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WELL-POSEDNESS OF THE SUPERCRITICAL LANE–EMDEN HEAT FLOW
IN MORREY SPACES

Simon Blatt
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Abstract. For any smoothly bounded domain Ω ⊂ �n, n ≥ 3, and any exponent p > 2∗ = 2n/(n−2)
we study the Lane–Emden heat flow ut − Δu = |u|p−2u on Ω×]0, T [ and establish local and global
well-posedness results for the initial value problem with suitably small initial data u

∣∣
t=0

= u0 in the

Morrey space L2,λ(Ω) for suitable T ≤ ∞, where λ = 4/(p−2). We contrast our results with results on
instantaneous complete blow-up of the flow for certain large data in this space, similar to ill-posedness
results of Galaktionov–Vazquez for the Lane–Emden flow on �n.
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1. Introduction

Let Ω be a smoothly bounded domain in �n, n ≥ 3, and let T > 0. Given initial data u0, we consider the
Lane–Emden heat flow

ut −Δu = |u|p−2u on Ω × [0, T [, u = 0 on ∂Ω × [0, T [, u
∣∣
t=0

= u0 (1.1)

for a given exponent p > 2∗ = 2n/(n− 2), that is, in the “supercritical” regime.
As observed by Matano–Merle [14], p. 1048, the initial value problem (1.1) may be ill-posed for certain data

u0 ∈ H1
0 ∩Lp(Ω); see also our results in Section 4 below. However, as we had shown in two previous papers [4],

Section 6.5, [5], Remark 3.3, the Cauchy problem (1.1) is globally well-posed for suitably small data u0 belonging
to the Morrey spaceH1,μ

0 ∩Lp,μ(Ω), where μ = 2p
p−2 < n. Here we go one step further and show that problem (1.1)

even is well-posed for suitably small data u0 ∈ L2,λ(Ω) ⊃ Lp,μ(Ω), where λ = 2μ
p = 4

p−2 = μ − 2, thus
considerably improving on the results of Brezis–Cazenave [6] or Weissler [16] for initial data in Lq, q ≥ n(p−2)/2.
Our results are similar to results of Taylor [15] who demonstrated local and global well-posedness of the Cauchy
problem for the equation

ut −Δu = DQ(u) on Ω × [0, T [,

for suitably small initial data u
∣∣
t=0

= u0 in a Morrey space, where D is a linear differential operator of
first order and Q is a quadratic form in u as in the Navier–Stokes system. However, similar to the work
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of Koch–Tataru [12] on the Navier–Stokes system, in our treatment of (1.1) we are able to completely avoid the
use of pseudodifferential operators in favor of simple integration by parts and Banach’s fixed-point theorem.

The study of the initial value problem for (1.1) for non-smooth initial data is motivated by the question
whether a solution u of (1.1) blowing up at some time T <∞ can be extended as a weak solution of (1.1) on a
time interval ]0, T1[ for some T1 > T . Note that if such a continuation is possible and if the extended solution still
satisfies the monotonicity formula [5], Proposition 3.1, it follows that u(T ) ∈ L2,λ(Ω); see Remark 3.3. Hence,
the regularity assumption u0 ∈ L2,λ(Ω) is necessary from this point of view and cannot be weakened. However,
our results in Section 4 show that the condition u(T ) ∈ L2,λ(Ω) in general is not sufficient for continuation and
that a smallness condition as in our Theorems 2.1, 2.2 below is needed.

Note that the question of continuation after blow-up only is of relevance in the supercritical case when p > 2∗.
Indeed, as shown by Baras–Cohen [3], in the subcritical case p < 2∗ a classical solution u ≥ 0 to (1.1) blowing
up at some time T < ∞ always undergoes “complete blow-up” (see Sect. 4 for a definition), and u cannot be
continued as a (weak) solution to (1.1) after time T in any reasonable way. In [9] Galaktionov und Vazquez
extend the Baras–Cohen result to the critical case p = 2∗.

In the next section we state our well-posedness results, which we prove in Section 3. In Section 4 we then
contrast these results with results on instantaneous complete blow-up of the flow for certain large data u0 ≥ 0.
These results crucially use the scaling properties of equation (1.1) and the maximum principle by comparing
our solution with a family of flow solutions blowing up in finite time, with the time of blow-up arbitrarily
close to zero after suitable scaling, in a way similar to the ill-posedness results of Galaktionov–Vazquez for the
Lane–Emden flow on �n; see for instance [9], Theorem 10.4. We conclude the paper with some open problems.

