1.16) at the points
(t, x) = (0, 0) and (0, L) never changes (just replacing H(t) by H(m)(t)).

If the synchronization sequence {U (m)(t, x)}(m ≥ 1) is obtained by means of a sequence {H(m)(t)} (in which
h

(m)
1 (t) ≡ 0 (0 ≤ t ≤ T ) for m ≥ 1) of suitable boundary controls, and if one can prove that

U (m)(t, x) → U(t, x) in (C2[R(T )])N as m→ +∞, (4.12)

then U(t, x) should satisfy (1.1) and (1.6)–(1.7) and possesses the synchronization (1.10), and the boundary
control corresponding to (1.4) is given by

H(t) = lim
m→+∞H(m)(t) (4.13)

with h1(t) ≡ 0 (0 ≤ t ≤ T ). Therefore, in order to get Theorem 1.1, it suffices to establish the following.

Lemma 4.2. Under the assumptions of Theorem 1.1, for any given integer m ≥ 0, there exist a boundary
control H(m)(t) (in which h(m)

1 (t) ≡ 0 (0 ≤ t ≤ T )) and positive constants C4 = C4(T0, T ), C5 = C5(T0, T ) and
C6 = C6(T0, T ), such that the mixed initial-boundary value problem (4.8)–(4.11) admits a unique C2 solution
U (m) = U (m)(t, x) on the domain R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, which satisfies

‖U (m)‖(C2[R(T )])N ≤ C4(G(ε) + ε), (4.14)

‖U (m) − U (m−1)‖(C1[R(T )])N ≤ Cm
5 (G(ε) + ε)m, (4.15)

ω

(
η
∣∣∂2U (m)

∂t2

)
+ ω

(
η
∣∣∂2U (m)

∂x2

)
+ ω

(
η
∣∣∂2U (m)

∂t∂x

)
≤ Ω1(η), (4.16)
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where

Ω1(η) =
C6

(
ω(η|Φxx) + ω(η|Ψx) +Ω0(η) + (G(ε) + ε) (η + ω(η|Γ ∗))

)
1 − C6(G(ε) + ε)

,
(4.17)

while G(ε) and Ω0(η) are given by (4.4) and (4.6), and

Γ ∗ =
{
∂c

∂uk
,
∂c

∂ukt
,
∂c

∂ukx
,
∂aij

∂uk
,
∂aij

∂ukt
,
∂aij

∂ukx
,
∂bij
∂uk

,
∂bij
∂uk

; i, j, k = 1, . . . , N
}
. (4.18)

Moreover, for any given m ≥ 1, U (m)(t, x) possesses the synchronization (1.10) for T0 ≤ t ≤ T .

Proof. For m = 0, since H(0)(t) has been determined, taking C4 ≥ 1, (4.4) immediately yields (4.14). Moreover,
we have (4.15) because of (4.7). Combining (4.6) and (4.17), one gets (4.16), provided that ε > 0 is suitably
small and C6 ≥ 1.

By induction, suppose that for a given m ≥ 1 we have

‖U (m−1)‖(C2[R(T )])N ≤ C4(G(ε) + ε), (4.19)

‖U (m−1) − U (m−2)‖(C1[R(T )])N ≤ Cm−1
5 (G(ε) + ε)m−1

, (4.20)

ω

(
η
∣∣∂2U (m−1)

∂t2

)
+ ω

(
η
∣∣∂2U (m−1)

∂x2

)
+ ω

(
η
∣∣∂2U (m−1)

∂t∂x

)
≤ Ω1(η). (4.21)

Then for this m, let ⎧⎨⎩w
(m)
i = u

(m)
i+1 − u

(m)
i ,

h̃
(m)
i = h

(m)
i+1 − h

(m)
i ,

i = 1, . . . , N − 1. (4.22)

Thanks to the assumption (1.11), it is easy to see that from the original system (4.8) for the variable U (m) =(
u

