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WELL-POSEDNESS OF THE SUPERCRITICAL LANE-EMDEN HEAT FLOW
IN MORREY SPACES

SIMON BLATT! AND MICHAEL STRUWE?

Abstract. For any smoothly bounded domain 2 C R™, n > 3, and any exponent p > 2* = 2n/(n—2)
we study the Lane-Emden heat flow u; — Au = |u[P"?u on 2x]0,T[ and establish local and global
well-posedness results for the initial value problem with suitably small initial data u| 1—o = Yo in the

Morrey space L% (£2) for suitable T < oo, where A = 4/(p —2). We contrast our results with results on
instantaneous complete blow-up of the flow for certain large data in this space, similar to ill-posedness
results of Galaktionov—Vazquez for the Lane-Emden flow on R".
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1. INTRODUCTION

Let 2 be a smoothly bounded domain in R™, n > 3, and let 7' > 0. Given initial data wug, we consider the
Lane-Emden heat flow

uy — Au = |u|P"2uon 2 x [0,T[, u=0 on 92 x [0,T], u|t=0 = ug (1.1)

for a given exponent p > 2* = 2n/(n — 2), that is, in the “supercritical” regime.

As observed by Matano—Merle [14], p. 1048, the initial value problem (1.1) may be ill-posed for certain data
up € H N LP(£2); see also our results in Section 4 below. However, as we had shown in two previous papers [4],
Section 6.5, [5], Remark 3.3, the Cauchy problem (1.1) is globally well-posed for suitably small data ug belonging
to the Morrey space Hé’”ﬂLp’”((Z)7 where p = ;TPQ < n. Here we go one step further and show that problem (1.1)

even is well-posed for suitably small data uy € L?*(£2) D LP+#(2), where \ = 27” = 1%2 = p — 2, thus
considerably improving on the results of Brezis—Cazenave [6] or Weissler [16] for initial data in L9, ¢ > n(p—2)/2.
Our results are similar to results of Taylor [15] who demonstrated local and global well-posedness of the Cauchy
problem for the equation

uy — Au = DQ(u) on 2 x [0,T],

for suitably small initial data u| +—o = uo in a Morrey space, where D is a linear differential operator of
first order and @ is a quadratic form in u as in the Navier-Stokes system. However, similar to the work
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of Koch-Tataru [12] on the Navier—Stokes system, in our treatment of (1.1) we are able to completely avoid the
use of pseudodifferential operators in favor of simple integration by parts and Banach’s fixed-point theorem.

The study of the initial value problem for (1.1) for non-smooth initial data is motivated by the question
whether a solution u of (1.1) blowing up at some time T' < oo can be extended as a weak solution of (1.1) on a
time interval ]0, Ty [ for some 77 > T'. Note that if such a continuation is possible and if the extended solution still
satisfies the monotonicity formula [5], Proposition 3.1, it follows that u(7") € L?*(§2); see Remark 3.3. Hence,
the regularity assumption ug € L**(2) is necessary from this point of view and cannot be weakened. However,
our results in Section 4 show that the condition u(7) € L?*(£2) in general is not sufficient for continuation and
that a smallness condition as in our Theorems 2.1, 2.2 below is needed.

Note that the question of continuation after blow-up only is of relevance in the supercritical case when p > 2*.
Indeed, as shown by Baras—Cohen [3], in the subcritical case p < 2* a classical solution u > 0 to (1.1) blowing
up at some time T < oo always undergoes “complete blow-up” (see Sect. 4 for a definition), and u cannot be
continued as a (weak) solution to (1.1) after time T in any reasonable way. In [9] Galaktionov und Vazquez
extend the Baras—Cohen result to the critical case p = 2*.

In the next section we state our well-posedness results, which we prove in Section 3. In Section 4 we then
contrast these results with results on instantaneous complete blow-up of the flow for certain large data uy > 0.
These results crucially use the scaling properties of equation (1.1) and the maximum principle by comparing
our solution with a family of flow solutions blowing up in finite time, with the time of blow-up arbitrarily
close to zero after suitable scaling, in a way similar to the ill-posedness results of Galaktionov—Vazquez for the
Lane-Emden flow on R"; see for instance [9], Theorem 10.4. We conclude the paper with some open problems.

