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ZERO-SUM AND NONZERO-SUM DIFFERENTIAL GAMES WITHOUT ISAACS
CONDITION ∗
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Abstract. In this paper we study differential games without Isaacs condition. The objective is to
investigate on one hand zero-sum games with asymmetric information on the pay-off, and on the other
hand, for the case of symmetric information but now for a non-zero sum differential game, the existence
of a Nash equilibrium pay-off. Our results extend those by Buckdahn, Cardaliaguet and Rainer [SIAM
J. Control Optim. 43 (2004) 624–642], to the case without Isaacs condition. To overcome the absence
of Isaacs condition, randomization of the non-anticipative strategies with delay of the both players are
considered. They differ from those in Buckdahn, Quincampoix, Rainer and Xu [Int. J. Game Theory 45
(2016) 795–816]. Unlike in [Int. J. Game Theory 45 (2016) 795–816], our definition of NAD strategies
for a game over the time interval [t, T ] (0 ≤ t ≤ T ) guarantees that a randomized strategy along a
partition π of [0, T ] remains a randomized NAD strategy with respect to any finer partition π′ (π ⊂ π′).
This allows to study the limit behavior of upper and lower value functions defined for games in which
the both players use also different partitions.
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1. Introduction

In our paper we study two-player differential games which dynamics is given by

dXs

ds
= f (Xs, us, vs) , s ∈ [t, T ] ,

and driven by two controls u ∈ Ut,T := L0([t, T ] → U) and v ∈ Vt,T := L0([t, T ] → V ) used by the players I and
II, respectively. The control state spaces U and V are compact metric spaces.

Our objective is to study for such differential games two different problems, firstly that of asymmetric in-
formation, and secondly -but now in the frame of symmetric information- that of the existence of an ε-Nash
equilibrium pay-off in the sense of [1].
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The first to study differential games without Isaacs condition were Krasovskii and Subbotin [13]; in order to
get a value of the game they considered relaxed controls. Interested in the use of classical controls, Buckdahn, Li
and Quincampoix [4] considered differential games without Isaacs condition, in which each of the both players
randomizes his control independently along a common partition of the time interval. However, as the players in
differential games with Isaacs condition use non-anticipative strategies with delay (for short, NAD strategies),
in order to guarantee the existence of a value (see, e.g., [2,7]), and the corresponding couple of controls is rather
the result of the interaction of the NAD strategies chosen by the players, it seems more natural to consider NAD
strategies randomized independently by the both players along a common partition, in order to close the gap of
absence of Isaacs condition. This was the basic idea in [6], in order to study differential games without Isaacs
condition, but here for the more general frame of asymmetric information. Let us mention that [6] generalized
Cardaliaguet’s work [7] on differential games with asymmetric information to the case without Isaacs condition.

In our approach we adapt this idea of randomization of the NAD strategies along partitions π =
{
0 = t0 <

t1 < . . . < tN = T
}

of the time interval [0, T ] introduced in [6]. Letting t ∈ [tk−1, tk), for some 0 ≤ k ≤ N , we
consider randomized NAD strategies α : Ω × Vt,T �→ Ut,T which, for instance, for Player I, are of the form

α (ω, v) (s) = αl ((ζ1,k, . . . , ζ1,l) (ω) , v) (s), ω ∈ Ω, s ∈ [t ∨ tl−1, t ∨ tl),
k ≤ l ≤ N , where αl : Rl−k+1 × Vt,T �→ Ut,T is Borel measurable and non-anticipating with delay in v.
The randomization in [6] is made through a given sequence of independent, on [0, 1] uniformly distributed
random variables ζi,�, � ≥ 1, i = 1, 2, used by the ith player on the �th subinterval of the partition. This
has the inconvenience that randomized NAD strategies α ∈ Aπ(t, T ) along a partition π are, in general, not
randomized NAD strategies along a finer partition π′(⊃ π). However, as we want to have in our approach
Aπ(t, T ) ⊂ Aπ′

(t, T ) for the randomized NAD strategies of Player I (and, of course, also for the NAD strategies
of Player II: Bπ(t, T ) ⊂ Bπ′

(t, T )), whenever the partitions π and π′ satisfy π ⊂ π′, we prefer a randomization
based on two independent Brownian motions (see Def. 2.1). Such a property also suggests to consider the spaces
of NAD strategies A(t, T ) :=

⋃
π Aπ(t, T ), B(t, T ) :=

⋃
π Bπ(t, T ) and to study what happens, when one player

fixes his partition π for the randomization, while the other player prefers another partition π′: The definition
of our randomized NAD strategies α ∈ Aπ(t, T ), β ∈ Bπ′

(t, T ) makes that both are compatible and belong to
Aπ∪π′

(t, T ) and Bπ∪π′
(t, T ), respectively.

The first part of our work revisits the paper by Buckdahn, Quincampoix, Rainer and Xu [6] on differential
games with asymmetric information with the absence of Isaacs condition, but now with the new kind of ran-
domization of the NAD strategies we described above. Given a partition π and denoting by Wπ the upper value
function and by V π the lower value function of the differential game with randomization of the NAD strategies
along the partition π (see (2.6) and (2.8)), we show that also in this new frame we have for |π| → 0 (|π| denotes
the maximal distance between two neighbor points of π) the uniform convergence on compacts of Wπ and of V π

to the value function U of the game, characterized as the unique dual viscosity solution (see Def. 3.1) of the
Hamilton−Jacobi−Isaacs equation (3.51).

Related with these studies is the question about the behavior of the upper value function W and the lower
value function V, defined for the game with asymmetric information, when Player I disposes of all NAD strategies
α ∈ A(t, T ) and Player II of all NAD strategies β ∈ B(t, T ) (see (2.7) and (2.9)). It is shown in Theorem 5.3
that W = V = U is the value of the game, if Isaacs condition is satisfied, and Example 5.1 shows that, if
Isaacs condition doesn’t hold, W and V don’t, in general, coincide, in spite of all randomization of the NAD
strategies by the players. As a byproduct a corresponding result is obtained for the upper value function W̄ π

and the lower value function V̄ π of the game with asymmetric information, where Player I uses the partition
π for the randomization of his NAD strategies, while Player II has all randomized strategies from B(t, T ) at
his disposal. It is shown that under condition (5.6) which is a bit weaker than Isaacs condition-both functions
W̄π and V̄ π converge uniformly on compacts to the value function U , as |π| → 0. This result allows Player I
to choose a sufficiently fine partition π for his randomization and to be sure that, as fine Player II may choose
his partition for the randomization, the obtained upper and lower value functions are near to the value of the
game. Our results not only generalize those by Buckdahn, Li, Quincampoix [4], to the case with asymmetric
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information on the pay-off, but also give the representation of the limit value (Thm. 5.3), which can be used
for the numerical approach.

While the problem described above is studied for asymmetric zero-sum differential games, the existence of a
Nash equilibrium pay-off is studied for non-zero symmetric differential games, but still without Isaacs condition.
We consider the same dynamics of the game as above, the same type of randomization of the NAD strategies
along partitions as introduced above, but we have now for every player his own pay-off functional. To each of
the both cost functionals we associate a zero-sum differential game with value functions U1 and U2. These value
functions are used to construct a Nash equilibrium pay-off (e1, e2) and the associated ε-optimal randomized
NAD strategies αε ∈ Aπ(t, T ), βε ∈ Bπ(t, T ), for |π| > 0 small enough (see Def. 4.1 and Thms. 4.1 and 4.2).

Our paper is organized as follows: In Section 2 we introduce the setting of our differential games with
asymmetric information and without Isaacs condition, and we give our definition of the randomized NAD
strategies. Section 3 is devoted to the study of differential games with asymmetric information and without
Isaacs condition. In Section 4, for non-zero sum differential games with symmetric information but still without
Isaacs condition, the existence of a Nash equilibrium is investigated. Last but not least, Section 5 considers
zero-sum differential games in which both players can choose different partitions for the randomization of the
NAD strategies, and the convergence behavior of the associated upper and lower value functions is studied.

2. Preliminaries

Let (Ω,F , P ) be the canonical Wiener space, that is, Ω is the set of continuous functions from [0, T ] to
R2, F is the completed σ-algebra on Ω, P is the Wiener measure. We define the canonical process Bt(ω) =
(B1

t (ω), B2
t (ω)) = (ω1(t), ω2(t)), t ∈ [0, T ], ω = (ω1, ω2) ∈ Ω. Then B is a 2-dimensional Brownian motion on

(Ω,F , P ) and B1 is independent of B2. We denote by {Ft,s, s ≥ t} the filtration generated by the increments
of the Brownian motion B over time interval [t, T ), where Ft,s = σ{Br −Bt, r ∈ [t, s]} ∨N , and N is the set of
null-set of P .

For any given partition π = {0 = t0 < t1 < . . . < tN = T } of the interval [0, T ], we define random variables

ζπ
i,j = Φ0,1(

Bi
tj

−Bi
tj−1√

tj−tj−1
), i = 1, 2, j = 1, 2, . . . , N , where Φ0,1(x) = 1√

2π

∫ x

−∞ exp{− y2

2 }dy, x ∈ R. Obviously, ζπ
i,j ,

1 ≤ j ≤ N , i = 1, 2, is a family of independent random variables with uniform distribution on [0, 1]. Let U
and V be compact metric spaces which are the control state spaces used by Player I and II, respectively. By
P(U) and P(V ) we denote the space of all probability measures over U and V , respectively. From Skorohod’s
Representation Theorem we know that P(U) (resp., P(V )) coincides with the set of the distributions of all
U -valued (resp., V -valued) random variables.

Now we introduce the admissible controls for both players.
For any t ∈ [0, T ], the U -valued Lebesgue measurable functions (us)s∈[t,T ] form the set of admissible controls

for Player I, the V -valued Lebesgue measurable functions (vs)s∈[t,T ] those for Player II. We denote by Ut,T

the set of admissible controls (us)s∈[t,T ] for Player I and by Vt,T the set of admissible controls (vs)s∈[t,T ] for
Player II. Both spaces Ut,T and Vt,T are endowed with the topology of the convergence in Lebesgue measure;
by B(Ut,T ) and B(Vt,T ) we denote the corresponding Borel σ-fields.

For any given t ∈ [0, T ], x ∈ Rn, we consider the following ordinary differential equation

Xs = x+
∫ s

t

f(Xr, ur, vr)dr, s ∈ [t, T ], (2.1)

where u ∈ Ut,T and v ∈ Vt,T , and the coefficient f : Rn×U×V �→ Rn is supposed to be bounded, continuous with
respect to (u, v) and Lipschitz continuous in x, uniformly with respect to u and v. Therefore, equation (2.1) has
a unique solution and we denote it by Xt,x,u,v. From standard estimates we obtain that there exists a constant
C > 0 such that, for all (t, x), (t′, x′) ∈ [0, T ]× Rn, for all s ∈ [t ∨ t′, T ],

(1) |Xt,x,u,v
s − x| ≤ C(s− t),

(2) |Xt,x,u,v
s −Xt′,x′,u,v

s | ≤ C(|t− t′| + |x− x′|). (2.2)
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The cost functionals of the zero-sum differential game are defined by the I × J functionals gij(X
t,x,u,v
T ),

i = 1, 2, . . . , I, j = 1, 2, . . . , J , where the mappings gij : Rn �→ R are Lipschitz continuous and bounded. Player
I wants to minimize gij(X

t,x,u,v
T ), i.e., it is a cost functional for him/her, while Player II wants to maximize

gij(X
t,x,u,v
T ) being a payoff for him/her. The cost functionals of nonzero-sum differential games are defined in

Section 4.
The rules for our zero-sum differential game with asymmetric information are as follows:

(1) At the beginning of the game, a pair (i, j) is chosen randomly with the probability (p, q) ∈ Δ(I) ×Δ(J),
where Δ(I) is the set of probabilities p = (pi)i=1,...,I on {1, . . . , I} (i.e., pi ≥ 0, 1 ≤ i ≤ I, and

∑I
i=1 pi = 1);

Δ(J) is defined similarly. Both players know the probability (p, q).
(2) The choice of i is only communicated to Player I, while the choice of j is only communicated to Player II.

But both players observe their opponent’s controls.

Generally speaking, differential games with “control against control” don’t admit a dynamic programming
principle and the value does, in general, not exist. Thus, we study the game of the type “nonanticipative
strategy with delay against nonanticipative strategy with delay”. Considering the asymmetry of the information,
the players want to hide a part of their private information. For this they randomize their strategies, and the
kind of randomization we choose is the key to obtain a value for our zero-sum game in a framework without
Isaacs condition.

Let us consider an arbitrarily given partition π = {0 = t0 < t1 < . . . < tN = T } and assume t ∈ [tk−1, tk).
We give the definition of random non-anticipative strategies with delay for a game over the time interval [t, T ].

Definition 2.1. A random non-anticipative strategy with delay (NAD, for short) along the partition π for
Player I is a mapping α : Ω × [t, T ]× Vt,T �→ Ut,T of the form

α(ω, v)(s) = αk(ω, ζπ
1,k−1(ω), v)(s)I[t,tk)(s) +

N∑
l=k+1

αl(ω, (ζπ
k−1, . . . , ζ

π
l−2, ζ

π
1,l−1)(ω), v)(s)I[tl−1,tl)(s), (2.3)

where ζπ
l = (ζπ

1,l, ζ
π
2,l), k−1 ≤ l ≤ N−2, and for k ≤ l ≤ N , the mappings αl : Ω×R2(l−k)+1×[t∨tl−1, tl]×Vt,T �→

Ut,T are F0,tk−2 ⊗ B(R2(l−k)+1) ⊗ B([t ∨ tl−1, tl]) ⊗ B(Vt,T )-measurable and satisfy: For all v, v′ ∈ Vt,T , it holds
that, whenever v = v′ a.e. on [t, tl−1], we have for all ω ∈ Ω and all x ∈ R2(l−k)+1, αl(ω, x, v)(s) = αl(ω, x, v′)(s),
a.e. on [t ∨ tl−1, tl], k + 1 ≤ l ≤ N .

Similarly, a random NAD strategy along the partition π for Player II is a mapping β : Ω× [t, T ]×Ut,T �→ Vt,T

of the form

β(ω, u)(s) = βk(ω, ζπ
2,k−1(ω), v)(s)I[t,tk)(s) +

N∑
l=k+1

βl(ω, (ζπ
k−1, . . . , ζ

π
l−2, ζ

π
2,l−1)(ω), v)(s)I[tl−1,tl)(s), (2.4)

where ζπ
l = (ζπ

1,l, ζ
π
2,l), k−1 ≤ l ≤ N−2, and for k ≤ l ≤ N , the mappings βl : Ω×R2(l−k)+1×[t∨tl−1, tl]×Ut,T �→

Vt,T are F0,tk−2 ⊗B(R2(l−k)+1) ⊗B([t ∨ tl−1, tl]) ⊗B(Ut,T )-measurable and satisfy: For all u, u′ ∈ Ut,T , it holds
that, whenever u = u′ a.e. on [t, tl−1], we have for all ω ∈ Ω and all x ∈ R2(l−k)+1, βl(ω, x, u)(s) = βl(ω, x, u′)(s),
a.e. on [t ∨ tl−1, tl], k + 1 ≤ l ≤ N .

The set of all such random NAD strategies for Player I along the partition π is denoted by Aπ(t, T ), and
similarly Bπ(t, T ) is that for Player II, Aπ

0 (t, T ) and Bπ
0 (t, T ) are the sets of pure (i.e. deterministic non ran-

domized) strategies for player I and II. Then we know, for any partitions π, π′ of interval [t, T ] with π ⊂ π′, it
holds Aπ(t, T ) ⊂ Aπ′

(t, T ). Moreover we define

A(t, T ) :=
⋃
π

Aπ(t, T ), B(t, T ) :=
⋃
π

Bπ(t, T ). (2.5)
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Definition 2.2. We say that α ∈ Aπ
1 (t, T ), if α ∈ Aπ(t, T ) and the αl’s in (2.3) don’t depend on ω, i.e.,

for all k ≤ l ≤ N , αl : R2(l−k)+1 × [t ∨ tl−1, tl] × Vt,T �→ Ut,T , is a B(R2(l−k)+1) ⊗ B([t ∨ tl−1, tl]) ⊗ B(Vt,T )-
measurable function satisfying: For all v, v′ ∈ Vt,T , it holds that, whenever v = v′ a.e. on [t, tl−1], we have for all
x ∈ R2(l−k)+1, αl(x, v)(s) = αl(x, v′)(s), a.e. on [t ∨ tl−1, tl], k + 1 ≤ l ≤ N . Similarly, we define β ∈ Bπ

1 (t, T ).

Obviously, from the Definitions 2.1 and 2.2 we know Aπ
0 (t, T ) ⊂ Aπ

1 (t, T ) ⊂ Aπ(t, T ), Bπ
0 (t, T ) ⊂ Bπ

1 (t, T ) ⊂
Bπ(t, T ).

From the definition of an NAD strategy we get the following lemma which is crucial throughout the paper.
Such a result was established the first time by Buckdahn, Cardaliaguet and Rainer ([1], Lem. 2.4).

Lemma 2.3. For any α ∈ A(t, T ) and β ∈ B(t, T ), there exists a unique measurable mapping Ω � ω �→
(uω, vω) ∈ Ut,T × Vt,T , such that, for all ω ∈ Ω,

α(ω, vω) = uω, β(ω, uω) = vω , a.e. on [t, T ].

A proof of Lemma 2.3 for a similar context can be found in [6]. However, since our framework is slightly more
general, for the reader’s convenience we prefer to give it here.

Proof. For any α ∈ A(t, T ), from (2.5) we know there exists a partition π1 of interval [0, T ], such that α ∈
Aπ1(t, T ). Similarly, there is a partition π2 of interval [0, T ], such that β ∈ Bπ2(t, T ). We define π = π1 ∪ π2

which combines π1 and π2, and we notice that then α ∈ Aπ(t, T ) and β ∈ Bπ(t, T ).
Indeed, if, for example, π = {0 = t0 < t1 < . . . < tN = T } and tl−1, tl+1 ∈ π1, but tl /∈ π1, then for

[tl−1, tl+1] as jth subinterval of the partition π1, ζπ1
i,j = Φ0,1(

Bi
tl+1

−Bi
tl−1√

tl+1−tl−1
) = Φ0,1

(
1√

tl+1−tl−1

(√
tl − tl−1Φ

−1
0,1

(Φ0,1(
Bi

tl
−Bi

tl−1√
tl−tl−1

)) +
√
tl+1 − tlΦ

−1
0,1(Φ0,1(

Bi
tl+1

−Bi
tl√

tl+1−tl
)
))
, i.e., ζπ1

i,j is a measurable function of (ζπ
i,l, ζ

π
i,l+1), i = 1, 2.

The above situation can be extended in an obvious manner to the general case π1 ⊂ π and allows to show that
Aπ1(t, T ) ⊂ Aπ(t, T ). Analogously, Bπ2(t, T ) ⊂ Bπ(t, T ).

