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UNIFORM OBSERVABILITY ESTIMATES FOR LINEAR WAVES ∗, ∗∗

Camille Laurent1 and Matthieu Léautaud2

Abstract. In this article, we give a completely constructive proof of the observability/controllability
of the wave equation on a compact manifold under optimal geometric conditions. This contrasts with
the original proof of Bardos–Lebeau–Rauch [C. Bardos, G. Lebeau and J. Rauch, SIAM J. Control
Optim. 30 (1992) 1024–1065], which contains two non-constructive arguments. Our method is based
on the Dehman-Lebeau [B. Dehman and G. Lebeau, SIAM J. Control Optim. 48 (2009) 521–550]
Egorov approach to treat the high-frequencies, and the optimal unique continuation stability result of
the authors [C. Laurent and M. Léautaud. Preprint arXiv:1506.04254 (2015)] for the low-frequencies.
As an application, we first give estimates of the blowup of the observability constant when the time
tends to the limit geometric control time (for wave equations with possibly lower order terms). Second,
we provide (on manifolds with or without boundary) with an explicit dependence of the observability
constant with respect to the addition of a bounded potential to the equation.
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1. Introduction

1.1. Motivation

This article is devoted to control and observation issues for the wave equation on a n-dimensional compact
Riemannian manifold (M, g) with or without boundary ∂M . Denoting by Δ the nonpositive Laplace–Beltrami
operator on M and by L the selfadjoint operator −Δ on L2(M) with Dirichlet boundary conditions, the general
controllability problem in time T > 0 is whether, for each data (u0, u1) one can find a control function f such
that the solution u to {

∂2
t u+ Lu = bωf

(u(0), ∂tu(0)) = (u0, u1)
(1.1)
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satisfies (u(T ), ∂tu(T )) = (0, 0) (or, equivalently, any given state). In this equation the control f acts on the
state u only in the set ω := {bω �= 0} where bω is, say, a continuous function. A classical functional analysis
argument [12] reduces this existence problem to that of finding (for the same time T > 0) a constant Cobs > 0,
such that all solutions to {

∂2
t v + L∗v = 0

(v(0), ∂tv(0)) = (v0, v1)
(1.2)

with (v0, v1) ∈ H1(M)× L2(M) satisfy the so called observability inequality

Cobs

∫ T

0

‖bωv(t)‖2H1(M)dt ≥ E1(v0, v1) =
1
2

(
‖v0‖2H1(M) + ‖v1‖2L2(M)

)
. (1.3)

Such an estimate translates that the full energy of the state v (which is preserved through time) may be recovered
from the sole observation on the (possibly small) set ω during the time interval (0, T ).

Not only the controllability problem and the observability problem are equivalent, but also, in case (1.3)

holds, the constant C
1
2
obs bounds the norm of the control operator (u0, u1) �→ f mapping to the data to be

controlled the associated optimal control function f (in appropriate spaces).
A first natural attempt at proving the energy inequality (1.3) in dimension n ≥ 2 consists in multiplying (1.2)

by Mv, where M is an appropriate first order differential operator, and perform integrations by parts. Such
“multiplier methods” have been developed in a large number of situations, leading to (1.3) under strong geomet-
ric conditions on (ω, T ) (see Refs. [22,28]): basically, in the case where M is an open subset of Rn, given a point
x0 ∈ R

n, it is required that ω contains a neighborhood of the points x of the boundary where (x−x0) ·n(x) > 0,
n being the outgoing normal to ∂M and that T > 2 supx∈M |x− x0| (the multiplier is M = (x− x0) · ∂x).

Another constructive proof uses global Carleman estimates (see e.g. [3,13], which amount to prove positivity
properties for P ∗

ψPψ , where Pψ = eτψ(∂2
t +L∗)e−τψ is a conjugated operator. Here, τ is a large parameter and ψ

an appropriately chosen weight function. Unfortunately, global weights ψ that give rise to positivity of P ∗
ψPψ

require that (ω, T ) satisfy similar conditions as those coming from multiplier methods.
The advantage of these two direct computational methods is that the proofs are constructive and provide with

effective bounds, that are uniform with respect to parameters. However, though very effective, they present an
important drawback: they require very strong and inappropriate geometric conditions (see [32] for a geometric
discussion on multiplier methods). Indeed, they do not capture the main features of wave propagation, stating
roughly that most of the energy should travel along rays of geometric optics.

The complete characterization of (ω, T ) for which the observability inequality (1.3) holds was achieved in [1,2]:
observability holds if and only if the Geometric Control Condition (GCC) does: every ray of geometric optics
enters ω in the time interval (0, T ) (see also [5] for the “only if” part). The proof of [1, 2] is based on a
compactness-uniqueness argument and splits into two parts:

(1) Proving a relaxed observability inequality

C

∫ T

0

‖bωv(t)‖2H1(M)dt ≥ E1(v0, v1)− C′E0(v0, v1), (1.4)

where E0(v0, v1) = 1
2

(
‖v0‖2L2(M) + ‖v1‖2H−1(M)

)
is a weaker energy of the data (or, equivalently, of the

state). This estimate translates the high-frequency behavior, and relies on the propagation of singularities
for the wave equation (see Cor. 2.6 and Lem. 2.7 for a justification of the terminology “high-frequency”).
That (ω, T ) should satisfy GCC is used in this step.

(2) Getting rid of the additional term E0(v0, v1) in (1.4). This step relies on unique continuation properties and
requires less on (ω, T ).
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Both parts of the proof rely on the understanding of two fondamental properties of the wave equation: (1) propa-
gation of high-frequencies along the rays of geometric optics, and (2) “propagation” of low-frequencies according
to the tunnel effect.

In the original proof [1,2], Step (1) relies on a closed graph theorem and the propagation of wave front sets. A
variant of this proof, proposed by Lebeau [25], relies instead on a contradiction argument and the propagation
of microlocal defect measures of Gérard and Tartar [16, 47].

After reductio ad absurdum, Step (2) is then equivalent to proving that any solution of (1.2) vanishing on
the set (0, T )× ω vanishes everywhere. This step can be performed using a global unique continuation results
for waves: the global version of the Holmgren theorem, as proved by John [21] in the analytic setting, or by
Tataru, Robbiano-Zuily and Hörmander in [20, 42, 48] in the general case. At the time [1, 2] were written, this
general unique continuation theorem for waves (under optimal geometric conditions) was not known in the
non-analytic case. Bardos–Lebeau–Rauch managed to bypass this argument by using strongly estimate (1.4)
and studying the set of invisible solutions, which then reduces the problem to a classical unique continuation
result for eigenfunctions of L∗.

It is clear from this brief discussion that both steps are highly non constructive, so that the full proof may
not seem well-suited for tracking the dependence/robustness of the observability constant Cobs with respect to
parameters (e.g. w.r.t. the observation time T , lower order terms added in the operator L, . . . ).

The aim of this paper is to provide with a constructive proof under optimal geometric conditions. For this,
we explain:

• how to replace Step (2) above by the optimal unique continuation estimates obtained by the authors in [23];
• on a compact manifold without boundary, how to replace step (1) using the analysis of Dehman and

Lebeau [10].

We illustrate the interest of this approach by keeping track of some parameters in the analysis. Firstly, we
give bounds on the blowup of the observability constant Cobs as a function of the observation time T when it
goes to the limit control time associated to the open set ω, namely T → TGCC(ω)+. Secondly, we provide with
an explicit bound of the dependence of the observability constant Cobs when adding to the equation a potential,
i.e. taking L = −Δ+ c(x) in (1.1)–(1.2).

We also hope that the method we develop here might be used for other purposes (e.g. inverse problems, data
assimilation, big data, . . . ) where getting uniform estimates might be of importance.

1.2. Main results

Before stating our results, let us recall some geometric definitions needed to formulate them (see also
Appendix B). For E ⊂M , we define “the largest distance from E to a point in M” by

L(M,E) := sup
x∈M

dist(x,E). (1.5)

We shall also use the notation

TUC(E) = 2L(M,E), (1.6)

which, in case E is open, is the minimal time of unique continuation for the wave equation from the set E
(see [21] in the analytic setting or [20, 42, 48] in the general case). In turn, it also provides the optimal time of
approximate controllability from the open set E.

Assume for a while that ∂M = ∅. According to [2, 38], given an open set ω and a time T > 0, we say (ω, T )
satisfies GCC if

for any ρ ∈ S∗M, there exists t ∈ (0, T ) so that π(ϕt(ρ)) ∈ ω,
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where, ϕt is the geodesic flow on S∗M and π the canonical projection S∗M → M (see Appendix B). We also
say that ω satisfies GCC if there is a time T > 0 such that (ω, T ) does. If ω satisfies GCC, then we may define
the minimal control time associated to ω by

TGCC(ω) = inf{T > 0, (ω, T ) satisfies GCC}. (1.7)

We also have

TGCC(ω) = sup{length(Γ ), Γ geodesic curve on M with Γ ∩ ω = ∅}
= inf{T > 0 such that any geodesic curve Γ with length(Γ ) ≥ T satisfies Γ ∩ ω �= ∅}.

It can be proved that TGCC(ω) ≥ TUC(ω) (a proof is given in Appendix B Lemma B.4). Given a continuous
function bω, we also define the constant

K(T ) = min
ρ∈S∗M

∫ T

0

b2ω ◦ π ◦ ϕt(ρ)dt, (1.8)

which is the smallest average of the function b2ω along geodesics of length T . With this definition, we also have
TGCC(ω) = inf{T > 0,K(T ) > 0} = sup{T > 0,K(T ) = 0}, with ω := {bω �= 0}.

In the case ∂M �= ∅, one may also define a (continuous) “broken” geodesic flow on the appropriate phase
space (see [2]), and the above definitions still allow to express that (ω, T ) satisfies GCC. When considering the
boundary observation/control problem, we need the following definition [2]: given Γ ⊂ ∂M and T > 0, we say
that (Γ, T ) satisfy the Geometric Control Condition GCC∂ if every generalized geodesic (i.e. ray of geometric
optics) traveling at speed one in M meets Γ on a non-diffractive point in a time t ∈ (0, T ).

As already mentioned, we present here two different types of results: first, we estimate Cobs as a function
of time T when T → T+

GCC(ω), and second, we estimate Cobs as a function of the potential c(x), when taking
L = −Δ+ c(x) in (1.1) and (1.2).

Our first results concern, in the case ∂M = ∅, the behaviour of the constant Cobs(T ) as a function of the
observation time T when the latter is close to TGCC(ω). We first prove that the observability estimate (1.3)
always fails for the critical time T = TGCC(ω), and give an explicit blowup rate when T → TGCC(ω)+. In all
what follows, we assume that bω ∈ C∞(M) (or, at least C k(M) for some large k).

Theorem 1.1. Assume that ∂M = ∅ and (1.3) holds for all solutions of (1.2) with L = −Δ+1. Then, K(T ) > 0
(i.e. (ω, T ) satisfies GCC) and we have Cobs(T ) ≥ K(T )−1, where K(T ) is defined in (1.8).

That is to say that the observability constant Cobs(T ) blows up at least like K(T )−1 as T → TGCC(ω)+.
We also obtain an upper bound on this blowup rate. Namely, we shall prove the following uniform observability

estimate.

Theorem 1.2 (Uniform observation theorem). Assume that ∂M = ∅, ω = {bω �= 0} satisfies GCC and that
TUC(ω) < TGCC(ω). Then, for any T1 > TGCC(ω), there exist C, κ > 0 such that for any T ∈ (TGCC(ω), T1],
any (v0, v1) ∈ H1(M)× L2(M) and v associated solution of (1.2) with L = −Δ+ 1, we have

E1(v0, v1) ≤ CeκK(T )−1
∫ T

0

‖bωv(t)‖2H1(M)dt,

where K(T ) is defined in (1.8).

Summing up Theorems 1.1 and 1.2, we have proved that, for T > TGCC(ω), we have

K(T )−1 ≤ Cobs(T ) ≤ CeκK(T )−1
,
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where the upper bound requires the assumption TUC(ω) < TGCC(ω). Note also that, as an intermediate step of
the proof of Theorem 1.2, we obtain the following high frequency estimate:∫ T

0

‖bωv(t)‖2H1(M)dt ≥ K(T )E1(v0, v1)− C0E1/2(v0, v1),

uniformly for T bounded, where 2E1/2(v0, v1) = ‖v0‖2H1/2 + ‖v1‖2H−1/2 . See Proposition 2.5. This is very close
to estimate (1.4) with an explicit constant in front of the energy norm. This, together with Theorem 1.1,
stresses the fact that K(T )−1 is the optimal observability constant for high frequency data. See Corollary 2.6
and Lemma 2.7 for a discussion on this topic.