Note that in dimension n = 2 the limit case of Sobolev’s embedding is given by the Orlicz map

Mα = {u ∈ H1
0 (Ω); ||∇u||2L2 = α} � u 	→ eu2 ∈ L1(Ω)

when α = 4π. In [13], Lamm–Robert–Struwe study a variant of the corresponding Lane–Emden type flow also
in a range of super-critical “energies” α > 4π.

2. Global and local well-posedness

Recall that for any 1 ≤ p < ∞, 0 < λ < n (in Adams’ [1] notation) a function f ∈ Lp(Ω) on a domain
Ω ⊂ �n belongs to the Morrey space Lp,λ(Ω) if

‖f‖p
Lp,λ(Ω)

:= sup
x0∈Rn, r>0

rλ−n

∫
Br(x0)∩Ω

|f |pdx <∞, (2.1)

where Br(x0) denotes the Euclidean ball of radius r > 0 centered at x0. Moreover, we write f ∈ Lp,λ
0 (Ω)

whenever f ∈ Lp,λ(Ω) satisfies

sup
x0∈Rn, 0<r<r0

rλ−n

∫
Br(x0)∩Ω

|f |pdx→ 0 as r0 ↓ 0.

Similarly, for any 1 ≤ p < ∞, 0 < μ < n+ 2 a function f ∈ Lp(E) on E ⊂ �n ×� belongs to the parabolic
Morrey space Lp,μ(E) if

‖f‖p
Lp,μ(E) := sup

z0=(x0,t0)∈Rn+1,r>0

rμ−(n+2)

∫
Pr(z0)∩E

|f |pdz <∞,

where Pr(x, t) denotes the backwards parabolic cylinder Pr(x, t) = Br(x)×]t− r2, t[.
Note that in abuse of notation we use the symbol Lp,μ for both the standard and the parabolic Morrey space,

where the latter is always meant on a space-time domain. For clarity, we write ‖u(t)‖Lp,μ for the standard
Morrey norm of the function u(t) at a fixed time t.
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Given p > 2∗, we now fix the Morrey exponents μ = 2p
p−2 and λ = 4

p−2 = μ − 2, which are natural for the
study of problem (1.1).

Throughout the following a function u will be called a smooth solution of (1.1) on ]0, T [ if u ∈ C1(Ω̄×]0, T [)
with ut ∈ L2

loc(Ω̄ × [0, T [) solves (1.1) in the sense of distributions and achieves the initial data in the sense of
traces. By standard regularity theory then u also is of class C2 with respect to x and satisfies (1.1) classically.
Schauder theory, finally, yields even higher regularity to the extent allowed by smoothness of the nonlinearity
g(v) = |v|p−2v. The function u will be called a global smooth solution of (1.1) if the above holds with T = ∞.

Our results on local and global well-posedness are summarized in the following theorems.

Theorem 2.1. Let Ω ⊂ �n be a smoothly bounded domain, n ≥ 3. There exists a constant ε0 > 0 such that
for any function u0 ∈ L2,λ(Ω) satisfying ‖u0‖L2,λ < ε0 there is a unique global smooth solution u to (1.1) on
Ω×]0,∞[.

The smallness condition can be somewhat relaxed.

Theorem 2.2. Let u0 ∈ L2,λ(Ω) and suppose that there exists a number R > 0 such that

sup
x0∈Rn, 0<r<R

rλ−n

∫
Br(x0)∩Ω

|u0|2dx ≤ ε20,

where ε0 > 0 is as determined in Theorem 2.1. Then there exists a unique smooth solution u to (1.1) on an
interval ]0, T0[, where T0/R

2 = C(ε0/‖u0‖L2,λ) > 0.
In particular, for any u0 ∈ L2,λ

0 (Ω) there exists a unique smooth solution u to (1.1) on some interval ]0, T [,
where T = T (u0) > 0.

It is well-known that for smooth initial data u0 ∈ C1(Ω̄) there exists a smooth solution u to the Cauchy
problem (1.1) on some time interval [0, T [, T > 0. By the uniqueness of the solution to (1.1) constructed in
Theorem 2.1 or 2.2, the latter solution coincides with u and hence is smooth up to t = 0 if u0 ∈ C1(Ω̄).

3. Proof of Theorem 2.1

Let n ≥ 3 and let
G(x, t) = (4πt)−n/2e−

|x|2
4t , x ∈ �n, t > 0,

be the fundamental solution to the heat equation on �n with singularity at (0, 0). Given a domain Ω ⊂ �n

also let Γ = Γ (x, y, t) = Γ (y, x, t) be the corresponding fundamental solution to the heat equation on Ω with
homogeneous Dirichlet boundary data Γ (x, y, t) = 0 for x ∈ ∂Ω. Note that by the maximum principle for any
x, y ∈ Ω, any t > 0 there holds 0 < Γ (x, y, t) ≤ G(x − y, t).