(m)
1 , . . . , u

(m)
N

)
, we can get the following system for the variable W (m) =

(
w

(m)
1 , . . . , w

(m)
N−1

)
(see also [14]):

∂2W (m)

∂t2
− c2(U (m−1), U

(m−1)
t , U (m−1)

x )
∂2W (m)

∂x2
+ Ã(U (m−1), U

(m−1)
t , U (m−1)

x )W (m) = 0, (4.23)

where Ã = (ãij) is an (N − 1) × (N − 1) reduced matrix with

ãij(U (m−1), U
(m−1)
t , U (m−1)

x )

=
N∑

p=j+1

(
ai+1,p(U (m−1), U

(m−1)
t , U (m−1)

x ) − aip(U (m−1), U
(m−1)
t , U (m−1)

x )
)

=
j∑

p=1

(
ai,p(U (m−1), U

(m−1)
t , U (m−1)

x ) − ai+1,p(U (m−1), U
(m−1)
t , U (m−1)

x )
)
, i, j = 1, . . . , N − 1.

(4.24)

Similarly, thanks to the assumptions (1.12)–(1.13), from the original boundary conditions (4.9)–(4.10) for the
variable U (m), we can get, respectively, the boundary conditions for the variable W (m):

x = 0 : W (m) = H̃(m)(t), (4.25a)

x = 0 : W (m)
x = H̃(m)(t), (4.25b)

x = 0 : W (m)
x − B̃(U (m−1))W (m) = H̃(m)(t) (4.25c)
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and

x = L : W (m) = 0, (4.26a)

x = L : W (m)
x = 0, (4.26b)

x = L : W (m)
x + B̃(U (m−1))W (m) = 0, (4.26c)

in which H̃(m)(t) = (h̃(m)
1 (t), . . . , h̃(m)

N−1(t))
T , and B̃ = (̃bij) and B̃ = (̃b̄ij) are (N−1)×(N−1) matrices reduced

by B = (bij) and B = (b̄ij) in the following way:

b̃ij(U (m−1)) =
n∑

p=j+1

(
bi+1,p(U (m−1)) − bip(U (m−1))

)

=
j∑

p=1

(
bi,p(U (m−1)) − bi+1,p(U (m−1))

)
, i, j = 1, . . . , N − 1 (4.27)

etc.
The initial condition of W (m) is given by

t = 0 : (W (m),W
(m)
t ) = (Φ̃(x), Ψ̃ (x)), 0 ≤ x ≤ L, (4.28)

where {
Φ̃(x) = (ϕ2(x) − ϕ1(x), . . . , ϕN (x) − ϕN−1(x))T ,

Ψ̃(x) = (ψ2(x) − ψ1(x), . . . , ψN (x) − ψN−1(x))T .
(4.29)

Moreover, it easily follows from the corresponding conditions of C2 compatibility at the point (t, x) = (0, L) for
U (m) that the conditions of C2 compatibility at the point (t, x) = (0, L) for W (m) are still satisfied. �

Noting (4.22), once we achieve the exact null controllability for W (m), we certainly have the exact synchro-
nization for U (m). Similar to the method in [2,10], our next step is to construct a C2 solutionW (m) = W (m)(t, x)
on R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L} for each m ≥ 1, satisfying simultaneously the system (4.23), the initial
condition (4.28), the null final condition

W (m)(t, x) ≡ 0, T0 ≤ t ≤ T (4.30)

and the boundary condition (4.26) on x = L. To this end, we need a suitable treatment on the constructive
method for realizing the exact boundary null controllability of W (m). The key point in the proof is that the
artificial boundary conditions on x = 0 in the constructive method should be independent of the iteration (4.23).
For this purpose, noting the conditions of C2 compatibility at the point (t, x) = (0, 0) (cf . (1.15)), we will take
artificial boundary conditions of Neumann type on x = 0, which is independent of m, instead of the commonly
used artificial boundary conditions of Dirichlet type (see Rems. 1.5–1.6). Thus, for the sequence {W (m)}, we
can prove the following Lemma 4.3 (for the details of its proof, see Appendix).