Assume π = {0 = t0 < t1 < . . . < tN = T }, and t ∈ [tk−1, tk), 0 ≤ k ≤ N . For each ω ∈ Ω, α(ω, v)
(respectively, β(ω, u)) restricted to [t, tk] depends only on v ∈ Vt,T (respectively, u ∈ Ut,T ) restricted to [t, tk−1].
Since [t, tk−1] is empty or a singleton, from the property of delay we know α(ω, v), β(ω, u) restricted to [t, tk]
do not depend on v and u. Then we can define u1

ω = α(ω, v0), v1
ω = β(ω, u0), for any v0 ∈ Vt,T and u0 ∈ Ut,T ,

and the mapping Ω � ω �→ (u1
ω, v

1
ω) ∈ Ut,T × Vt,T is measurable. Then we have

α(ω, v1) = u1, β(ω, u1) = v1 a.e. on [t, tk].

Now we assume that for j ≥ 2, α(ω, vj−1
ω ) = uj−1

ω , β(ω, uj−1
ω ) = vj−1

ω , a.e. on [t, tj+k−2], and ω �→ (uj−1
ω , vj−1

ω )
is measurable. Then we define uj

ω = α(ω, vj−1
ω ), vj

ω = β(ω, uj−1
ω ). Obviously, uj

ω = uj−1
ω , vj

ω = vj−1
ω , a.e. on

[t, tj+k−2]. From the property of delay, we have α(ω, vj
ω) = α(ω, vj−1

ω ) = uj
ω, β(ω, uj

ω) = β(ω, uj−1
ω ) = vj

ω, a.e.
on [t, tj+k−1], and ω �→ (uj

ω, v
j
ω) is measurable. Consequently, we get the existence of the measurable mapping

Ω � ω �→ (uω, vω) ∈ Ut,T ×Vt,T satisfying this lemma. Its uniqueness is obvious from the above construction. �

Remark 2.4. This lemma implies that, for any partition π of [0, T ], for any α ∈ Aπ(t, T ), β ∈ Bπ(t, T ), but
also for any α ∈ A(t, T ), β ∈ Bπ(t, T ), and for any α ∈ Aπ(t, T ), β ∈ B(t, T ), there exists the unique mapping
Ω � ω �→ (uω, vω) ∈ Ut,T × Vt,T , such that for all ω ∈ Ω,

α(ω, vω) = uω, β(ω, uω) = vω , a.e. on [t, T ].

Remark 2.5. The control processes u and v along the partition π satisfying Lemma 2.3 have the following
form: ⎧⎪⎪⎨

⎪⎪⎩
u(ω, s) = uk(ω, ζπ

1,k−1, s) · I[t,tk)(s) +
N∑

l=k+1

ul(ω, ζπ
k−1, . . . , ζ

π
l−2, ζ

π
1,l−1, s) · I[tl−1,tl)(s),

v(ω, s) = vk(ω, ζπ
2,k−1, s) · I[t,tk)(s) +

N∑
l=k+1

vl(ω, ζπ
k−1, . . . , ζ

π
l−2, ζ

π
2,l−1, s) · I[tl−1,tl)(s),
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where ul, vl are F0,tk−2 ⊗ B(R2(l−k)+1) ⊗ B([t ∨ tl−1, tl])-measurable functions, k ≤ l ≤ N . We denote by Uπ
t,T

and Vπ
t,T the set of the processes u and v, respectively, which have the above form. The corresponding set of

control constructed with the help of strategies from Aπ
1 (t, T ) and Bπ

1 (t, T ) is denoted by Uπ,1
t,T and Vπ,1

t,T . The only
difference between Uπ

t,T and Uπ,1
t,T is that, if u ∈ Uπ,1

t,T , then ul, k ≤ l ≤ N , is just B(R2(l−k)+1) ⊗B([t∨ tl−1, tl])-
measurable, i.e., ul is deterministic.

Remark 2.6. We write α̂ ∈ (Aπ(t, T ))I , if α̂ = (α1, . . . , αI) and αi ∈ Aπ(t, T ), i = 1, . . . , I, and
β̂ ∈ (Bπ(t, T ))J , if β̂ = (β1, . . . , βJ ) and βj ∈ Bπ(t, T ), j = 1, . . . , J . Similarly, we have α̂ ∈ (A(t, T ))I ,
β̂ ∈ (B(t, T ))J .

For (p, q) ∈ Δ(I) ×Δ(J), (t, x) ∈ [0, T ] × Rn, π = {0 = t0 < t1 < . . . < tN = T } and t ∈ [tk−1, tk), we define
the payoff functional

J(t, x, α̂, β̂, p, q) =
I∑

i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)]
.

Let us now introduce the following upper value functions:

Wπ(t, x, p, q) = inf
α̂∈(Aπ(t,T ))I

sup
β̂∈(Bπ(t,T ))J

J(t, x, α̂, β̂, p, q), (2.6)

W (t, x, p, q) = inf
α̂∈(A(t,T ))I

sup
β̂∈(B(t,T ))J

J(t, x, α̂, β̂, p, q), (2.7)

and the lower value functions:

V π(t, x, p, q) = sup
β̂∈(Bπ(t,T ))J

inf
α̂∈(Aπ(t,T ))I

J(t, x, α̂, β̂, p, q), (2.8)

V (t, x, p, q) = sup
β̂∈(B(t,T ))J

inf
α̂∈(A(t,T ))I

J(t, x, α̂, β̂, p, q), (2.9)

respectively, which will be studied in what follows.

Definition 2.7. Given ε > 0, we say that α̂ ∈ (Aπ(t, T ))I is an ε-optimal randomized strategy for Wπ(t, x, p, q),
if for all (t, x, p, q) ∈ [0, T ]× Rn ×Δ(I) ×Δ(J),

|W π(t, x, p, q) − sup
β̂∈(Bπ(t,T ))J

J(t, x, α̂, β̂, p, q)| ≤ ε. (2.10)

In the same sense, β̂ ∈ (Bπ(t, T ))J is to be an ε-optimal randomized strategy for V π(t, x, p, q), if for all
(t, x, p, q) ∈ [0, T ]× Rn ×Δ(I) ×Δ(J),

|V π(t, x, p, q) − inf
α̂∈(Aπ(t,T ))I

J(t, x, α̂, β̂, p, q)| ≤ ε. (2.11)

Similarly, we define ε-optimal strategies for the upper value function W (t, x, p, q) and the lower value function
V (t, x, p, q).
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3. The functions W π(t, x, p, q) and V π(t, x, p, q) without Isaacs condition

In this section we mainly prove that, when the mesh of the partition π tends to 0, the functions Wπ and V π

converge uniformly to the same function which is the unique dual solution of some Hamilton−Jacobi−Isaacs
(HJI, for short) equation. For this, we introduce the following auxiliary functions:

Wπ
1 (t, x, p, q) = inf

α̂∈(Aπ
1 (t,T ))I

sup
β̂∈(Bπ

1 (t,T ))J

J(t, x, α̂, β̂, p, q), (3.1)

V π
1 (t, x, p, q) = sup

β̂∈(Bπ
1 (t,T ))J

inf
α̂∈(Aπ

1 (t,T ))I
J(t, x, α̂, β̂, p, q). (3.2)

Theorem 3.1. For any (t, x, p, q) ∈ [0, T ] × Rn × Δ(I) × Δ(J), it holds V π(t, x, p, q) = V π
1 (t, x, p, q),

Wπ(t, x, p, q) = Wπ
1 (t, x, p, q).

We only give the proof for V π(t, x, p, q) = V π
1 (t, x, p, q), the proof for Wπ(t, x, p, q) = Wπ

1 (t, x, p, q) is similar.
In order to show this, we need the following auxiliary lower value function:

Ṽ π(t, x, p, q) = esssup
β̂∈(Bπ(t,T ))J

essinf
α̂∈(Aπ(t,T ))I

I∑
i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)
|F0,tk−2

]
, (3.3)

t ∈ [tk−1, tk), for π = {0 = t0 < t1 < . . . < tN = T }. Note this Ṽ π(t, x, p, q) is a prior F0,tk−2-measurable.
However, we have the following lemma.

Lemma 3.2. For all (t, x, p, q) ∈ [0, T ] × Rn × Δ(I) × Δ(J), the function Ṽ π(t, x, p, q) is deterministic, i.e.,
independent of F0,tk−2 . As a consequence we have Ṽ π(t, x, p, q) = E[Ṽ π(t, x, p, q)], P -a.s.

Proof. Recall Ω = C([0, T ]; R2) and put

H =
{
h ∈ Ω : ∃ Radon-Nikodym derivative ḣ ∈ L2([0, T ]; R2), h(s) = h(s ∧ tk−2), s ∈ [0, T ]

}
(H is the Cameron−Martin Space). For any h ∈ H , we define the mapping τh : Ω �→ Ω by setting τh(ω) := ω+h,
ω ∈ Ω. Obviously, τh is a bijection and τ−1

h = τ−h.
Recall that α ∈ Aπ(t, T ) has the form

α(ω, v)(s) = αk(ω, ζπ
1,k−1(ω), v)(s)I[t,tk)(s) +

N∑
l=k+1

αl(ω, (ζπ
k−1, . . . , ζ

π
l−2, ζ

π
1,l−1)(ω), v)(s)I[tl−1,tl)(s)

(see Def. 2.1). Hence, for any h ∈ H , its Girsanov transform takes the form

αh(ω, v)(s) := α(τh(ω), v)(s)

= αk(τh(ω), ζπ
1,k−1(ω), v)(s)I[t,tk)(s) +

N∑
l=k+1

αl(τh(ω), (ζπ
k−1, . . . , ζ

π
l−2, ζ

π
1,l−1)(ω), v)(s)I[tl−1,tl)(s).

Obviously, αh ∈ Aπ(t, T ), and the mapping α �→ αh is a bijection on Aπ(t, T ). For any h ∈ H , β ∈ Bπ(t, T ),
βh is defined similarly and also β �→ βh is a bijection on Bπ(t, T ). Moreover, we can check easily that, for all
h ∈ H ,

E
[
gij

(
X

t,x,αi,βj

T

)
|F0,tk−2

]
◦ τh = E

[
gij

(
X

t,x,αh
i ,βh

j

T

)
|F0,tk−2

]
, P -a.s. (3.4)
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We now set

I(t, x, p, q, β̂) := essinf
α̂∈(Aπ(t,T ))I

I∑
i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)
|F0,tk−2

]
, β̂ ∈ (Bπ(t, T ))J .

Since I(t, x, p, q, β̂) ≤
I∑

i=1

J∑
j=1

piqjE[gij(X
t,x,αi,βj

T )|F0,tk−2 ], P -a.s., from (3.4) we get

I(t, x, p, q, β̂) ◦ τh ≤
I∑

i=1

J∑
j=1

piqjE

[
gij

(
X

t,x,αh
i ,βh

j

T

)
|F0,tk−2

]
, P -a.s., for all α̂ ∈ (Aπ(t, T ))I . (3.5)

On the other hand, for any random variable ξ, such that ξ ≤
I∑

i=1

J∑
j=1

piqjE[gij(X
t,x,αh

i ,βh
j

T )|F0,tk−2 ], P -a.s., we

have that

ξ ◦ τ−h ≤
I∑

i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)
|F0,tk−2

]
, P -a.s., for all α̂ ∈ (Aπ(t, T ))I .

Consequently, ξ ◦ τ−h ≤ I(t, x, p, q, β̂), P -a.s., which implies that ξ ≤ I(t, x, p, q, β̂) ◦ τh, P -a.s., as the law of τh
is equivalent to P . Thus, we have

I(t, x, p, q, β̂) ◦ τh = essinf
α̂∈(Aπ(t,T ))I

I∑
i=1

J∑
j=1

piqjE

[
gij

(
X

t,x,αh
i ,βh

j

T

)
|F0,tk−2

]
, P -a.s. (3.6)

Using the same method, we obtain(
esssup

β̂∈(Bπ(t,T ))J

I(t, x, p, q, β̂)

)
◦ τh = esssup

β̂∈(Bπ(t,T ))J

(
I(t, x, p, q, β̂) ◦ τh

)
, P -a.s. (3.7)

Therefore, for all h ∈ H , from (3.7) and (3.6) we get, P -a.s.,

Ṽ π(t, x, p, q) ◦ τh =

(
esssup

β̂∈(Bπ(t,T ))J

I(t, x, p, q, β̂)

)
◦ τh

= esssup
β̂∈(Bπ(t,T ))J

essinf
α̂∈(Aπ(t,T ))I

I∑
i=1

J∑
j=1

piqjE

[
gij

(
X

t,x,αh
i ,βh

j

T

)
|F0,tk−2

]

= esssup
β̂∈(Bπ(t,T ))J

essinf
α̂∈(Aπ(t,T ))I

I∑
i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)
|F0,tk−2

]
= Ṽ π(t, x, p, q), (3.8)

where, for the latter equality, we have used that {αh|α ∈ Aπ(t, T )} = Aπ(t, T ) and {βh|β ∈ Bπ(t, T )} = Bπ(t, T ).
Then, combining this invariance of Ṽ π(t, x, p, q) under Girsanov transformation τh, h ∈ H , with Lemma 4.1
in [3] we obtain the stated result. �

Now we give the proof of Theorem 3.1.

Proof.
Step 1. We prove Ṽ π(t, x, p, q) = V π

1 (t, x, p, q), for all (t, x, p, q) ∈ [0, T ]× Rn ×Δ(I) ×Δ(J).
For any β̂ ∈ (Bπ

1 (t, T ))J (independent of F0,tk−2), as Bπ
1 (t, T ) ⊂ Bπ(t, T ), we have

Ṽ π(t, x, p, q) ≥ essinf
α̂∈(Aπ(t,T ))I

I∑
i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)
|F0,tk−2

]
, P -a.s.
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Moreover, for any ε > 0, there exists α̂ ∈ (Aπ(t, T ))I (depending on ε, β̂), such that

Ṽ π(t, x, p, q) ≥
I∑

i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)
|F0,tk−2

]
− ε, P -a.s. (3.9)

(For the method of the construction of such α̂, see, e.g. [3], Lem. 4.4). Then, from Lemmas 3.2 and (3.9), we
have

Ṽ π(t, x, p, q) = E[Ṽ π(t, x, p, q)] ≥
I∑

i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)]
− ε

≥ inf
α̂∈(Aπ

1 (t,T ))I

I∑
i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)]
− ε. (3.10)

Since (3.10) holds for all β̂ ∈ (Bπ
1 (t, T ))J , we get

Ṽ π(t, x, p, q) ≥ sup
β̂∈(Bπ

1 (t,T ))J

inf
α̂∈(Aπ

1 (t,T ))I

I∑
i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)]
− ε = V π

1 (t, x, p, q) − ε. (3.11)

Finally, from the arbitrariness of ε, we obtain Ṽ π(t, x, p, q) ≥ V π
1 (t, x, p, q).

On the other hand, for any ε > 0, there exists β̂ ∈ (Bπ(t, T ))J , such that, P -a.s.,

Ṽ π(t, x, p, q) ≤ essinf
α̂∈(Aπ(t,T ))I

I∑
i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)
|F0,tk−2

]
+ ε

≤ essinf
α̂∈(Aπ

1 (t,T ))I

I∑
i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)
|F0,tk−2

]
+ ε (3.12)

Notice that, for α̂ ∈ (Aπ
1 (t, T ))I , β̂ ∈ (Bπ(t, T ))J , E[gij(X

t,x,αi,βj

T )|F0,tk−2 ](ω) = E[gij(X
t,x,αi,β

ω̄
j

T )], P (dω)-a.s.,
where ω̄(s) = ω(s ∧ tk−2), s ∈ [0, T ], and, for βj of form (2.4)

βω̄
j (ω, u)(s) = βk(ω̄, ζπ

2,k−1(ω), v)(s)I[t,tk)(s) +
N∑

l=k+1

βl(ω̄, (ζπ
k−1, . . . , ζ

π
l−2, ζ

π
2,l−1)(ω), v)(s)I[tl−1,tl)(s)

belongs to Bπ
1 (t, T ), for all ω̄ = ω(· ∧ tk−2). Thus, from (3.12), taking the expectation on both sides, we have

Ṽ π(t, x, p, q) ≤ inf
α̂∈(Aπ

1 (t,T ))I

I∑
i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,β
ω̄
j

T

)]
+ ε

≤ sup
β̂∈(Bπ

1 (t,T ))J

inf
α̂∈(Aπ

1 (t,T ))I

I∑
i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)]
+ ε = V π

1 (t, x, p, q) + ε. (3.13)

Therefore, from the arbitrariness of ε, we obtain Ṽ π(t, x, p, q) ≤ V π
1 (t, x, p, q).

Step 2. We now prove Ṽ π(t, x, p, q) = V π(t, x, p, q), for all (t, x, p, q) ∈ [0, T ]× Rn ×Δ(I) ×Δ(J).
For any ε > 0 and β̂ ∈ (Bπ(t, T ))J there exists α̂ ∈ (Aπ(t, T ))I , such that, P -a.s.,

Ṽ π(t, x, p, q) ≥ essinf
α̂∈(Aπ(t,T ))I

I∑
i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)
|F0,tk−2

]

≥
I∑

i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)
|F0,tk−2

]
− ε. (3.14)
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From Lemma 3.2 and (3.14) we have

Ṽ π(t, x, p, q) = E[Ṽ π(t, x, p, q)] ≥
I∑

i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)]
− ε

≥ inf
α̂∈(Aπ(t,T ))I

I∑
i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)]
− ε, (3.15)

for all β̂ ∈ (Bπ(t, T ))J . From the arbitrariness of ε and β̂ ∈ (Bπ(t, T ))J , we have Ṽ π(t, x, p, q) ≥ V π(t, x, p, q).
On the other hand, for any ε > 0, there exists β̂ ∈ (Bπ(t, T ))J , such that, P -a.s.,

Ṽ π(t, x, p, q) ≤ essinf
α̂∈(Aπ(t,T ))I

I∑
i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)
|F0,tk−2

]
+ ε

≤
I∑

i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)
|F0,tk−2

]
+ ε, (3.16)

for all α̂ ∈ (Aπ(t, T ))I . Thus, from Lemma 3.2 we get

Ṽ π(t, x, p, q) = E[Ṽ π(t, x, p, q)] ≤
I∑

i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)]
+ ε,

and taking into account the arbitrariness of α̂ ∈ (Aπ(t, T ))I , this yields

Ṽ π(t, x, p, q) ≤ inf
α̂∈(Aπ(t,T ))I

I∑
i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)]
+ ε

≤ sup
β̂∈(Bπ(t,T ))J

inf
α̂∈(Aπ(t,T ))I

I∑
i=1

J∑
j=1

piqjE
[
gij

(
X

t,x,αi,βj

T

)]
+ ε = V π(t, x, p, q) + ε. (3.17)

Thus, we obtain Ṽ π(t, x, p, q) ≤ V π(t, x, p, q). Finally, from Steps 1 and 2, we have V π(t, x, p, q) = Ṽ π(t, x, p, q) =
V π

1 (t, x, p, q). �

We now prove that, when the mesh of the partition π tends to 0, the functions Wπ
1 and V π

1 converge uniformly
to the same function which is the unique dual solution of some HJI equation.