For x ∈ Ω, r > 0 we let
Ωr(x) = Br(x) ∩Ω;

similarly, for x ∈ Ω, r, t > 0 we define

Qr(x, t) = Pr(x, t) ∩Ω×]0,∞[.

We sometimes write z = (x, t) for a generic point in space-time. The letter C will denote a generic constant,
sometimes numbered for clarity.

For f ∈ L1(Ω) set

(SΩf)(x, t) :=
∫

Ω

Γ (x, y, t)f(y) dy, t > 0,

so that v = SΩf solves the equation
vt −Δv = 0 on Ω × [0,∞[ (3.1)
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with boundary data v(x, t) = 0 for x ∈ ∂Ω and initial data v
∣∣
t=0

= f on Ω. See [7] for a thorough introduction
to the concept of fundamental solutions.

Similar to [4], Proposition 4.3, by adapting the methods of Adams [1] we can show that SΩ is well-behaved
on Morrey spaces. Recall that μ = 2p

p−2 with 2 < μ < n, and λ = μ− 2 = 4
p−2 > 0.

Lemma 3.1.

(i) For any p > 2∗ = 2n
n−2 the map

SΩ : L2,λ(Ω) � f 	→ (v,∇v) ∈ Lp,μ × L2,μ(Ω × [0,∞[)

is well-defined and bounded. Moreover, we have the bounds

‖v(t)‖2
L∞ ≤ Ct−λ/2‖f‖2

L2,λ , ‖v(t)‖2
L2,λ ≤ C‖f‖2

L2,λ , t > 0. (3.2)

(ii) Let f ∈ L2,λ(Ω) and suppose that for a given ε0 > 0 there exists a number R > 0 such that

sup
x0∈Ω, 0<r<R

(
rλ−n

∫
Ωr(x0)

|f |2dx
)1/2

≤ ε0.

Then with a constant C > 0 for v = SΩf there holds the estimate

sup
x0∈Ω, 0<r2≤t0≤T0

(
rμ−n−2

∫
Qr(x0,t0)

|v|pdz
)1/p

≤ Cε0,

where T0/R
2 = C(ε0/‖f‖L2,λ(Ω)) > 0.

Proof.

(i) Let f ∈ L2,λ(�n) and set v = SΩf as above. Recall the definition of the fractional maximal functions

Mαf(x) := sup
r>0

Mα,rf(x), Mα,rf(x) := rα−n

∫
Ωr(x)

|f(y)| dy, α > 0.

Note that Hölder’s inequality gives the uniform bound(
Mλ/2f

)2 ≤Mλ(|f |2) ≤ ‖f‖2
L2,λ . (3.3)

Following the scheme outlined by Adams [1], proof of Proposition 3.1, we first derive pointwise estimates
for v and bounds on parabolic cylinders Pr(x0, t0) with radius r satisfying 0 < 2r2 < t0. Using the well
known estimate

G(x − y, t) ≤ C(|x − y| + √
t)−n

for the heat kernel and recalling that Γ (x, y, t) ≤ G(x − y, t), for any t > 0 we can bound

|v(x, t)| ≤ C

∫
Ω

(|x− y| + √
t)−n|f(y)| dy

≤ C

∫
Ω√

t(x)

(|x− y| + √
t)−n|f(y)| dy

+ C

∞∑
k=1

∫
Ω2k

√
t
(x)\Ω2k−1√

t
(x)

(|x − y| + √
t)−n|f(y)| dy

≤ C

∞∑
k=0

(2k
√
t)−n(2k

√
t)n−λ/2Mλ/2,2k

√
tf(x) ≤ Ct−λ/4Mλ/2f(x).
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Hence by (3.3) with a uniform constant C > 0 for any t > 0 there holds

‖v(t)‖2
L∞ ≤ Ct−λ/2‖Mλ/2f‖2

L∞ ≤ Ct−λ/2‖f‖2
L2,λ,

as claimed in (3.2). Moreover, for any x0 ∈ �n, any t0 > 0 and any 0 < r <
√
t0/2 we obtain the bounds

‖v(t0)‖2
L2(Ωr(x0))