Lemma 4.3. For any given m ≥ 1, under the assumptions of Theorem 1.1, there exist a boundary control
H̃(m)(t) on x = 0, composed of C2 (case (4.25a)) or C1 (cases (4.25b)–(4.25c)) functions of t with support on
[0, T0], and positive constants C7(T0, T ), C8(T0, T ) and C9(T0, T ), such that the mixed initial-boundary value
problem (4.23), (4.25)–(4.26) and (4.28) admits a unique C2 solution W (m) = W (m)(t, x) on the domain R(T ) =
{(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, satisfying (4.30) and

‖W (m)‖(C2[R(T )])N−1 ≤ C7(G(ε) + ε), (4.31)

‖W (m) −W (m−1)‖(C1[R(T )])N−1 ≤ C8C
m−1
5 (G(ε) + ε)m (4.32)
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and

ω

(
η
∣∣∂2W (m)

∂t2

)
+ ω

(
η
∣∣∂2W (m)

∂x2

)
+ ω

(
η
∣∣∂2W (m)

∂t∂x

)
≤ Ω2(η), (4.33)

where C5 is given by Lemma 4.1,

Ω2(η) = C9

(
ω(η|Φxx) + ω(η|Ψx) +Ω0(η) + (G(ε) + ε) (η +Ω1(η) +Ω(η|Γ ∗))

)
, (4.34)

and G(ε), Ω0(η) and Ω1(η) are given by (4.4), (4.6) and (4.17), respectively.

Noting (4.31)–(4.33), by the way to obtain the corresponding boundary controls in the constructive method
(see [10]), we have

‖H̃(m)‖(Ce[0,T ])N−1 ≤ C10‖W (m)‖(C2[R(T )])N−1 ≤ C11(G(ε) + ε), (4.35)

‖H̃(m) − H̃(m−1)‖(C ē[0,T ])N−1 ≤ C12‖W (m) −W (m−1)‖(C1[R(T )])N−1 ≤ C13C
m−1
5 (G(ε) + ε)m (4.36)

and

ω

(
η
∣∣deH̃(m)

dte

)
≤ C14Ω2(η), (4.37)

where

e =

{
2, case (4.25a),
1, cases (4.25b) −−(4.25c),

e =

{
1, case (4.25a),
0, cases (4.25b)−−(4.25c).

(4.38)

and C10, C11, C12, C13 and C14 are all positive constants depending only on T0 and T .
Thus, by (4.22) and noting h(m)

1 ≡ 0, we get

‖H(m)‖(Cr[R(T )])N ≤ C15(G(ε) + ε), (4.39)

‖H(m) −H(m−1)‖(Cr[R(T )])N ≤ C16C
m−1
5 (G(ε) + ε)m (4.40)

and

ω

(
η
∣∣drH(m)

dtr

)
≤ C17Ω2(η), (4.41)

where

r =

{
2, case (4.9a),
1, cases (4.9b)–(4.9c),

r =

{
1, case (4.9a),
0, cases (4.9b) and (4.9c),

(4.42)

and C15, C16, C17 are positive constants depending only on T0 and T .
Obviously, for m ≥ 1, the previously obtained boundary control H(m) satisfies the conditions of C2 com-

patibility at the points (t, x) = (0, 0) and (0, L) for the mixed initial-boundary value problem (4.8)–(4.11),
respectively. Noticing (4.21), (4.39) and (4.41), it is easy to see from Lemma 3.1 that

‖U (m)‖(C2[R(T )])N ≤ C18(G(ε) + ε) (4.43)
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and

ω

(
η
∣∣∂2U (m)

∂t2

)
+ ω

(
η
∣∣∂2U (m)

∂x2

)
+ ω

(
η
∣∣∂2U (m)

∂t∂x

)
≤ C19

(
ω(η|Φxx) + ω(η|Ψx) +Ω0(η) + (G(ε) + ε) (η +Ω1(η) +Ω(η|Γ ∗))

)
,

(4.44)

where C18 and C19 are positive constants depending only on T and T0. Therefore, taking C4 ≥ C18, C6 ≥ C19,
we get (4.14) and (4.16).