Lemma 3.3. The functions Wπ
1 and V π

1 are Lipschitz continuous with respect to (t, x, p, q), uniformly with
respect to π.

Proof. We just give the proof for V π
1 , the proof of Wπ

1 is similar. Since the cost functionals gij are bounded,
from the definition of V π

1 , we obviously have that V π
1 is Lipschitz with respect to p and q. For any t ∈ [0, T ],

(u, v) ∈ Ut,T × Vt,T , from (2.2) it follows that the functional gij(X
t,x,u,v
T ) is uniformly Lipschitz continuous

with respect to x. Thus, for all (α̂, β̂) ∈ (Aπ
1 (t, T ))I × (Bπ

1 (t, T ))J , we have that J(t, x, α̂, β̂, p, q) is Lipschitz
continuous with respect to x. Moreover, the Lipschitz constant only depends on the Lipschitz constants of gij

and the bound of f . Thus we have V π
1 is Lipschitz with respect to x.

Now we only need to show V π
1 is Lipschitz with respect to t. Let x ∈ Rn, (p, q) ∈ Δ(I)×Δ(J), and t < t′ < T

be arbitrarily fixed. Let ε > 0 and β̂ = (βj)j=1,2,...,J ∈ (Bπ
1 (t, T ))J be an ε-optimal strategy for V π

1 (t, x, p, q).
We define a strategy β′

j ∈ Bπ
1 (t′, T ) associated with βj . For this end, we put for all u ∈ Ut′,T ,

β̃j(ω, u) = βj(ω, ũ), where ũ(s) =
{
ū, s ∈ [t, t′),
u(s), s ∈ [t′, T ],

and ū ∈ U is an arbitrarily given constant control.
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If t′ < tk, then β̃j ∈ Bπ
1 (t′, T ) and we define β′

j = β̃j . Otherwise, we let l ≥ k + 1 be such that tl−1 ≤ t′ < tl,
and we consider 2(l− k) + 1 random variables ηi

k−1, . . . , η
i
l−2, η

1
l−1, i = 1, 2, defined on ([0, 1],B([0, 1]), dx) with

η1
l−1(x) = x, x ∈ [0, 1], which are mutually independent, independent of ζπ

i,j , (i, j) �= (2, l − 1), and uniformly
distributed on [0, 1]. Then also the composed random variables η1

k−1 ◦ ζπ
2,l−1, η

2
k−1 ◦ ζπ

2,l−1, . . . , η
1
l−1 ◦ ζπ

2,l−1 are
mutually independent, independent of all ζπ

i,j , (i, j) �= (2, l − 1), and uniformly distributed over [0, 1]. For any
u ∈ Ut′,T , s ∈ [t′, T ], we define

β′
j(ω, u)(s) =

N∑
m=l

β̃j,m

(
(η1

k−1 ◦ ζπ
2,l−1, η

2
k−1 ◦ ζπ

2,l−1, . . . ,

η1
l−1 ◦ ζπ

2,l−1, ζ
π
1,l−1, ζ

π
l , . . . , ζ

π
m−2, ζ

π
2,m−1)(ω), u

)
(s) × I[t′∨tm−1,tm)(s).

where β̃j,m(ω, u)(s) = β̃j(ω, u)(s)I[t∨tm−1,tm)(s). Obviously, β′
j ∈ Bπ

1 (t′, T ). Notice that for all u ∈ Ut′,T , β′
j(u)

and β̃j(u) obey the same law knowing ζπ
l−1, . . . , ζ

π
N−1. Therefore, E[gij(X

t′,x,u,β′
j(u)

T )] = E[gij(X
t′,x,u,β̃j(u)
T )].

Consequently, for all α̂ ∈ (Aπ
1 (t′, T ))I ,

J(t′, x, α̂, (β′
j), p, q) = J(t′, x, α̂, (β̃j), p, q). (3.18)

Now for any α ∈ Aπ
1 (t′, T ), we define a strategy α′ ∈ Aπ

1 (t, T ) associated with α as follows: For all v ∈ Vt,T , we
put

α′(ω, v)(s) =
{
ū(s), s ∈ [t, t′),
α(ω, v|[t′,T ])(s), s ∈ [t′, T ].

Through the above construction and from Lemma 2.3 we see that the couples of admissible controls related to
the couples of strategies (α′, βj) and (α, β̃j) coincide on the interval [t′, T ]. Hence, using standard estimates and
Gronwall’s inequality, we have

E
[∣∣∣Xt,x,α′,βj

s −Xt′,x,α,β̃j
s

∣∣∣] ≤M |t′ − t|, s ∈ [t′, T ], (3.19)

where the constant M only depends on the bound of f as well as the Lipschitz constant of f . Thus, for any
α̂ ∈ (Aπ

1 (t′, T ))I , from (3.18), (3.19) and (2.11) we obtain

J(t′, x, α̂, (β′
j), p, q) = J(t′, x, α̂, (β̃j), p, q) ≥ J(t, x, α̂′, β̂, p, q) − C|t′ − t|

≥ inf
α̂′′∈(Aπ

1 (t,T ))I
J(t, x, α̂

′′
, β̂, p, q) − C|t′ − t| ≥ V π

1 (t, x, p, q) − ε− C|t′ − t|.

Therefore,
V π

1 (t′, x, p, q) ≥ V π
1 (t, x, p, q) − ε− C|t′ − t|. (3.20)

Similarly, if we assume that β̂ ∈ (Bπ
1 (t′, T ))J is ε-optimal for V π

1 (t′, x, p, q), we get

V π
1 (t, x, p, q) ≥ V π

1 (t′, x, p, q) − ε− C|t′ − t|. (3.21)

Finally, from the arbitrariness of ε > 0 we obtain V π
1 is Lipschitz continuous in t. �

Lemma 3.4. For any (t, x) ∈ [0, T ]×Rn, the functions Wπ
1 (t, x, p, q) and V π

1 (t, x, p, q) are convex in p ∈ Δ(I)
and concave in q ∈ Δ(J).

Proof. We just give the proof for V π
1 , the proof of Wπ

1 is similar.
As it is obvious that

V π
1 (t, x, p, q) = sup

(βj)∈(Bπ
1 (t,T ))J

I∑
i=1

pi inf
α∈Aπ

1 (t,T )

J∑
j=1

qjE
[
gij

(
X

t,x,α,βj

T

)]
, (3.22)

the convexity of p �→ V π
1 (t, x, p, q) is immediate.
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Now we prove that V π
1 (t, x, p, q) is concave in q. Let (t, x, p) ∈ [0, T ] × Rn ×Δ(I), q0, q1 ∈ Δ(J), λ ∈ (0, 1),

and let β̂0 = (β0
j )j=1,...,J ∈ (Bπ

1 (t, T ))J and β̂1 = (β1
j )j=1,...,J ∈ (Bπ

1 (t, T ))J be ε-optimal for V π
1 (t, x, p, q0) and

V π
1 (t, x, p, q1), respectively. For q0 = (q01 , . . . , q0J) and q1 = (q11 , . . . , q1J), we define qλ

j = (1 − λ)q0j + λq1j , and
obviously qλ = (qλ

1 , . . . , q
λ
J) ∈ Δ(J). Without loss of generality we assume qλ

j > 0, j = 1, . . . , J , and we put

cj =
(1−λ)q0

j

qλ
j

, j = 1, . . . , J . For ω ∈ Ω, u ∈ Ut,T , s ∈ [t, T ), we introduce the strategy β̂λ = (βλ
j )j=1,...,J by

putting

βλ
j (y1, . . . , y2(N−k)+1, u)(s) = β0

j (y1, y2, . . . , y2(N−k),
1
cj
y2(N−k)+1, u)(s) · I[0,cj ](y2(N−k)+1)

+β1
j (y1, y2, . . . , y2(N−k),

1
1 − cj

(y2(N−k)+1 − cj), u)(s) · I[cj ,1](y2(N−k)+1),

where βi
j((ζ

π
k−1, . . . , ζ

π
N−2, ζ

π
2,N−1)(ω), u)(s) =

N∑
l=k

βi
lj((ζ

π
k−1, . . . , ζ

π
l−2, ζ

π
2,l−1)(ω), u)I[t∨tl−1,tl](s), i = 0, 1, respec-

tively. Then (βλ
j ) ∈ (Bπ

1 (t, T ))J , and we have

inf
α∈(Aπ

1 (t,T ))I
J(t, x, α̂, β̂λ, p, qλ) =

I∑
i=1

pi inf
α∈Aπ

1 (t,T )

J∑
j=1

qλ
j E

[
gij

(
X

t,x,α,βλ
j

T

)]

=
I∑

i=1

pi inf
α∈Aπ

1 (t,T )

J∑
j=1

qλ
j

(∫
[0,cj]

E

[
gij

(
X

t,x,α,β0
j ((ζπ

2,k−1,ζπ
1,k−1,ζπ

k ,...,ζπ
N−2, 1

cj
y2(N−k)+1)(ω),·)

T

)]
dy2(N−k)+1

+
∫

[cj ,1]

E

[
gij

(
X

t,x,α,β1
j ((ζπ

2,k−1,ζπ
1,k−1,ζπ

k ,...,ζπ
N−2, 1

1−cj
(y2(N−k)+1−cj))(ω),·)

T

)]
dy2(N−k)+1

)

=
I∑

i=1

pi inf
α∈Aπ

1 (t,T )

J∑
j=1

qλ
j

[
(1 − λ)q0j

qλ
j

E

[
gij

(
X

t,x,α,β0
j

T

)]
+
λq1j

qλ
j

E

[
gij

(
X

t,x,α,β1
j

T

)]]

≥ (1 − λ)
I∑

i=1

pi inf
α∈Aπ

1 (t,T )

J∑
j=1

q0jE

[
gij

(
X

t,x,α,β0
j

T

)]
+ λ

I∑
i=1

pi inf
α∈Aπ

1 (t,T )

J∑
j=1

q1jE

[
gij

(
X

t,x,α,β1
j

T

)]

≥ (1 − λ)V π
1 (t, x, p, q0) + λV π

1 (t, x, p, q1) − ε,

since β̂0 and β̂1 are ε-optimal strategies for V π
1 (t, x, p, q0) and V π

1 (t, x, p, q1), respectively. Thus,

V π
1 (t, x, p, qλ) ≥ inf

α∈(Aπ
1 (t,T ))I

J
(
t, x, α̂, β̂λ, p, qλ

)
≥ (1 − λ)V π

1 (t, x, p, q0) + λV π
1 (t, x, p, q1) − ε. (3.23)

Thanks to the arbitrariness of ε, we obtain the stated result. �

Now we introduce the Fenchel transforms (we refer to [7]). Let ψ : [0, T ]×Rn ×Δ(I)×Δ(J) → R be convex
in p and concave in q on Δ(I) and Δ(J), respectively. Then we define its convex conjugate (with respect to
variable p) ψ∗ by

ψ∗(t, x, p̄, q) = sup
p∈Δ(I)

{p̄ · p− ψ(t, x, p, q)}, (t, x, p̄, q) ∈ [0, T ]× Rn × RI ×Δ(J), (3.24)

and its concave conjugate (with respect to variable q) ψ# by

ψ#(t, x, p, q̄) = inf
q∈Δ(J)

{q̄ · q − ψ(t, x, p, q)}, (t, x, p, q̄) ∈ [0, T ]× Rn ×Δ(I) × RJ . (3.25)

Using these notations we denote by V π∗
1 (respectively,Wπ#

1 ) the convex (respectively, concave) conjugate of V π
1

(respectively, Wπ
1 ) with respect to p (respectively, q).
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Lemma 3.5. For all (t, x, p̄, q) ∈ [0, T ]× Rn × RI ×Δ(J), we have

V π∗
1 (t, x, p̄, q) = inf

(βj)∈(Bπ
1 (t,T ))J

sup
α∈Aπ

1 (t,T )

max
i∈{1,...,I}

⎧⎨
⎩p̄i −

J∑
j=1

qjE
[
gij

(
X

t,x,α,βj

T

)]⎫⎬
⎭ . (3.26)

Proof. We define

F (t, x, p̄, q) = inf
(βj)∈(Bπ

1 (t,T ))J
sup

α∈Aπ
1 (t,T )

max
i∈{1,...,I}

⎧⎨
⎩p̄i −

J∑
j=1

qjE
[
gij

(
X

t,x,α,βj

T

)]⎫⎬
⎭ . (3.27)

We claim that F (t, x, p̄, q) is convex with respect to p̄.
Indeed, for any ε > 0 and (t, x, q) ∈ [0, T ] × Rn ×Δ(J), p̄0, p̄1 ∈ RI , λ ∈ (0, 1), let (β0

j ) ∈ (Bπ
1 (t, T ))J and

(β1
j ) ∈ (Bπ

1 (t, T ))J be the ε-optimal strategies for F (t, x, p̄0, q) and F (t, x, p̄1, q), respectively. We assume that
p̄λ = (1 − λ)p̄0 + λp̄1, and for ω ∈ Ω, u ∈ Ut,T , s ∈ [t, T ), we define the strategy β̂λ = (βλ

j )j=1,...,J and

βλ
j (y1, . . . , y2(N−k)+1, u)(s)

= β1
j (y1, y2, . . . , y2(N−k),

1
λ
y2(N−k)+1, u)(s) · I[0,λ](y2(N−k)+1)

+β0
j (y1, y2, . . . , y2(N−k),

1
1 − λ

(y2(N−k)+1 − λ), u)(s) · I[λ,1](y2(N−k)+1),

where βi
j((ζ

π
k−1, . . . , ζ

π
N−2, ζ

π
2,N−1)(ω), u)(s) =

N∑
l=k

βi
lj((ζ

π
k−1, . . . , ζ

π
l−2, ζ

π
2,l−1)(ω), u)I[t∨tl−1,tl](s), i = 0, 1, respec-

tively. Then we have (βλ
j ) ∈ (Bπ

1 (t, T ))J . For all α ∈ Aπ
1 (t, T ), we have

max
i∈{1,...,I}

⎧⎨
⎩p̄λ

i −
J∑

j=1

qjE

[
gij

(
X

t,x,α,βλ
j

T

)]⎫⎬
⎭

= max
i∈{1,...,I}

⎧⎨
⎩(1 − λ)

⎛
⎝p̄0

i −
J∑

j=1

qjE

[
gij

(
X

t,x,α,β0
j

T

)]⎞⎠+ λ

⎛
⎝p̄1

i −
J∑

j=1

qjE

[
gij

(
X

t,x,α,β1
j

T

)]⎞⎠
⎫⎬
⎭

≤ (1 − λ) max
i∈{1,...,I}

⎧⎨
⎩p̄0

i −
J∑

j=1

qjE

[
gij

(
X

t,x,α,β0
j

T

)]⎫⎬
⎭+ λ max

i∈{1,...,I}

⎧⎨
⎩p̄1

i −
J∑

j=1

qjE

[
gij

(
X

t,x,α,β1
j

T

)]⎫⎬
⎭

≤ (1 − λ) sup
α∈Aπ

1 (t,T )

max
i∈{1,...,I}

⎧⎨
⎩p̄0

i −
J∑

j=1

qjE

[
gij

(
X

t,x,α,β0
j

T

)]⎫⎬
⎭

+λ sup
α∈Aπ

1 (t,T )

max
i∈{1,...,I}

⎧⎨
⎩p̄1

i −
J∑

j=1

qjE

[
gij

(
X

t,x,α,β1
j

T

)]⎫⎬
⎭

≤ (1 − λ)F (t, x, p̄0, q) + λF (t, x, p̄1, q) + ε.

Therefore,

F (t, x, p̄λ, q) ≤ sup
α∈Aπ

1 (t,T )

max
i∈{1,...,I}

⎧⎨
⎩p̄λ

i −
J∑

j=1

qjE

[
gij

(
X

t,x,α,βλ
j

T

)]⎫⎬
⎭

≤ (1 − λ)F (t, x, p̄0, q) + λF (t, x, p̄1, q) + ε,

from the arbitrariness of ε, we know F (t, x, p̄, q) is convex with respect to p̄.
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We also see that F (t, x, p̄, q) = V π∗
1 (t, x, p̄, q).

Indeed, from (3.24) and (3.27) we have

F ∗(t, x, p, q) = sup
p̄∈RI

⎧⎨
⎩p · p̄− inf

(βj)
max

i∈{1,...,I}

⎧⎨
⎩p̄i − inf

α

J∑
j=1

qjE
[
gij

(
X

t,x,α,βj

T

)]⎫⎬
⎭
⎫⎬
⎭

= sup
(βj)

sup
p̄∈RI

min
i∈{1,...,I}

⎧⎨
⎩p · p̄− p̄i + inf

α

J∑
j=1

qjE
[
gij

(
X

t,x,α,βj

T

)]⎫⎬
⎭

= sup
(βj)

sup
p̄∈RI

min
i∈{1,...,I}

{p · p̄− p̄i + hi},

(3.28)

where we have put hi := inf
α

J∑
j=1

qjE[gij(X
t,x,α,βj

T )], 1 ≤ i ≤ I.

On the other hand,

sup
p̄∈RI

min
i∈{1,...,I}

{p · p̄− p̄i + hi} = sup
p̄∈RI

{
p · p̄+ min

i∈{1,...,I}
{hi − p̄i}

}
= sup

p̄∈RI

{
p · p̄+ inf

¯̄p∈Δ(I)
(h− p̄)¯̄p

}
= sup

p̄∈RI

inf
¯̄p∈Δ(I)

{(h− p̄)¯̄p+ p · p̄} = inf
¯̄p∈Δ(I)

sup
p̄∈RI

{(p− ¯̄p)p̄+ h · ¯̄p}

= h · p.

(3.29)

From (3.28), (3.29) and (3.22), we get

F ∗(t, x, p, q) = sup
(βj)

I∑
i=1

pi inf
α

J∑
j=1

qjE
[
gij

(
X

t,x,α,βj

T

)]
= V π

1 (t, x, p, q). (3.30)

Finally, since F is convex in p̄, we have V π∗
1 = (F ∗)∗ = F . �

Using the definition of V π∗
1 and Wπ#

1 , from Lemma 3.3 we have the following statement.

Lemma 3.6. For all partition π of the interval [0, T ], the convex conjugate function V π∗
1 (t, x, p̄, q) is Lips-

chitz with respect to (t, x, p̄, q), and the concave conjugate function Wπ#
1 (t, x, p, q̄) is Lipschitz with respect to

(t, x, p, q̄). The Lipschitz constants are independent of π.

Generally speaking, the game with asymmetric information does not have the dynamic programming principle,
but it satisfies a sub-dynamic programming principle.