Using the classical duality argument [8, 12, 28], we deduce from Theorem 1.2 the following uniform control
result.

Corollary 1.3 (Uniform control theorem). Under the assumptions of Theorem 1.2, for any T1 > TGCC(ω),
there exist C, κ > 0 such that for any T ∈ (TGCC(ω), T1], any (u0, u1) ∈ L2(M) × H−1(M), there exists
f ∈ L2(0, T ;H−1(M)) with

‖f‖2L2(0,T ;H−1(M)) ≤ CeκK(T )−1
E0(u0, u1),

(where K(T ) is defined in (1.8)) such that the associated solution u of (1.1) satisfies (u(T ), ∂tu(T )) = (0, 0).

Note that from this result and a commutator argument (see [10,14]) one may deduce a similar bound on the
norm of the control in L2(0, T ;Hs−1(M)) for data in Hs(M)×Hs−1(M).

In dimension n ≥ 2, the condition TUC(ω) < TGCC(ω) is not very restrictive (and, in particular, is certainly
generic with respect to the set ω or the metric g). Indeed, we prove in Section B.2 that TUC(ω) = TGCC(ω)
implies a very specific geometric situation. Roughly speaking, it shows that close to the points where the
maximum of dist(x, ω) is reached, M \ ω is a closed geodesic ball of radius TUC(ω)/2. A precise statement is
given in Lemma B.6.

The estimation of the cost of fast control has already been investigated in several situations: in finite dimen-
sion [45], in different situations for the Schrödinger equation [30, 34, 35], for the heat equation [30, 33], for the
Stokes equation [6].

In all these cases, the equations under study are controllable in any time T > 0 and the question is about
to estimating how the observability constant blows up as T → 0+. We are not aware of any such results in the
case of the wave equation in dimension n ≥ 2, for which a minimal time is required to have observability. The
case n = 1 (to which Thm. 1.2 above does not apply) has been recently investigated in [17]. The authors give an
explicit expression of the observability constant with respect to several parameters. In turn, they provide with
upper bounds of the cost as a power of T −TGCC (which, in this context, is closely related to K(T )). This power
seems different from −1, but rather −6 (using [17], Thm. 2 with γ = (T − TGCC)/8 and η = (T − TGCC)/32).

Note that short time estimates of the control cost for the heat equation are also known to imply uniform
estimates of the control for a transport-diffusion equation in the vanishing viscosity limit, see [29]. This problem
was originally studied by Coron and Guerrero in [7]. In this context, a minimal time also appears to obtain
uniform observability. The question of getting uniform observability in the natural time related to the transport
equation remains open.

The above results are particularly simple to write and prove in the case of the Klein–Gordon equation
L = −Δ + 1. However, they generalize (with some technicalities, but no additional conceptual difficulty) to
wave equations with lower order terms. In that context, we wish to consider the control problem (1.1) in case
the operator L is a general time-dependent perturbation of −Δ, defined by

Lu(t, x) = −Δu(t, x) + b0(t, x)∂tu(t, x) + 〈du(t, x), b1(t, x)〉x + c(t, x)u(t, x), (1.9)

where b0 and c are smooth functions on R×M and b1 is a smooth time dependent vector field on M . Note that
we may equivalently rewrite 〈du(x), b1(x)〉x = gx(∇u(x), b1(x)) (see Appendix B for notations).
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The adjoint observation problem is (1.2) with

L∗v(t, x) = −Δv(t, x)− b0(t, x)∂tv(t, x) − 〈dv(t, x), b1(t, x)〉x +
(
c− ∂tb0 − div(b1)

)
v(t, x), (1.10)

and if u is a smooth solution to (1.1)–(1.9) and v a smooth solution to (1.2)–(1.10), we have the duality identity

[
(∂tu, v)L2(M) − (u, ∂tv)L2(M) + (b0u, v)L2(M)

]T
0

=
∫ T

0

(f, bωv)L2(M)dt.

In this general setting, we obtain the same results as in the case L = L∗ = −Δ + 1, with an analyticity
assumption with respect to time on the coefficients, and where K(T ) has to be appropriately modified.

Theorem 1.4. Assume that the coefficients of b0, c and b1 are smooth and depend analytically on the variable t.
Then, the analogues of Theorems 1.1 and 1.2 hold for equation (1.2) with L∗ given by (1.10) and

K(T ) = min
ρ∈S∗M

g+
T (ρ), (1.11)

where, denoting by (x(s), ξ(s)) = ϕs(x0, ξ0), we have

g+
T (x0, ξ0) =

∫ T

0

b2ω(x(t)) exp

(∫ t

0

Re(b0)(τ, x(τ)) +
〈

ξ(τ)
|ξ(τ)|x(τ) ,Re(b1)(τ, x(τ))

〉
x(τ)

dτ

)
dt.

In fact, the analogue of Theorem 1.1 (lower bound) does not require the analyticity in time of the coefficients.
Analyticity in time (on the time interval [0, T1], where T1 is given in the statement of Thm. 1.2) is however
strongly used in the proof of the analogue of Theorem 1.2 (upper bound) which relies on the unique continuation
argument of [20, 23, 42, 48]. Note that this result would be the same if we replaced the observation equation
∂2
t v + L∗v = 0 by ∂2

t v + Lv = 0. Indeed, the symbol g+
T (x, ξ) (and thus the constant K(T )) only depends on

Re(b0) and Re(b1). Remark that the damped wave equation corresponds to the case c = 0, b1 = 0 and b0 real
valued (see also Rem. 2.13 below).

Let us now consider the problem of obtaining a uniform observability constant Cobs for perturbations of −Δ
by a potential c ∈ L∞(M). Here, we no longer assume that M has no boundary, and our result work for
boundary observation as well. In this setting, Dehman–Ervedoza [9] proved that the constant Cobs remains
uniformly bounded for ‖c‖L∞ bounded. The purpose of the following results is to establish an explicit bound.
We have a rough result for general potentials, and a refined one in case c ∈ L∞

δ (M), where

L∞
δ (M) =

{
c ∈ L∞(M ; R), δ‖u‖2L2(M) ≤

∫
M

|∇u|2 + c|u|2, for all u ∈ H1
0 (M)

}
, for δ ≥ 0. (1.12)

Remark that functions in L∞
δ (M) are real-valued. In case ∂M = ∅, H1

0 (M) stands for H1(M).

Theorem 1.5. Assume that (ω, T ) satisfies GCC, resp. that (Γ, T ) satisfies GCC∂ . Then, for any c ∈ L∞(M),
any V0 = (v0, v1) ∈ H1

0 (M)× L2(M), and associated solution v of⎧⎪⎪⎨⎪⎪⎩
∂2
t v −Δv + c(x)v = 0,

v|∂M = 0, if ∂M �= ∅
(v(0), ∂tv(0)) = (v0, v1),

(1.13)

we have the estimates

Cobs

∫ T

0

‖v(t)‖2H1(ω)dt ≥ E1(V0), (1.14)
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resp.,

Cobs

∫ T

0

‖∂νv(t)‖2L2(Γ )dt ≥ E1(V0). (1.15)

with Cobs = Cobs(‖c‖L∞) where Cobs(r) = C exp(exp(C
√
r)).

If c ∈ L∞
δ (M), δ > 0, then Cobs = Cobs(δ, ‖c‖L∞) with Cobs(δ, r) = C exp(C(1 + δ−1/2)r) (where the constant

C > 0 does not depend on δ, r).

Even the refined estimate in the case c ∈ L∞
δ (M) does not reach the general conjecture of Duyckaerts–Zhang–

Zuazua [13], being that Cobs(r) should be of the form C exp(Cr
2
3 ) for all c ∈ L∞(M) in dimension n ≥ 2.

However, whereas the C exp(Cr
2
3 ) bound is proved (even for time dependent potentials c ∈ L∞((0, T ) ×M))

in [13] in case (ω, T ) satisfy a mutliplier-type condition, to our knowledge, Theorem 1.5 is the first explicit
bound under the sole GCC condition. We also refer to [53] for the dependence w.r.t. potentials in dimension
one.

As can be seen in the proof, the loss with respect to the expected exponent is probably due to the rough
energy estimates we perform and the use of the high and low-frequency results as black boxes.

Note finally that the uniform observability estimate (without explicit bounds) for potentials lying in bounded
set of Lp(M), p > d is proved in [14]. A modification of the rough argument in the general case should probably
allow to give an explicit bound for potentials c ∈ Ld(M), for the unique continuation estimate of [23] also holds
for such potentials (using the rough Sobolev estimate ‖cu‖L2 ≤ ‖c‖Ld‖u‖H1 in the proofs of that reference).

1.3. Idea of the proof and plan of the article

All proofs of the present paper rely on the optimal quantitative unique continuation results proved by the
authors in [23]. To explain the spirit of the proof, let us formulate a typical instance of this result (see [23],
Thm. 1.1) in the case ∂M = ∅ and L = L∗ = −Δ + 1 (the case of Dirichlet boundary conditions may also be
considered).

Theorem 1.6 (Quantitative unique continuation for waves). For any nonempty open subset ω0 of M and any
T > TUC(ω0), there exist C, κ, μ0 > 0 such that for any (v0, v1) ∈ H1(M) × L2(M) and associated solution
v ∈ C0(0, T ;H1(M)) of (1.2), for any μ ≥ μ0, we have

‖(v0, v1)‖L2(M)×H−1(M) ≤ Ceκμ ‖v‖L2(0,T ;H1(ω0))
+

1
μ
‖(v0, v1)‖H1(M)×L2(M) . (1.16)

In the analytic setting, this result is a global quantitative version of the Holmgren theorem and can be proved
with the theory developed by Lebeau in [24]. In the C∞ case, the qualitative unique continuation result in
optimal time was proved by Tataru [48] (see also [20, 42, 50] for more general operators). This followed a series
of papers: [26,37] in infinite time, and then [19,39]. Concerning quantitative results, Robbiano [40] first proved
inequality (1.6) for T sufficiently large and Ceκμ replaced by Ceκμ

2
. This was improved by Phung [36] to

Cεeκμ
1+ε

, still in large time. In [49], Tataru suggested a strategy to obtain Cεeκμ
1+ε

in optimal time (in domains
without boundaries). At the same time we proved the above Theorem 1.6 (in a more general framework than
the above statement, see [23], Thm. 1.1), Bosi, Kurylev and Lassas [4] obtained Cεeκμ

1+ε

, still in domains
without boundaries (but with constants uniform with respect to the operators involved, for applications to
inverse problems). We refer to the introduction of [23] for a more detailed discussion on this issue. One of the
motivations for Theorem 1.6 is that it provides the cost of approximate controls for waves (see [23, 40]).

One of the advantages of this result is that it is proved via Carleman estimates and hence furnishes computable
constants. In particular, a uniform version with respect to lower order terms is also furnished in [23], which we
shall use for the proof of Theorem 1.5.
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With this in hand, the starting point of this paper is a proof of the full observability estimate (1.3) from the
high-frequency one (1.4) and (1.16). This is the following very basic observation: plugging (1.16) in (1.4) yields,
for all μ ≥ μ0, (

1− 2C′

μ2

)
E1(v0, v1) ≤ C

∫ T

0

‖bωv(t)‖2H1(M)dt+ 2C′C2e2κμ

∫ T

0

‖v(t)‖2H1(ω0)
dt.

Taking also μ ≥ √2C′, this eventually proves (1.3) with Cobs � C + C′C2e2κ
√

2C′ , provided that ω0 ⊂ ω and
TUC(ω0) ≤ TGCC(ω) (which we may always assume, see Appendix B.2). This directly provides a quantita-
tive treatment of Step (2): passing from the relaxed observability inequality (1.4) to the full observability
inequality (1.3).

On a compact manifold without boundary, we also explain how to prove (1.4) in a constructive way. This
follows the spirit of the paper by Dehman and Lebeau [10]. We write the observation as∫ T

0

‖bωv(t)‖2H1(M)dt = (GTV0, V0) , V0 = (v0, v1),

where GT is the Gramian operator of the control problem. As in [10], we prove essentially that GT is a pseudod-
ifferential operator of order zero with principal symbol σ0(GT ) =

∫ T
0
b2ω ◦ π ◦ ϕt(ρ)dt. We have σ0(GT ) ≥ K(T )

uniformly on S∗M ; the use of the Sharp G̊arding inequality then proves that (GTV0, V0) ≥ K(T )E1(V0), modulo
lower order terms CE0(V0), which (if K(T ) > 0) is exactly (1.4) with C = 1

K(T ) and C′ = C
K(T ) .