On the other hand, let

V (m) = U (m) − U (m−1). (4.45)

V (m) satisfies the following mixed initial-boundary value problem:

∂2V (m)

∂t2
− c2(U (m−1), U

(m−1)
t , U (m−1)

x )
∂2V (m)

∂x2
+A(U (m−1), U

(m−1)
t , U (m−1)

x )V (m)

+ (c2(U (m−1), U
(m−1)
t , U (m−1)

x ) − c2(U (m−2), U
(m−2)
t , U (m−2)

x ))
∂2U (m−1)

∂x2

+
(
A(U (m−1), U

(m−1)
t , U (m−1)

x ) −A(U (m−2), U
(m−2)
t , U (m−2)

x )
)
U (m−1) = 0

(4.46)

with the initial condition

t = 0 : (V (m), V
(m)
t ) = (0, 0), 0 ≤ x ≤ L, (4.47)

and the boundary conditions

x = 0 : V (m) = H(m) −H(m−1), (4.48a)

x = 0 : V (m)
x = H(m) −H(m−1), (4.48b)

x = 0 : V (m)
x −B(U (m−1))V (m) =

(
B(U (m−1)) −B(U (m−2))

)
U (m−1) +H(m) −H(m−1) (4.48c)

and

x = L : V (m) = 0, (4.49a)

x = L : V (m)
x = 0, (4.49b)

x = L : V (m)
x +B(U (m−1))V (m) =

(
B(U (m−2)) −B(U (m−1))

)
U (m−1). (4.49c)

Noting (4.19)–(4.20), we have

‖
(
A(U (m−1), U

(m−1)
t , U (m−1)

x ) −A(U (m−2), U
(m−2)
t , U (m−2)

x )
)
U (m−1)‖(C0[R(T )])N

≤C20C
m−1
5 (G(ε) + ε)m

, (4.50)

‖(c2(U (m−1), U
(m−1)
t , U (m−1)

x ) − c2(U (m−2), U
(m−2)
t , U (m−2)

x ))
∂2U (m−1)

∂x2
‖(C0[R(T )])N

≤C21C
m−1
5 (G(ε) + ε)m, (4.51)

‖
(
B(U (m−1)) −B(U (m−2))

)
U (m−1)‖(C0[0,T ])N ≤ C22C

m−1
5 (G(ε) + ε)m

, (4.52)

‖
(
B(U (m−1)) −B(U (m−2))

)
U (m−1)‖(C0[0,T ])N ≤ C23C

m−1
5 (G(ε) + ε)m

, (4.53)

where C20, C21, C22 and C23 are positive constants depending only on T and T0.
Noting (4.40), by Lemma 3.1 there exists a positive constant C24 = C24(T, T0) such that

‖V (m)‖(C1[R(T )])N = ‖U (m) − U (m−1)‖(C1[R(T )])N ≤ C24C
m−1
5 (G(ε) + ε)m

. (4.54)

Therefore, choosing C5 ≥ C24, we get (4.15). The proof of Theorem 1.1 is complete.
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5. Remarks

Remark 5.1. Theorem 1.1 is still valid in the case of two-sided controls, provided that (1.14) is replaced by

T > T0 >
L

c(0, 0, 0)
, (5.1)

and there is an inhomogeneous control term H(t) on the right-hand side of (1.6).