Note that in dimension n = 2 the limit case of Sobolev’s embedding is given by the Orlicz map

M, = {u € HY(Q): |[Vul2: = a} 5 u o € LL(©)

when a = 47. In [13], Lamm-Robert—Struwe study a variant of the corresponding Lane-Emden type flow also
in a range of super-critical “energies” o > 4.

2. GLOBAL AND LOCAL WELL-POSEDNESS

Recall that for any 1 < p < 00, 0 < A < n (in Adams’ [1] notation) a function f € LP({2) on a domain
2 C R™ belongs to the Morrey space LP*(2) if

Hinp,)\(Q) = sup T)\in/ ‘f|pd1' < 00, (2.1)
20€R™, r>0 B (z0)N$2

where B, (xp) denotes the Euclidean ball of radius r > 0 centered at xy. Moreover, we write f € Lg”\(ﬂ)
whenever f € LPA(£2) satisfies

sup r’\_”/ |f|Pdz — 0 as ro | 0.
ToER™, 0<r<ro B, (zo)N2

Similarly, for any 1 <p < 00,0 < u < n+ 2 a function f € LP(E) on E C R™ x R belongs to the parabolic
Morrey space LP#(E) if

Hinnu(E) = sup rp=(n+2) / |f|Pdz < oo,
z0=(z0,t0) ERT1,r>0 Pr(z0)NE

where P.(x,t) denotes the backwards parabolic cylinder P.(z,t) = B,(z)x]t — r?,t].

Note that in abuse of notation we use the symbol LP>* for both the standard and the parabolic Morrey space,
where the latter is always meant on a space-time domain. For clarity, we write ||u(t)|/pr.n for the standard
Morrey norm of the function u(t) at a fixed time ¢.
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Given p > 2*, we now fix the Morrey exponents p = pZsz and A = 17%2 = p — 2, which are natural for the
study of problem (1.1).

Throughout the following a function u will be called a smooth solution of (1.1) on |0, T[if u € C*(£2x]0,T])
with u; € L2 (£ x [0, T][) solves (1.1) in the sense of distributions and achieves the initial data in the sense of
traces. By standard regularity theory then u also is of class C? with respect to o and satisfies (1.1) classically.
Schauder theory, finally, yields even higher regularity to the extent allowed by smoothness of the nonlinearity
g(v) = |v[P~2v. The function u will be called a global smooth solution of (1.1) if the above holds with 7' = oco.

Our results on local and global well-posedness are summarized in the following theorems.

Theorem 2.1. Let 2 C R™ be a smoothly bounded domain, n > 3. There exists a constant €9 > 0 such that
for any function uy € L>*(£2) satisfying ||uo||2» < €0 there is a unique global smooth solution u to (1.1) on
2x]0, ool

The smallness condition can be somewhat relaxed.

Theorem 2.2. Let ug € L**(£2) and suppose that there exists a number R > 0 such that

sup 7)‘_"/ luo|2dxr < €2,
roER™, 0<r<R B, (zo)N$2

where €9 > 0 is as determined in Theorem 2.1. Then there exists a unique smooth solution u to (1.1) on an
interval )0, To[, where To/R? = C(go/||uol|z2.2) > 0.

In particular, for any ug € Lg’ (£2) there exists a unique smooth solution u to (1.1) on some interval |0, T7,
where T = T (ug) > 0.

It is well-known that for smooth initial data ug € C1(2) there exists a smooth solution u to the Cauchy
problem (1.1) on some time interval [0,7], 7" > 0. By the uniqueness of the solution to (1.1) constructed in
Theorem 2.1 or 2.2, the latter solution coincides with u and hence is smooth up to t = 0 if ug € C1(£2).

3. PROOF OF THEOREM 2.1

Let n > 3 and let
2|2
G(x,t) = (dnt) 2™ 5 | 2 € R",¢ > 0,

be the fundamental solution to the heat equation on R™ with singularity at (0,0). Given a domain 2 C R"™
also let I' = I'(x,y,t) = I'(y,z,t) be the corresponding fundamental solution to the heat equation on 2 with
homogeneous Dirichlet boundary data I'(z,y,t) = 0 for € 92. Note that by the maximum principle for any
x,y € £2, any t > 0 there holds 0 < I'(z,y,t) < G(z — y, ).