The plan of the paper is the following. Section 2 is devoted to the study of the limit T → TGCC(ω)+. In
Section 2.1, we introduce some notation used throughout the paper. Then, in Section 2.2 we perform the high-
frequency analysis of a model case, namely the Klein–Gordon equation, corresponding to L = L∗ = −Δ+1 (and
prove in particular Thm. 1.1). In this case, the proofs are simpler to write, so we chose to expose it separately.
Then, we conclude in this case the proof of Theorem 1.2 in Section 2.3. Finally, we consider the general case
of Theorem 1.4 in Section 2.4. Only the high-frequency analysis needs care, for the low-frequency analysis is
exactly that of Section 2.3.

Then, in Section 3, we consider the problem of uniform observation with respect to potentials. We first prove
the refined low-frequency estimates in this case in Section 3.1. Second, we conclude the proof of Theorem 1.5
in Section 3.2, using as a black box the high-frequency estimates of [1, 2].

The article ends with two appendices. Appendix A concerns general facts on pseudodifferential calculus. It
contains in particular a proof of a non-autonomous non-selfadjoint Egorov theorem (Appendix A.2), of some
smoothing properties of operators (Appendix A.3) and some uniform calculus estimates on compact manifolds
(Appendix A.4). The second Appendix B is devoted to geometry and contains some elementary properties of
TGCC(ω) and TUC(ω) (Appendix B.2).

2. The observability constant as T → TGCC(ω)+

In all this section, ∂M = ∅. In Sections 2.2 and 2.3, we first prove Theorems 1.1 and 1.2: in these two sections,
the operator L is −Δ+1. In Section 2.4, we then prove their generalization, namely Theorem 1.4: in that section,
L has the general form given in (1.10). The reason why the analysis is simpler in the Klein–Gordon case is that
we have the exact factorization formula, for Λ = (−Δ+ 1)

1
2 ,

∂2
t −Δ+ 1 = ∂2

t + Λ2 = (∂t − iΛ)(∂t + iΛ). (2.1)

Of course, this formula is not needed (as shown in Sect. 2.4) but it gives rise to several simplifications. We refer
to Remark 2.11 concerning the use of an exact square root of −Δ+ 1.
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2.1. Preliminaries

We denote by (ej)j∈N a Hilbert basis of eigenfunctions of the Laplace–Beltrami operator, associated to the
eigenvalues (κj)j∈N. In particular, we have ej ∈ C∞(M), −Δej = κjej , κj ≥ 0, and (ej , ek)L2(M) = δjk.

For s ∈ R, we shall often use the operator Λs = (−Δ+ 1)
s
2 : C ∞(M)→ C ∞(M), defined spectrally by

Λsf =
∑
j∈N

(κj + 1)
s
2 (f, ej)L2(M)ej, s ∈ R.

By duality, it may be extended as an operator Λs : D ′(M)→ D ′(M). We define the Sobolev spaces

Hs(M) = {f ∈ D ′(M), Λsf ∈ L2(M)}, s ∈ R,

and associated inner products

(f, g)Hs(M) = (Λsf, Λsg)L2(M),
(
(f1, f2), (g1, g2))

)
Hs(M)×Hσ(M)

= (f1, g1)Hs(M) + (f2, g2)Hσ(M),

and norms

‖f‖2Hs(M) = ‖Λsf‖2L2(M), ‖(f1, f2)‖2Hs(M)×Hσ(M) = ‖f1‖2Hs(M) + ‖f2‖2Hσ(M). (2.2)

We also sometimes write Hs(M ; C2) = Hs(M) × Hs(M). On any Hσ(M), σ ∈ R, the operator Λs is an
unbounded selfadjoint operator with domain Hσ+s(M). In particular, Λs is an isomorphism from Hσ+s(M)
onto Hσ(M).

Let us also recall that, given an open set Ω ⊂M , we may define the local H1-norm on Ω by

‖v‖2H1(Ω) =
∫
Ω

|∇v|2 + |v|2dx, with |∇v|2(x) = gx(∇v(x),∇v(x)),

which, in case Ω = M , is equal to the global H1-norm defined by (2.2).
We shall also use the energy-spaces Hs(M) = Hs(M)×Hs−1(M) associated to the energy norms

‖(v0, v1)‖2Hs(M) := ‖v0‖2Hs + ‖v1‖2Hs−1 , Es(v0, v1) :=
1
2
‖(v0, v1)‖2Hs(M).

According to [44] (or [46], Thm. 11.2), we have

Λs ∈ Ψsphg(M), with σs(Λs)(x, ξ) := λs(x, ξ) = |ξ|sx, (x, ξ) ∈ T ∗M \ 0,

where all notations are defined in Appendix B. We denote by (e±itΛ)t∈R the group of operators acting on Hs(M)
generated by ±iΛ.

We denote by ϕt = ϕ+
t (both notations will be used) the hamiltonian flow of λ(x, ξ) = |ξ|x on T ∗M \ 0,

and ϕ−
t that of −λ. They are linked by ϕ−

t = ϕ+
−t, according to Lemma B.2, but is is convenient to keep two

different notations.
We conclude this notation section with the following definition.

Definition 2.1. Assume we are given I = I1× . . .×IN a product of intervals of R (possibly reduced to a single
interval) and S an application from I with value in the set of bounded linear operators acting from a Banach
space B1 to another one B2. We shall say that S ∈ B(I;L(B1;B2)) if

(1) there exists C > 0 such that ‖S(t)u‖B2
≤ C ‖u‖B1

for any u ∈ B1 and t ∈ I;
(2) for any j ∈ {1, , . . . , N} and any (t1, . . . , tj−1, tj+1, . . . , tN) ∈ I1 × . . . × Ij−1 × Ij+1 × . . . × IN , the map

tj → S(t1, . . . , tN )u is in C 0(Ij ;B2) for any u ∈ B1.

Similarly, we write S ∈ Bloc(I;L(B1;B2)) if this estimate is satisfied on any compact set of I.
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In the applications, we always have I ⊂ R or I = I × I with I an interval of R, in particular when studying
the solution operator associated to a strictly hyperbolic Cauchy problem, see Appendix A.1.

Note that if S ∈ B(I;L(B1;B2)) and T ∈ B(I;L(B2;B3)), then we have TS ∈ B(I;L(B1;B3)).
Note also that the space B(I;L(B1;B2)) is not included in L∞(I;L(B1;B2)), for maps in S ∈ B(I;L(B1;B2))

are not a priori measurable in the Bochner sense. However, for all u ∈ B1 and (t1, . . . , tj−1, tj+1, . . . , tN ) ∈
I1× . . .×Ij−1×Ij+1× . . .×IN fixed, the partial map tj → S(t1, . . . , tN)u is in C 0(Ij ;B2) and hence (Bochner)
integrable. With a usual abuse of notation, for Tj ∈ Ij (and assume 0 ∈ Ij), we shall write

∫ Tj

0 S(t1, . . . , tN )dtj
the linear map

u �→
∫ Tj

0

(
S(t1, . . . , tN )u

)
dtj .

Remark then that (t1, . . . , tj−1, Tj, tj+1, . . . , tN) �→ ∫ Tj

0 S(t1, . . . , tN )dtj belongs to Bloc(I;L(B1;B2)) if S does.
Also, we have C 0(I;Ψmphg(M)) ⊂ Bloc(I;L(Hσ(M);Hσ−m(M))), according to Corollary A.10.

These facts will be used throughout the section.

2.2. The high-frequency estimate for the Klein–Gordon equation

In the present case of the Klein–Gordon equation, that is (1.2) with L∗ = −Δ + 1, and in view of the
factorization formula (2.1), we use the following splitting:

v+ =
1
2
(
v0 − iΛ−1v1

)
, v− =

1
2
(
v0 + iΛ−1v1

)
, (2.3)

so that
v0 = v+ + v−, v1 = iΛ(v+ − v−).

we denote by Σ the isomorphism corresponding to the splitting (2.3):

Σ : Hs(M)×Hs−1(M)→ Hs(M)×Hs(M)

(v0, v1) �→ (v+, v−).

that is

Σ =
1
2

(
1 −iΛ−1

1 iΛ−1

)
, Σ−1 =

(
1 1

iΛ −iΛ

)
. (2.4)

Notice that the operator Σ is (almost) an isometry Hs(M) × Hs−1(M) → Hs(M) × Hs(M). Indeed, if
(v+, v−) = Σ(v0, v1), we have

‖(v0, v1)‖2Hs(M)×Hs−1(M) = ‖v+ + v−‖2Hs(M) + ‖v+ − v−‖2Hs(M) = 2
(
‖v+‖2Hs(M) + ‖v−‖2Hs(M)

)
, (2.5)

that is
‖v+‖2Hs(M) + ‖v−‖2Hs(M) = Es(v0, v1) = Es(Σ−1(v+, v−)). (2.6)

According to (2.1), the expression of the solution of System (1.2) is simply

v(t) = eitΛv+ + e−itΛv−. (2.7)

We can now recall a result of [10] (in a slightly different context), providing a characterization of the Gramian
operator (in the wave splitting (2.3)).
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Proposition 2.2. Denoting by V0 = (v0, v1) ∈ Hs(M)×Hs−1(M) the initial data for System (1.2), we have∫ T

0

‖bωv(t)‖2Hs(M)dt =
(GTΣV0, ΣV0

)
Hs(M)×Hs(M)

, (2.8)

where

GT =
∫ T

0

(
e−itΛBeitΛ e−itΛBe−itΛ

eitΛBeitΛ eitΛBe−itΛ

)
dt, B = Λ−2sbωΛ

2sbω. (2.9)

Moreover, the operator GT can be decomposed as GT = GT +RT with

RT ∈ Bloc(R+;L(Hσ(M ; C2);Hσ+1(M ; C2)), for all σ ∈ R,

and GT ∈ C∞(RT ;Ψ0
phg(M ; C2×2)) has principal symbol

σ0(GT ) =

⎛⎝∫ T
0 b2ω ◦ ϕ−

t dt 0

0
∫ T
0 b2ω ◦ ϕ+

t dt

⎞⎠ ∈ S0
phg(T

∗M,C2×2). (2.10)

Note that the Gramian operator GT actually depends on the space Hs(M) (even not written in the notation).
An interesting fact is that its principal symbol does not depend on s. The result of Proposition 2.2 is essentially
proved in ([10], Sect. 4.1) and we reproduce a proof below for the sake of completeness.

Remark 2.3. Note that the operator B = Λ−2sbωΛ
2sbω is symmetric on Hs(M) since

(Bg, h)Hs(M) =
(
Λs(Λ−2sbωΛ

2sbω)g, Λsh
)
L2(M)

= (bωg, bωh)Hs(M), g, h ∈ Hs(M).

Proof of Proposition 2.2. We write ΣV0 = (v+, v−), v(t) = eitΛv++e−itΛv− the associated solution, and develop
the inner product∫ T

0

‖bωv(t)‖2Hs(M)dt =
∫ T

0

(
Λsbω(eitΛv+ + e−itΛv−), Λsbω(eitΛv+ + e−itΛv−)

)
L2(M)

dt (2.11)

=
∫ T

0

(
Λ−2sbωΛ

2sbω(eitΛv+ + e−itΛv−), (eitΛv+ + e−itΛv−)
)
Hs(M)

dt. (2.12)

This directly yields the sought form for the operator GT given by (2.9). The Egorov Theorem A.3 (see also
Rem. A.5) in the Appendix then implies that⎛⎝∫ T

0 e−itΛBeitΛdt 0

0
∫ T
0

eitΛBe−itΛdt

⎞⎠ = GT +R0
T , (2.13)

with GT ∈ C ∞(RT ;Ψ0
phg(M ; C2×2)) has principal symbol given by (2.10) and R0

T ∈
Bloc(R+;L(Hσ(M ; C2);Hσ+1(M ; C2)) for all σ ∈ R. Finally, Lemma A.6 implies that

R1
T =

⎛⎝ 0
∫ T
0

e−itΛBe−itΛdt∫ T
0 eitΛBeitΛdt 0

⎞⎠ , (2.14)

is also in Bloc(R+;L(Hσ(M);Hσ+1(M)) for all σ ∈ R, which concludes the proof with RT = R0
T +R1

T . �

As a first consequence of Proposition 2.2, we deduce a proof of Theorem 1.1.
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Proof of Theorem 1.1. Let ρ0 = (x0, ξ0) ∈ S∗M that realizes the minimum in (1.8), that is,

K(T ) = min
ρ∈S∗M

∫ T

0

b2ω ◦ π ◦ ϕt(ρ)dt =
∫ T

0

b2ω ◦ π ◦ ϕt(ρ0)dt. (2.15)

Take a local chart (Uκ, κ) of M such that x0 ∈ Uκ. We denote by (y0, η0) the coordinates of ρ0 in this chart.
We choose ψ ∈ C ∞

c (Rn) such that supp(ψ) ⊂ κ(Uκ), and ψ = 1 in a neighborhoodof y0. Next we define

wk(y) = C0k
n
4 eikϕ(y)ψ(y), with ϕ(y) = y · η0 + i(y − y0)2 and C0 > 0.