Remark 5.2. Similar results hold for the following boundary conditions of coupled dissipative type:

x = 0 : Ux − C(U)Ut = H(t), (5.2)

x = L : Ux + C(U)Ut = 0, (5.3)

where C(U) = (cij(U))N×N and C(U) = (cij(U))N×N are C1 matrix functions with respect to their arguments.
However, differently from boundary conditions (1.4) and (1.6), in the case of boundary conditions (5.2)–(5.3),
in order to guarantee the well-posedness and the exact boundary null controllability for the forward mixed
initial-boundary value problem, we should impose the following assumptions:

det
(
C(0) +

1
c(0, 0, 0)

IN

)
�= 0 (5.4)

and

det
(
C(0) +

1
c(0, 0, 0)

IN

)
�= 0 (5.5)

for the boundary coupling matrices C(U) and C(U). Then, combining the proof of Theorem 1.1 and the method
presented in [3], one can realize the corresponding local exact boundary synchronization for the coupled system
of wave equations (1.1) and (5.2)–(5.3) by (N − 1) boundary controls on x = 0, provided that

N∑
j=1

cij(U) def.= ˜̃c(U) (5.6)

and

N∑
j=1

c̄ij(U) def.= ˜̃̄c(U), (5.7)

where ˜̃c(U) and ˜̃̄c(U) are independent of i = 1, . . . , N .

Remark 5.3. Theorem 1.1 and Remark 5.2 are also valid for the corresponding nonautonomous quasilinear
system of wave equations, in which

c = c(t, x, U, Ut, Ux), A = A(t, x, U, Ut, Ux), (5.8)

and
B = B(t, U), B = B(t, U)

(
or C = C(t, U), C = C(t, U)

)
(5.9)

with suitable regularity with respect to t and x.
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Remark 5.4. For the following more general coupled system of quasilinear wave equations:

∂2U

∂t2
− c2(U,Ut, Ux)

∂2U

∂x2
+ F (U,Ut, Ux) = 0, (5.10)

where F is a C2 vector function with respect to its arguments and

F (0, 0, 0) = 0. (5.11)

Thus, one can find C1 matrices A(U,Ut, Ux), Ă(U,Ut, Ux) and Â(U,Ut, Ux), such that

F (U,Ut, Ux) = A(U,Ut, Ux)U + Ă(U,Ut, Ux)Ut + Â(U,Ut, Ux)Ux, (5.12)

and the corresponding local exact boundary synchronization can be realized, provided that A, Ă and Â satisfy
similar assumptions as in (1.11), respectively.

Appendix. Proof of Lemma 4.2

In order to get Lemma 4.2, it suffices to prove that for any given integer m ≥ 1, there exists a unique C2

solution W (m) = W (m)(t, x) to the coupled system (4.23) of wave equations, which satisfies simultaneously the
initial condition (4.28), the final condition (4.30) and the boundary condition (4.26) on x = L as well as the
estimates (4.31)–(4.33). To this end, we will use the constructive method suggested in [6, 8–10] with necessary
modifications and improvements.

Let

T (m) =
∫ T0

0

inf
0≤x≤L

c(U (m−1)(t, x), U (m−1)
t (t, x), U (m−1)

x (t, x))dt. (A.1)

Due to (1.14) and (4.19), for suitably small ε > 0 we have

T (m) > 2L. (A.2)

Choose T (m)
1 and T (m)

2 such that

∫ T
(m)
1

0

inf
0≤x≤L

c(U (m−1)(t, x), U (m−1)
t (t, x), U (m−1)

x (t, x))dt

=
∫ T0

T
(m)
2

inf
0≤x≤L

c(U (m−1)(t, x), U (m−1)
t (t, x), U (m−1)

x (t, x))dt

=L.