For x € 2, r > 0 we let

02.(z) = By(x) N {2

similarly, for x € 2, r,t > 0 we define
Qr(x,t) = P(z,t) N £2x]0, o0l

We sometimes write z = (x,t) for a generic point in space-time. The letter C' will denote a generic constant,
sometimes numbered for clarity.

For f € L'(£2) set
(Sahat)i= [ D)) dy, ¢>0,

so that v = Sq f solves the equation
vy — Av =0 on §2 x [0, 00] (3.1)
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with boundary data v(x,t) = 0 for « € 02 and initial data v’t:o = f on £2. See [7] for a thorough introduction
to the concept of fundamental solutions.

Similar to [4], Proposition 4.3, by adapting the methods of Adams [1] we can show that Sy, is well-behaved
on Morrey spaces. Recall that u = Z% with2<p<n,andA=p—2= 17%2 > 0.

Lemma 3.1.
(i) For anyp>2* = % the map
Sqo: LPM0) 3 f e (v, V) € LPH x L2H(02 x [0, 00])
1s well-defined and bounded. Moreover, we have the bounds
lo@Ol~ < CA2NFIIF 20, [0@)l[720 < ClfIZ2n, t>0. (3-2)

(ii) Let f € L>*(£2) and suppose that for a given g > 0 there exists a number R > 0 such that

A 5\ /2
sup (T _"/ I dl‘) < &o.
r0€82, 0<r<R 2, (xo)

Then with a constant C' > 0 for v = Sqof there holds the estimate

3 1/p
sup (r" \v\pdz) < Cey,
o€, 0<r2<to<To Qr(@o,to)

where Ty/R? = Cleo/l fllz2x(2)) > 0.
Proof.

(i) Let f € L**(R"™) and set v = S, f as above. Recall the definition of the fractional maximal functions

r>0

Mo f(x) :=sup Moy, f(x), Mo,f(z) =r*"" /Q . |f(y)|dy, a > 0.
Note that Holder’s inequality gives the uniform bound

(Myj2f)* < MA(IF2) < [ £ (3.3)

Following the scheme outlined by Adams [1], proof of Proposition 3.1, we first derive pointwise estimates
for v and bounds on parabolic cylinders P,(xg,tp) with radius r satisfying 0 < 2r? < to. Using the well
known estimate

Glr—y,t) < C(lz —y| + V)"
for the heat kernel and recalling that I'(x,y,t) < G(x — y,t), for any ¢ > 0 we can bound

(e, 1)] < C /Q (I — ] + Vi)™ |f (4| dy

<C (lz =yl + V)" f(y)| dy
2 ()

oo

+CZ/Q Iz =yl + VD" £()| dy

k=1 gkﬂ(x)\QQk—lﬂ(x)

< CZ(Qk\/i)fn(Qk\/g)nﬂ\/QMA/z,zk\/zf(ﬂf) < Ct MM,y o f (2).
k=0
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Hence by (3.3) with a uniform constant C' > 0 for any ¢ > 0 there holds
()7 < CEA2 My fll7e < CE2||fI1F 2,

as claimed in (3.2). Moreover, for any xo € R™, any top > 0 and any 0 < r < y/ty/2 we obtain the bounds

n,—A\/2 n—
ot 1320, oy < Cro 211320 < Cr X[ flI3 20, (3.4)
and similarly
—pA/4 _
19118 0, wotayy < CT" 2t PN A 1182 < CPPF27HY| 12, (3.5)

where we also used that g = 2p\/4.

In order to derive (3.5) also for radii > 1/to/2 we need to argue slightly differently. We may assume that
xo = 0. Moreover, after enlarging to, if necessary, we may assume that to = 2r%. Let 1) = ¢y = g(x) be
a smooth cut-off function satisfying xp,.(0) < ¥ < XB,,.(0) and with [V¢)|? < 4772, Set r =: ro and let
ri = 2irg, Vi (z) = (2 %), i € N. For ease of notation in the following estimates we drop the index i.
Upon multipying (3.1) with v¢? we find the equation

1
—i(\v\sz) — div(vVoy?) + |Vo|??
2dt
1
= VoV < 5\Vv|2¢2 + 2|v|?| V|2

Integrating over 2x]0,¢;[ and using the bound |V|? < 4r~2, for any 0 < ¢; < ty we obtain

/ |v(t1)\2w2dx+/ Vo2 dedt
£24,-(0)