Setting now

vk+ = Λ−sκ∗wk ∈ C ∞
c (M), (2.16)

we have vk+ ⇀ 0 in Hs(M), limk→∞ ‖vk+‖Hs(M) = 1 for an appropriate choice of C0. Moreover, a classical
computation on (wk)k∈N shows that (vk+)k∈N satisfies(

Avk+, v
k
+

)
Hs(M)

→ σ0(A)(ρ0), for all A ∈ Ψ0
phg(M). (2.17)

Next, we set vk− = 0 for all k ∈ N, and V k = Σ−1(vk+, v
k
−) ∈ Hs(M)×Hs−1(M), so that Es(V k)→ 1 as k →∞.

Applying now (2.8) to V k, we have∫ T

0

‖bωvk(t)‖2Hs(M)dt =
(GTΣV k, ΣV k)Hs(M)×Hs(M)

,

where vk(t) is the solution to System (1.2) with initial data V k. Proposition 2.2 and (2.17) also imply

lim
k→∞

(GTΣV k, ΣV k)Hs(M)×Hs(M)
= lim

k→∞
(
(GT +RT )ΣV k, ΣV k

)
Hs(M)×Hs(M)

= lim
k→∞

(
GTΣV

k, ΣV k
)
Hs(M)×Hs(M)

=
∫ T

0

b2ω ◦ π ◦ ϕt(ρ0)dt = K(T ),

where we used that RT is 1-smoothing, that GT ∈ Ψ0
phg(M) has principal symbol given by (2.10), and the choice

of ρ0 in (2.15). Finally using the assumed observability estimate (1.3) with V k, and taking the limit k → ∞
yields

Cobs(T )K(T )← Cobs(T )
∫ T

0

‖bωvk(t)‖2Hs(M)dt ≥ Es(V k)→ 1.

This implies Cobs(T ) ≥ K(T )−1, and concludes the proof of Theorem 1.1. �

Remark 2.4. Note that (2.17) translates the fact that the sequence (vk+)k∈N is a pure sequence admitting the
Hs-microlocal defect measure δρ=ρ0 in the sense of [16, 47]. Similarly, the Hs-microlocal defect measure of the
sequence (V k)k∈N is

μ =

(
δρ0 0

0 0

)
.

As a second consequence of Proposition 2.2, we also obtain the following high-frequency observability
inequality.
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Proposition 2.5. For any T0 > 0, there exists a constant C0 > 0 such that for all T ∈ [0, T0], for all V0 =
(v0, v1) ∈ Hs(M)×Hs−1(M) and associated solution v of (1.2), we have∫ T

0

‖bωv(t)‖2Hs(M)dt ≥ K(T )Es(V0)− C0Es−1/2(V0), (2.18)

where K(T ) is defined by (1.8) and L∗ = −Δ+ 1.

Proof of Proposition 2.5. We first write ΣV0 = (v+, v−) = V , and use (2.8). We have(GTV, V )Hs(M ;C2)
=
(
GTV, V

)
Hs(M ;C2)

+
(
RTV, V

)
Hs(M ;C2)

. (2.19)

Using that RT ∈ Bloc(R+;L(Hs−1/2(M ; C2);Hs+1/2(M ; C2)), we have(
RTV, V

)
Hs(M ;C2)

≤ ‖RTV ‖Hs+1/2(M ;C2)‖V ‖Hs−1/2(M ;C2) ≤ CT ‖V ‖2Hs−1/2(M ;C2), (2.20)

where CT is bounded on compact time intervals.
Next, according to (2.10), the principal symbol of the operator GT − K(T ) Id ∈ Ψ0

phg(M ; C2×2) is

σ0(GT − K(T ) Id) =

⎛⎝∫ T
0
b2ω ◦ ϕ−

t dt− K(T ) 0

0
∫ T
0 b2ω ◦ ϕ+

t dt− K(T )

⎞⎠ ,

which is diagonal with nonnegative components since, according to Corollary B.3, we have

K(T ) = min
ρ∈S∗M

∫ T

0

b2ω ◦ ϕt(ρ)dt = min
ρ∈S∗M

∫ T

0

b2ω ◦ ϕ−
t (ρ)dt.

Using the G̊arding inequality of Theorem A.9 gives the existence of C > 0 such that, for all V ∈ Hs(M ; C2) all
T ∈ [0, T0],

((GT − K(T ) Id)V, V )Hs(M ;C2) ≥ −C‖V ‖2Hs−1/2(M ;C2). (2.21)

Combining (2.19), (2.20) and (2.21) now yields the existence of C > 0 such that, for all V ∈ Hs(M ; C2) all
T ∈ [0, T0], (GTV, V )Hs(M)×Hs(M)

≥ K(T )‖V ‖2Hs(M ;C2) − C‖V ‖2Hs−1/2(M ;C2).

Recalling (2.6) that ‖V ‖2Hσ(M ;C2) = Eσ(V0) concludes the proof of (2.18). �

To conclude this section, we explain the terminology “high-frequency observability estimates”. Let first T0 >
TGCC(ω) be fixed and denote by C0 > 0 the associated constant given by Proposition 2.5. We define the
following T -dependent subset of Hs by

HsHF (T ) =
{
V0 ∈ Hs, Es− 1

2
(V0) ≤ K(T )

4C0
Es(V0)

}
.

Note that this space is nonlinear. It is however homogeneous in the sense that V0 ∈ HsHF (T ) =⇒ RV0 ∈
HsHF (T ). Remark also that HsHF (T ) = {0} if T ≤ TGCC(ω), since K(T ) = 0 in this case. We may now formulate
an immediate corollary of Proposition 2.5, only consisting in a rewriting of that statement for data in HsHF (T ),
yielding a full observability inequality.

Corollary 2.6. For all V0 = (v0, v1) ∈ HsHF (T ) and associated solution v of (1.2), we have∫ T

0

‖bωv(t)‖2Hs(M)dt ≥
K(T )

2
Es(V0). (2.22)



1110 C. LAURENT AND M. LÉAUTAUD

Finally, the following Lemma states that data spectrally supported at high-frequency (in terms of the spectral
theory of −Δ) are in HsHF (T ). As such, they satisfy the full observability inequality (2.22).

Lemma 2.7. Denoting by

F sκ = {V0 ∈ Hs, ΠκV0 = 0} , with Πκ(v0, v1) =

⎛⎝∑
κj≤κ

(v0, ej)L2(M)ej ,
∑
κj≤κ

(v1, ej)L2(M)ej

⎞⎠ ,

we have

κ ≥
(

4C0

K(T )

)2

− 1 =⇒ F sκ ⊂ HsHF (T ).

When doing this, notice that we compare the typical frequency κ
1
2 to the blow up of the observation K(T )−1.

We recall that
(

4C0
K(T )

)2

−→
T→T+

GCC(ω)
+∞.

Proof. If (u, v) ∈ F sκ , then we have Πκ(u, v) = 0 so that, with uj = (u, ej)L2(M) and vj = (v, ej)L2(M), we
obtain

2Es− 1
2
(u, v) =

∑
κj>κ

(κj + 1)s−
1
2 |uj|2 + (κj + 1)s−

3
2 |vj |2

≤ (κ+ 1)−
1
2

∑
κj>κ

(κj + 1)s|uj |2 + (κj + 1)s−1|vj |2

≤ (κ+ 1)−
1
2 2Es(u, v).

If now κ+ 1 ≥
(

4C0
K(T )

)2

, this directly implies (u, v) ∈ HsHF (T ). �

2.3. The full observability estimate

Once the high-frequency observability estimate is proved, it remains to say something on the low-frequencies,
i.e. remove the term Es−1/2(V0) in the right hand-side of (2.18) for general data (as opposed to the result in
Cor. 2.6). This is based on [23]. We only use the case s = 1 in (2.18) to which [23] is more adapted. As a
corollary of Theorem 1.6 (i.e. [23], Thm. 1.1), we have the following intermediate estimates.

Corollary 2.8. Let ω0 be an open set of M and fix T0 > TUC(ω0). Then, there exist κ, μ0 > 0 such that for
any s ∈ [0, 1) there is C > 0 such that for all (v0, v1) ∈ H1(M) and associated solution v ∈ C 0(0, T ;H1(M))
of (1.2), for any T ≥ T0 and μ ≥ μ1−s

0 , we have

‖(v0, v1)‖Hs(M) ≤ CCs(μ) ‖v‖L2(0,T ;H1(ω0))
+
C

μ
‖(v0, v1)‖H1(M) ,

with Cs(μ) = μ
s

1−s eκμ
1

1−s . In particular, for any T ≥ T0 and μ ≥ μ1/2
0 , we have

‖(v0, v1)‖H1/2(M) ≤ Cμeκμ
2 ‖v‖L2(0,T ;H1(ω0))

+
C

μ
‖(v0, v1)‖H1(M) . (2.23)

Proof. We denote by V0 = (v0, v1) all along the proof. Using an interpolation estimate and Young inequality,
with η > 0, we obtain for C > 0 (depending on s)

‖V0‖Hs(M) ≤ C ‖V0‖1−sH0(M) ‖V0‖sH1(M) ≤ C(1− s)η−1/(1−s) ‖V0‖H0(M) + Csη1/s ‖V0‖H1(M) .
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Then using (1.16) for T = T0 > TUC(ω0) yields, for μ ≥ μ0,

‖V0‖Hs(M) ≤ Cη−1/(1−s)
[
C0(μ) ‖v‖L2(0,T0;H1(ω0)) +

1
μ
‖V0‖H1(M)

]
+ Cη1/s ‖V0‖H1(M)

Now, we take η such that η
1

s(1−s) = 1
μ , implying, for μ ≥ μ0,

‖V0‖Hs(M) ≤ CμsC0(μ) ‖v‖L2(0,T0;H1(ω0))
+

C

μ1−s ‖V0‖H1(M) .

Finally, writing μ̃ = μ1−s, there is C > 0 (depending on s) such that for any μ̃ ≥ μ1−s
0 , we have

‖V0‖Hs(M) ≤ Cμ̃
s

1−sC0(μ̃
1

1−s ) ‖v‖L2(0,T0;H1(ω0))
+
C

μ̃
‖V0‖H1(M) .

Using that ‖v‖L2(0,T0;H1(ω0))
≤ ‖v‖L2(0,T ;H1(ω0))

for all T ≥ T0 concludes the proof of the corollary. �

We can now conclude the proof of the main theorem in the model case of the Klein–Gordon equation by
combining the high-frequency estimate (2.18) and the low-frequency estimate (2.23).

Proof of the observability Theorem 1.2. First, according to Lemma B.8 and the assumption TUC(ω) < TGCC(ω),
there is an open subset ω0 of M such that

ω0 ⊂ ω, and TUC(ω0) < TGCC(ω).

We now choose T0, so that we have

0 < TUC(ω) ≤ TUC(ω0) < T0 < TGCC(ω) < T1

(note that the assumption TUC(ω) < TGCC(ω) implies TGCC(ω) > 0 and hence ω �= M and hence TUC(ω0) ≥
TUC(ω) > 0).