Lemma 3.7. For all (t, x, p̄, q) ∈ [tk−1, tk) × Rn × RI ×Δ(J), and for all l (k ≤ l ≤ N), we have

V π∗
1 (t, x, p̄, q) ≤ inf

β∈Bπ
1 (t,tl)

sup
α∈Aπ

1 (t,tl)

E
[
V π∗

1 (tl, X
t,x,α,β
tl

, p̄, q)
]
. (3.31)

Proof. We define

G(t, tl, x, p̄, q) = inf
β∈Bπ

1 (t,tl)
sup

α∈Aπ
1 (t,tl)

E
[
V π∗

1 (tl, X
t,x,α,β
tl

, p̄, q)
]
. (3.32)

For any given ε > 0, let β0 ∈ Bπ
1 (t, tl) be an ε-optimal strategy for G(t, tl, x, p̄, q), i.e.,

|G(t, tl, x, p̄, q) − sup
α∈Aπ

1 (t,tl)

E[V π∗
1 (tl, X

t,x,α,β0

tl
, p̄, q)]| ≤ ε. (3.33)
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For all y ∈ Rn, there exists an ε-optimal strategy β̂y = (βy
j )j=1,...,J ∈ (Bπ

1 (tl, T ))J for V π∗
1 (tl, y, p̄, q) for Player II,

i.e.,

|V π∗
1 (tl, y, p̄, q) − sup

α∈Aπ
1 (tl,T )

max
i∈{1,...,I}

⎧⎨
⎩p̄i −

J∑
j=1

qjE
[
gij

(
X

tl,y,α,βy
j

T

)]⎫⎬
⎭ | ≤ ε. (3.34)

Because V π∗
1 (tl, y, p̄, q) is Lipschitz continuous with respect to y (with some Lipschitz constant C), β̂y is a

(2ε)-optimal strategies for V π∗
1 (tl, z, p̄, q), if z ∈ Br(y), where Br(y) is the ball with diameter r := ε

C .
Since the coefficient f is bounded, there exists some R > 0 large enough such that all values of Xt,x,α,β

tl

belong to the ball BR(0). Let On, n = 1, . . . , n0, be a finite Borel partition of BR(0) with diam(On) ≤ r. Fixing
arbitrarily xn ∈ On, we put βn

j = βxn

j , n = 1, . . . , n0. Then the strategy βn
j is (2ε)-optimal for V π∗

1 (tl, z, p̄, q),
for all z ∈ On. For ω ∈ Ω and u ∈ Ut,T , we define

βj(ω, u)(s) =

⎧⎨
⎩
β0(ω, u)(s), s ∈ [t, tl),
n0∑

n=1
βn

j (ω, u|[tl,T )) · I{X
t,x,u,β0(u)
tl

∈On}, s ∈ [tl, T ].

Obviously, βj ∈ Bπ
1 (t, T ). The strategies α ∈ Aπ

1 (t, T ) have the following form (see, Def. 2.2):

α(ω, v)(s) =
l∑

m=k

αm((ζπ
1,k−1, ζ

π
2,k−1, . . . , ζ

π
1,m−1)(ω), v)(s)I[t∨tm−1,tm)(s)

+
N∑

m=l+1

αm((ζπ
1,k−1, ζ

π
2,k−1, . . . , ζ

π
1,l−1, ζ

π
2,l−1, ζ

π
1,l, ζ

π
2,l, ζ

π
l+1, . . . , ζ

π
m−2, ζ

π
1,m−1)(ω), v)(s)I[tm−1,tm)(s).

For s ∈ [tl, T ], we define α̃(ω,Q, v)(s) =
∑N

m=l+1 αm(Q, (ζπ
1,l, ζ

π
2,l, . . . , ζ

π
1,m−1)(ω), v)(s)I[tm−1,tm)(s), where Q is

a 2(l−k)+2-dimensional constant vector. Obviously, α̃(Q) ∈ Aπ
1 (tl, T ). Then, for any α ∈ Aπ

1 (t, T ), as Xt,x,α,β0

tl

and Q0 = (ζπ
1,k−1, ζ

π
2,k−1, . . . , ζ

π
1,l−1, ζ

π
2,l−1) are Ftk−2,tl−1-measurable, and βn

j as well as α̃ are Ftl−1,T -measurable,
we have

E
[
gij

(
X

t,x,α,βj

T

)]
= E

[
n0∑

n=1

gij

(
X

tl,X
t,x,α,β0
tl

,α̃(Q0),βn
j

T

)
· I{

Xt,x,α,β0
tl

∈On

}
]

= E

[
n0∑

n=1

E
[
gij

(
X

tl,y,α̃(Q),βn
j

T

)]
y=Xt,x,α,β0

tl
,Q=Q0

· I{
Xt,x,α,β0

tl
∈On

}
]
. (3.35)

From (3.35) and (3.33), we have

max
i∈{1,...,I}

⎧⎨
⎩p̄i −

J∑
j=1

qjE
[
gij

(
X

t,x,α,βj

T

)]⎫⎬
⎭

= max
i∈{1,...,I}

⎧⎨
⎩p̄i −

J∑
j=1

qjE

[
n0∑

n=1

E
[
gij

(
X

tl,y,α̃(Q),βn
j

T

)]
y=Xt,x,α,β0

tl
,Q=Q0

· I{
Xt,x,α,β0

tl
∈On

}
]⎫⎬
⎭

≤E

⎡
⎢⎣ n0∑

n=1

max
i∈{1,...,I}

⎧⎨
⎩p̄i −

J∑
j=1

qjE
[
gij

(
X

tl,y,α̃(Q),βn
j

T

)]⎫⎬
⎭

y=Xt,x,α,β0
tl

,Q=Q0

· I{
Xt,x,α,β0

tl
∈On

}
⎤
⎥⎦
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≤E

⎡
⎢⎣ n0∑

n=1

sup
α′∈Aπ

1 (tl,T )

max
i∈{1,...,I}

⎧⎨
⎩p̄i −

J∑
j=1

qjE
[
gij

(
X

tl,y,α′,βn
j

T

)]⎫⎬
⎭

y=Xt,x,α,β0
tl

· I{Xt,x,α,β0
tl

∈On}

⎤
⎥⎦

≤E

[
n0∑

n=1

V π∗
1 (tl, X

t,x,α,β0

tl
, p̄, q) · I{Xt,x,α,β0

tl
∈On}

]
+ 2ε

≤G(t, tl, x, p̄, q) + 3ε,

which means that V π∗
1 (t, x, p̄, q) ≤ G(t, tl, x, p̄, q). �

We consider a sequence partitions (πn)n≥1 of the interval [0, T ] satisfying that, when n → ∞, the mesh of
the partition πn tends to zero. From Lemma 3.6 and Arzelà−Ascoli Theorem applied to V πn∗

1 (t, x, p̄, q) and
Wπn#

1 (t, x, p, q̄), we have the following result.

Lemma 3.8. There exists a subsequence of (πn)n≥1, still denoted by (πn)n≥1, and two functions Ṽ : [0, T ] ×
Rn × RI ×Δ(J) �→ R and W̃ : [0, T ]× Rn ×Δ(I) × RJ �→ R such that (V πn∗

1 ,Wπn#
1 ) → (Ṽ , W̃ ) uniformly on

compacts in [0, T ]× Rn ×Δ(I) ×Δ(J) × RI × RJ .

Remark 3.9. Notice that from Lemma 3.6, the limit functions Ṽ and W̃ are Lipschitz continuous with respect
to all their variables.

Now we prove that the limit functions Ṽ and W̃ are a viscosity subsolution and a viscosity supersolution of
some HJI equation, respectively. For more details on viscosity solutions, the reader is referred to [9].

Lemma 3.10. For all (p̄, q) ∈ RI×Δ(J), the limit function Ṽ (t, x, p̄, q) is a viscosity subsolution of the following
HJI equation ⎧⎪⎪⎨

⎪⎪⎩
∂Ṽ

∂t
(t, x) +H∗(x,DṼ (t, x)) = 0, (t, x) ∈ [0, T ]× Rn,

Ṽ (T, x) = max
i∈{1,...,I}

{
p̄i −

J∑
j=1

qjgij(x)

}
, x ∈ Rn,

(3.36)

where

H∗(x, ξ) = −H(x,−ξ) = inf
ν∈P(V )

sup
μ∈P(U)

(∫
U×V

f(x, u, v)μ(du)ν(dv) · ξ
)

= sup
μ∈P(U)

inf
ν∈P(V )

(∫
U×V

f(x, u, v)μ(du)ν(dv) · ξ
)
,

and, for shortness, Ṽ (t, x) := Ṽ (t, x, p̄, q).

Proof. For any fixed (t, x) ∈ [0, T ] × Rn, since the coefficient f is bounded, there is some M > 0 such that,
B̄M (x) ⊃ {Xs,y,α,β

r , (s, y) ∈ [0, T ] × B̄1(x), (α, β) ∈ Aπ
1 (s, T ) × Bπ

1 (s, T ), r ∈ [s, T ]}, where B̄M (x) is the
closed ball with the center x and the radius M . From Lemma 3.8 we know V πn∗

1 converges to Ṽ uniformly on
[0, T ] × B̄M (x). Let ϕ ∈ C1

b ([0, T ] × Rn) (the set of bounded continuous functions with bounded, continuous
first order partial derivative) be a test function such that

(Ṽ − ϕ)(t, x) > (Ṽ − ϕ)(s, y), for all (s, y) ∈ [0, T ]× B̄M (x) \ {(t, x)}. (3.37)

Let (sn, xn) ∈ [0, T ] × B̄M (x) be the maximum point of V πn∗
1 − ϕ over [0, T ] × B̄M (x). Then there exists a

subsequence of (sn, xn) still denoted by (sn, xn), such that (sn, xn) converges to (t, x).
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Indeed, since [0, T ]× B̄M (x) is a compact set, there exists a subsequence (sn, xn) and (s̄, x̄) ∈ [0, T ]× B̄M (x)
such that (sn, xn) → (s̄, x̄). Due to (V πn∗

1 − ϕ)(sn, xn) ≥ (V πn∗
1 − ϕ)(t, x), for n ≥ 1, we have

(Ṽ − ϕ)(s̄, x̄) ≥ (Ṽ − ϕ)(t, x), (3.38)

and from (3.37) and (3.38) we conclude (s̄, x̄) = (t, x).
For the partition πn = {0 = tn0 < . . . < tnNn

= T }, we assume tnkn−1
≤ sn < tnkn

, and for simplicity we write
tnk−1 ≤ sn < tnk . Since xn → x, there is a positive integer N such that for all n ≥ N , we have |xn − x| ≤ 1. On
the other hand, from Lemma 3.7 we get

ϕ(sn, xn) = V πn∗
1 (sn, xn) ≤ inf

β∈Bπn
1 (sn,tn

k )
sup

α∈Aπn
1 (sn,tn

k
)

E
[
V πn∗

1

(
tnk , X

sn,xn,α,β
tn
k

)]

≤ inf
β∈Bπn

1 (sn,tn
k )

sup
α∈Aπn

1 (sn,tn
k )

E
[
ϕ
(
tnk , X

sn,xn,α,β
tn
k

)]
. (3.39)

Thus,

0 ≤ inf
β∈Bπn

1 (sn,tn
k )

sup
α∈Aπn

1 (sn,tn
k )

E
[
ϕ
(
tnk , X

sn,xn,α,β
tn
k

)
− ϕ(sn, xn)

]

= inf
β∈Bπn

1 (sn,tn
k )

sup
α∈Aπn

1 (sn,tn
k )

E

[∫ tn
k

sn

(
∂ϕ

∂r
(r,Xsn,xn,α,β

r

)
+ f
(
Xsn,xn,α,β

r , αr, βr

) ·Dϕ (r,Xsn,xn,α,β
r )

)
dr

]
.

(3.40)

For (u, v) ∈ Ut,T × Vt,T , we introduce the following continuity modulus,

m(δ) := sup
|r − s| + |y − x̄| ≤ δ,

u ∈ U, v ∈ V, x̄, y ∈ B̄M (x)

∣∣∣∣
(
∂ϕ

∂r
(r, y) + f(y, u, v) ·Dϕ(r, y)

)
−
(
∂ϕ

∂r
(s, x̄) + f(x̄, u, v) ·Dϕ(s, x̄)

)∣∣∣∣ . (3.41)

Obviously, m(δ) is nondecreasing in δ and m(δ) → 0, as δ ↓ 0. From (2.2), considering that |Xsn,xn,α,β
r − xn| ≤

C|r − sn| ≤ C|tnk − sn|, r ∈ [sn, t
n
k ], and from (3.41) we obtain that∣∣∣∣

(
∂ϕ

∂r
(r,Xsn,xn,α,β

r ) + f(Xsn,xn,α,β
r , αr, βr) ·Dϕ

(
r,Xsn,xn,α,β

r

))

−
(
∂ϕ

∂r
(sn, xn) + f(xn, αr, βr) ·Dϕ(sn, xn)

)∣∣∣∣ ≤ m(C|tnk − sn|), r ∈ [sn, t
n
k ]. (3.42)

It follows from (3.40) and (3.42) that

−(tnk − sn)
(
∂ϕ

∂r
(sn, xn) +m(C|tnk − sn|)

)
≤ inf

β∈Bπn
1 (sn,tn

k )
sup

α∈Aπn
1 (sn,tn

k )

E

[∫ tn
k

sn

f(xn, αr, βr) ·Dϕ(sn, xn)dr

]

≤ sup
α∈Aπn

1 (sn,tn
k )

E

[∫ tn
k

sn

f(xn, αr, β̃r) ·Dϕ(sn, xn)dr

]
, (3.43)

where we take β̃r = ṽ(ζπn

2,k−1), r ∈ [sn, t
n
k ], and ṽ is a V -valued measurable function. Define ρn = (tnk − sn)2.

From (3.43) we see that there exists a ρn-optimal strategy αn (depending on β̃) such that

− (tnk − sn)
(
∂ϕ

∂r
(sn, xn) +m(C|tnk − sn|) + (tnk − sn)

)
≤ E

[∫ tn
k

sn

f(xn, α
n
r , β̃r) ·Dϕ(sn, xn)dr

]

=
∫ tn

k

sn

E
[
f
(
xn, α

n
r (ζπn

1,k−1, ṽ), ṽ(ζ
πn

2,k−1)
)
·Dϕ(sn, xn)

]
dr.

(3.44)
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Notice that on the interval [sn, t
n
k ], αn does not depend on the control ṽ due to the delay property. Then, thanks

to the independence between ζπn

1,k−1 and ζπn

2,k−1, from (3.44) we get

− (tnk − sn)
(
∂ϕ

∂r
(sn, xn) +m(C|tnk − sn|) + (tnk − sn)

)

≤
∫ tn

k

sn

sup
μ∈P(U)

∫
U

E
[
f
(
xn, u, ṽ

(
ζπn

2,k−1

))
·Dϕ(sn, xn)

]
μ(du)dr. (3.45)

From the arbitrariness of ṽ, it follows that

− (tnk − sn)
(
∂ϕ

∂r
(sn, xn) +m(C|tnk − sn|) + (tnk − sn)

)

≤ (tnk − sn) inf
ν∈P(V )

sup
μ∈P(U)

∫
U×V

f(xn, u, v) ·Dϕ(sn, xn)μ(du)ν(dv), (3.46)

which means that

−
(
∂ϕ

∂r
(sn, xn) +m(C|tnk − sn|) + (tnk − sn)

)
s ≤ inf

ν∈P(V )
sup

μ∈P(U)

∫
U×V

f(xn, u, v) ·Dϕ(sn, xn)μ(du)ν(dv).

(3.47)
Recalling that (sn, xn) → (t, x) and 0 ≤ (tnk − sn) ≤ (tnk − tnk−1) ≤ |πn|, taking the limit we get

∂ϕ

∂t
(t, x) + inf

ν∈P(V )
sup

μ∈P(U)

∫
U×V

f(x, u, v) ·Dϕ(t, x)μ(du)ν(dv) ≥ 0. (3.48)

�

Now we want to prove W̃ is a viscosity supersolution of the HJI equation (3.36). Notice that

−Wπ
1 (t, x, p, q) = sup

(αi)∈(Aπ
1 (t,T ))I

inf
(βj)∈(Bπ

1 (t,T ))J

I∑
i=1

J∑
j=1

piqjE
[
−gij

(
X

t,x,αi,βj

T

)]
. (3.49)

Then −Wπ
1 (t, x, p, q) has the same form as V π

1 , the only change concerns the role of players. Thus, the convex
conjugate of −Wπ

1 (t, x, p, q) with respect to q, i.e., −(Wπ#
1 (t, x, p,−q̄)) satisfies a sub-dynamic programming

principle. Then similar to Lemma 3.7 and Theorem 3.10 we have the following result.

Lemma 3.11. For any (t, x, p, q̄) ∈ [0, T ]× Rn ×Δ(I) × RJ , and for all l (k ≤ l ≤ n), we have

Wπ#
1 (t, x, p, q̄) ≥ sup

α∈Aπ
1 (t,tl)

inf
β∈Bπ

1 (t,tl)
E
[
Wπ#

1

(
tl, X

t,x,α,β
tl

, p, q̄
)]
, (3.50)

and W̃ (Recall Lem. 3.8) is a supersolution of the HJI equation (3.36).

We now give the definition of dual solutions for the following HJI equation⎧⎪⎨
⎪⎩
∂V

∂t
(t, x) +H(x,DV (t, x)) = 0, (t, x) ∈ [0, T ]× Rn,

V (T, x) =
∑

i,j piqjgij(x), x ∈ Rn,

(3.51)

where H(x, ξ) = infμ∈P(U) supν∈P(V )

( ∫
U×V f(x, u, v)μ(du)ν(dv) · ξ).
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Definition 3.12. A function w : [0, T ] × Rn ×Δ(I) ×Δ(J) �→ R is called a dual viscosity subsolution of the
equation (3.51) if, firstly, w is Lipschitz continuous with all its variables, convex with respect to p and concave
with respect to q, and secondly, for any (p, q̄) ∈ Δ(I)×RJ , w#(t, x, p, q̄) is a viscosity supersolution of the dual
HJI equation

∂V

∂t
(t, x) +H∗(x,DV (t, x)) = 0, (t, x) ∈ [0, T ]× Rn, (3.52)

where H∗(x, ξ) = −H(x,−ξ).
A function w : [0, T ]×Rn×Δ(I)×Δ(J) �→ R is called a dual viscosity supersolution of the equation (3.51) if,

firstly, w is Lipschitz continuous with all its variables, convex with respect to p and concave with respect to q,
and secondly, for any (p̄, q) ∈ RI ×Δ(J), w∗(t, x, p̄, q) is a viscosity subsolution of the dual HJI equation (3.52).

The function w is called the dual viscosity solution of the equation (3.51) if w is a dual viscosity subsolution
and a dual viscosity supersolution of the equation (3.51).

Lemma 3.13. Let w1, w2 : [0, T ]× Rn ×Δ(I) ×Δ(J) �→ R be a dual viscosity subsolution and a dual viscosity
supersolution of the HJI equation (3.51), respectively. If, for all (x, p, q) ∈ Rn ×Δ(I) ×Δ(J), w1(T, x, p, q) ≤
w2(T, x, p, q), then we have w1 ≤ w2 on [0, T ]× Rn ×Δ(I) ×Δ(J).