≤ Crnt
−λ/2
0 ‖f‖2

L2,λ ≤ Crn−λ‖f‖2
L2,λ , (3.4)

and similarly
‖v‖p

Lp(Qr(x0,t0)) ≤ Crn+2t
−pλ/4
0 ‖f‖p

L2,λ ≤ Crn+2−μ‖f‖p
L2,λ , (3.5)

where we also used that μ = 2pλ/4.
In order to derive (3.5) also for radii r ≥√t0/2 we need to argue slightly differently. We may assume that
x0 = 0. Moreover, after enlarging t0, if necessary, we may assume that t0 = 2r2. Let ψ = ψ0 = ψ0(x) be
a smooth cut-off function satisfying χBr(0) ≤ ψ ≤ χB2r(0) and with |∇ψ|2 ≤ 4r−2. Set r =: r0 and let
ri = 2ir0, ψi(x) = ψ(2−ix), i ∈ �. For ease of notation in the following estimates we drop the index i.
Upon multipying (3.1) with vψ2 we find the equation

1
2

d
dt

(|v|2ψ2) − div(v∇vψ2) + |∇v|2ψ2

= −2v∇vψ∇ψ ≤ 1
2
|∇v|2ψ2 + 2|v|2|∇ψ|2.

Integrating over Ω×]0, t1[ and using the bound |∇ψ|2 ≤ 4r−2, for any 0 < t1 < t0 we obtain∫
Ω2r(0)

|v(t1)|2ψ2dx+
∫

Ω2r(0)×]0,t1[

|∇v|2ψ2dxdt

≤
∫

Ω2r(0)

|f |2ψ2dx + 16r−2

∫
Ω2r(0)×]0,t1[

|v|2dxdt. (3.6)

For r = ri, i ∈ �0, set

Ψ(r) := sup
x0∈Ω,0<t<t0

rλ−n

∫
Ωr(x0)

|v(t)|2dx.

Recalling that λ = μ − 2, then from the previous inequality (3.6) with the uniform constants C1 = 2n−λ,
C2 = 32C1 we obtain

Ψ(ri) ≤ rλ−n
i

(∫
Ω2ri

(0)

|f |2dx+ 16t0r−2
i sup

0<t<t0

∫
Ω2ri

(0)

|v(t)|2dx
)

≤ C1‖f‖2
L2,λ + C22−2iΨ(ri+1).

By iteration, for any k0 ∈ � there results

Ψ(r0) ≤ C1‖f‖2
L2,λ + C2Ψ(r1) ≤ C1(1 + C2)‖f‖2

L2,λ + C2
22−2Ψ(r2) ≤ . . .

≤ C1

k0∑
k=0

Ck
2 2(1−k)k‖f‖2

L2,λ + Ck0+1
2 2−k0(k0+1)Ψ(rk0+1).

Passing to the limit k0 → ∞, we obtain that Ψ(r1) ≤ C‖f‖2
L2,λ . Inserting this information into (3.6), where

we again set r = r0, then we find

Ψ(r) + sup
x0∈Ω

rμ−2−n

∫
Ωr(x0)×]0,t0[

|∇v|2dxdt ≤ C‖f‖2
L2,λ . (3.7)
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In particular, together with (3.4) we have now shown the bound

‖v(t)‖2
L2,λ ≤ C‖f‖2

L2,λ for all t > 0,

and thus have verified (3.2) completely.
To complete the proof of (3.5) for r = r0 =

√
t0/2, let ψ = ψ0 as above and let τ(t) = min{t, t0 − t}.

Multiplying (3.1) with the function v|v|p−2ψ2τ then we obtain

1
p

d
dt

(|v|pψ2τ) − 1
p

dτ
dt

|v|pψ2 − div(|v|p−2v∇vψ2τ) + (p− 1)|∇v|2|v|p−2ψ2τ

= −2|v|p−2v∇vψ∇ψτ ≥ −|∇v|2|v|p−2ψ2τ − |v|p|∇ψ|2τ.

Integrating over Ω×]0, t0[ and using that dτ
dt = 1 for 0 < t < t0/2, dτ

dt = −1 for t0/2 < t < t0, as well as
the fact that the region Ω2r(0)×]t0/2, t0[ may be covered by a collection of at most L = L(n) cylinders
Qr(xl, t0), 1 ≤ l ≤ L, we find∫

Qr(x0,t0/2)

|v|pdz ≤ L sup
1≤l≤L

∫
Qr(xl,t0)

|v|pdz + Cr−2

∫
Ω2r(0)×]0,t0[

|v|pτ dxdt

+ C

∫
Ω2r(0)×]0,t0[

|∇v|2|v|p−2τ dxdt.