The high-frequency estimate (2.18) for s = 1, yields the existence of C0 > 0 such that for all T ∈ [0, T1],
V0 = (v0, v1), and associated solution v ∈ C 0(0, T ;H1(M)) of (1.2), we have∫ T

0

‖bωv(t)‖2H1(M)dt ≥ K(T )E1(V0)− C0E1/2(V0). (2.24)

The low-frequency estimate (2.23) (squared) gives the existence of C, κ, μ0 > 0, such that one has

E1/2(V0) ≤ Cμ2e2κμ2
∫ T

0

‖v‖2H1(ω0)
dt+

C

μ2
E1(V0), (2.25)

for all μ ≥ μ 1
2
0 and all T ≥ T0. Changing μ2 into μ, these last two estimates yield, for any μ ≥ μ0 and T ∈ [T0, T1]

(the constant C > 0 may change from line to line, but remains uniform with respect to the parameters T and μ),∫ T

0

‖bωv(t)‖2H1(M)dt ≥ K(T )E1(V0)− C
(

eκ̃μ
∫ T

0

‖v‖2H1(ω0) dt+
1
μ

E1(V0)

)
,

that is ∫ T

0

‖bωv(t)‖2H1(M)dt+ Ceκ̃μ
∫ T

0

‖v‖2H1(ω0)
dt ≥

(
K(T )− C

μ

)
E1(V0).
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Assuming now that T > TGCC(ω), we have K(T ) > 0, and may choose μ = max
{

2C
K(T ) , μ0

}
to obtain, for some

κ∗ > 0, C > 0 ∫ T

0

‖bωv(t)‖2H1(M)dt+ Ceκ
∗ max{K(T )−1,μ0}

∫ T

0

‖v‖2H1(ω0)
dt ≥ K(T )

2
E1(V0). (2.26)

Note that until this point, we did not use the assumptions on the relative location of the sets ω0 and ω = {bω �= 0}
(except that TUC(ω0) < TGCC(ω)).

Finally, using that ω0 ⊂ ω = {bω �= 0}, we have |bω| ≥ c−1
0 > 0 on ω0 and 1 = bω

bω
on this set, so that

‖v‖2H1(ω0)
=
∫
ω0

|∇v|2 + |v|2dx =
∫
ω0

|∇(b−1
ω bωv)|2 + |b−1

ω bωv|2dx

≤
∫
ω0

|∇b−1
ω |2|bωv|2 + c20

∫
ω0

|∇(bωv)|2 + |bωv|2dx

≤ C

∫
ω0

|∇(bωv)|2 + |bωv|2dx ≤ C ‖bωv‖2H1(M) .

As a consequence, coming back to (2.26), there is C, κ′ > 0 such that for all T ∈ (TGCC(ω), T1], we have

Ceκ
′K(T )−1

∫ T

0

‖bωv(t)‖2H1(M)dt ≥ E1(V0),

which concludes the proof of Theorem 1.2. �

2.4. The high-frequency estimate in the general case

We now consider the general case of the observability problem (1.2)–(1.10) (dual to the controllability prob-
lem (1.1)–(1.9)), and give a proof of Theorem 1.4. We only provide below the high-frequency part of the analysis.
The analogue of Theorem 1.1 (the lower bound) directly follows (and does not require the analyticity of the
coefficients). Concerning the analogue of Theorem 1.2 (the upper bound), its low-frequency part uses ([23],
Thm. 6.1) (instead of Theorem 1.6 which only deals with L∗ = −Δ), which requires the coefficients to be ana-
lytic in time. The proof of the full observability estimate from the high-frequency one then follows Section 2.3,
without any modification.

The main purpose of the following subsection is therefore the proof of Proposition 2.14 below, which is the
generalization of Proposition 2.5. As in the Klein–Gordon case, the proof proceeds in several steps:

• Writing the equation as a 2× 2 system.
• Using a trick due to Taylor to eliminate the anti-diagonal lower order terms, this is the object of

Proposition 2.9.
• Applying an Egorov theorem to get a nice pseudodifferential representation. This is Proposition 2.12.
• Concluding by the G̊arding inequality.

When performing the high-frequency analysis of this observation problem, it is convenient to recast it in a more
general framework. More precisely, given a fixed time T0 > 0, we shall study the HUM control operator for the
problem {

∂2
t v −Δv + v +A0Dtv +A1v = 0, on [0, T0]×M

(v(0), ∂tv(0)) = (v0, v1)
(2.27)

where A0 ∈ C ∞(0, T0;Ψ0
phg(M)), Dt = ∂t

i and A1 ∈ C∞(0, T0;Ψ1
phg(M)) have symbols

a0 = σ0(A0) ∈ C∞(0, T0;S0
phg(M)), a1 = σ1(A1) ∈ C∞(0, T0;S1

phg(M)).
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The main additional difficulty with respect to the model case of Section 2.2 is that we do not have the simple
representation formula (2.7) for the solution.

The equation (1.2)–(1.10) under interest is a particular case of (2.27) with

A0 = −ib0, with a0(t, x, ξ) = −ib0(t, x), (2.28)
A1 = −〈d · b1〉x +

(
c− ∂tb0 − div(b1)

)
, with a1(t, x, ξ) = −i〈ξ, b1(t, x)〉x, (2.29)

and all (high-frequency) results proved for (2.27) yield a counterpart for (1.2)–(1.10).
We now focus on equation (2.27). For (v0, v1) ∈ Hs × Hs−1, we recall that there exists a unique solution

v ∈ C 0(0, T0;Hs(M)) ∩ C 1(0, T0;Hs−1(M)) to (2.27). We set

v+(t) =
(
Dt + Λ

)
v(t), v−(t) =

(
Dt − Λ

)
v(t) (2.30)

so that v± ∈ C 0(0, T0;Hs−1(M)) for (v0, v1) ∈ Hs ×Hs−1. We have

v(t) =
1
2
Λ−1

(
v+(t)− v−(t)

)
, Dtv(t) =

1
2
(
v+(t) + v−(t)

)
. (2.31)

This corresponds to the splitting (v+, v−) = Σ̃(v, ∂tv) with

Σ̃ =

(
Λ 1/i

−Λ 1/i

)
, Σ̃−1 =

1
2

(
Λ−1 −Λ−1

i i

)
. (2.32)

Note that this is not exactly the splitting Σ introduced in (2.4) but we have

Σ =
1
2
Λ−1

(
1 0

0 −1

)
Σ̃.

We could also have performed the analysis in Section 2.2 with Σ̃, but in the case of the Klein–Gordon equation,
Σ was more convenient to work with in Hs ×Hs.

Then, writing ∂2
t −Δ+ 1 = −(Dt +Λ

)(
Dt −Λ

)
, equation (2.27) can be recast as a system of two first order

hyperbolic equation in terms of v±, namely⎧⎨⎩−(Dt − Λ)v+ + A0
2 (v+ + v−) + A1Λ

−1

2 (v+ − v−) = 0

−(Dt + Λ)v− + A0
2 (v+ + v−) + A1Λ

−1

2 (v+ − v−) = 0.
(2.33)

This is a striclty hyperbolic Cauchy problem ([52], Chap. 7.7) with solution operator S (t, s). As in the scalar
case (see Cor. A.2), it enjoys the regularity

S (t, s) ∈ B((0, T0)2;L(Hσ(M ; C2))),
∂tS (t, s), ∂sS (t, s) ∈ B((0, T0)2;L(Hσ(M ; C2);Hσ−1(M ; C2))),

for all σ ∈ R. The definition of the operators ∂tS (t, s), ∂sS (t, s) is given in Corollary A.2 (in the scalar case).
It can be rewritten as {

(Dt − Λ)v+ −A+v
+ −A−v− = 0,

(Dt + Λ)v− −A+v
+ −A−v− = 0,

(2.34)

with
A+ =

1
2
(
A0 + A1Λ

−1
)
, A− =

1
2
(
A0 −A1Λ

−1
)
,
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both belonging to C∞(0, T0;Ψ0
phg(M)). Note that the equations are only coupled by zero order terms. Again,

this is PV = 0 with V = t(v+, v−) and

P = Dt +M −A, M =

(−Λ 0

0 Λ

)
, A =

(
A+ A−

A+ A−

)
. (2.35)

With this splitting in hand, we first have the following high-frequency representation formula for solutions
of (2.27) or (2.34).

Proposition 2.9. We denote by S±(t, s) the solution operator associated to (∂t ± iΛ − iA±), that is y(s′) =
S±(s′, s)y(s) if and only if

(∂t ± iΛ− iA±(t))y(t) = 0, for all t ∈ [s, s′]. (2.36)

We also define

S(t, s) =

(
S+(t, s) 0

0 S−(t, s)

)
. (2.37)

Then the solution operator S (t, s) of (2.34) satisfies

S (t, s) = S(t, s) +R(t, s), (t, s) ∈ [0, T0]2,

where, for all σ ∈ R,

R(t, s) ∈ B((0, T0)2;L(Hσ(M ; C2);Hσ+1(M ; C2))), (2.38)

∂tR(t, s), ∂sR(t, s) ∈ B((0, T0)2;L(Hσ(M ; C2))). (2.39)

Proof of Proposition 2.9. We use a trick (due to Taylor [51], Sect. 2) to decouple the equations. More precisely,
we look for K ∈ C ∞(0, T0;Ψ−1

phg(M ; C2)) so that the function W = (Id−K)V solves a diagonal system, up to
appropriate remainders (on the variable V ). We have on the one hand

(Id +K)W = V −K2V,

and hence

(Id−K)P (Id+K)W = (Id−K)P (V −K2V ) = −(Id−K)PK2V = RV, (2.40)

since PV = 0. Moreover, the remainder satisfies R ∈ R−1, where

R−1 = C∞(0, T0;Ψ−1
phg(M ; C2)) + C∞(0, T0;Ψ−2

phg(M ; C2))Dt

is the admissible class of remainders in the present context. On the other hand, we have

(Id−K)P (Id+K)W = PW + [P,K]W −KPKW, (2.41)

with KPK ∈ R−1. We then remark that [Dt,K]W = (DtK)W so that [Dt,K] ∈ C∞(0, T0;Ψ−1
phg(M ; C2)) ⊂

R−1, and as well [A,K] ∈ R−1. Hence, if we can find K such that

−
(

0 A−

A+ 0

)
+ [M,K] ∈ R−1, (2.42)
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we will then obtain from (2.40) and (2.41) that W solves

PdW = R1W +R2V = RV, (2.43)

with R1, R2, R ∈ R−1 and, with M defined in (2.35),

Pd = Dt +M −Ad, Ad =

(
A+ 0

0 A−

)
.

Now taking (for instance)

K :=
1
2

(
0 −Λ−1A+

A−Λ−1 0

)
∈ C ∞(0, T0;Ψ−1

phg(M ; C2))

realizes (2.42), and we are left to study PdW = RV , R ∈ R−1, with W = (Id−K)V .
With S(t, s) defined in (2.37), equation (2.43) is now solved by

W (t) = S(t, s)W (s) +
∫ t

s

S(t, t′)R(t′)V (t′)dt′, R ∈ R−1.

Recalling that W = (Id−K)V and that V (t) = S (t, s)V (s), this yields

V (t) = S(t, s)V (s) +K(t)S (t, s)V (s)− S(t, s)K(s)V (s) +
(∫ t

s

S(t, t′)R(t′)S (t′, s)dt′
)
V (s).

This can be rewritten as
V (t) = S(t, s)V (s) +R(t, s)V (s),

with

R(t, s) = K(t)S (t, s)− S(t, s)K(s) +
(∫ t

s

S(t, t′)R(t′)S (t′, s)dt′
)

satisfying

R(t, s) ∈ B((0, T0)2;L(Hσ(M ; C2);Hσ+1(M ; C2))),
∂tR(t, s), ∂sR(t, s) ∈ B((0, T0)2;L(Hσ(M ; C2))),

for all σ ∈ R, according to the respective regularity properties of S (t, s),S(t, s) and K(s) (see Appendix A.1
for the regularity properties of S(t, s),S (t, s)). �

Remark 2.10. Note that the decoupling of the two equations is permitted since the difference of the two
eigenvalues of the principal part of the system, namely ±λ, is elliptic. Moreover, we do no have the choice of
the principal symbol of K in this procedure. Also, we could choose K by a classical iterative procedure so that
all remainders are infinitely smoothing, which is not needed here.

Remark 2.11. Note here that we do not need to use that Λ (the square root of the Laplace operator defined
via spectral theory) is a pseudodifferential operator. Indeed, we could in place of Λ use any operator E such
that

• E ∈ Ψ1
phg(M) with σ1(E)(x, ξ) = λ(x, ξ) = |ξ|x

• E is selfadjoint on L2(M),
• E is positive, in the sense that (Eu, u)L2(M) ≥ C‖u‖2L2(M),
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Then notice that we have −Δ − E2 ∈ Ψ1
phg(M), with principal symbol σ1(−Δ − E2) real since −Δ − E2 is

selfadjoint on L2(M). As a consequence writing equation (2.27) with E2 instead of Λ2 = −Δ+1 only amounts to
add to A1 a term with real principal symbol. Then, we conclude by remarking that the result of Proposition 2.12
only depends on Im(a1).