£25,-(0)x]0,t1 [

g/ |f)?%dz + 16r_2/ [v|?dxdt. (3.6)
25,-(0) 22,(0)x]0,t1 [

For r =r;, i € Ny, set
U(r) = sup TA*”/ lv(t)]2dz.
.QV,V(I())

To€£2,0<t<to

Recalling that A\ = p — 2, then from the previous inequality (3.6) with the uniform constants C; = 2",
Cy = 32C; we obtain

U(r;) < ri)ﬁ”(/ |f|2da + 16tor; 2 sup / |v(t)|2dx>
22, (0) 0<t<to J 2, (0)

< Cil|f3en + Co27 2 W (riy1).
By iteration, for any kg € N there results

U (ro) < C1l|f[|F2x + Co¥(r1) < C1(1+ Co)|| fll72n + C327%W (rp) <

ko
< Cy Y CRU TR £, 4 CRo 2R Rt D (),
k=0

Passing to the limit kg — oo, we obtain that ¥(r1) < C| f||.... Inserting this information into (3.6), where
we again set 7 = rg, then we find

U(r) + sup r”*%”/ (Vo2 dadt < C||f]|2:.. (3.7)
ToES2 2, (z0)%x]0,t0[
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In particular, together with (3.4) we have now shown the bound
[o(@)1 721 < C|lfl|7201 for all ¢ >0,

and thus have verified (3.2) completely.
To complete the proof of (3.5) for r = rg = \/to/2, let ¢ = 1py as above and let 7(¢t) = min{t,ty — t}.
Multiplying (3.1) with the function v|v|P~2¢27 then we obtain

1d 1dr . _ -
S g (Pv?n) — - ol — div(plP 2oV n) + (p = DI Vol o]~y

= 2|v|P 2V VT > —|Vol?[uP 2% — |u|P| VY *T.
Integrating over £2x]0, o[ and using that 9= =1 for 0 < t < to/2, 9 = —1 for to/2 < t < to, as well as

the fact that the region (25,(0)x]to/2,t0[ may be covered by a collection of at most L = L(n) cylinders
Qr(l'lvtO)v 1<I< L7 we find

/ |v|Pdz < L sup / |v|pdz—|—C'r_2/ |v|PT dadt
Qr(zo,to/2) 1<ISL JQr(mis5to) £22(0)x]0,to]

+C |Vo|?[v[P~27 dadt.
Q25,(0)x]0,t0]

But by (3.2) we have |[v[P~27 < |v|P72¢ < C’||f||i;i, and from (3.7) we obtain

7"72/ \v\pdedt—I—/ \Vo|?[v[P~2r dedt
£22,-(0)x]0,t0[ £22,-(0)x]0,t0][

< Clsid (reen +

(VoPdzdt) < Crm [
£22,(0)x]0,t0[

Recalling that for each cylinder @, (z;,tp), 1 <1 < L, there holds (3.5), we then obtain

/ wPdz < L sup / [ofPdz + Cr £ as < Cr £
Qr(zo,to/2) 1<ISL JQp(xy,to)

and (3.5) follows since A =y — 2.
Finally, for to < r? and any x¢ € £2 equation (3.6) yields the gradient bound

/ |Vol2dz < / | f|??da + 16r_2/ |v|>dadt
Q,«(O,to) QQ,«(O) QQT(O)X]O,to[

<O (I f12en + 9 (2r) < O fZan

In view of (3.2) the same bound also holds for t; > 72 as can be seen by shifting time by ¢y — r? and
replacing f with the function f(z) = v(z,to — r2) € L>*(£2). With A = p — 2 we obtain the bound
IVo|| L2 < C|fllp2., as desired.

Set Lo := || f||p2.». As before, for any x € {2 we have the bound

o(a, 1)) < C Y (2WVETNEM, g o0 i f ().
k=0
By assumption for r = 2k\/t < R we can estimate

1/2

Mo, (IFD(@) < (M (If?) ()

S €0,
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whereas for any r > 0 we have