For the proof of Lemma 3.13 the reader is referred to Theorem 5.1 in [7].

Theorem 3.14. The functions (V πn
1 ) and (Wπn

1 ) converge uniformly on compacts to the same Lipschitz func-
tion U when the mesh of the partition πn tends to 0. Moreover, the function U is the unique dual viscosity
solution of the HJI equation (3.51).

To prove this statement we first consider the following proposition, then we get Theorem 3.14 directly.

Proposition 3.15. For any sequence of partitions πn with |πn| → 0, there exists a subsequence still denoted by
(πn)n≥1, such that (V πn

1 ) and (Wπn
1 ) converge uniformly on compacts to the same function U , and the function

U is the unique dual viscosity solution of the HJI equation (3.51).

Remark 3.16. If Proposition 3.15 holds, then for all subsequence (πn) with |πn| → 0, there exists a sub-
subsequence (πnl

) such that (V
πnl
1 ,W

πnl
1 ) converges uniformly to the function (U,U), and the limit U is the

unique dual solution of the HJI equation (3.51). Therefore, the limits of all converging sub-subsequences are the
same, then Theorem 3.14 holds.

Now we prove (of Prop. 3.15).

Proof. From Lemma 3.3, using the Arzelà−Ascoli Theorem we know there exist two bounded Lipschitz functions
V1 and W1 : [0, T ] × Rn × Δ(I) × Δ(J) �→ R such that (V πn

1 ,Wπn
1 ) → (V1,W1) uniformly on compacts in

[0, T ]× Rn ×Δ(I) ×Δ(J), and V1,W1 are convex in p, concave in q.
From Lemma 3.8, we have W̃ = lim

n→∞Wπn#
1 , Ṽ = lim

n→∞V πn∗
1 , and due to Lemmas 3.10 and 3.11 Ṽ ∗ and W̃#

is a dual viscosity supersolution and a dual viscosity subsolution of HJI equation (3.51), respectively, with the
terminal value Ṽ ∗(T, x, p, q) = W̃#(T, x, p, q) =

∑
ij piqjgij(x). Then from Lemma 3.13, it follows

Ṽ ∗ ≥ W̃#, on [0, T ]× Rn ×Δ(I) ×Δ(J). (3.53)

Let ρ > 0. Since, for any M > 0, V1(t, x, p, q) = lim
n→∞ V πn

1 (t, x, p, q), uniformly in (t, x, p, q) ∈ [0, T ] × B̄M (0) ×
Δ(I) ×Δ(J), there exists a positive integer Nρ,M such that, for all (t, x, p, q) ∈ [0, T ]× B̄M (0) ×Δ(I) ×Δ(J),
it holds |V πn

1 (t, x, p, q) − V1(t, x, p, q)| ≤ ρ. Thus, from the definition of convex conjugate we have

|V πn∗
1 (t, x, p̄, q) − V ∗

1 (t, x, p̄, q)| =

∣∣∣∣∣ sup
p∈Δ(I)

{p̄ · p− V πn
1 (t, x, p, q)} − sup

p∈Δ(I)

{p̄ · p− V1(t, x, p, q)}
∣∣∣∣∣

≤ sup
p∈Δ(I)

|V πn

1 (t, x, p, q) − V1(t, x, p, q)| ≤ ρ.
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Hence, V ∗
1 (t, x, p̄, q) = lim

n→∞V πn∗
1 (t, x, p̄, q) uniformly on compacts, and Ṽ = lim

n→∞V πn∗
1 = V ∗

1 . Since V1 is convex

in p, we have V1 = (V ∗
1 )∗ = Ṽ ∗. Similarly, we obtain W1 = W̃#. Thus, from (3.53) we have

W1 ≤ V1, on [0, T ]× Rn ×Δ(I) ×Δ(J). (3.54)

On the other hand, as W πn
1 ≥ V πn

1 , for all n ≥ 1, it follows that

W1 ≥ V1, on [0, T ]× Rn ×Δ(I) ×Δ(J). (3.55)

Finally, (3.54) and (3.55) imply that U := V1 = W1(= Ṽ ∗ = W̃#) on [0, T ]×Rn ×Δ(I)×Δ(J), and as U = Ṽ ∗

is a dual viscosity supersolution and U = W̃# a dual viscosity subsolution, U is a dual viscosity solution of HJI
equation (3.51). Its uniqueness follows from Lemma 3.13. �

From Theorems 3.1 and 3.14 we obtain immediately the following result.

Theorem 3.17. The functions (V πn) and (Wπn) converge uniformly on compacts to the same Lipschitz con-
tinuous function U , when the mesh of the partition πn tends to 0. Moreover, the function U is the unique dual
viscosity solution of the HJI equation (3.51).

Remark 3.18. Note that usually differential games with asymmetric information don’t admit the dynamic
programming principle (See Lem. 3.7). To solve this problem, we adopt the dual approach introduced by
Cardaliaguet [7] to prove the existence of the value for our differential games. Another way to deal with the
absence of the dynamic programming principle is to study the associated partial differential equation (PDE, for
short) with obstacle. Cardaliaguet [8] proved that a mapping w is a dual viscosity solution of PDE (3.51) if and
only if w is a viscosity solution of the related PDE with obstacle.

4. Nash equilibrium payoffs for nonzero-sum differential games with

symmetric information and without Isaacs condition

In this section, in the same framework as before, we consider the existence of Nash equilibrium payoffs for
nonzero-sum differential games, but with symmetric information (i.e., I = J = 1) and without Isaacs condition.
Due to Theorem 3.1 we only need to consider strategies α ∈ Aπ

1 (t, T ) and β ∈ Bπ
1 (t, T ) for our nonzero-sum

games. Let g1 : Rn �→ R and g2 : Rn �→ R be two bounded Lipschitz continuous functions. For (t, x) ∈ [0, T ]×Rn,
(u, v) ∈ Uπ,1

t,T × Vπ,1
t,T (For the definition of Uπ,1

t,T and Vπ,1
t,T we refer to Rem. 2.5), we define

J1(t, x, u, v) = E
[
g1(X

t,x,u,v
T )

]
and J2(t, x, u, v) = E

[
g2(X

t,x,u,v
T )

]
, (4.1)

where Xt,x,u,v is the solution of equation (2.1). From Remark 2.4 we know that, for all (α, β) ∈ Aπ
1 (t, T ) ×

Bπ
1 (t, T ), there exists (u, v) ∈ Uπ,1

t,T × Vπ,1
t,T , such that α(v) = u, β(u) = v. This allows to define Jm(t, x, α, β) =

Jm(t, x, u, v), m = 1, 2.
Here, in our nonzero-sum differential game Player I wants to maximize J1(t, x, α, β), while Player II aims to

maximize J2(t, x, α, β). A Nash equilibrium point is a couple of strategies (ᾱ, β̄) such that for any other couples
of strategies (α, β), it holds

J1(t, x, ᾱ, β̄) ≥ J1(t, x, α, β̄), and J2(t, x, ᾱ, β̄) ≥ J2(t, x, ᾱ, β), (4.2)

and the pair (J1(t, x, ᾱ, β̄), J2(t, x, ᾱ, β̄)) is called a Nash equilibrium payoff. However, working without Isaacs
condition, we cannot expect to find (ᾱ, β̄) ∈ Aπ(t, T ) × Bπ(t, T ) for a suitable partition π, such that (4.2)
holds. For this reason, in our paper, we only investigate the existence of a Nash equilibrium payoff which can be
approximated by pairs of payoff functionals (J1(t, x, ᾱε, β̄ε), J2(t, x, ᾱε, β̄ε)), when ε tends to 0. Let us be more
precise and give the definition of a Nash equilibrium payoff for our nonzero-sum differential game.
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Definition 4.1. A couple (e1, e2) ∈ R2 is called a Nash equilibrium payoff (NEP, for short) at the position
(t, x), if for any ε > 0, there exists δε small enough satisfying that, for any partition π of the interval [0, T ] with
|π| ≤ δε, there exist (αε, βε) ∈ Aπ

1 (t, T ) × Bπ
1 (t, T ) such that for all (α, β) ∈ Aπ

1 (t, T ) × Bπ
1 (t, T )

J1(t, x, αε, βε) ≥ J1(t, x, α, βε) − ε and J2(t, x, αε, βε) ≥ J2(t, x, αε, β) − ε, (4.3)

and
|Jm(t, x, αε, βε) − em| ≤ ε, m = 1, 2. (4.4)

The following lemma gives an equivalent condition of assumption (4.3) which will be frequently used in this
section.

Lemma 4.2. Let ε > 0 and (αε, βε) ∈ Aπ
1 (t, T ) × Bπ

1 (t, T ). Assumption (4.3) holds if and only if, for any
(u, v) ∈ Uπ,1

t,T × Vπ,1
t,T ,

J1(t, x, αε, βε) ≥ J1(t, x, u, βε(u)) − ε and J2(t, x, αε, βε) ≥ J2(t, x, αε(v), v) − ε. (4.5)

Proof. We assume (4.3) holds. For any fixed u ∈ Uπ,1
t,T , we put α(v) ≡ u, for all v ∈ Vπ,1

t,T . Obviously, α ∈ Aπ
1 (t, T ).

Then, from condition (4.3) we have J1(t, x, αε, βε) ≥ J1(t, x, u, βε(u))− ε. Similarly, for any v ∈ Vπ,1
t,T , we obtain

J2(t, x, αε, βε) ≥ J2(t, x, αε(v), v) − ε. Thus, condition (4.5) holds true.
Conversely, suppose now that (4.5) holds. For all α ∈ Aπ

1 (t, T ), there exists (u, v) ∈ Uπ,1
t,T × Vπ,1

t,T such that,
α(v) = u, βε(u) = v. Then,

J1(t, x, α, βε) − ε = J1(t, x, u, βε(u)) − ε ≤ J1(t, x, αε, βε),

and the symmetric argument applied to J2 yields (4.3). �

Due to Theorem 3.14, the upper value function Wπ
1 and the lower value function V π

1 associated with a terminal
cost function g converge to the same function as the mesh |π| of partition π tends to 0. Thus, we can introduce
the following functions U1(t, x) and U2(t, x), associated with g1 and g2, respectively.

U1(t, x) = lim
|π|→0

inf
β∈Bπ

1 (t,T )
sup

α∈Aπ
1 (t,T )

J1(t, x, α, β) = lim
|π|→0

sup
α∈Aπ

1 (t,T )

inf
β∈Bπ

1 (t,T )
J1(t, x, α, β), (4.6)

and
U2(t, x) = lim

|π|→0
sup

β∈Bπ
1 (t,T )

inf
α∈Aπ

1 (t,T )
J2(t, x, α, β) = lim

|π|→0
inf

α∈Aπ
1 (t,T )

sup
β∈Bπ

1 (t,T )

J2(t, x, α, β). (4.7)

Now we state the following both main results for our nonzero-sum differential game.

Theorem 4.3 (Characterization). A couple (e1, e2) ∈ R2 is an NEP at the position (t, x) if and only if, for all
ε > 0, there exists δε > 0 satisfying that for any partition π = {0 = t0 < t1 < . . . < tN = T } with |π| < δε and
t = tk−1, there exists (uε, vε) ∈ Uπ,1

t,T × Vπ,1
t,T such that, for i = k, . . . , N and m = 1, 2, respectively,

P
{
E
[
gm(Xt,x,uε,vε

T )|Ftk−2,ti−2

]
≥ Um

(
ti−1, X

t,x,uε,vε

ti−1

)
− ε
}
≥ 1 − ε, (4.8)

and ∣∣∣E [gm

(
Xt,x,uε,vε

T

)]
− em

∣∣∣ ≤ ε. (4.9)

Theorem 4.4. For any initial position (t, x) ∈ [0, T ]× Rn, there exists an NEP at the position (t, x).

The rest of this section is devoted to the proof of the above theorems. We first prove Theorem 4.3 and then,
with the help of Theorem 4.3 we show the existence result (Thm. 4.4). First of all, let us give the following
lemma which will be used in the proofs of the Theorems 4.3 and 4.4.
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Lemma 4.5. a) Let (t, x) ∈ [0, T ] × Rn and ε > 0. Then for any partition π = {0 = t0 < t1 < . . . < tN = T }
with |π| < δε (δε > 0 small enough) t = tk−1, and for any given u′ ∈ Uπ,1

t,T , there exist strategies αi ∈ Aπ
1 (t, T ),

i = k, . . . , N , such that for all v ∈ Vπ,1
t,T ,

αi(v) ≡ u′, P -a.s., on [t, ti−1], E
[
g2

(
X

t,x,αi(v),v
T

)
|Ftk−2,ti−2

]
≤ U2(ti−1, X

t,x,αi(v),v
ti−1

) + ε, P -a.s. (4.10)

b) Let (t, x) ∈ [0, T ] × Rn and ε > 0. Then for any partition π = {0 = t0 < t1 < . . . < tN = T } with |π| < δε
(δε > 0 small enough) t = tk−1, and for any given u′ ∈ Uπ,1

t,T , there exist strategies αi ∈ Aπ
1 (t, T ), i = k, . . . , N ,

such that for all v ∈ Vπ,1
t,T ,

αi(v) ≡ u′, P -a.s., on [t, ti−1], E
[
g1(X

t,x,αi(v),v
T )|Ftk−2,ti−2

]
≥ U1

(
ti−1, X

t,x,αi(v),v
ti−1

)
− ε, P -a.s. (4.11)

Proof. We just give the proof for a), the proof of b) is analogous.
For any ε > 0, y ∈ Rn, and i (1 ≤ i ≤ N), it follows from the definition of the value function U2 that there

exists a strategy αi
y ∈ Aπ

1 (ti−1, T ) such that, for |π| < δε, δε > 0 small enough,

U2(ti−1, y) = lim
|π|→0

inf
α∈Aπ

1 (ti−1,T )
sup

β∈Bπ
1 (ti−1,T )

E
[
g2

(
X

ti−1,y,α,β
T

)]

≥ inf
α∈Aπ

1 (ti−1,T )
sup

β∈Bπ
1 (ti−1,T )

E
[
g2

(
X

ti−1,y,α,β
T

)]
− ε

4

≥ inf
α∈Aπ

1 (ti−1,T )
sup

v∈Vπ,1
ti−1,T

E
[
g2

(
X

ti−1,y,α(v),v
T

)]
− ε

4
≥ sup

v∈Vπ,1
ti−1,T

E

[
g2

(
X

ti−1,y,αi
y(v),v

T

)]
− ε

2
·

(4.12)

Since the coefficient f is bounded, there exists a constant R > 0 such that |Xt,x,u,v| ≤ R, for all (u, v) ∈
Uπ,1

t,T ×Vπ,1
t,T . Let us choose a finite Borel partition (Ol)l=1,2,...,n of the closed ball B̄R(0), with diam(Ol) ≤ ε�(4C),

1 ≤ l ≤ n, and let yl denote an arbitrarily chosen element in Ol. Then it follows from the fact that U2(ti−1, z) and

supv∈Vπ,1
ti−1,T

E[g2(X
ti−1,z,αi

yl
(v),v

T )] are Lipschitz continuous with respect to z, with some Lipschitz constant C:

sup
v∈Vπ,1

ti−1,T

E

[
g2

(
X

ti−1,z,αi
yl

(v),v

T

)]
≤ U2(ti−1, z) + ε, z ∈ Ol. (4.13)

Recall that all v ∈ Vπ,1
t,T is of the following form (We refer to Rem. 2.5)

v(ω, s) = vk(s, ζπ
2,k−1)I[t,tk)(s) +

N∑
l=k+1

vl(s, ζπ
k−1, . . . , ζ

π
l−2, ζ

π
2,l−1)I[tl−1,tl)(s), (4.14)

where the vl’s are Borel functions over suitable spaces and with values in V. For k ≤ i ≤ N and s ∈ [ti−1, T ],
we put

v′′(ω,Q, s) =
N∑
l=i

vl(s,Q, ζπ
2,i−1, ζ

π
1,i−1, ζ

π
2,i, . . . , ζ

π
2,l−1)I[tl−1,tl)(s), (4.15)

where Q ∈ R2(i−k). Obviously, v′′ ∈ Vπ,1
ti−1,T , and we define the following strategy αi (k + 1 ≤ i ≤ N),

αi(v) :=
{
u′, on [t, ti−1],
αi

yl
(v′′(Q0, s)), on (ti−1, T ]× {Xt,x,u′,v

ti−1
∈ Ol}, v ∈ Vπ,1

t,T , (4.16)
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where Q0 = (ζπ
2,k−1, ζ

π
1,k−1, . . . , ζ

π
2,i−2, ζ

π
1,i−2). Then, αi ∈ Aπ

1 (t, T ). Notice that Q0 and Xt,x,u′,v
ti−1

are all
Ftk−2,ti−2-measurable, v′′(Q, s) and αi

yl
(v′′(Q, s)) are all Fti−2,T -measurable. Hence, for all v ∈ Vπ,1

t,T (of the
form (4.14)) from (4.13) we have, P -a.s.,

E
[
g2

(
X

t,x,αi(v),v
T

)
|Ftk−2,ti−2

]
=

n∑
l=1

E

[
g2

(
X

ti−1,z,αi
yl

(v′′(Q,s)),v′′(Q,s)

T

)]
Q=Q0,z=Xt,x,u′,v

ti−1

· I{
Xt,x,u′,v

ti−1
∈Ol

}

≤
n∑

l=1

U2(ti−1, X
t,x,u′,v
ti−1

) · I{
Xt,x,u′,v

ti−1
∈Ol

} + ε = U2

(
ti−1, X

t,x,αi(v),v
ti−1

)
+ ε.

(4.17)

�

Now with the help of Lemma 4.5, we can prove Theorem 4.3.

Proof. Sufficient condition.
Let us assume that (e1, e2) satisfies condition (4.8) and (4.9) of Theorem 4.3, namely, for all ε > 0, there

exists δε > 0 small enough satisfying that for any partition π = {0 = t0 < t1 < . . . < tN = T } with |π| < δε and
for t = tk−1, there exists (uε, vε) ∈ Uπ,1

t,T × Vπ,1
t,T such that for i = k, . . . , N and m = 1, 2,

P
{
E
[
gm

(
Xt,x,uε,vε

T

)
|Ftk−2,ti−2

]
≥ Um

(
ti−1, X

t,x,uε,vε

ti−1

)
− ε
}
≥ 1 − ε, (4.18)

and ∣∣∣E [gm

(
Xt,x,uε,vε

T

)]
− em

∣∣∣ ≤ ε/2. (4.19)

We prove that (e1, e2) is an NEP for the initial position (t, x). For this, we construct (αε, βε) ∈ Aπ
1 (t, T )×Bπ

1 (t, T )
satisfying (4.3) and (4.4).