Such an operatorE is easy to construct using only basic pseudodifferential calculus onM : Start with some A ∈
Ψ1

phg(M) with σ1(A)(x, ξ) = λ(x, ξ) (given by any quantification of the symbol λ), and set E := 1
2 (A+A∗)+C0

with C0 large enough so that E is positive (use for that the G̊arding inequality). Then it is clear that E fulfills
all above conditions.

In Section 2.2, it was convenient to take an exact square root Λ, so that to have the nice exact formula (2.7).
The analysis of the present section shows this is not needed.

The representation formula of Proposition 2.9 together with an appropriate Egorov theorem (Thm. A.3)
allows to express the Gramian control operator as follows.

Proposition 2.12. Denoting by V0 = (v0, v1) ∈ Hs(M) × Hs−1(M) the initial data for System (2.27), and
Σ̃V0 = t

(
v1
i + Λv0,

v1
i − Λv0

)
, we have∫ T

0

‖bωv(t)‖2Hs(M)dt =
(GT Σ̃V0, Σ̃V0

)
Hs−1(M)×Hs−1(M)

, (2.44)

where GT = GT + RT with RT ∈ B(0, T0;L(Hσ(M), Hσ+1(M ; C2))
)

for all σ ∈ R, and GT ∈
C ∞(0, T0;Ψ0

phg(M ; C2×2)) has principal symbol

σ0(GT ) :=
1
4

(
g+
T 0

0 g−T

)
∈ S0

phg(T
∗M,C2×2),

with

g±T (ρ) =
∫ T

0

b2ω ◦ π ◦ ϕ±
t (ρ)e−

∫
t
0 Im(a0±a1λ

−1)(τ,ϕ±
τ (ρ))dτdt.

Remark 2.13. Note that the proof of Proposition 2.12 also allows to recover an analogue of ([25], Lem. 3.1)
which is the crucial step towards the estimate of the optimal exponential decay rate for the damped wave
equation. Namely, for all T > 0, there is a constantC > 0 such that we have, for all solutions of ∂2

t v−Δv+b0∂tv =
0 with real valued b0, the following estimates:

E1(v, ∂tv)(T ) ≤ exp

(
−2 inf

(x,ξ)∈S∗M

∫ T

0

b0(s, x(s))ds

)
E1(v, ∂tv)(0) + CE0(v, ∂tv)(0),

E1(v, ∂tv)(T ) ≥ exp

(
−2 sup

(x,ξ)∈S∗M

∫ T

0

b0(s, x(s))ds

)
E1(v, ∂tv)(0)− CE0(v, ∂tv)(0),

where x(s) = π ◦ϕs(x, ξ). The proof is very close to that of Proposition 2.12: it follows from the representation
formula of Proposition 2.9, the Egorov Theorem A.3, and the sharp G̊arding estimate.

Proof of Proposition 2.12. According to (2.31), the unique solution to (2.27) is given by

v(t) =
1
2
Λ−1

(
v+(t)− v−(t)

)
= LV (t),

where
V (t) = t(v+(t), v−(t)), and L :=

1
2
Λ−1(1,−1).
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According to Proposition 2.9, V (t) = t(v+(t), v−(t)) satisfies

V (t) = S (t, 0)V 0, S (t, 0) = S(t, 0) +R(t, 0), t ∈ [0, T0],

with
V 0 = (v+

0 , v
−
0 ) = Σ̃(v0, v1) =

(v1
i

+ Λv0,
v1
i
− Λv0

)
∈ Hs−1(M ; C2),

for (v0, v1) ∈ Hs(M)×Hs−1(M). Now, we compute∫ T

0

‖bωv(t)‖2Hs(M)dt =
∫ T

0

‖bωLS (t, 0)V 0‖2Hs(M)dt

=
∫ T

0

(
S (t, 0)∗tLbωΛ2sbωLS (t, 0)V 0, V 0

)
L2(M ;C2)

dt

where all adjoints are taken in L2. This implies∫ T

0

‖bωv(t)‖2Hs(M)dt =
(GTV 0, V 0

)
Hs−1(M ;C2)

, GT =
∫ T

0

Λ2(1−s)S (t, 0)∗tLbωΛ2sbωLS (t, 0)dt.

Recalling now the form of S (t, 0) = S(t, 0) +R(t, 0) given by Proposition 2.9, we set

G̃T :=
∫ T

0

Λ2(1−s)S(t, 0)∗tLbωΛ2sbωLS(t, 0)dt, and R̃T = GT − G̃T (2.45)

The regularity properties of Λ2(1−s), S (t, 0), L, and that of R(t, 0) given in (2.38)-(2.39) yield that

R̃T ∈ B((0, T0);L(Hσ(M ; C2);Hσ+1(M ; C2))).

Next, recalling the definition of S(t, 0) in (2.37), we can compute

S(t, 0)∗tLbωΛ2sbωLS(t, 0) =

(
S+(t, 0)∗BS+(t, 0) −S+(t, 0)∗BS−(t, 0)

−S−(t, 0)∗BS+(t, 0) S−(t, 0)∗BS−(t, 0)

)
, (2.46)

with
B =

1
4
Λ−1bωΛ

2sbωΛ
−1 ∈ Ψ2s−2

phg (M).

Let us first study the diagonal terms in (2.46). With S±(t, 0) defined in (2.36), the Egorov Theorem A.3 yields
the existence of Q±(t) ∈ C∞(

(0, T0), Ψ2s−2
phg (M)

)
and

R±(t) ∈ B((0, T0),L(Hσ(M), Hσ+1−2(s−1)(M))
)
,

∂tR±(t) ∈ B((0, T0),L(Hσ(M), Hσ−2(s−1)(M))
)
,

for all σ ∈ R, such that we have

S±(t, 0)∗BS±(t, 0)−Q±(t) = R±(t), t ∈ (0, T0).

and the principal symbol of Q±(t) is given by

q±(t, ρ) =
1
4
λ2s−2b2ω ◦ π ◦ ϕ±

t (ρ)e2
∫ 0

t
Im(a±)(τ,ϕ±

τ (ρ))dτ ∈ C ∞((0, T0), S2s−2
phg (T ∗M)),

where a± = σ0(A±).
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Concerning the anti-diagonal terms in (2.46) when integrated on (0, T ), Lemma A.7 yields∫ T

0

S±(t, 0)∗BS∓(t, 0)dt ∈ B((0, T0),L(Hσ(M), Hσ+1−2(s−1)(M))
)
.

With all these properties in hand, when coming back to (2.45), we may now write G̃T := GT + R0
T where

R0
T ∈ B

(
(0, T0),L(Hσ(M ; C2), Hσ+1(M ; C2))

)
for all σ ∈ R, and GT is given by

GT :=

⎛⎝Λ2(1−s) ∫ T
0
Q+(t)dt 0

0 Λ2(1−s) ∫ T
0 Q−(t)dt

⎞⎠ ∈ C∞(
0, T0;Ψ0

phg(M)
)
,

and has principal symbol

σ0(GT ) :=
1
4

(∫ T
0
b2ω ◦ π ◦ ϕ+

t (ρ)e−2
∫ t
0 Im(a+)(τ,ϕ+

τ (ρ))dτdt 0
0

∫ T
0
b2ω ◦ π ◦ ϕ−

t (ρ)e−2
∫

t
0 Im(a−)(τ,ϕ−

τ (ρ))dτdt

)
.

This, together with (2.45) concludes the proof of the proposition. �

As a consequence of Proposition 2.12, we obtain the following high-frequency observability estimate. We use
for this the definition of the constant K(T ) associated to (2.27):

K(T ) := min
{

min
ρ∈S∗M

g+
T (ρ), min

ρ∈S∗M
g−T (ρ)

}
. (2.47)

Proposition 2.14. For any T0 > 0, there exists a constant C0 > 0 such that for all T ∈ [0, T0], for all
V0 = (v0, v1) ∈ Hs(M)×Hs−1(M) and associated solution v of (2.27), we have∫ T

0

‖bωv(t)‖2Hs(M)dt ≥ K(T )Es(V0)− C0Es−1/2(V0), (2.48)

where K(T ) is defined by (2.47).

Note that in the case of equation (1.2)–(1.10) above, the symbols a0, a1 are given by (2.28) and (2.29), so
that in this case, denoting by (x±(s), ξ±(s)) = ϕ±

s (x0, ξ0), we have

g±T (x0, ξ0) =
∫ T

0

b2ω(x±(t)) exp

(∫ t

0

Re(b0)(τ, x±(τ)) ±
〈

ξ±(τ)
|ξ±(τ)|x±(τ)

,Re(b1)(τ, x±(τ))
〉
x±(τ)

dτ

)
dt. (2.49)

The two functions g−T and g+
T in (2.49) are linked by the following lemma, proved in Appendix B.

Lemma 2.15. With g−T and g+
T given by (2.49) we have g−T ◦ σ = g+

T , where σ(x, ξ) = (x,−ξ).
According to Lemma 2.15 (together with the fact that σ is an involution), we have in this situation
minρ∈S∗M g+

T (ρ) = minρ∈S∗M g−T (ρ). This justifies the definition (1.11) in Theorem 1.4.

Proof of Proposition 2.14. We follow the proof of Proposition 2.5. From Proposition 2.12 and the use of the
uniform G̊arding estimate of Theorem A.9 (or its corollary), we obtain, uniformly for T ∈ [0, T0],∫ T

0

‖bωv(t)‖2Hs(M)dt =
(GT Σ̃V0, Σ̃V0

)
Hs−1(M)×Hs−1(M)

≥ 1
4
K(T )‖Σ̃V0‖2Hs−1(M ;C2) − C0‖Σ̃V0‖2Hs−3/2(M ;C2).

To conclude, we just notice that

‖Σ̃V0‖2Hs−1(M ;C2) = ‖v1
i

+ Λv0‖2Hs−1(M) + ‖v1
i
− Λv0‖2Hs−1(M)

= 2‖v1‖2Hs−1(M) + 2‖v0‖2Hs(M) = 4Es(V0). �
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3. Uniform dependence with respect to potentials

In this section, we allow M to have a nonempty boundary ∂M . In fact, we do not perform a high-frequency
analysis but rather use as a black box a known result, for which we refer, e.g., to [2] or [25]. We hence now use
the notation: H1 = H1

0 (M)× L2(M), H1 = L2(M)×H−1(M) (H−1 being the usual dual space of H1
0 ), and

E1(u, ∂tu) =
1
2

(
‖∂tu‖2L2(M) + ‖∇u‖2L2(M) + ‖u‖2L2(M)

)
.

In Section 3.1, we first focus on obaining (from [23]) an explicit dependence of the low frequency estimates
with respect to potentials. We then conclude the proof in Section 3.2.

3.1. The low-frequency estimate

Our starting point is the following result, which is a particular case of ([23], Thm. 6.3) (in which the operator
considered may also contain first order terms).

Theorem 3.1. For any nonempty open subset ω of M and any T > L(M,ω), there exist ε, C, κ, μ0 > 0 such

that for any c ∈ L∞(M), any u ∈ H1((−T, T )×M) solving (1.13), we have, for any μ ≥ μ0 max{1, ‖c‖ 2
3
L∞},

‖u‖L2((−ε,ε)×M) ≤ Ceκμ ‖u‖L2((−T,T );H1(ω)) +
C

μ
‖u‖H1((−T,T )×M) .

If ∂M �= ∅ and Γ is a non empty open subset of ∂M , for any T > L(M,Γ ), there exist ε, C, κ, μ0 > 0 such that
for any u ∈ H1((−T, T )×M) solving (1.13), we have

‖u‖L2((−ε,ε)×M) ≤ Ceκμ ‖∂νu‖L2((−T,T )×Γ ) +
C

μ
‖u‖H1((−T,T )×M) .

From this result, we may deduce, in case there is no first order terms, the following corollary which is a refined
version of ([23], Thm. 6.1) (in which we replace C = C0eC0‖c‖L∞ by C = C0eC0

√
‖c‖L∞ )

Corollary 3.2. Under the same assumptions as Theorem 3.1, there exist C0, κ, μ0 > 0 such that for any
c ∈ L∞(M), any u ∈ H1((−T, T )×M) solving (1.13), we have, for any μ ≥ μ0 max{1, ‖c‖ 2

3
L∞},

‖(u0, u1)‖H0 ≤ Ceκμ ‖u‖L2((−T,T );H1(ω)) +
C

μ
‖(u0, u1)‖H1 ,

resp., in the boundary observation case,

‖(u0, u1)‖H0 ≤ Ceκμ ‖∂νu‖L2((−T,T )×Γ ) +
C

μ
‖(u0, u1)‖H1 ,

with C = C0eC0

√
‖c‖L∞ .