Mo (1f)(@) < (Mar (12 (@) 2 < |1 fll 22 = Lo

Let ko € N such that 27%0A/2[, < g;. Then for 0 < t < T := 272k R? we find the uniform estimate

ko 00
‘U(l‘,t)‘ S Ot—A/4(ZQ—k>\/2€O _|_ Z 2—k’>\/2LO) S Ct—)\/4€0.
k=0 k=ko+1

Proceeding as in part (i) of the proof, for any 0 < ¢t < T, any zp € {2, and any 0 < r < 1/t/2 we then
obtain the bound
[o(O17 22, (20)) < Crit=*2eg < Cr"Aeg;

similarly, we find

10100, moteyy S CrH2PM el < Crt2oheg (3.8)

whenever 0 < 272 < to < T. In order to derive the latter bound also for radii r > 0 with tq/2 <72 <ty < T
as in i) we may assume that o = 0 and fix some numbers 0 < to < T, 79 > +/to/2. Setting

U(r) = sup T’\_"/ lo(t)[*dz, r >0,
0<t<to B,(0)

for r = r; = 2'rg, i € Ny, from (3.6) we obtain the bound

P(r) <" / | 2de + 16C, tor; 20(2r,)
Bay., (0)

< C1Moy gy, (LFP)(0) 4+ Co27 %W (riq)

for any i € N, with constants C; = 2"~*, Cy = 32C} as before.
Suppose that r;, < R for some iy € N. Bounding M, ., (|f]?)(z) < &3 for i < ig and M), (
else, by iteration we then obtain

fI)(z) < L§

&D(To) < 615(2) + CQ&D(’H) < Cl(]. + CQ)E% + C22272Q(T2) <...

i0—1 k
<O Y024 0 Y ORI g 4 oyt 2R D (g ),
i=0 i=1g

Thus, if ig is such that Co21 7% < (g9/Lg)? < 1/2, that is, if
V2ty < 2rg = 20y <2170 R < Oy (e0/Lo)*R,

upon passing to the limit k& — oo we obtain ¥(rg) < Ce and the analogue of (3.7) with &y in place of
(FAlpZ=S

Recalling the definition 7' = 2-2 R? with ko € N satisfying 27%0*2 L < ¢¢, we see that these bounds hold
true for
0 < ty/2 <12 <ty <Ty:=R? min{(eo/Lo)**, Cy2(c0/Lo)*}.

Using (3.8), the remainder of the proof of (3.5) in part i) now may be copied unchanged to yield the
claim. -

The assertions of Theorems 2.1 and 2.2 now are a consequence of the following result.
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Lemma 3.2.

(i) For any p > 2* there exists a constant g9 > 0 such that for any ug € L**(2) with |Juol/L2x < €0 there
exists a unique solution u € LP*(§2x]0,00]) to the Cauchy problem (1.1) such that

[ull o < Clluoll L2 (3.9)

(ii) Let ug € L (§2) and suppose that there exists a number R > 0 such that

sup r’\_”/ luo|?da < €2,
To€S2, 0<r<R QT(Q:O)

where €9 > 0 is as determined in (i). Then there exists a unique smooth solution u to (1.1) on an interval
10, T [, where Ty/R? = C(Eal||u0||L2,>\(_Q)) > 0.

Proof. For ug € L>*(IR™) set wy = Squg. For suitable a > 0 let
X = {v € IPH(Qx)0, T); o]l po < al,

where Ty > 0 in the case of the assumptions in (i) may be chosen arbitrarily large and otherwise is as in assertion
(ii) of Lemma 3.1.

Then X is a closed subset of the Banach space LP* = LP#(§2x]0, Ty[). Moreover, for any v € X we have
|v|P~2v € LP/(P=D:1 By Lemma 4.1 in [4] there exists a unique solution w = S(v|v[P~2) € LP** of the Cauchy
problem

wy — Aw = |[v|P~%v on 2x]0, Ty, w|t:O =0,

with
[wlLow < Clloflf7 < CaP.

For sufficiently small g, a > 0 then the map
P Xs>v—wy+we X,
and for vy o € X with corresponding w; = S(v;|v;[P72), i = 1,2, we can estimate
|B(v1) = D(v2) || Lo = [Jw1 = wa|Lowe < Clloafvr [P~ = valvalP 2| Losco—1).0-
The latter can be bounded

101772 = va w2 P72 poro-v < C(llvall52 + [lvallFy2)

|1}1 — V2 HLP‘N.

Thus for sufficiently small a > 0 we find
p—2 1
19(v1) = D(v2)|[Lrw < CaP™ oy = va| o < Fllvr = val[zrs.