(A.3)

By (1.14) and (4.19), for ε > 0 small enough we have

0 < T
(m)
1 <

T0 − δ

2
<
T0

2
<
T0 + δ

2
< T

(m)
2 < T0, (A.4)

in which

δ =
1
2

(
T0 − 2

L

c(0, 0, 0)

)
· (A.5)
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(i) We first consider the forward mixed initial-boundary value problem for system (4.23) with the initial condi-
tion (4.28), the boundary condition (4.26) on x = L and the following artificial Neumann boundary condition

x = 0 : W (m)
x = F(t), 0 ≤ t ≤ T0

2
, (A.6)

where F(·) is an arbitrarily given C1 function of t, satisfying the following conditions of C2 compatibility at the
point (t, x) = (0, 0): {

F(0) = Φ̃′(0),
F′(0) = Ψ̃ ′(0)

(A.7)

(see Rem. 1.5) and verifying

‖F‖
(C1[0,

T0
2 ])N−1 ≤ ε, (A.8)

Ω(η|Ḟ) ≤ Ω0(η). (A.9)

Due to (A.7)–(A.9), this artificial boundary condition (A.6) can be chosen to be independent of the iteration
(i.e., independent of m), namely, we can take the same artificial boundary condition (A.6) in every iteration step
(see also Rem. 1.6). Meanwhile, in order that the constants, obtained from all the estimates of the solutions
in the iteration procedure, are also independent of m, each iteration should be discussed on the same domain,
i.e., on

Rf =
{
(t, x)

∣∣∣0 ≤ t ≤ T0

2
, 0 ≤ x ≤ L

}
(A.10)

or

Rb =
{
(t, x)

∣∣∣T0

2
≤ t ≤ T, 0 ≤ x ≤ L

}
. (A.11)

All these can be regarded as some modifications and improvements to the constructive method suggested
in [6, 8–10].

Let

Γ̃ ∗ =

{
∂c

∂uk
,
∂c

∂ukt
,
∂c

∂ukx
,
∂ãij

∂uk
,
∂ãij

∂ukt
,
∂ãij

∂ukx
,
∂b̃ij
∂uk

,
∂b̃ij
∂uk

}
,

i, j, k = 1, . . . , N.

(A.12)

Obviously, there exists a positive constant C̃1 such that

ω(η|Γ̃ ∗) ≤ C̃1ω(η|Γ ∗). (A.13)

Here and hereafter, for i = 1, 2, . . ., C̃i denote positive constants, C̃i(T0) denote positive constants depending
only on T0, and C̃i(T, T0) denote positive constants depending only on T and T0.

By Lemma 3.1, there exists a unique C2 solution W (m) = W
(m)
f (t, x) on the domain Rf (see (A.10)). In

particular, noting (4.19), (4.21) and the properties of continuity modulus (see [12]), we have

‖W (m)
f (t, x)‖(C2[Rf ])N−1 ≤ C̃2(T0)ε ≤ C̃3(T0)(G(ε) + ε), ∀(t, x) ∈ Rf , (A.14)

ω

(
η
∣∣∂2W

(m)
f

∂t2

)
+ ω

(
η
∣∣∂2W

(m)
f

∂x2

)
+ ω

(
η
∣∣∂2W

(m)
f

∂t∂x

)

≤ C̃4(T0)
(
ω(η|Φ̃xx) + ω(η|Ψ̃x) +Ω0(η) + ε

(
η +Ω1(η) + (1 +G(ε)+ε)Ω(η|Γ̃ ∗)

))
≤ C̃5(T0)

(
ω(η|Φxx) + ω(η|Ψx) +Ω0(η) + (G(ε) + ε) (η +Ω1(η) +Ω(η|Γ ∗))

)
. (A.15)
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Thus we can uniquely determine the value of (W (m)
f ,W

(m)
fx ) on x = L:

x = L : (W (m)
f ,W

(m)
fx ) = (a(m)(t), ā(m)(t)), 0 ≤ t ≤ T0

2
, (A.16)

and we have

‖(a(m)(t), a(m)(t))‖
(C2[0,

T0
2 ])N−1×(C1[0,

T0
2 ])N−1 ≤ C̃6(T0)(G(ε) + ε), (A.17)