These estimates will eventually lead to the general bound of the form Cobs = C exp(exp(C ‖c‖1/2L∞(M))). This
result is a direct consequence of the following energy estimates.

Lemma 3.3. There exists C > 0 such for any u solution of (1.13), we have

‖(u(t), ∂tu(t))‖H1 ≤ CeC|t−s|
√

‖c‖L∞ ‖(u(s), ∂tu(s))‖H1 , (3.1)

‖(u(t), ∂tu(t))‖H0 ≤ CeC|t−s|
√

‖c‖L∞ ‖(u(s), ∂tu(s))‖H0 . (3.2)

For any T > 0 there exists C > 0 such that for any u solution of (1.13), we have

C−1e−C
√

‖c‖L∞ ‖u‖H1((−T,T )×M) ≤ ‖(u0, u1)‖H1 ≤ CeC
√

‖c‖L∞ ‖u‖H1((−T,T )×M) , (3.3)

C−1e−C
√

‖c‖L∞ ‖u‖L2((−T,T )×M) ≤ ‖(u0, u1)‖H0 ≤ CeC
√

‖c‖L∞ ‖u‖L2((−T,T )×M) . (3.4)
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The nontrivial part of this Lemma is in the power 1/2 for the size of the potential. Estimates (3.1) and (3.2) are
proved in [13] using a modified energy method (see estimate (2.50) and (2.44) in that reference, see also [53]).
Both estimates in (3.3) and the first part of (3.4) are obtained by integration on (−T, T ). The second estimate
of (3.4) is obtained from (3.3) by a duality argument (see the proof of Theorem 6.1 in [23]). A similar argument
will be performed in the proof of Lemma 3.5.

In the case when c belongs to L∞
δ , the exponential dependence with respect to c in the constant Cobs can in

fact be improved. We stress the fact that potentials in L∞
δ are real-valued so that −Δ+ c is selfadjoint on L2.

If c ∈ L∞
0 , the operator −Δ+ c is nonnegative.

Setting

Ec(u, ∂tu) =
1
2

(
‖∂tu‖2L2(M) + ‖∇u‖2L2(M) +

∫
M

c|u|2
)
,

we always have

Ec(u, ∂tu) ≤ (1 + ‖c‖L∞(M))E1(u, ∂tu),

and, if c ∈ L∞
δ with δ > 0 we also obtain

E1(u, ∂tu) =
1
2

(
‖∂tu‖2L2(M) + ‖∇u‖2L2(M) + ‖u‖2L2(M)

)
≤ 1

2

(
‖∂tu‖2L2(M) + ‖∇u‖2L2(M) + δ−1

(∫
M

|∇u|2 + c|u|2
))

≤ (1 + δ−1)Ec(u, ∂tu). (3.5)

We have the following elementary Lemma which applies for any c ∈ L∞
δ ⊂ L∞

0 , δ ≥ 0.

Lemma 3.4. Let T > 0. Then, there exists CT > 0 such that for all c ∈ L∞
0 , all (u0, u1) ∈ H1

0 (M) × L2(M),
g ∈ L1(0, T ;L2(M)) and u associated solution of⎧⎨⎩∂2

t u−Δu+ cu = g,
u|∂M = 0, if ∂M �= ∅,

(u, ∂tu)t=0 = (u0, u1),
(3.6)

we have the estimate

sup
t∈[0,T ]

(Ec(u, ∂tu)) ≤ CT
(
Ec(u0, u1) + ‖g‖2L1(0,T ;L2(M)

)
.

If moreover g = 0, then we have Ec(u, ∂tu) = Ec(u0, u1) on (0, T ).

Proof. Note first that c ∈ L∞
0 ensures that Ec is nonnegative. Multiply the equation by ∂tu, take real part and

integrate on M to obtain (at least for smooth solutions)

d
dt

(Ec(u, ∂tu)) =
∫
M

g(t, x)∂tu(t, x) ≤ ‖g(t)‖L2(M)‖∂tu(t)‖L2(M)

≤ ‖g(t)‖L2(M)

√
2Ec(u, ∂tu).

An appropriate Gronwall inequality gives the expected estimate. The case g = 0 comes from the first
identity. �

Now, we prove the following bound by duality.
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Lemma 3.5. For all T, ε > 0 there is Cε,T > 0 such that for all δ > 0, c ∈ L∞
δ , all (u0, u1) ∈ H1

0 (M)×L2(M),
and all associated solution u ∈ C0(0, T ;H1

0 (M)) ∩ C1(0, T ;L2(M)) of (3.6) with g = 0, we have,

‖u‖L2((−T,T )×M) ≤ (1 + δ−1)
1
2Cε,T ‖u‖L2((−ε,ε)×M) .

Proof. Define v to be the unique (backward) solution to⎧⎨⎩ (∂2
t −Δ+ c)v = u

v|∂M = 0
(v, ∂tv)|t=T = (0, 0).

By integration by parts, we have∫ T

0

∫
M

|u|2 =
∫ T

0

∫
M

u(∂2
t −Δ+ c)v =

∫
M

∂tu(0)v(0)−
∫
M

u(0)∂tv(0). (3.7)

But now, take χ ∈ C∞([0, T ]) with χ = 1 close to 0 and χ = 0 for t ∈ [ε, T ]. Define w = χ(t)v solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∂2
t −Δ+ c)w = χu+ 2χ̇(t)∂tv + χ̈(t)v =: g =: g1 + g2

w|∂M = 0

(w, ∂tw)|t=0 = (v, ∂tv)|t=0,

(w, ∂tw)|t=T = (0, 0).

with g1 = χu. We have the estimate

‖g2‖2L2((0,T )×M) ≤ C ‖(v, ∂tv)‖2L2([0,T ],H1(M)) = 2C
∫ T

0

E1(v, ∂tv)dt.

Moreover, (3.5) then yields E1(v, ∂tv) ≤ C(1 + δ−1)Ec(v, ∂tv) so that

‖g2‖2L2((0,T )×M) ≤ C
∫ T

0

Ec(v, ∂tv)dt ≤ CT (1 + δ−1) sup
t∈[0,T ]

Ec(v, ∂tv)(t).

Then, the equation satisfied by v together with Lemma 3.4 give

‖g2‖2L2((0,T )×M) ≤ CT (1 + δ−1) sup
t∈[0,T ]

Ec(v, ∂tv)(t) ≤ CT (1 + δ−1) ‖u‖2L2((0,T )×M) .

Since g1 = χu trivially satisfies this estimate, we finally obtain, with g = g1 + g2 (we drop the dependence with
respect to T or ε)

‖g‖2L2((0,T )×M) ≤ C(1 + δ−1) ‖u‖2L2((0,T )×M) . (3.8)

The same computation as in (3.7) for w, noticing that the boundary value of w are the same as v, yields the
identity ∫ T

0

∫
M

ug =
∫ T

0

∫
M

u(∂2
t −Δ+ c)w =

∫
M

∂tu(0)v(0)−
∫
M

u(0)∂tv(0).

Identifying this right hand-side with that of (3.7), we therefore obtain∫ T

0

∫
M

ug =
∫ T

0

∫
M

|u|2.
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Moreover, since g is supported in [0, ε], and using (3.8) we have∫ T

0

∫
M

|u|2 =
∫ ε

0

∫
M

ug ≤ ‖u‖L2((0,ε)×M) ‖g‖L2((0,ε)×M)

≤ C(1 + δ−1)
1
2 ‖u‖L2([0,ε]×M) ‖u‖L2((0,T )×M) .

and therefore ‖u‖L2((0,T )×M) ≤ C(1 + δ−1)
1
2 ‖u‖L2((0,ε)×M). Changing u(t) into u(−t) also leads to

‖u‖L2((−T,0)×M) ≤ C(1 + δ−1)
1
2 ‖u‖L2((−ε,0)×M), which concludes the proof of the lemma. �

With this refined energy estimates (with respect to those of the proof of [23], Thm. 6.2) and using the quantitative
unique continuation result of Theorem 3.1 above, we can then prove the following result.

Corollary 3.6. Let T > L(M,ω) (resp.T > L(M,Γ )). There exist C, κ, μ0 > 0 such that for any (u0, u1) ∈
H1

0 (M) × L2(M), for any δ > 0, any c ∈ L∞
δ , and associated solution u of (1.13), we have, with Cδ =

C(1 + δ−1/2), the estimate

‖u‖L2((−T,T )×M) ≤ Cδeκμ ‖u‖L2((−T,T );H1(ω0))
+
Cδ
μ

(
‖(u0, u1)‖H1(M) + ‖cu‖L2((−T,T )×M)

)
. (3.9)

resp., the estimate

‖u‖L2((−T,T )×M) ≤ Cδeκμ ‖∂νu‖L2((−T,T )×Γ ) +
Cδ
μ

(
‖(u0, u1)‖H1(M) + ‖cu‖L2((−T,T )×M)

)
. (3.10)

for all μ ≥ μ0 max{1, ‖c‖ 2
3
L∞}.

Proof. We start again from the above Theorem 3.1, namely, for all μ ≥ μ0 max{1, ‖c‖ 2
3
L∞}, we have

‖u‖L2((−ε,ε)×M) ≤ Ceκμ ‖u‖L2((−T,T );H1(ω)) +
C

μ
‖u‖H1((−T,T )×M) .

Lemma 3.5 then gives

‖u‖L2((−T,T )×M) ≤ Cδeκμ ‖u‖L2((−T,T );H1(ω)) +
Cδ
μ
‖u‖H1((−T,T )×M) .

Then, using classical hyperbolic energy estimates, viewing cu as a source term, we have

‖u‖H1((−T,T )×M) ≤ C(‖(u0, u1)‖H1(M) + ‖cu‖L2((−T,T )×M)).

Plugging this last estimate into the previous one yields the sought result. �

3.2. The full observability estimate

We now combine the quantitative unique continuation result of Corollary 3.2 (general case) or 3.6 (case
c ∈ L∞

δ ) with an observability estimate (or a relaxed observability estimate) for the wave equation without
potential (used here as a black box) to prove Theorem 1.5. The following is e.g. given in [1, 2].

Theorem 3.7 ( [2]). Assumes that (ω, T ) satisfies GCC, resp.that (Γ, T ) satisfies GCC∂ . Then, there exist
C0, C1 > 0 such that for any (w0, w1) ∈ H1

0 (M)× L2(M), and associated solution w of⎧⎪⎪⎨⎪⎪⎩
∂2
tw −Δw = 0,

w|∂M = 0, if ∂M �= ∅,
(w(0), ∂tw(0)) = (w0, w1),

(3.11)
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we have ∫ T

0

‖w(t)‖2H1(ω)dt ≥ C1E1(w0, w1), (3.12)

resp., ∫ T

0

‖∂νw(t)‖2L2(Γ )dt ≥ C1E1(w0, w1). (3.13)

Remark 3.8. Note that we only need (3.12) and (3.13) under the relaxed form (1.4) (i.e. with a remainder
term of the form CE0(w0, w1)). Here, it is stated as in [1, 2].

Proof of Theorem 1.5. Both estimates (boundary and internal observation) are proved the same way, so we only
detail e.g. the internal case. We shall however stress when the proof of the boundary observation differs.

With w solution of (3.11) and v solution of (1.13), starting from the same initial data V0 = (v0, v1) = (w0, w1),
we have, setting z = w − v, ⎧⎪⎪⎨⎪⎪⎩

∂2
t z −Δz = c(x)v,

z|∂M = 0, if ∂M �= ∅
(z, ∂tz)|t=0 = (0, 0).

(3.14)

Then, the hyperbolic energy estimates for z yield∫ T

0

‖z(t)‖2H1(ω)dt ≤ C‖z‖2L∞(0,T ;H1(M)) ≤ C‖c v‖2L2((0,T );L2(M)).

In the case of boundary observation, we use instead the so-called “hidden regularity” of the boundary normal
trace for solutions to the wave equation (see for instance [28], Thm. 4.1, p. 44 in the flat case), given by∫ T

0

‖∂νz(t)‖2L2(Γ )dt ≤ C‖c v‖2L1((0,T );L2(M)).