Since gm,m = 1, 2, is bounded, we can assume without loss of generality that gm ≥ 0, which has as conse-
quence that Wm ≥ 0. Let ε > 0, ε0 = ε

8+4NC and (ū, v̄) = (uε0 , vε0), and observe that (4.18) and (4.19) also hold
for ε = ε0. From Lemma 4.5 a), putting u′ := ū, we see that there exist strategies αi ∈ Aπ

1 (t, T ), i = k, . . . , N ,
such that, for all v ∈ Vπ,1

t,T ,

αi(v) ≡ ū, P -a.s., on [t, ti−1], E
[
g2

(
X

t,x,αi(v),v
T

)
|Ftk−2,ti−2

]
≤ U2(ti−1, X

t,x,αi(v),v
ti−1

) +
ε

8
, P -a.s. (4.20)

Given any v ∈ Vπ,1
t,T , we introduce the stopping times Sv = inf{s|vs �= v̄s, t ≤ s ≤ T } ∧ T , τv = inf{ti−1|ti−1 >

Sv, k + 1 ≤ i ≤ N} ∧ T , and we define αε as follows:

αε(v) =
{
ū, on [[t, τv]],
αi(v), on (ti−1, T ] × {τv = ti−1}, v ∈ Vπ,1

t,T . (4.21)

Obviously, αε ∈ Aπ
1 (t, T ). Observe that, as τ v̄ = T , we have, in particular α(v̄) = ū. Furthermore, for any

v ∈ Vπ,1
t,T ,

Xt,x,αε(v),v =
{
Xt,x,ū,v, on [[t, τv ]], P -a.s.,∑N

i=k+1X
t,x,αi(v),v · I{τv=ti−1}, on [[τv , T ]], P -a.s.

(4.22)

Then, since {τv = ti−1} ∈ Ftk−2,ti−2 , from (4.20) we get

E
[
g2

(
X

t,x,αε(v),v
T

)
|Ftk−2,τv

]
≤ U2(τv , X

t,x,αε(v),v
τv ) +

ε

8
, P -a.s. (4.23)

Taking the expectation on both sides, we obtain

J2(t, x, αε(v), v) ≤ E
[
U2

(
τv, X

t,x,αε(v),v
τv

)]
+
ε

8
· (4.24)
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On the other hand, asXt,x,αε(v),v
Sv = Xt,x,ū,v̄

Sv and the dynamics coefficient f is bounded, we have, for ρ := |π| > 0,

E

[
sup

0≤r≤ρ

∣∣∣Xt,x,αε(v),v
(Sv+r)∧T −Xt,x,ū,v̄

(Sv+r)∧T

∣∣∣] ≤ Cρ.

Moreover, since U2(s, x) is Lipschitz in x, uniformly with respect to s and Sv ≤ τv ≤ Sv + ρ, we obtain

E
[∣∣∣U2

(
τv, X

t,x,αε(v),v
τv

)
− U2

(
τv, Xt,x,ū,v̄

τv

)∣∣∣] ≤ Cρ ≤ ε

8
, (4.25)

for ρ = |π| ≤ ε/(8C). Then, combining (4.24) and (4.25), we see that

J2(t, x, αε(v), v) ≤ E[U2(τv, Xt,x,ū,v̄
τv )] +

ε

4
· (4.26)

Putting
Ωi :=

{
E
[
g2(X

t,x,ū,v̄
T )|Ftk−2,ti−2

] ≥ U2(ti−1, X
t,x,ū,v̄
ti−1

) − ε0

}
, (4.27)

we have from (4.18) that P (Ωi) ≥ 1 − ε0. From (4.26), (4.27) and (4.19), we deduce

J2(t, x, αε(v), v)

≤
N∑

i=k+1

E[U2(ti−1, Xti−1) · I{τv=ti−1} · IΩi ] +
N∑

i=k+1

E[U2

(
ti−1, Xti−1

) · I{τv=ti−1} · IΩc
i
] +

ε

4

≤
N∑

i=k+1

E
[
(E
[
g2(XT )|Ftk−2,ti−2

]
+ ε0) · I{τv=ti−1} · 1Ωi

]
+

N∑
i=k+1

CP (Ωc
i ∩ {τv = ti−1}) +

ε

4

≤ E[g2(XT )] + ε0 +
N∑

i=k+1

CP (Ωc
i ) +

ε

4
≤ e2 + (2 +NC)ε0 +

ε

4
= e2 +

ε

2
, (4.28)

where X. := Xt,x,ū,v̄
. (Recall also that g2 ≥ 0). Finally, combining (4.28) and (4.21), we obtain that, for all

v ∈ Vπ,1
t,T ,

J2(t, x, αε(v), v) ≤ e2 +
ε

2
, and αε(v̄) = ū. (4.29)

Similarly, we can construct βε ∈ Bπ
1 (t, T ) such that, for all u ∈ Uπ,1

t,T ,

J1(t, x, u, βε(u)) ≤ e1 +
ε

2
, and βε(ū) = v̄. (4.30)

From (4.29), (4.30) and (4.19) we obtain, for m = 1, 2,

|Jm(t, x, αε, βε) − em| = |Jm(t, x, ū, v̄) − em| ≤ ε

2
, (4.31)

which is just (4.4). Moreover, from (4.31), for m = 1, 2,

em ≤ Jm(t, x, αε, βε) +
ε

2
· (4.32)

Consequently, (4.29), (4.30) and (4.32) yield

J2(t, x, αε(v), v) ≤ e2 +
ε

2
≤ J2(t, x, αε, βε) + ε,

J1(t, x, u, βε(u)) ≤ e1 +
ε

2
≤ J1(t, x, αε, βε) + ε.

Finally, Lemma 4.2 gives (4.3) and allows to conclude.
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Necessary condition.
We assume there exists an NEP (e1, e2) ∈ R2 at the position (t, x), i.e., for any ε > 0, there exists δε > 0

small enough, satisfying that, for any partition π = {0 = t0 < . . . < tN = T } with |π| < δε and with t = tk−1,
there exists (αε, βε) ∈ Aπ

1 (t, T )×Bπ
1 (t, T ) such that, for all (u, v) ∈ Uπ,1

t,T ×Vπ,1
t,T , the following inequalities hold:

J1(t, x, αε, βε) ≥ J1(t, x, u, βε(u)) − ε2

2
and J2(t, x, αε, βε) ≥ J2(t, x, αε(v), v) − ε2

2
, (4.33)

and

|Jm(t, x, αε, βε) − em| ≤ ε2

2
, m = 1, 2. (4.34)

Due to Remark 2.4 there exists (uε, vε) ∈ Uπ,1
t,T × Vπ,1

t,T such that αε(vε) = uε and βε(uε) = vε. Then, obvi-
ously, (4.9) holds. Let us suppose that (4.8) does not hold. This means that there exists ε > 0 arbitrarily small
such that, for all δ > 0, there is a partition π = {0 = t0 < . . . < t = tk−1 < . . . < tN = T } such that for all
(u, v) ∈ Uπ,1

t,T × Vπ,1
t,T and, thus, in particular, for (uε, vε), there is some j ∈ {k, . . . , N}, for which, without loss

of generality, for m = 1,

P
{
E
[
g1

(
Xt,x,uε,vε

T

)
|Ftk−2,tj−2

]
< U1(tj−1, X

t,x,uε,vε

tj−1
) − ε

}
> ε. (4.35)

Let us put
A =

{
E
[
g1

(
Xt,x,uε,vε

T

)
|Ftk−2,tj−2

]
< U1

(
tj−1, X

t,x,uε,vε

tj−1

)
− ε
}
∈ Ftk−2,tj−2 . (4.36)

Applying Lemma 4.5 b) to u′ := uε ∈ Uπ,1
t,T , we see that there exists a strategy α ∈ Aπ

1 (t, T ) such that, for all
v ∈ Vπ,1

t,T , α(v) = uε, on [t, tj−1], P -a.s., and

E
[
g1

(
X

t,x,α(v),v
T

)
|Ftk−2,tj−2

]
≥ U1

(
tj−1, X

t,x,α(v),v
tj−1

)
− ε

2
, P -a.s. (4.37)

For (α, βε) ∈ Aπ
1 (t, T ) × Bπ

1 (t, T ), there exists a pair (u, v) ∈ Uπ,1
t,T × Vπ,1

t,T such that α(v) = u and βε(u) = v.
Notice that u ≡ uε, v ≡ vε, on [t, tj−1]. We put

ū =
{
uε, on ([t, tj−1] ×Ω) ∪ ((tj−1, T ] ×Ac

)
,

u, on (tj−1, T ]×A.

Obviously, ū ∈ Uπ
t,T , and βε(ū) ≡ vε, on [t, tj−1), while for s ∈ [tj−1, T ], βε(ū)s = vsIA + vε

sIAc . This implies
that Xt,x,ū,βε(ū) ≡ Xt,x,uε,vε

, on [t, tj−1], and Xt,x,ū,βε(ū) = Xt,x,α(v),vIA +Xt,x,uε,vε

IAc . Consequently,

J1 (t, x, ū, βε(ū)) = E
[
g1

(
Xt,x,uε,vε

T

)
· IAc

]
+ E

[
g1(X

t,x,α(v),v
T ) · IA

]
= E

[
g1(X

t,x,uε,vε

T ) · IAc

]
+ E

[
E
[
g1(X

t,x,α(v),v
T )|Ftk−2,tj−2

]
· IA
]

≥ E[g1(X
t,x,uε,vε

T ) · IAc ] + E
[
U1

(
tj−1, X

t,x,α(v),v
tj−1

)
· IA
]
− ε

2
P (A) (from (4.37))

≥ E
[
g1

(
Xt,x,uε,vε

T

)]
+
ε

2
P (A) (from (4.36))

> J1(t, x, αε, βε) +
ε2

2
, (from (4.35) and (4.36)) (4.38)

which is in contradiction with (4.33). Therefore, (4.8) holds true. �

To prove Theorem 4.4 we only need to prove that, for any ε > 0, there exists δε > 0 small enough satisfying
that, for any partition π = {0 = t0 < t1 < . . . < tN = T } with |π| < δε and t = tk−1, there is a pair (uε, vε)
satisfying (4.8) and (4.9) in Theorem 4.3. For this we show the following stronger result.
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Proposition 4.6. For any ε > 0, there exists δε > 0 small enough satisfying that, for any partition π = {0 =
t0 < t1 < . . . < tN = T } with |π| < δε and t = tk−1, there exists a pair (uε, vε) ∈ Uπ,1

t,T × Vπ,1
t,T such that, for all

k ≤ i ≤ l ≤ N , and m = 1, 2,

E[Um(tl, Xtl
)|Ftk−2,ti−2 ] ≥ Um(ti−1, Xti−1) − ε, P -a.s., (4.39)

where X. = Xt,x,uε,vε

. .

Remark 4.7. Proposition 4.6 implies Theorem 4.3. Indeed, setting l = N , we have Um(T, x) = gm(x) and
Um(T,Xt,x,uε,vε

T ) = gm(Xt,x,uε,vε

T ). Consequently, the pair (uε, vε) satisfies (4.8) in Theorem 4.3. In order to
get (4.9), it suffices to observe that the sequence {(E[gm(Xt,x,uε,vε

T )])m=1,2, ε > 0} is bounded and, consequently,
converges along a subsequence, as ε ↓ 0, to a limit (e1, e2) ∈ R2. The relations (4.8) and (4.9) are obvious now.

We first give the following lemma.

Lemma 4.8. For any ε > 0, there exists δε > 0 small enough satisfying that, for any partition π = {0 = t0 <
t1 < . . . < tN = T } with |π| < δε and t = tk−1, there exists a pair (uε, vε) ∈ Uπ,1

t,T ×Vπ,1
t,T such that, for m = 1, 2,

E
[
Um

(
tk, X

t,x,uε,vε

tk

)]
≥ Um(t, x) − ε. (4.40)

Proof. From the definition of U1(t, x) and U2(t, x) (See (4.6) and (4.7)), it follows that there is some δε > 0
such that, for |π| < δε,

U1(t, x) = lim
|π|→0

sup
α∈Aπ

1 (t,T )

inf
β∈Bπ

1 (t,T )
J1(t, x, α, β) ≤ sup

α∈Aπ
1 (t,T )

inf
β∈Bπ

1 (t,T )
J1(t, x, α, β) +

ε

4
,

U2(t, x) = lim
|π|→0

sup
β∈Bπ

1 (t,T )

inf
α∈Aπ

1 (t,T )
J2(t, x, α, β) ≤ sup

β∈Bπ
1 (t,T )

inf
α∈Aπ

1 (t,T )
J2(t, x, α, β) +

ε

4
·

Then we choose αε ∈ Aπ
1 (t, T ) and βε ∈ Bπ

1 (t, T ) such that

U1(t, x) ≤ inf
β∈Bπ

1 (t,T )
J1(t, x, αε, β) +

ε

2
≤ inf

v∈Vπ,1
t,T

J1(t, x, αε(v), v) +
ε

2
,

U2(t, x) ≤ inf
α∈Aπ

1 (t,T )
J2(t, x, α, βε) +

ε

2
≤ inf

u∈Uπ,1
t,T

J2(t, x, u, βε(u)) +
ε

2
· (4.41)

Let (uε, vε) ∈ Uπ,1
t,T × Vπ,1

t,T be such that, αε(vε) = uε and βε(uε) = vε (see, Rem. 2.4). We prove that (uε, vε)
satisfies (4.40). For this, we suppose (4.40) does not hold, i.e., for m = 2 (or, similarly, for m = 1) we have

E
[
U2(tk, X

t,x,uε,vε

tk
)
]
< U2(t, x) − ε. (4.42)

From Lemma 4.5 a), we see that, for u′ := uε, there exists an NAD strategy α ∈ Aπ
1 (t, T ) such that for all

v ∈ Vπ,1
t,T , α(v) = uε, P -a.s., on [t, tk], and

E
[
g2(X

t,x,α(v),v
T )|Ftk−2,tk−1

]
≤ U2

(
tk, X

t,x,α(v),v
tk

)
+
ε

2
, P -a.s. (4.43)

Let now (ū, v̄) ∈ Uπ,1
t,T ×Vπ,1

t,T be such that, α(v̄) = ū and βε(ū) = v̄. Since ū ≡ uε and v̄ ≡ vε, on [t, tk], we have

Xt,x,ū,v̄
tk

= X
t,x,α(v̄),v̄
tk

= Xt,x,uε,vε

tk
, P -a.s., and from (4.43) and (4.42) it follows that

J2(t, x, ū, βε(ū)) = J2(t, x, α(v̄), v̄) =E
[
E
[
g2(X

t,x,α(v̄),v̄
T )|Ftk−2,tk−1

]]
≤E

[
U2

(
tk, X

t,x,α(v̄),v̄
tk

)]
+
ε

2
< U2(t, x) − ε

2
, (4.44)

which contradicts (4.41). Hence, (4.40) holds true. �

Finally, we give the proof of Proposition 4.6.
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Proof. First, we show that when l = i, Proposition 4.6 holds true.
Similarly to Lemma 4.8, we see that for any ε > 0, there exists δε > 0 small enough satisfying that, for any

partition π = {0 = t0 < t1 < . . . < tN = T } with |π| < δε and t = tk−1, and for all y ∈ Rn, there exists
(uε,y

j , vε,y
j ) ∈ Uπ,1

tj ,T × Vπ,1
tj ,T , j = k − 1, . . . , N − 1, such that, for m = 1, 2,

E
[
Um

(
tj+1, X

tj,y,uε,y
j ,vε,y

j

tj+1

)]
≥ Um(tj , y) − ε. (4.45)

We now construct (uε, vε) ∈ Uπ,1
t,T × Vπ,1

t,T by induction over i, in order to have, for all i = k, . . . , N ,

E
[
Um(ti, X

t,x,uε,vε

ti
)|Ftk−2,ti−2

]
≥ Um

(
ti−1, X

t,x,uε,vε

ti−1

)
− ε, P -a.s. (4.46)

For i = k, it follows from (4.45) that there is (uε,x
k−1, v

ε,x
k−1) ∈ Uπ,1

tk−1,T × Vπ,1
tk−1,T satisfying (4.46). We define

uε := uε,x
k−1|[tk−1,tk) and vε := vε,x

k−1|[tk−1,tk).
For i = k + 1, (4.45) yields that, for any y ∈ Rn, there is (uε,y

k , vε,y
k ) ∈ Uπ,1

tk,T × Vπ,1
tk,T such that,

E
[
Um

(
tk+1, X

tk,y,uε,y
k ,vε,y

k
tk+1

)]
≥ Um(tk, y) − ε

2
, m = 1, 2. (4.47)

Since the dynamics coefficient f is bounded, there is some R > 0 such that |Xt,x,uε,vε

tk
| < R. Then there exists

a finite Borel partition (Ol)n
l=1 of B̄R(0) with diam(Ol) ≤ δε, for δε > 0 small enough, such that, for all z ∈ Ol,

E
[
Um

(
tk+1, X

tk,z,u
ε,yl
k ,v

ε,yl
k

tk+1

)]
≥ Um(tk, z) − ε. (4.48)

Indeed, use (4.47) for y = yl and the uniform Lipschitz property of Um(ti, ·) and z �→ X
tk,z,u

ε,yl
k

,v
ε,yl
k

tk+1
. Now

we extend uε and vε from [tk−1, tk) to [tk, tk+1) by putting, on [tk, tk+1), uε :=
n∑

l=1

uε,yl

k I{Xt,x,uε,vε

tk
∈Ol}, v

ε :=
n∑

l=1

vε,yl

k I{Xt,x,uε,vε

tk
∈Ol}. Then from (4.48) we obtain

E
[
Um(tk+1, X

t,x,uε,vε

tk+1
)|Ftk−2,tk−1

]
=

n∑
l=1

E[Um(tk+1, X
tk,z,u

ε,yl
k ,v

ε,yl
k

tk+1
)]z=Xt,x,uε,vε

tk

I{Xt,x,uε,vε

tk
∈Ol}

≥
n∑

l=1

[Um(tk, z) − ε]
z=Xt,x,uε,vε

tk

I{Xt,x,uε,vε

tk
∈Ol} = Um

(
tk, X

t,x,uε,vε

tk

)
− ε, P -a.s. (4.49)

Repeating the above step, we construct (uε, vε) ∈ Uπ,1
t,T × Vπ,1

t,T satisfying (4.46).
Next for l > i, from (4.46) with using ε := ε

N we get

E
[
Um(tl, X

t,x,uε,vε

tl
)|Ftk−2,ti−2

]
= E

[
E
[
Um(tl, X

t,x,uε,vε

tl
)|Ftk−2,tl−2

]
|Ftk−2,ti−2

]
≥ E

[
Um(tl−1, X

t,x,uε,vε

tl−1
)|Ftk−2,ti−2

]
− ε

N
. . . ≥ Um(ti−1, X

t,x,uε,vε

ti−1
) − ε, P -a.s. (4.50)

�

5. Characterization for the functions W (t, x, p, q) and V (t, x, p, q)

In this section we devote again to zero-sum games with asymmetric information, we characterize the functions
W (t, x, p, q) and V (t, x, p, q) defined by (2.7) and (2.9). Under the Isaacs condition we prove that W (t, x, p, q) =
V (t, x, p, q) = U(t, x, p, q), the value function (see, Thm. 3.17). This characterization guarantees that combined
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with the Definitions (5.2)–(5.5) and the proof that these functions converge all to W (= V ) is the key for
numerical approaches. It allows, e.g., that Player I makes his computations along a partition π and guarantees
him that, whatever the partition π′ is Player II chooses for his strategies (Player II, knowing that Player I
chooses π, may prefer to take a finer partition, in order to get after shorter time intervals, the information
about the randomization chosen by Player II), the value function W̄π(t, x) along π (see (5.2)) always converges
to the value of the game (see the Thms. 5.12 and 5.13).