ω(η|ä(m)) + ω(η| ˙̄a(m))

≤C̃7(T0)
(
ω(η|Φxx) + ω(η|Ψx) + Ω0(η) + (G(ε) + ε) (η +Ω1(η) +Ω(η|Γ ∗))

)
. (A.18)

On the other hand, denoting

Z
(m)
f = W

(m)
f −W

(m−1)
f , m = 0, 1, 2, . . . (A.19)

it is easy to see that Z(m)
f satisfies the following mixed initial-boundary value problem:

∂2Z
(m)
f

∂t2
− c2(U (m−1), U

(m−1)
t , U (m−1)

x )
∂2Z

(m)
f

∂x2
+ Ã(U (m−1), U

(m−1)
t , U (m−1)

x )Z(m)

+
(
Ã(U (m−1), U

(m−1)
t , U (m−1)

x ) − Ã(U (m−2), U
(m−2)
t , U (m−2)

x )
)
W

(m−1)
f

−
(
c2(U (m−2), U

(m−2)
t , U (m−2)

x ) − c2(U (m−1), U
(m−1)
t , U (m−1)

x )
) ∂2W

(m−1)
f

∂x2
= 0

(A.20)

with the initial condition

t = 0 : (Z(m)
f , Z

(m)
ft ) = (0, 0), 0 ≤ x ≤ L, (A.21)

the boundary condition on x = 0

x = 0 : Z(m)
fx = 0 (A.22)

and the boundary condition on x = L:

x = L : Z(m)
f = 0, (A.23a)

x = L : Z(m)
fx = 0, (A.23b)

x = L : Z(m)
fx + B̃(U (m−1))Z(m)

f =
(
B̃(U (m−2)) − B̃(U (m−1))

)
W

(m−1)
f . (A.23c)

Noting (4.19)–(4.20), (4.24) and (A.14), we get

I0
def.=
∥∥∥(c2(U (m−1), U

(m−1)
t , U (m−1)

x ) − c2(U (m−2), U
(m−2)
t , U (m−2)

x )
) ∂2W

(m−1)
f

∂x2

∥∥∥
(C0[Rf ])N−1

≤C̃8(T0)Cm−1
5 (G(ε) + ε)m

,

(A.24)

I1
def.= ‖

(
Ã(U (m−1), U

(m−1)
t , U (m−1)

x ) − Ã(U (m−2), U
(m−2)
t , U (m−2)

x ))W (m−1)
f

)
‖(C0[Rf ])N−1

≤C̃9(T0)Cm−1
5 (G(ε) + ε)m

,
(A.25)

I2
def.= ‖

(
B̃(U (m−1)) − B̃(U (m−2)))W (m−1)

f

)
‖(C0[Rf ])N−1 ≤ C̃10(T0)Cm−1

5 (G(ε) + ε)m
. (A.26)
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Therefore, by Lemma 3.1, we have

‖W (m) −W (m−1)‖(C1[Rf ])N−1 ≤ C̃11(T0)(I0 + I1 + I2) ≤ C̃12(T0)Cm−1
5 (G(ε) + ε)m

. (A.27)

In particular, we have

‖(a(m)(t) − a(m−1)(t), a(m)(t) − a(m−1)(t))‖
(C1[0,

T0
2 ])N−1×(C0[0,

T0
2 ])N−1

≤C̃13(T0)Cm−1
5 (G(ε) + ε)m

.
(A.28)

(ii) On the domain Rb (see (A.11)), let W (m)
b (t, x) ≡ 0. Obviously, W = W

(m)
b (t, x) verifies system (4.23), final

condition (4.30) and boundary conditions (4.26).