But by (3.2) we have |v|p−2τ ≤ |v|p−2t ≤ C‖f‖p−2
L2,λ , and from (3.7) we obtain

r−2

∫
Ω2r(0)×]0,t0[

|v|pτ dxdt+
∫

Ω2r(0)×]0,t0[

|∇v|2|v|p−2τ dxdt

≤ C‖f‖p−2
L2,λ

(
rn−λΨ(2r) +

∫
Ω2r(0)×]0,t0[

|∇v|2dxdt
)
≤ Crn−λ‖f‖p

L2,λ .

Recalling that for each cylinder Qr(xl, t0), 1 ≤ l ≤ L, there holds (3.5), we then obtain∫
Qr(x0,t0/2)

|v|pdz ≤ L sup
1≤l≤L

∫
Qr(xl,t0)

|v|pdz + Crn−λ‖f‖p
L2,λ ≤ Crn−λ‖f‖p

L2,λ ,

and (3.5) follows since λ = μ− 2.
Finally, for t0 ≤ r2 and any x0 ∈ Ω equation (3.6) yields the gradient bound∫

Qr(0,t0)

|∇v|2dz ≤
∫

Ω2r(0)

|f |2ψ2dx+ 16r−2

∫
Ω2r(0)×]0,t0[

|v|2dxdt

≤ Crn−λ
(‖f‖2

L2,λ + Ψ(2r)
) ≤ Crn−λ‖f‖2

L2,λ.

In view of (3.2) the same bound also holds for t0 > r2 as can be seen by shifting time by t0 − r2 and
replacing f with the function f̃(x) = v(x, t0 − r2) ∈ L2,λ(Ω). With λ = μ − 2 we obtain the bound
‖∇v‖L2,μ ≤ C‖f‖L2,λ , as desired.

(ii) Set L0 := ‖f‖L2,λ . As before, for any x ∈ Ω we have the bound

|v(x, t)| ≤ C

∞∑
k=0

(2k
√
t)−λ/2Mλ/2,2k

√
tf(x).

By assumption for r = 2k
√
t ≤ R we can estimate

Mλ/2,r(|f |)(x) ≤
(
Mλ,r(|f |2)(x)

)1/2 ≤ ε0,
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whereas for any r > 0 we have

Mλ/2,r(|f |)(x) ≤
(
Mλ,r(|f |2)(x)

)1/2 ≤ ‖f‖L2,λ = L0.

Let k0 ∈ � such that 2−k0λ/2L0 ≤ ε0. Then for 0 < t < T := 2−2k0R2 we find the uniform estimate

|v(x, t)| ≤ Ct−λ/4
( k0∑

k=0

2−kλ/2ε0 +
∞∑

k=k0+1

2−kλ/2L0

) ≤ Ct−λ/4ε0.

Proceeding as in part (i) of the proof, for any 0 < t < T , any x0 ∈ Ω, and any 0 < r <
√
t/2 we then

obtain the bound
‖v(t)‖2

L2(Ωr(x0))
≤ Crnt−λ/2ε20 ≤ Crn−λε20;

similarly, we find
‖v‖p

Lp(Qr(x0,t0)) ≤ Crn+2t−pλ/4εp
0 ≤ Crn+2−μεp

0 (3.8)

whenever 0 < 2r2 < t0 < T . In order to derive the latter bound also for radii r > 0 with t0/2 ≤ r2 ≤ t0 ≤ T
as in i) we may assume that x0 = 0 and fix some numbers 0 < t0 < T , r0 ≥√t0/2. Setting

Ψ(r) := sup
0<t<t0

rλ−n

∫
Br(0)

|v(t)|2dx, r > 0,

for r = ri = 2ir0, i ∈ �0, from (3.6) we obtain the bound

Ψ(ri) ≤ rλ−n
i

∫
B2ri

(0)

|f |2dx+ 16C1t0r
−2
i Ψ(2ri)

≤ C1Mλ,ri+1(|f |2)(0) + C22−2iΨ(ri+1)

for any i ∈ �, with constants C1 = 2n−λ, C2 = 32C1 as before.
Suppose that ri0 ≤ R for some i0 ∈ �. Bounding Mλ,ri(|f |2)(x) ≤ ε20 for i ≤ i0 and Mλ,ri(|f |2)(x) ≤ L2

0

else, by iteration we then obtain

Ψ(r0) ≤ C1ε
2
0 + C2Ψ(r1) ≤ C1(1 + C2)ε20 + C2

22−2Ψ(r2) ≤ . . .