By Banach’s theorem the map @ has a unique fixed point u € X, and u solves the initial value problem (1.1) in
the sense of distributions. Finally, for sufficiently small a,e9 > 0 we can invoke Proposition 4.1 in [4] to show
that u, in fact, is a smooth global solution of (1.1). O

Remark 3.3. As already pointed out in the introduction, the assumption ug € L**(£2) is natural in the context
of weak continuations of the flow (1.1). Indeed, suppose that a solution u of (1.1) blowing up at some time
T < oo can be extended as a weak solution of (1.1) on a time interval |0, 7] for some T} > T and assume
that the extended solution still satisfies the monotonicity formula [5], Proposition 3.1. In the notation of [5],
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for any 1 =0 € 2 and any 0 < T < t; < Ty choose (z1,t1) as center of scaling and integrate the scaled energy
function H? given by (2.13) in [5]. Using that rFy (r) — 0 as r | 0, for any 0 < R < Ry < /f; similar to (4.7)
in [5] we then obtain the inequality

R Ry r
Ff(R)+ 5 [ (D70)+ FE ) dr < CHAR) +C [ B2 (0[5 + Cublp. o),

where the integral involving B (r) on the right can be bounded uniformly in (z1,¢1) by means of [5], Lemmas 4.1
and 4.3. Choosing R = +/t; — T, for sufficiently small ¢t; > T we have ¢ = 1 on Br(0) and thus we are able to
bound

R / (T2 dz < CF$(R) < C
2r(21)
with constants C' > 0 independent of x1 and R > 0; that is, u(T) € L?*(£2).

4. ILL-POSEDNESS FOR “LARGE” DATA

4.1. Minimal solutions for non-negative initial data

In order to obtain a notion of solution of (1.1) on §2x]0, co[ for arbitrary nonnegative initial data ug > 0,
following Baras—Cohen [3] for n € N we solve the initial value problem

Upt — Aty = fr(upn) = min{ul ™' n?~1} on 2x]0,00[, u =0 on 92x]0, o], (4.1)

with initial data
Un(2,0) = ugp(x) := min{ug(z),n} > 0. (4.2)

As the right-hand side f, (u,,) in (4.1) is uniformly bounded, for any n € IN there exists a unique global solution
of (4.1), (4.2). By the maximum principle, positivity of the initial data is preserved and wu, is monotonically
increasing in n. Hence, the pointwise limit u(x,t) := lim, oo un(z,t) < oo exists. Inspired by Baras and
Cohen [3] we call this limit the minimal solution of problem (1.1) for the given data ug. Moreover, similar to
their Proposition 2.1 we have u < v for any v which is an integral solution v of (1.1) in the sense that

t
v(t) = Siuo —I—/ Sy_svP~ 1 (s)ds, (4.3)
0

where for brevity we now write (S¢);>0 for the heat semigroup on 2, defined by

Syw(z) = /Q (. tyu(y)dy,

with I" > 0 denoting the fundamental solution of the heat equation on (2.
Indeed, by Duhamel’s principle the u,, satisfy the integral equation

Un(t) = Sruon —|—/O St—sfn(un(s))ds. (4.4)

Recalling that the sequence wu, is monotonically increasing in n, from Beppo-Levi’s theorem on monotone
convergence we find that u satisfies (4.3). On the other hand, for each n and any integral solution v of (1.1)
clearly there holds u,, <wv.

With these prerequisites we now show that there are initial data ug € LP**(§2) with even Vug € L** such
that the minimal solution u to (1.1) satisfies u = co on £2x]0, co[, that is, undergoes complete instantaneous
blow-up. The following arguments are modelled on corresponding results on complete instantaneous blow-up by
Galaktionov and Vazquez [9] in the case when 2 = R"™.
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4.2. Complete instantaneous blow-up

It is well-known that on a bounded domain (2 equation (1.1) may be interpreted as the negative gradient
flow of the energy

E(u) = Eq(u) = /Q <%Vu2 — %|up> daz.

As observed by Ball ([2], Thm. 3.2), sharpening an earlier result of Kaplan [11], for data ug with E(ug) < 0
the solution to (1.1) blows up in finite time. Indeed, Ball [2], Theorem 3.2, observes that testing equation (1.1)
with u leads to the differential inequality

liu 2= — ul> — |uP)dz = —2E(u ]3;211 4
l[u(®)]|z2 /Qx{t}(v * = [uf")d 2B(u(t)) + — =@l

> —2E(uo) + collu(®)|72 > collu(®)][}-
for some constant ¢y > 0. Hence we find
2-p)/2 —2/(p—2)
lu@)llz2 > (luoll 7% = colp — 2)t) 77,

and u(t) must blow up at the latest at time 7' = ¢, *(p — 2)*1||u0||(L22_p)/2.