Let us slightly change the definition of the strategies along a partition π = {0 = t0 < t1 < . . . < tN = T }.
We suppose that the both Players I and II do not randomize their strategies over the first small time interval
[t, tk). With this change the strategies α ∈ Aπ(t, T ) take the form (see, Def. 2.1)

α(ω, v)(s) = αk(v)(s)I[t,tk)(s) +
N∑

l=k+1

αl((ζπ
1,k, ζ

π
2,k, ζ

π
1,k+1, . . . , ζ

π
1,l−1)(ω), v)I[tl−1,tl)(s), s ∈ [t, T ], (5.1)

where αk : [t, tk) × Vt,T �→ Ut,T , αl : R2(l−k)−1 × [tl−1, tl) × Vt,T �→ Ut,T , k + 1 ≤ l ≤ N , are Borel measurable
functions satisfying: For all v, v′ ∈ Vt,T , it holds that, whenever v = v′ a.e. on [t, tl−1], we have for all x ∈
R2(l−k)−1, αl(x, v)(s) = αl(x, v′)(s), a.e. on [tl−1, tl], k + 1 ≤ l ≤ N .

Obviously, the strategy α such defined is a special case of Definition 2.1. We continue to write Aπ(t, T ) for
the set of the strategies α of the above form. In the same manner we redefine Bπ(t, T ). Obviously, for π′ ⊂ π,
we have Aπ′

(t, T ) ⊂ Aπ(t, T ). A(t, T ) and B(t, T ) are again defined as the union of Aπ(t, T ) and Bπ(t, T ) over
all partitions π, respectively. The other definitions are the same with that defined in Section 2.

For our approach we introduce the following upper and lower value functions, respectively:

W̄π(t, x, p, q) = inf
α̂∈(Aπ(t,T ))I

sup
β̂∈(B(t,T ))J

J(t, x, α̂, β̂, p, q), (5.2)

V̄ π(t, x, p, q) = sup
β̂∈(B(t,T ))J

inf
α̂∈(Aπ(t,T ))I

J(t, x, α̂, β̂, p, q), (5.3)

¯̄Wπ(t, x, p, q) = inf
α̂∈(A(t,T ))I

sup
β̂∈(Bπ(t,T ))J

J(t, x, α̂, β̂, p, q), (5.4)

¯̄V π(t, x, p, q) = sup
β̂∈(Bπ(t,T ))J

inf
α̂∈(A(t,T ))I

J(t, x, α̂, β̂, p, q). (5.5)

We begin our approach with proving that (W̄π(t, x, p, q), V̄ π(t, x, p, q)) as well as ( ¯̄Wπ(t, x, p, q), ¯̄V π(t, x, p, q))
converge uniformly on compacts to the same couple (U(t, x, p, q), U(t, x, p, q)), as |π| → 0. For this we have to
assume the condition

inf
u∈U

sup
ν∈P(V )

f(x, u, ν) · ξ = sup
ν∈P(V )

inf
u∈U

f(x, u, ν) · ξ, (5.6)

sup
v∈V

inf
μ∈P(U)

f(x, μ, v) · ξ = inf
μ∈P(U)

sup
v∈V

f(x, μ, v) · ξ, (5.7)

respectively, where f(x, μ, v) :=
∫

U f(x, u, v)μ(du), f(x, u, ν) :=
∫

V f(x, u, v)ν(dv), and the function U(t, x, p, q)
is the unique solution of the HJI equation (3.51). In a second step we will show that, under the conditions (5.6)
and (5.7), the functions W (t, x, p, q) = U(t, x, p, q) = V (t, x, p, q) all coincide.

Remark 5.1. The assumptions (5.6) and (5.7) hold both, if and only if the (classical) Isaacs condition holds:

inf
u∈U

sup
v∈V

f(x, u, v) · ξ = sup
v∈V

inf
u∈U

f(x, u, v) · ξ. (5.8)
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Indeed, as

inf
μ∈P(U)

f(x, μ, v) · ξ = inf
μ∈P(U)

∫
U

f(x, u, v) · ξdμ(u) ≥ inf
u∈U

f(x, u, v) · ξ ≥ inf
μ∈P(U)

f(x, μ, v) · ξ,

we have inf
μ∈P(U)

f(x, μ, v) · ξ = inf
u∈U

f(x, u, v) · ξ, and analogously, sup
ν∈P(V )

f(x, u, ν) · ξ = sup
v∈V

f(x, u, v) · ξ.
If (5.6) and (5.7) hold, we have

inf
u∈U

sup
v∈V

f(x, u, v) · ξ = inf
u∈U

sup
ν∈P(V )

f(x, u, ν) · ξ = sup
ν∈P(V )

inf
u∈U

f(x, u, ν) · ξ = sup
ν∈P(V )

inf
μ∈P(U)

f(x, μ, ν) · ξ,

sup
v∈V

inf
u∈U

f(x, u, v) · ξ = sup
v∈V

inf
μ∈P(U)

f(x, μ, v) · ξ = inf
μ∈P(U)

sup
v∈V

f(x, μ, v) · ξ = inf
μ∈P(U)

sup
ν∈P(V )

f(x, μ, ν) · ξ.

As supν∈P(V ) infμ∈P(U) f(x, μ, ν)·ξ = infμ∈P(U) supν∈P(V ) f(x, μ, ν)·ξ, we get the classical Isaacs condition (5.8).
On the other hand, if (5.8) holds, then

inf
u∈U

sup
ν∈P(V )

f(x, u, ν) · ξ = inf
u∈U

sup
v∈V

f(x, u, v) · ξ = sup
v∈V

inf
u∈U

f(x, u, v) · ξ = sup
ν∈P(V )

inf
u∈U

f(x, u, ν) · ξ,

i.e., (5.6) is satisfied. Similarly, we get (5.7).

A consequence of the redefinition of Aπ(t, T ) and Bπ(t, T ) is that now Isaacs condition is needed for the
following result.

Proposition 5.2. Under the condition (5.6) and (5.7) the functions (V πn) and (Wπn) converge uniformly on
compacts to a same Lipschitz continuous function U , when the mesh of the partition πn tends to 0. Moreover,
the function U is the unique dual viscosity solution of the HJI equation (3.51).

The proof follows that of Theorem 3.14, but the redefinition of Aπ(t, T ) and Bπ(t, T ) makes that the argument
used for (3.45)−(3.46) does not apply any more, now Isaacs condition has to be used.

Let us now investigate the convergence of (W̄π(t, x, p, q), V̄ π(t, x, p, q)); that of ( ¯̄Wπ (t, x, p, q), ¯̄V π(t, x, p, q))
can be studied similarly. Notice that, for all β ∈ B(t, T ), there exists a partition π̄ such that β ∈ Bπ̄(t, T ). This
allows to apply arguments used in Section 3, to prove the following assertions.

Lemma 5.3. The functions W̄π and V̄ π are Lipschitz in (t, x, p, q), uniformly with respect to π.

Lemma 5.4. For all (t, x) ∈ [0, T ] × Rn, the functions W̄π(t, x, p, q) and V̄ π(t, x, p, q) are convex in p ∈ Δ(I)
and concave in q ∈ Δ(J).

Lemma 5.5. For all (t, x, p̄, q) ∈ [0, T ]× Rn × RI ×Δ(J), we have

V̄ π∗(t, x, p̄, q) = inf
(βj)∈(B(t,T ))J

sup
α∈Aπ

0 (t,T )

max
i∈{1,...,I}

⎧⎨
⎩p̄i −

J∑
j=1

qjE
[
gij

(
X

t,x,α,βj

T

)]⎫⎬
⎭ . (5.9)

Proof. Let us denote by V̄ π∗
1 (t, x, p̄, q) the right hand side of (5.9). Similarly to the proof of Lemma 3.5 we have

V̄ π∗(t, x, p̄, q) = inf
(βj)∈(B(t,T ))J

sup
α∈Aπ(t,T )

max
i∈{1,...,I}

⎧⎨
⎩p̄i −

J∑
j=1

qjE
[
gij

(
X

t,x,α,βj

T

)]⎫⎬
⎭ (5.10)

(Note that, unlike in (5.9), we have here Aπ(t, T ) instead of Aπ
0 (t, T )). Since Aπ

0 (t, T ) ⊂ Aπ(t, T ), we have
V̄ π∗

1 (t, x, p̄, q) ≤ V̄ π∗(t, x, p̄, q). We have still to show that V̄ π∗
1 (t, x, p̄, q) ≥ V̄ π∗(t, x, p̄, q). Recall that α ∈
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Aπ(t, T ) is of the form (5.1) and notice that for y = (y1, y2, . . . , y2(N−k)−1) ∈ R2(N−k)−1, it holds α(y, ·) ∈
Aπ

0 (t, T ). Thus, for any (βj) ∈ (B(t, T ))J ,

sup
α∈Aπ(t,T )

max
i∈{1,...,I}

⎧⎨
⎩p̄i −

J∑
j=1

qjE
[
gij

(
X

t,x,α,βj

T

)]⎫⎬
⎭

≤ sup
α∈Aπ(t,T )

∫
[0,1]2(N−k)−1

max
i∈{1,...,I}

⎧⎨
⎩p̄i −

J∑
j=1

qjE

[
gij

(
X

t,x,α((y1,y2,...,y2(N−k)−1),·),βj

T

)]⎫⎬
⎭ dy1 . . . dy2(N−k)−1

≤ sup
α∈Aπ(t,T )

sup
y∈[0,1]2(N−k)−1

max
i∈{1,...,I}

⎧⎨
⎩p̄i −

J∑
j=1

qjE

[
gij

(
X

t,x,α((y1,y2,...,y2(N−k)−1),·),βj

T

)]⎫⎬
⎭

≤ sup
α∈Aπ

0 (t,T )

max
i∈{1,...,I}

⎧⎨
⎩p̄i −

J∑
j=1

qjE
[
gij

(
X

t,x,α,βj

T

)]⎫⎬
⎭ .

(5.11)

Finally, taking infimum over (βj) ∈ (B(t, T ))J on both sides we get the stated result. �

Following the scheme of Section 3, we can state now the following lemmas.

Lemma 5.6. For all partition π of the interval [0, T ], the convex conjugate function V̄ π∗(t, x, p̄, q) is Lipschitz
in (t, x, p̄, q), the concave conjugate function W̄π#(t, x, p, q̄) is Lipschitz in (t, x, p, q̄).

Lemma 5.7. For all (t, x, p̄, q) ∈ [tk−1, tk) × Rn × RI × Δ(J), and all l (k ≤ l ≤ N), we have the following
sub-dynamic programming principle:

V̄ π∗(t, x, p̄, q) ≤ inf
β∈B(t,tl)

sup
α∈Aπ

0 (t,tl)

E
[
V̄ π∗(tl, X

t,x,α,β
tl

, p̄, q)
]

≤ inf
β∈B(t,tl)

sup
α∈Aπ(t,tl)

E
[
V̄ π∗(tl, X

t,x,α,β
tl

, p̄, q)
]
. (5.12)

Proof. The proof of the first inequality, using Lemma 5.5, is analogous to the proof of Lemma 3.7. Finally, the
second inequality is obvious, since Aπ

0 (t, tl) ⊂ Aπ(t, tl). �
Lemma 5.8. For any sequence of partitions πn, n ≥ 1, with |πn| → 0 (n→ ∞), there exists a subsequence, still
denoted by (πn)n≥1, and two functions Ṽ : [0, T ]×Rn ×RI ×Δ(J) �→ R and W̃ : [0, T ]×Rn ×Δ(I)×RJ �→ R

such that (V̄ πn∗, W̄πn#) → (Ṽ , W̃ ) uniformly on compacts on [0, T ]×Rn×Δ(I)×Δ(J)×RI ×RJ . Furthermore,
the functions Ṽ and W̃ are Lipschitz in all their variables.

Lemma 5.9. The limit function Ṽ (t, x, p̄, q) is a viscosity subsolution of the HJI equation (3.36).

On the other hand we observe that, since

−W̄π(t, x, p, q) = sup
(αi)∈(Aπ(t,T ))I

inf
(βj)∈(B(t,T ))J

I∑
i=1

J∑
j=1

piqjE
[
−gij

(
X

t,x,αi,βj

T

)]
, (5.13)

also the convex conjugate −(W̄π#(t, x, p,−q̄)) of (−W̄π) with respect to q, satisfies a sub-dynamic programming
principle. Consequently, we can formulate the following result.

Corollary 5.10. For all (t, x, p, q̄) ∈ [tk−1, tk)×Rn ×Δ(I)×RJ , and all l (k ≤ l ≤ N), we have the following
super-dynamic programming principle:

W̄π#(t, x, p, q̄) ≥ sup
α∈Aπ(t,tl)

inf
β∈B(t,tl)

E[W̄π#(tl, X
t,x,α,β
tl

, p, q̄)]. (5.14)
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Proposition 5.11. Under the condition (5.6), the limit function W̃ (t, x, p, q̄) is a viscosity supersolution of the
HJI equation (3.36).

Proof. We fix arbitrarily (p, q̄) ∈ Δ(I) × RJ , and for simplicity, we write W̃ (t, x) for W̃ (t, x, p, q̄). As the
coefficient f of the dynamics is bounded, for any fixed (t, x) ∈ [0, T ] × Rn, there is some M > 0 such that,
B̄M (x) ⊃ {Xs,y,α,β

r , (s, y) ∈ [0, T ] × B̄1(x), (α, β) ∈ Aπ(s, T ) × B(s, T ), r ∈ [s, T ]}, where B̄M (x) denotes the
closed ball with the center x and the radius M . By Lemma 5.8 we know that W̄πn# converges uniformly to W̃
on [0, T ]× B̄M+1(x). Let ϕ ∈ C1

b ([0, T ] × Rn) be a test function such that

(−W̃ − (−ϕ))(t, x) > (−W̃ − (−ϕ))(s, y), for all (s, y) ∈ [0, T ]× B̄M (x) \ {(t, x)}, (5.15)

and let (sn, xn) ∈ [0, T ] × B̄M (x) be the maximum point of −W̄πn# − (−ϕ) over [0, T ] × B̄M (x). Then it is
standard that there exists a subsequence of (sn, xn) still denoted by (sn, xn), such that (sn, xn) converges to
(t, x) (See also the proof of Lem. 3.10).

For the partition πn we assume tnkn−1
≤ sn < tnkn

, and for simplicity we write tnk−1 ≤ sn < tnk . Since xn → x,
there is a positive integer N such that, for all n ≥ N , we have |xn − x| ≤ 1. From Lemma 5.10 we get

−ϕ(sn, xn) = −W̄πn#(sn, xn) ≤ inf
α∈Aπn(sn,tn

k )
sup

β∈B(sn,tn
k )

E
[
−W̄πn#

(
tnk , X

sn,xn,α,β
tn
k

)]

≤ inf
α∈Aπn(sn,tn

k )
sup

β∈B(sn,tn
k
)

E
[
−ϕ
(
tnk , X

sn,xn,α,β
tn
k

)]
.

(5.16)

Thus,

0 ≤ inf
α∈Aπn (sn,tn

k )
sup

β∈B(sn,tn
k )

E
[
−ϕ
(
tnk , X

sn,xn,α,β
tn
k

)
− (−ϕ(sn, xn))

]

= inf
α∈Aπn (sn,tn

k )
sup

β∈B(sn,tn
k )

E

[
−
∫ tn

k

sn

(
∂ϕ

∂r
(r,Xsn,xn,α,β

r

)
+ f(Xsn,xn,α,β

r , αr, βr) ·Dϕ
(
r,Xsn,xn,α,β

r

)
)dr

]
.

(5.17)

For δ > 0 let us introduce the following continuity modulus,

m(δ) := sup
|r − s| + |y − x̄| ≤ δ,

u ∈ U, v ∈ V, x̄, y ∈ B̄M (x)

∣∣∣∣
(
∂ϕ

∂r
(r, y) + f(y, u, v) ·Dϕ(r, y)

)
−
(
∂ϕ

∂r
(s, x̄) + f(x̄, u, v) ·Dϕ(s, x̄)

)∣∣∣∣ . (5.18)

Obviously,m(δ) is nondecreasing in δ and m(δ) → 0, as δ ↓ 0. From (2.2) we have |Xsn,xn,α,β
r −xn| ≤ C|r−sn| ≤

C|tnk − sn|, r ∈ [sn, t
n
k ]. Hence,∣∣∣∣∣

(
∂ϕ

∂r
(r,Xsn,xn,α,β

r ) + f(Xsn,xn,α,β
r , αr, βr) ·Dϕ(r,Xsn,xn,α,β

r )
)

−
(
∂ϕ

∂r
(sn, xn) + f(xn, αr, βr) ·Dϕ(sn, xn)

) ∣∣∣∣∣ ≤ m(C|tnk − sn|), r ∈ [sn, t
n
k ]. (5.19)

Thus, it follows from (5.17) and (5.19) that

−(tnk − sn)
(
−∂ϕ
∂r

(sn, xn) +m(C|tnk − sn|)
)

≤ inf
α∈Aπn (sn,tn

k )
sup

β∈B(sn,tn
k )

E

[∫ tn
k

sn

(−f)(xn, αr, βr) ·Dϕ(sn, xn)dr

]

≤ sup
β∈B(sn,tn

k )

E

[∫ tn
k

sn

(−f)(xn, α̃r, βr) ·Dϕ(sn, xn)dr

]
, (5.20)
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where we have taken α̃r = ũk, r ∈ [t, tnk ], ũk ∈ U . Let ρn = (tnk − sn)2. From (5.20) we see that there exists a
ρn-optimal strategy βn ∈ B(sn, t

n
k ) (depending on α̃r) such that

−(tnk − sn)
(
−∂ϕ
∂r

(sn, xn) +m(C|tnk − sn|) + (tnk − sn)
)

≤ E

[∫ tn
k

sn

(−f (xn, α̃r, β
n
r ) ·Dϕ(sn, xn)dr

]
. (5.21)

Since βn ∈ B(sn, t
n
k ) there is some partition π0 such that βn ∈ Bπ0

(sn, t
n
k ), and without loss of generality we

can assume that π0 ⊃ πn. Supposing that {sn = θ0 < θ1 < . . . < θm = tnk} ⊂ π0, we obtain

E

[∫ tn
k

sn

(−f)(xn, α̃r, β
ρ
r ) ·Dϕ(sn, xn)dr

]
=

m∑
l=1

∫ θl

θl−1

E [(−f)(xn, α̃r, β
ρ
r ) ·Dϕ(sn, xn)] dr, (5.22)

where βρ depends on (ζπ0

2,1, . . . , ζ
π0

2,l−1, ũk) on [θl−1, θl]. Then for r ∈ [θl−1, θl], we have,

E [(−f)(xn, α̃r, β
ρ
r ) ·Dϕ(sn, xn)] = E

[
(−f)

(
xn, ũk, β

ρ
r (ζπ0

2,1, . . . , ζ
π0

2,l−1, ũk)
)
·Dϕ(sn, xn)

]
=
∫

V

(−f)(xn, ũk, v) ·Dϕ(sn, xn)P
βρ

r (ζπ0
2,1,...,ζπ0

2,l−1,ũk)
(dv) ≤ sup

ν∈P(V )

∫
V

(−f)(xn, ũk, v) ·Dϕ(sn, xn)ν(dv).