≤ C1

i0−1∑
i=0

Ci
22

(1−i)iε20 + C1

k∑
i=i0

Ci
22

(1−i)iL2
0 + Ck+1

2 2−k(k+1)Ψ(rk+1).

Thus, if i0 is such that C221−i0 ≤ (ε0/L0)2 ≤ 1/2, that is, if
√

2t0 ≤ 2r0 = 21−i0ri0 ≤ 21−i0R ≤ C−1
2 (ε0/L0)2R,

upon passing to the limit k → ∞ we obtain Ψ(r0) ≤ Cε20 and the analogue of (3.7) with ε0 in place of
‖f‖L2,λ.

Recalling the definition T = 2−2k0R2 with k0 ∈ � satisfying 2−k0λ/2L0 ≤ ε0, we see that these bounds hold
true for

0 < t0/2 ≤ r20 ≤ t0 ≤ T0 := R2 · min{(ε0/L0)4/λ, C−2
2 (ε0/L0)4}.

Using (3.8), the remainder of the proof of (3.5) in part i) now may be copied unchanged to yield the
claim. �

The assertions of Theorems 2.1 and 2.2 now are a consequence of the following result.
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Lemma 3.2.

(i) For any p > 2∗ there exists a constant ε0 > 0 such that for any u0 ∈ L2,λ(Ω) with ‖u0‖L2,λ ≤ ε0 there
exists a unique solution u ∈ Lp,μ(Ω×]0,∞[) to the Cauchy problem (1.1) such that

‖u‖Lp,μ ≤ C‖u0‖L2,λ . (3.9)

(ii) Let u0 ∈ L2,λ(Ω) and suppose that there exists a number R > 0 such that

sup
x0∈Ω, 0<r<R

rλ−n

∫
Ωr(x0)

|u0|2dx ≤ ε20,

where ε0 > 0 is as determined in (i). Then there exists a unique smooth solution u to (1.1) on an interval
]0, T0[, where T0/R

2 = C(ε−1
0 ‖u0‖L2,λ(Ω)) > 0.

Proof. For u0 ∈ L2,λ(�n) set w0 = SΩu0. For suitable a > 0 let

X := {v ∈ Lp,μ(Ω×]0, T0[); ‖v‖Lp,μ ≤ a},

where T0 > 0 in the case of the assumptions in (i) may be chosen arbitrarily large and otherwise is as in assertion
(ii) of Lemma 3.1.

Then X is a closed subset of the Banach space Lp,μ = Lp,μ(Ω×]0, T0[). Moreover, for any v ∈ X we have
|v|p−2v ∈ Lp/(p−1),μ. By Lemma 4.1 in [4] there exists a unique solution w = S(v|v|p−2) ∈ Lp,μ of the Cauchy
problem

wt −Δw = |v|p−2v on Ω×]0, T0[, w
∣∣
t=0

= 0,

with
‖w‖Lp,μ ≤ C‖v‖p−1

Lp,μ ≤ Cap−1.

For sufficiently small ε0, a > 0 then the map

Φ : X � v 	→ w0 + w ∈ X,

and for v1,2 ∈ X with corresponding wi = S(vi|vi|p−2), i = 1, 2, we can estimate

‖Φ(v1) − Φ(v2)‖Lp,μ = ‖w1 − w2‖Lp,μ ≤ C‖v1|v1|p−2 − v2|v2|p−2‖Lp/(p−1),μ.

The latter can be bounded

‖v1|v1|p−2 − v2|v2|p−2‖Lp/(p−1),μ ≤ C
(‖v1‖p−2

Lp,μ + ‖v2‖p−2
Lp,μ

)‖v1 − v2‖Lp,μ.

Thus for sufficiently small a > 0 we find

‖Φ(v1) − Φ(v2)‖Lp,μ ≤ Cap−2‖v1 − v2‖Lp,μ ≤ 1
2
‖v1 − v2‖Lp,μ .

By Banach’s theorem the map Φ has a unique fixed point u ∈ X , and u solves the initial value problem (1.1) in
the sense of distributions. Finally, for sufficiently small a, ε0 > 0 we can invoke Proposition 4.1 in [4] to show
that u, in fact, is a smooth global solution of (1.1). �

Remark 3.3. As already pointed out in the introduction, the assumption u0 ∈ L2,λ(Ω) is natural in the context
of weak continuations of the flow (1.1). Indeed, suppose that a solution u of (1.1) blowing up at some time
T < ∞ can be extended as a weak solution of (1.1) on a time interval ]0, T1[ for some T1 > T and assume
that the extended solution still satisfies the monotonicity formula [5], Proposition 3.1. In the notation of [5],
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for any x1 = 0 ∈ Ω and any 0 < T < t1 < T1 choose (x1, t1) as center of scaling and integrate the scaled energy
function Hϕ given by (2.13) in [5]. Using that rFϕ