In order to obtain data uy € LP* leading to instantaneous complete blow-up, we combine this observation
with the following well-known scaling property of equation (1.1): whenever u is a solution of (1.1) on {2, then
for any R > 0, any zo € R the function

Rz (2,1) = R™u(R™ (2 — 20), R™%t) (4.5)

2

with a = —=5 is a solution of (1.1) on the scaled domain

QR zy = {r €R"; R (x —x0) € 2}.
Clearly we may assume that 0 € £2.
Theorem 4.1. Let 0 < wg € C°(B1(0)) with Eg, y(wo) < 0. Set

M = My, = sup (|y[*wo(y)),
ly|<1

where o = ﬁ as above. Then for every initial data 0 < ug € C°(2\ {0}) satisfying
liminf (uo(z) — M|z|~*) >0
z—0
the minimal solution u to (1.1) blows up completely instantaneously.

Proof. By Ball’s above result, the solution w to (1.1) on By(0)x]0,T[ with initial data w(0) = wy blows up
after some finite time 7" at a point yg.
Fix Ry > 0 with Bp,(0) C {2 and such that

ug(x) > M|z|~* for |z| < Ry.
For R < Ry and xg € 2 with |z9| < Ry — R consider the rescaled solutions
WR,z,(T,1) 1= R_aw(R_l(l‘ — 1), R_zt)

on Bg(xg) x [0, R*T[ that blow up at time R?T.
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Since by assumption we have
wro(z,0) = R™*wo(R™x) < M|z|~ < ug(z) on Bg(0),
by continuity of uy away from x = 0 and continuity of wg there is a number 6 = §(R) > 0 such that
WR,z(2,0) < ug(x) on Br(xo)

for all zg with |zg| < 4. Since in addition u > 0 = wg 4, on dBr(zo) x [0, R?T[, by the maximum principle for
any € > 0, any 7 > |WR x| Lo (Br(z0)x[0,R2T—<]) there holds

w(2,t) > up(2,t) > wr 4 (x,t) on Br(wg) x [0, R*T — ¢,

where u,, solves (4.1) for each n € N. Passing to the limit ¢ — 0, we then find

R*T
u(zo + Ryo, R*T) = <5R2TU0 + / SR2T—sf(U(3))dS> (zo + Ryo)
0

n—oo

R*T
lim <5R2Tuon +/ SR2T—sfn(Un(8))d5> (zo + Ryo)
0

> tTliéng WR,zo(To + Ryo,t) = 00
for all xy € Bs(0).
Since R > 0 may be chosen arbitrarily small, we conclude that for any sufficiently small ¢ > 0 there holds
L"({x € 2;u(x,t) = c0}) > 0. But then positivity of I" and Duhamel’s principle (4.3) yield

t
u(z,t) = (Stuo —l—/ St_sup_l(s)ds) (7) = oo,
0
for any ¢ > 0 and any x € (2. O

5. OPEN PROBLEMS

An obvious question to be investigated is whether the pathological situation that leads to instantaneous
complete blow-up of the flow (1.1) can arise under “natural” hypotheses. In particular, is it possible that a
smooth solution w of (1.1) on [0,7[ blowing up at time 7' > 0 with bounded energy |E(u(t))| < C < oo for
0 < t < T has a “trace” u(T) giving rise to instantaneous complete blow-up? Of course, it would also be of
interest to quantify the smallness conditions in Theorems 2.1 and 2.2.

Conversely, one might try to determine the smallest number M > 0 so that the conclusion of Theorem 4.1
holds true. Can one show that at least for exponents p strictly less than the Joseph-Lundgren [10] exponent

4
bir n—4—9Vn-1

we have M = a(n — 2 — a) =: ¢, where ¢, appears as coefficient in the singular solution u.(z) := c.|x|~ of
the time-independent equation (1.1) on R™? The significance of the exponent p;y, is illustrated for instance in
Lemma 9.3 of [9].

Hopefully, we will be able to answer some of these questions in the future.

ifn>11, pyjr = if n <10,
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