(iii) Thus, we can find the vector function (c(m)(t), c̄(m)(t)) ∈ (C2[0, T ])N−1 × (C1[0, T ])N−1 (for example, by
polynomial interpolation), such that

(c(m)(t), c̄(m)(t)) =

{
(a(m)(t), ā(m)(t)), 0 ≤ t ≤ T0−δ

2 ,

(0, 0), T0+δ
2 ≤ t ≤ T,

(A.29)

and (c(m)(t), c̄(m)(t)) verifies the boundary condition (4.26) at x = L on the whole interval 0 ≤ t ≤ T , moreover,
we have

‖(c(m)(t), c(m)(t))‖(C2[0,T ])N−1×(C1[0,T ])N−1 ≤ C̃14(T, T0)(G(ε) + ε), (A.30)

‖(c(m)(t) − c(m−1)(t), c(m)(t) − c(m−1)(t))‖(C1[0,T ])N−1×(C0[0,T ])N−1

≤C̃15(T, T0)Cm−1
5 (G(ε) + ε)m, (A.31)

ω(η|c̈(m)) + ω(η| ˙̄c(m))

≤C̃16(T, T0)
(
ω(η|Φxx) + ω(η|Ψx) +Ω0(η) + (G(ε) + ε) (η +Ω1(η) +Ω(η|Γ ∗))

)
. (A.32)

We now change the status of t and x, and consider the following leftward mixed initial-boundary problem on
the domain R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L} for system (4.23) with the initial condition

x = L : W (m)
l = c(m)(t),W (m)

lx = c̄(m)(t), 0 ≤ t ≤ T (A.33)

and the boundary conditions

t = 0 : W (m)
lt = Ψ̃(x), 0 ≤ x ≤ L, (A.34)

t = T : W (m)
lt = 0, 0 ≤ x ≤ L (A.35)

where Ψ̃(x) is given by (4.29).
Obviously, the corresponding conditions of C2 compatibility are satisfied at the points (t, x) = (0, L) and

(T, L), respectively. Hence, by Lemma 3.1, there exists a unique C2 solution W (m) = W
(m)
l (t, x) on the domain

R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L}, such that

‖W (m)
l (t, x)‖(C2[R(T )])N−1 ≤ C̃17(T, T0)(G(ε) + ε), ∀(t, x) ∈ R(T ), (A.36)

ω

(
η

∣∣∣∣∣∂2W
(m)
l

∂t2

)
+ ω

(
η

∣∣∣∣∣∂2W
(m)
l

∂x2

)
+ ω

(
η

∣∣∣∣∣∂2W
(m)
l

∂t∂x

)

≤C̃18(T, T0)
(
ω(η|Φxx) + ω(η|Ψx) +Ω0(η) + (G(ε) + ε) (η +Ω1(η) +Ω(η|Γ ∗))

)
.

(A.37)
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Thus, Z(m)
l = W

(m)
l −W

(m−1)
l satisfies the mixed initial-boundary value problem of system (A.20) with the

homogeneous boundary condition

t = 0 : Z(m)
x = 0, (A.38)

t = T : Z(m)
x = 0 (A.39)

and the initial condition

x = L : (Z(m), Z(m)
x ) = (c(m)(t) − c(m−1)(t), c(m)(t) − c(m−1)(t)). (A.40)

Combining (A.31), (A.36) and Lemma 3.1, we get

‖W (m)
l (t, x) −W

(m−1)
l (t, x)‖(C2[R(T )])N−1 ≤ C̃19(T, T0)Cm−1

5 (G(ε) + ε)m
. (A.41)

(iv) By the uniqueness of the C2 solution for one-sided mixed initial-boundary value problem, based on the finite
speed of wave propagation (see [6, 12, 19, 20]), similarly to the argument on the exact boundary controllability
in the case of linear wave equations (see [6, 13]), we get that the C2 function W (m) = W

(m)
l (t, x) on R(T ) =

{(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ L} satisfies the system (4.23), the initial condition (4.29), the final condition (4.30)
and the boundary condition (4.26) on x = L. Moreover, noting (A.36)–(A.37) and (A.41), we get (4.31)–(4.33).
This concludes the proof of Lemma 4.3.
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