(5.23)

Putting I(ũk) := supν∈P(V )

∫
V (−f)(xn, ũk, v) ·Dϕ(sn, xn)ν(dv), from the arbitrariness of ũk and the continuity

of I in ũk, allow to choose ũk := u∗ such that I(u∗) = min
ũk∈U

I(ũk). Then, from (5.23), we have for all u ∈ U ,

∫ θl

θl−1

I(ũk)dr =
∫ θl

θl−1

I(u∗)dr ≤
∫ θl

θl−1

sup
ν∈P(V )

∫
V

(−f)(xn, u, v) ·Dϕ(sn, xn)dν(v)dr. (5.24)

Hence, (5.24) and condition (5.6) yield∫ θl

θl−1

I(ũk)dr ≤(θl − θl−1) inf
u∈U

sup
ν∈P(V )

∫
V

(−f)(xn, u, v) ·Dϕ(sn, xn)dν(v)

=(θl − θl−1) sup
ν∈P(V )

inf
u∈U

∫
V

(−f)(xn, u, v) ·Dϕ(sn, xn)dν(v)

=(θl − θl−1) sup
ν∈P(V )

inf
μ∈P(U)

∫
U×V

(−f)(xn, u, v) ·Dϕ(sn, xn)dμ(u)dν(v).

(5.25)

Consequently, combining (5.21)−(5.23) and (5.25), we have

− (tnk − sn)
(
−∂ϕ
∂r

(sn, xn) +m(C|tnk − sn|) + (tnk − sn)
)

≤

(tnk − sn) sup
ν∈P(V )

inf
μ∈P(U)

∫
U×V

(−f)(xn, u, v) ·Dϕ(sn, xn)μ(du)ν(dv), (5.26)

i.e.,

∂ϕ

∂r
(sn, xn) −m(C|tnk − sn|) − (tnk − sn)

) ≤ sup
ν∈P(V )

inf
μ∈P(U)

∫
U×V

(−f)(xn, u, v) ·Dϕ(sn, xn)μ(du)ν(dv). (5.27)

Finally, recalling that (sn, xn) → (t, x) and 0 ≤ (tnk − sn) ≤ (tnk − tnk−1) ≤ |πn|, and taking the limit as n→ ∞,
we get

∂ϕ

∂t
(t, x) + inf

ν∈P(V )
sup

μ∈P(U)

∫
U×V

f(x, u, v) ·Dϕ(t, x)μ(du)ν(dv) ≤ 0. (5.28)

Therefore, W̃ (t, x, p, q̄) is a viscosity supersolution of the HJI equation (3.36). �
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Similar to Section 3 (Thm. 3.14), we have the following result.

Theorem 5.12. Suppose condition (5.6) holds. Then, for all sequences of partitions (πn) with |πn| → 0, the
sequences (V̄ πn) and (W̄πn) converge uniformly on compacts to the same Lipschitz continuous function U .
Moreover, the function U is the unique dual solution of the HJI equation (3.51).

Similarly to (W̄πn , V̄ πn), we obtain the following result for ( ¯̄V πn , ¯̄Wπn) (Recall its Def. (5.4) and (5.5)).

Theorem 5.13. Suppose condition (5.7) holds. Then, for all sequences of partitions (πn) with |πn| → 0, the
sequences ( ¯̄V πn) and ( ¯̄Wπn) converge uniformly on compacts to the unique dual solution U of the HJI equa-
tion (3.51).

Finally, combining the Theorems 5.12 and 5.13 with Proposition 5.2, we get the main result of this section.

Theorem 5.14. Under Isaacs condition, the functions W (t, x, p, q) and V (t, x, p, q) coincide, for all (t, x, p, q)
∈ [0, T ]× Rn ×Δ(I) ×Δ(J).

Proof. We have shown that the value functions Wπ(t, x, p, q), V π(t, x, p, q), W̄π(t, x, p, q), V̄ π(t, x, p, q), ¯̄Wπ(t,
x, p, q) and ¯̄V π(t, x, p, q) converge uniformly on compacts to the function U(t, x, p, q), as |π| → 0. For this we
have used the assumptions (5.6) and (5.7) which, both together, are equivalent to Isaacs condition.

Then, due to the definition of W (t, x, p, q), for any ε > 0, there exists α̂ε ∈ (A(t, T ))I such that

ε+W (t, x, p, q) ≥ sup
β̂∈(B(t,T ))J

J(t, x, α̂ε, β̂, p, q). (5.29)

For α̂ε ∈ (A(t, T ))I , there exists a partition πε such that α̂ε ∈ (Aπε

(t, T ))I . Thus for all π ⊃ πε (Recall that
πε ⊂ π implies Aπε

(t, T ) ⊂ Aπ(t, T )), it holds that

ε+W (t, x, p, q) ≥ sup
β̂∈(Bπ(t,T ))J

J(t, x, α̂ε, β̂, p, q) ≥Wπ(t, x, p, q). (5.30)

From the arbitrariness of ε > 0, we have W (t, x, p, q) ≥Wπ(t, x, p, q), and letting |π| → 0, we obtain

W (t, x, p, q) ≥ U(t, x, p, q). (5.31)

With a symmetric argument we prove

U(t, x, p, q) ≥ V (t, x, p, q). (5.32)

On the other hand, since W (t, x, p, q) ≤ inf
α̂∈(Aπ(t,T ))I

sup
β̂∈(B(t,T ))J

J(t, x, α̂, β̂, p, q) = W̄π(t, x, p, q), taking the

limit |π| → 0, yields
W (t, x, p, q) ≤ U(t, x, p, q). (5.33)

Analogously, as V (t, x, p, q) ≥ ¯̄V π(t, x, p, q), passing to the limit |π| → 0 gives

V (t, x, p, q) ≥ U(t, x, p, q). (5.34)

Finally, combining the above results (5.31)−(5.33) and (5.34), we get W (t, x, p, q) = U(t, x, p, q) =
V (t, x, p, q). �
Remark 5.15. Theorems 5.12-5.14 have without doubt their own importance also for numerical approaches.
They guarantee that the value function W (= U) can be numerically computed, for instance, by Player 1: He
can choose due to the definition of W̄π(t, x, p, q) a sufficiently fine partition π and an ε-optimal randomized
strategy, well knowing that this ε-optimality holds for all possible partition chosen by Player 2. Without such a
result, if one used only the definitions (2.1) and (2.2) for the value functions, the choice of a partition π and a
randomized strategy α̂ by Player 1 would, due to (2.1) morally oblige Player 2 to use the same partition, but,
of course, Player 2 is not interested in; he is more interested in an optimal choice of the partition given that
chosen by Player 1.
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Let us conclude by giving an example which shows that the conditions (5.6) and (5.7) (or, equivalently, Isaacs
condition) are necessary for Theorem 5.14, even for the games with symmetric information.

Example 5.16. We assume U = V = [−1, 1], I = J = 1, g(x) = x, f(x, u, v) = |u − v|2. For any given
(t, x) ∈ [0, T ]× R, the dynamic is of the form

Xt,x,u,v
s = x+

∫ s

t

|us − vs|2ds, s ∈ [t, T ], x ∈ R, (u, v) ∈ Ut,T × Vt,T ,

and the pay-off is given by
J(t, x, α, β) = E

[
g
(
Xt,x,α,β

T

)]
= E

[
Xt,x,α,β

T

]
.

Let (u, v) ∈ Ut,T × Vt,T be such that α(v) = u and β(u) = v. Then,

J(t, x, α, β) = x+ E

[∫ T

t

|ur − vr|2dr
]
. (5.35)

For x ∈ R, (u, v) ∈ U × V and p ∈ R, the Hamiltonian function is of the form H(x, u, v, p) = |u − v|2p. Let us
put

H̃+(x, p) � inf
u∈U

sup
v∈V

H(x, u, v, p) = inf
u∈U

(1 + |u|)2p+ = p+;

H̃−(x, p) � sup
v∈V

inf
u∈U

H(x, u, v, p) = sup
v∈V

(− (1 + |v|)2p−) = −p−.

Obviously, for any p �= 0, H̃−(x, p) = −p− < p+ = H̃+(x, p), i.e., Isaacs condition does not hold. For
the measure-valued controls μ ∈ P(U), ν ∈ P(V ) and (x, p) ∈ R2, the Hamiltonian function takes the form
H(x, μ, ν, p) =

∫
U

∫
V
|u− v|2pν(dv)μ(du), and we put again

H+(x, p) = inf
μ∈P(U)

sup
ν∈P(V )

H(x, μ, ν, p); H−(x, p) = sup
ν∈P(V )

inf
μ∈P(U)

H(x, μ, ν, p).

Then obviously H(x, p) := H+(x, p) = H−(x, p). Now we compute H−(x, p), first for p ≥ 0, since

H(x, μ, ν, p) =
∫

V

∫
U

|u− v|2pμ(du)ν(dv) =
∫

V

∫
U

(|v − ∫
V

vν(dv)|2 + |u−
∫

V

vν(dv)|2)pμ(du)ν(dv)

≥
∫

V

|v −
∫

V

vν(dv)|2pν(dv) = H(x, δ∫
V

vν(dv), ν, p), (5.36)

we have infμ∈P(U)H(x, μ, ν, p) = H(x, δ∫
V

vν(dv), ν, p) =
( ∫

V |v − ∫V vν(dv)|2ν(dv))p. Therefore, H−(x, p) =

supν∈P(V )(
∫

V |v− ∫V vν(dv)|2ν(dv))p = supν∈P(V )

( ∫
V v

2ν(dv) − (
∫

V vν(dv))
2
)
p ≤ p, and for ν = 1

2 (δ1 + δ−1)
it attains the maximum value p.

For the case p < 0, H−(x, p) = −
(

infν∈P(V ) supμ∈P(U)

∫
U

∫
V
|u− v|2μ(du)ν(dv)(−p)

)
= −(−p)+ = p. Thus,

we get H(x, p) = H−(x, p) = p.
The corresponding HJI equation is as follows:{

∂tV + ∂xV = ∂tV +H(x, ∂xV ) = 0,
V (T, x) = g(x) = x.

(5.37)

Notice that V (t, x) = x+ T − t, t ∈ [0, T ], x ∈ R is the solution of this equation.
If both players use the same partition π, as |π| → 0, we have due to Theorem 3.14 that W π(t, x) and V π(t, x)

converge to the value function V (t, x). Let us now compute

W̄π(t, x) = inf
α∈Aπ(t,T )

sup
β∈B(t,T )

E
[
g
(
Xt,x,α,β

T

)]
.
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For Player I we consider the partition π = {0 = t0 < t1 < . . . < tN = T }, t ∈ [tk−1, tk), and we suppose without
loss of generality that t = tk−1 and αr = αk(r), r ∈ [tk−1, tk] (αk is independent of ζπ

1,k−1, but, notice that even
if αk depends on ζπ

1,k−1, from the first definition of Aπ(t, T ), the argument still works).
For Player II, we consider the partition πn = {0 = (t0 =)S0 < S1 < . . . < S2n(= t1) < S2n+1 <

. . . < S2n+2n(= t2) < . . . < S(l−1)2n+j < . . . < S(N−1)2n+2n(= tN ) = T }, where S(l−1)2n+j = tl−1 +
j(tl − tl−1)2−n, 0 ≤ j ≤ 2n, 1 ≤ l ≤ N. On the subinterval Δl,n

m := [S(l−1)2n+m−1, S(l−1)2n+m], Player II
uses the strategy βr = βS(l−1)2n+m

(ζπn

2,(l−1)2n+m−1, α|[t,S(l−1)2n+m−1])r, 1 ≤ m ≤ 2n, k ≤ l ≤ N. Obviously,

βr(u) � ϕ(r, ur−|πn|) is such a strategy, where ϕ : [0, T ] × [−1, 1] → [−1, 1] is a Borel function. Choosing

βr(u) �
{− sgn(ur−|πn|), r ∈ [t+ |πn|, T ],

0, r ∈ [t, t+ |πn|], we have from equation (5.35)

J(t, x, α, β) = x+
∫ t+|πn|

t

E[|αr|2]dr + E

[∫ T

t+|πn|
|αr + sgn(αr−πn)|2dr

]

= x+ E

[∫ T

t

|αr + sgn(αr)|2dr
]

+Rn = x+ E

[∫ T

t

(1 + |αr|)2dr
]

+Rn, (5.38)

where Rn =
∫ t+|πn|

t
E[|αr|2]dr−

∫ t+|πn|
t

E[|αr+sgn(αr−|πn|)|2]dr+E[
∫ T

t
(|αr+sgn(αr−|πn|)|2−|αr+sgn(αr)|2)dr]

≤ |πn|+4|πn|+4E[
∫ T

t
| sgn(αr)−sgn(αr−|πn|)|dr]. Using the well-known result that limε→0

∫ T

0
|us−us−ε|2ds = 0,

for all u ∈ L2([0, T ]), we see that Rn → 0, as n→ ∞. Thus, with our special choice of β ∈ Bπn(t, T ) we have

J(t, x, α, β) = x+ E[
∫ T

t

(1 + |αr|)2dr] +Rn, Rn → 0, as n→ ∞. (5.39)

On the other hand, for all β ∈ B(t, T ) � ∪π′⊃πBπ′
(t, T ),

J(t, x, α, β) = x+ E

[∫ T

t

|αr − βr|2dr
]
≤ x+ E

[∫ T

t

(1 + |αr|)2dr
]
. (5.40)

From (5.39) and (5.40), we see that supβ∈B(t,T ) J(t, x, α, β) = x+ E
[∫ T

t
(1 + |αr|)2dr

]
. Consequently,

W̄π(t, x) = inf
α∈Aπ(t,T )

sup
β∈B(t,T )

E[g(Xt,x,α,β
T )] = x+ (T − t) = V (t, x). (5.41)

We assume π and πn are as before. Changing the roles between α and β and considering now α ∈ Aπn(t, T )
and β ∈ Bπ(t, T ), we choose αr = βr−|πn|I[t+|πn|,T ]. Then, J(t, x, α, β) = x+E[

∫ t+|πn|
t

|βr|2dr]+E[
∫ T

t+|πn| |βr −
βr−πn |2dr], and taking the limit as n→ ∞, we see that

inf
α∈A(t,T )

E
[
g
(
Xt,x,α,β

T

)]
= x.

Consequently,
¯̄V π(t, x) = sup

β∈Bπ(t,T )

inf
α∈A(t,T )

E
[
g
(
Xt,x,α,β

T

)]
= x. (5.42)

Let now ε > 0. Then, from the definition of A(t, T ) it follows that there is a partition π and α ∈ Aπ(t, T ), s.t.,

W̄π(t, x) + ε ≥W (t, x) + ε ≥ sup
β∈B(t,T )

E
[
g
(
Xt,x,α,β

T

)]
≥ W̄π(t, x) = x+ (T − t). (5.43)
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Hence, W (t, x) = infα∈A(t,T ) supβ∈B(t,T )E[g(Xt,x,α,β
T )] = x+ (T − t). Asymmetric argument shows

V (t, x) = sup
β∈B(t,T )

inf
α∈A(t,T )

E
[
g
(
Xt,x,α,β

T

)]
= x. (5.44)

This prove that the upper value function W (t, x) is not necessarily equal to the lower value function V (t, x) if
we do not consider the conditions (5.6) and (5.7), or equivalently, Isaacs condition.

Acknowledgements. The authors thank the associate editor and the referees for their helpful comments.

References

[1] R. Buckdahn, P. Cardaliaguet and C. Rainer, Nash equilibrium payoffs for nonzero-sum stochastic differential games. SIAM
J. Control Optim. 43 (2004) 624–642.

[2] R. Buckdahn, P. Cardaliaguet, M. Quincampoix, Some recent aspects of differential game theory. Dyn. Games Appl. 1 (2011)
74–114.

[3] R. Buckdahn and J. Li, Stochastic Differential Games and Viscosity Solutions of Hamilton-Jacobi-Bellman-Isaacs Equations.
SIAM J. Control Optim. 47 (2008) 444–475.

[4] R. Buckdahn, J. Li and M. Quincampoix, Value function of differential games without Isaacs conditions. An approach with
non-anticipative mixed strategies. Int. J. Game Theory 42 (2013) 989–1020.

[5] R. Buckdahn, J. Li and M. Quincampoix, Value in mixed strategies for zero-sum stochastic differential games without Isaacs
conditions. Ann. Prob. 42 (2014) 1724–1768.

[6] R. Buckdahn, M. Quincampoix, C. Rainer and Y.H. Xu, Differential games with asymmetric information and without Isaacs
condition. Int. J. Game Theory 45 (2016) 795–816.

[7] P. Cardaliaguet, Differential games with asymmetric information. SIAM J. Control Optim. 46 (2007) 816–838.

[8] P. Cardaliaguet, A double obstacle problem arising in differential game theory. J. Math. Anal. Appl. 360 (2009) 95–107.

[9] M.G. Crandall, H. Ishii and P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull.
Amer. Math. Soc. 27 (1992) 1–67.

[10] W.H. Fleming and P.E. Souganidis, On the existence of value functions of two-player, zero-sum stochastic differential games.
Indiana Univ. Math. J. 38 (1989) 293–314.

[11] S. Hamadène and J.P. Lepeltier, Zero-sum stochastic differential games and backward equations. Syst. Control Lett. 24 (1995)
259–263.

[12] S. Hamadène, J.P. Lepeltier and S. Peng, BSDEs with continuous coefficients and stochastic differential games, in Back-
ward Stochastic Differential Equations. Pitman Research Notes Mathematics Series, edited by N. El Karoui and L. Mazliak,
Longman, Harlow, UK, (1997) 115–128.

[13] N.N. Krasovskii, A.I. Subbotin. Game-Theoretical Control Problems. Springer, New York (1988).

[14] Q. Lin, A BSDE approach to Nash equilibrium payoffs for stochastic differential games with nonlinear cost functionals.
Stochastic Processes Appl. 122 (2012) 357–385.

[15] C. Rainer, Two different approaches to nonzero-sum stochastic differential games. Appl. Math. Optim. 56 (2007) 131–144.


	Introduction
	 Preliminaries
	The functions W(t,x,p,q) and V(t,x,p,q) without Isaacs condition
	Nash equilibrium payoffs for nonzero-sum differential games with symmetric information and without Isaacs condition
	Characterization for the functions W(t,x,p,q) and V(t,x,p,q)
	References