2 (r) → 0 as r ↓ 0, for any 0 < R ≤ R1 ≤ √
t1 similar to (4.7)

in [5] we then obtain the inequality

Fϕ
2 (R) +

1
R

∫ R

0

(
Dϕ(r) + Fϕ

p (r)
)
dr ≤ CHϕ(R1) + C

∫ R1

0

|Bϕ
−(r)|dr

r
+ C0δ(ρ,R1),

where the integral involving Bϕ
−(r) on the right can be bounded uniformly in (x1, t1) by means of [5], Lemmas 4.1

and 4.3. Choosing R =
√
t1 − T , for sufficiently small t1 > T we have ϕ ≡ 1 on BR(0) and thus we are able to

bound
Rλ−n

∫
ΩR(x1)

|u(T )|2 dx ≤ CFϕ
2 (R) ≤ C

with constants C > 0 independent of x1 and R > 0; that is, u(T ) ∈ L2,λ(Ω).

4. Ill-posedness for “large” data

4.1. Minimal solutions for non-negative initial data

In order to obtain a notion of solution of (1.1) on Ω×]0,∞[ for arbitrary nonnegative initial data u0 ≥ 0,
following Baras–Cohen [3] for n ∈ � we solve the initial value problem

un,t −Δun = fn(un) = min{up−1
n , np−1} on Ω×]0,∞[, u = 0 on ∂Ω×]0,∞[, (4.1)

with initial data
un(x, 0) = u0n(x) := min{u0(x), n} ≥ 0. (4.2)

As the right-hand side fn(un) in (4.1) is uniformly bounded, for any n ∈ � there exists a unique global solution
of (4.1), (4.2). By the maximum principle, positivity of the initial data is preserved and un is monotonically
increasing in n. Hence, the pointwise limit u(x, t) := limn→∞ un(x, t) ≤ ∞ exists. Inspired by Baras and
Cohen [3] we call this limit the minimal solution of problem (1.1) for the given data u0. Moreover, similar to
their Proposition 2.1 we have u ≤ v for any v which is an integral solution v of (1.1) in the sense that

v(t) = Stu0 +
∫ t

0

St−sv
p−1(s)ds, (4.3)

where for brevity we now write (St)t≥0 for the heat semigroup on Ω, defined by

Stw(x) =
∫

Ω

Γ (x, y, t)w(y)dy,

with Γ > 0 denoting the fundamental solution of the heat equation on Ω.
Indeed, by Duhamel’s principle the un satisfy the integral equation

un(t) = Stu0n +
∫ t

0

St−sfn(un(s))ds. (4.4)

Recalling that the sequence un is monotonically increasing in n, from Beppo–Levi’s theorem on monotone
convergence we find that u satisfies (4.3). On the other hand, for each n and any integral solution v of (1.1)
clearly there holds un ≤ v.

With these prerequisites we now show that there are initial data u0 ∈ Lp,μ(Ω) with even ∇u0 ∈ L2,μ such
that the minimal solution u to (1.1) satisfies u ≡ ∞ on Ω×]0,∞[, that is, undergoes complete instantaneous
blow-up. The following arguments are modelled on corresponding results on complete instantaneous blow-up by
Galaktionov and Vazquez [9] in the case when Ω = �n.
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4.2. Complete instantaneous blow-up

It is well-known that on a bounded domain Ω equation (1.1) may be interpreted as the negative gradient
flow of the energy

E(u) = EΩ(u) =
∫

Ω

(
1
2
|∇u|2 − 1

p
|u|p

)
dx.

As observed by Ball ([2], Thm. 3.2), sharpening an earlier result of Kaplan [11], for data u0 with E(u0) < 0
the solution to (1.1) blows up in finite time. Indeed, Ball [2], Theorem 3.2, observes that testing equation (1.1)
with u leads to the differential inequality

1
2

d
dt

‖u(t)‖2
L2 = −

∫
Ω×{t}

(|∇u|2 − |u|p)dx = −2E(u(t)) +
p− 2
p

‖u(t)‖p
Lp

≥ −2E(u0) + c0‖u(t)‖p
L2 ≥ c0‖u(t)‖p

L2

for some constant c0 > 0. Hence we find

‖u(t)‖L2 ≥ (‖u0‖(2−p)/2
L2 − c0(p− 2)t

)−2/(p−2)
,

and u(t) must blow up at the latest at time T = c−1
0 (p− 2)−1‖u0‖(2−p)/2

L2 .
In order to obtain data u0 ∈ Lp,μ leading to instantaneous complete blow-up, we combine this observation

with the following well-known scaling property of equation (1.1): whenever u is a solution of (1.1) on Ω, then
for any R > 0, any x0 ∈ �n the function

uR,x0(x, t) = R−αu(R−1(x− x0), R−2t) (4.5)

with α = 2
p−2 is a solution of (1.1) on the scaled domain

ΩR,x0 := {x ∈ �n; R−1(x− x0) ∈ Ω}.
Clearly we may assume that 0 ∈ Ω.

Theorem 4.1. Let 0 ≤ w0 ∈ C∞
c (B1(0)) with EB1(0)(w0) < 0. Set

M = Mw0 = sup
|y|≤1

(|y|αw0(y)
)
,

where α = 2
p−2 as above. Then for every initial data 0 ≤ u0 ∈ C0(Ω \ {0}) satisfying

lim inf
x→0

(
u0(x) −M |x|−α

)
> 0

the minimal solution u to (1.1) blows up completely instantaneously.

Proof. By Ball’s above result, the solution w to (1.1) on B1(0)×]0, T [ with initial data w(0) = w0 blows up
after some finite time T at a point y0.

Fix R0 > 0 with BR0(0) ⊂ Ω and such that

u0(x) > M |x|−α for |x| ≤ R0.

For R < R0 and x0 ∈ Ω with |x0| ≤ R0 −R consider the rescaled solutions

wR,x0(x, t) := R−αw(R−1(x− x0), R−2t)

on BR(x0) × [0, R2T [ that blow up at time R2T .
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Since by assumption we have

wR,0(x, 0) = R−αw0(R−1x) ≤M |x|−α < u0(x) on BR(0),

by continuity of u0 away from x = 0 and continuity of w0 there is a number δ = δ(R) > 0 such that

wR,x0(x, 0) < u0(x) on BR(x0)

for all x0 with |x0| < δ. Since in addition u ≥ 0 = wR,x0 on ∂BR(x0) × [0, R2T [, by the maximum principle for
any ε > 0, any n ≥ ‖wR,x0‖L∞(BR(x0)×[0,R2T−ε]) there holds

u(x, t) ≥ un(x, t) ≥ wR,x0(x, t) on BR(x0) × [0, R2T − ε],

where un solves (4.1) for each n ∈ �. Passing to the limit ε→ 0, we then find

u(x0 +Ry0, R
2T ) =

(
SR2Tu0 +

∫ R2T

0

SR2T−sf(u(s))ds

)
(x0 +Ry0)

= lim
n→∞

(
SR2Tu0n +

∫ R2T

0

SR2T−sfn(un(s))ds

)
(x0 +Ry0)

≥ lim
t↑R2T

wR,x0(x0 +Ry0, t) = ∞

for all x0 ∈ Bδ(0).
Since R > 0 may be chosen arbitrarily small, we conclude that for any sufficiently small t > 0 there holds

Ln({x ∈ Ω;u(x, t) = ∞}) > 0. But then positivity of Γ and Duhamel’s principle (4.3) yield

u(x, t) =
(
Stu0 +

∫ t

0

St−su
p−1(s)ds

)
(x) = ∞,

for any t > 0 and any x ∈ Ω. �

5. Open problems

An obvious question to be investigated is whether the pathological situation that leads to instantaneous
complete blow-up of the flow (1.1) can arise under “natural” hypotheses. In particular, is it possible that a
smooth solution u of (1.1) on [0, T [ blowing up at time T > 0 with bounded energy |E(u(t))| ≤ C < ∞ for
0 < t < T has a “trace” u(T ) giving rise to instantaneous complete blow-up? Of course, it would also be of
interest to quantify the smallness conditions in Theorems 2.1 and 2.2.

Conversely, one might try to determine the smallest number M > 0 so that the conclusion of Theorem 4.1
holds true. Can one show that at least for exponents p strictly less than the Joseph–Lundgren [10] exponent

pJL = 2 +
4

n− 4 − 2
√
n− 1

if n ≥ 11, pJL = ∞ if n ≤ 10,

we have M = α(n − 2 − α) =: c∗, where c∗ appears as coefficient in the singular solution u∗(x) := c∗|x|−α of
the time-independent equation (1.1) on �n? The significance of the exponent pJL is illustrated for instance in
Lemma 9.3 of [9].

Hopefully, we will be able to answer some of these questions in the future.
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