Hence, from the observability estimate (3.12), we obtain

2
∫ T

0

‖z(t)‖2H1(ω)dt+ 2
∫ T

0

‖v(t)‖2H1(ω)dt ≥
∫ T

0

‖w(t)‖2H1(ω)dt ≥ C1E1(V0),

and hence ∫ T

0

‖v(t)‖2H1(ω)dt ≥ C0E1(V0)− C‖c v‖2L2((0,T );L2(M)). (3.15)

Next, in the general case c ∈ L∞, we write

‖c v‖2L2((0,T );L2(M)) ≤ ‖c‖2L∞‖v‖2L2((0,T );L2(M)) ≤ C exp(C‖c‖ 1
2
L∞)E0(V0),

according to (3.4). Note then that (ω, T ) satisfies GCC implies that T > TUC(ω) (resp., that (Γ, T ) satisfies
GCC∂ implies that T > TUC(Γ )) as in the boundaryless case (see Rem. B.5). Hence, this estimate, together
with (3.15) and Corollary 3.2, yields

C exp(C‖c‖ 1
2
L∞)eκμ

∫ T

0

‖v(t)‖2H1(ω)dt+
C exp(C‖c‖ 1

2
L∞)

μ2
E1(V0) +

∫ T

0

‖v(t)‖2H1(ω)dt ≥ C0E1(V0). (3.16)
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for any μ ≥ μ0 max{1, ‖c‖ 2
3
L∞}. This yields the sought result in the general case c ∈ L∞, after having taken

μ2 ≥ 2C
C0

exp(C‖c‖ 1
2
L∞).

From now on, we consider the case c ∈ L∞
δ . The strategy is slightly different. Considering w the solution

of (3.11) coinciding with v at time t = T/2 (instead of t = 0), we obtain similarly∫ T

0

‖v(t)‖2H1(ω)dt ≥ C0E1(v, ∂tv)(T/2)− C‖c v‖2L2((0,T );L2(M)). (3.17)

This uses the observability estimate (3.12) together with the fact that w satisfies E1(w, ∂tw)(t) ≤ CE1(w, ∂tw)(0).
We may now use the quantitative unique continuation result of Corollary 3.6 to get rid of the term

‖c v‖2L2((0,T );L2(M)). Corollary 3.6 (applied on the time interval (0, T ) instead of (−T, T )) yields the existence of

C, κ, μ0 > 0 such that for any c ∈ L∞(M), any v solution of (1.13), and any μ ≥ μ0 max{1, ‖c‖ 2
3
L∞}, we have,

with V (T/2) = (v, ∂tv)(T/2),

‖c v‖L2((0,T )×M) ≤ ‖c‖L∞‖ v‖L2((0,T ) ×M)

≤ Cδ‖c‖L∞eκμ ‖v‖L2((0,T );H1(ω)) +
Cδ‖c‖L∞

μ

(
‖V (T/2)‖H1(M) + ‖c v‖L2((0,T )×M)

)
.

So, for μ ≥ 2Cδ‖c‖L∞, we obtain

‖c v‖L2((0,T )×M) ≤ Cδ‖c‖L∞eκμ ‖v‖L2((0,T );H1(ω)) +
Cδ‖c‖L∞

μ
‖V (T/2)‖H1(M) .

Plugging this into (3.17) yields

E1(V (T/2)) ≤ C2
δ (1 + ‖c‖L∞)2

(
e2κμ

∫ T

0

‖v(t)‖2H1(ω)dt+
1
μ2

E1(V (T/2))

)
.

We now take μ = max{μ0, μ0‖c‖
2
3
L∞, 2Cδ‖c‖L∞,

√
2Cδ(1 + ‖c‖L∞)} so that to absorb the last term in the right

handside, and finally obtain

E1(V (T/2)) ≤ CeCδ‖c‖L∞
∫ T

0

‖v(t)‖2H1(ω)dt.

Using now e.g. (3.1) implies E1(V (0)) ≤ Ce‖c‖
1
2
L∞ E1(V (T/2)), which concludes the proof of the theorem. �

Appendix A. Pseudodifferential calculus

A.1. Remainder of classical facts

We define Smphg(T
∗M), as the set of polyhomogeneous symbols of order m ∈ R on M . We recall that symbols

in the class Smphg(T
∗Rn) behave well with respect to changes of variables, up to symbols in Sm−1

phg (T ∗Rn) (see [18],
Thm. 18.1.17 and Lem. 18.1.18).

We denote by Ψmphg(M), the space of polyhomogeneous pseudodifferential operators of order m on M : one
says that A ∈ Ψmphg(M) if

(1) its kernel KA ∈ D ′(M ×M) is smooth away from the diagonal ΔM = {(x, x); x ∈M};
(2) for every coordinate patch Mκ ⊂M with coordinates Mκ � x �→ κ(x) ∈ M̃κ ⊂ Rn and all φ0, φ1 ∈ C ∞

c (M̃κ)
the map

u �→ φ1

(
κ−1

)∗
Aκ∗(φ0u)

is in Op(Smphg(T
∗Rn)).
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For A ∈ Ψmphg(M), we denote by σm(A) ∈ Smphg(T
∗M) the principal symbol of A (see [18], Chap. 18.1). Note

that the principal symbol is uniquely defined in Smphg(T
∗M) because of the polyhomogeneous structure (see

the remark following Def. 18.1.20 in [18]). Also, the map σm : Ψmphg(M) → Smphg(T
∗M) is onto (it suffices to

construct a quantization on T ∗M by means of local charts, see for instance the discussion after Def. 18.1.20
in [18]).

In the main part of the paper, we need to consider pseudodifferential operators acting on M yet depending
upon the parameter t ∈ (0, T ) with some smoothness with respect to t. Here, we follow [11] for the definitions
and notation. Let k ∈ N ∪ {∞}, we say that At ∈ C k

(
(0, T ),Op(Smphg(R

n × Rn))
)

if At = Op(at) with
at ∈ C k((0, T ), Smphg(R

n × Rn)). Next we say that At ∈ C k((0, T ), Ψmphg(M)) if

(1) its kernel KAt(x, y) is in C k
(
(0, T ); C �(M ×M \ΔM )

)
for all � ∈ N;

(2) for every coordinate patch Mκ ⊂M with coordinates Mκ � x �→ κ(x) ∈ M̃κ ⊂ Rn and all φ0, φ1 ∈ C ∞
c (M̃κ)

the map
u �→ φ1

(
κ−1

)∗
Atκ

∗(φ0u)

is in C k
(
(0, T ),Op(Smphg(T

∗Rn))
)
.

Let us now recall some basic facts concerning the first order hyperbolic Cauchy problem. The following result
can be adapted from ([18], Chap. XXIII).

Theorem A.1. Let I ⊂ R be a compact interval and take σ ∈ R. Assume H(t) ∈ C 0(I;Ψ1
phg(M)) has real

principal symbol. Then, there exists C > 0 such that for all f ∈ L1(I;Hσ(M)), all s ∈ I and all u0 ∈ Hσ(M),
the Cauchy problem {

∂tu(t)− iH(t)u(t) = f(t), t ∈ I,
u|t=s = u0.

(A.1)

has a unique (distribution) solution u ∈ C 0(I;Hσ(M)), that satisfies

‖u‖L∞(I;Hσ(M)) ≤ C‖u0‖Hσ(M) + C‖f‖L1(I;Hσ(M)).

If moreover f = 0, then u ∈ C 1(I;Hσ−1(M)).

The constant C essentially depends on a uniform bound on ‖H(t) − H∗(t)‖L∞(I;L(Hσ(M))) and commutator
estimates. The fact that C does not depend on the initial time s follows from the proof of ([18], Lem. 23.1.1).

Note also that, in case f = 0, the regularity C 1(I;Hσ−1(M)) of the solution u implies that (A.1) is in fact
an equality of functions in C 0(I;Hσ−1(M)).

As a consequence of this theorem, for all t, s ∈ I, there is a bounded linear solution map S(t, s) ∈ L(Hσ(M))
(for any σ ∈ R), given by u0 �→ u(t), where u is the unique solution to (A.1) with f = 0. We recall that
the space B(I;L(B1;B2)) is defined in Definition 2.1. As a consequence of Theorem A.1, the solution operator
S(t, s) enjoys in particular the following regularity properties.

Corollary A.2. With the notations and assumptions of Theorem A.1, we have

(1) S(t, s) ∈ B(I × I;L(Hσ(M))) for all σ ∈ R;
(2) the linear operator ∂tS(t, s) : u0 �→ ∂t

(
S(t, s)u0

)
satisfies ∂tS(t, s) ∈ B(I ×I;L(Hσ(M);Hσ−1(M))) for all

σ ∈ R together with ∂tS(t, s)− iH(t)S(t, s) = 0, S(s, s) = Id;
(3) we have S(t, s)S(s, t) = Id for all (s, t) ∈ I × I;
(4) for all u0 ∈ Hσ(M) and t ∈ I, the application s �→ S(t, s)u0 is in C 0(I;Hσ(M)) ∩ C 1(I;Hσ−1(M))

and, defining the linear operator ∂sS(t, s) : u0 �→ ∂s
(
S(t, s)u0

)
, it satisfies ∂sS(t, s) ∈ B(I ×

I;L(Hσ(M);Hσ−1(M))) for all σ ∈ R together with ∂sS(t, s) + iS(t, s)H(s) = 0.
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Points (1), (2) and (3) are direct consequences of Theorem A.1. Beware that ∂tS(t, s) is not a derivative in
the Banach space L(Hσ(M);Hσ−1(M)). Point (4) follows from point (3) and the regularity properties of S(t, s)
with respect to t (given in points (1) and (2)). The equation satisfied by ∂sS(t, s) comes from the fact that
∂2S(t, s)S(s, t) = −S(t, s)∂1S(s, t) (where ∂1 and ∂2 stand for derivatives with respect to the first and second
variables respectively).

Note also that we have, for any v ∈ C 0(I;Hσ(M)) ∩ C 1(I;Hσ−1(M)) the formula:

∂t(S(t, s)v(t)) = ∂tS(t, s)v(t) + S(t, s)∂tv(t).

A.2. A non-autonomous non-selfadjoint Egorov theorem

In the main part of the paper, we use the following non-selfadjoint non-autonomous version of the Egorov
theorem. A semiclassical version of such a result in the autonomous case can be found in [41, 43].

Theorem A.3. Let T > 0 and H(t) ∈ C ∞(0, T ;Ψ1
phg(M)) having real principal symbol. Denote by A1(t) :=

1
2 (H(t) +H(t)∗) ∈ C ∞(0, T ;Ψ1

phg(M)) and A0(t) := 1
2i (H(t)−H(t)∗) ∈ C∞(0, T ;Ψ0

phg(M)) (the adjoints being
taken in L2(M)), with (real-valued) principal symbols a1 = σ1(A1) = σ1(H) ∈ C∞(0, T ;S1

phg(T
∗M)), and

a0 = σ0(A0) ∈ C∞(0, T ;S0
phg(T

∗M)). Denote by S(t, s) the solution operator associated to ∂t − iH(t), that is
S(s′, s)u0 = u(s′) where

∂tu(t)− iH(t)u(t) = 0, u|t=s = u0.

Then, for any Pm(s) ∈ C ∞(
(0, T ), Ψmphg(M)

)
, m ∈ R, there exist Q(t, s) ∈ C∞(

(0, T )2, Ψmphg(M)
)

and

R(t, s) ∈ B((0, T )2,L(Hσ(M), Hσ+1−m(M))
)

∂tR(t, s), ∂sR(t, s) ∈ B((0, T )2,L(Hσ(M), Hσ−m(M))
)

for all σ ∈ R, such that we have

S(s, t)∗Pm(s)S(s, t)−Q(t, s) = R(t, s), (t, s) ∈ (0, T )2.

Moreover, the principal symbol of Q(t, s) is given by

q(t, s, ρ) = pm(s, χs,t(ρ))e2
∫

t
s
a0(τ,χτ,t(ρ))dτ ∈ C∞((0, T )2, Smphg(T

∗M)), (A.2)

where pm(s, ·) = σm(Pm(s)), and χs,t(ρ0) = ρ(s, t) is given by the flow of the Hamiltonian vector field associated
with −a1(s):

d
ds
ρ(s, t) = H−a1(s)(ρ(s, t)), ρ(t, t) = ρ0 ∈ T ∗M.

Note that both operators A1 and A0 are selfadjoint on L2(M) for all t ∈ [0, T ] and satisfy H(t) = A1(t)+iA0(t).
The proof is inspired from ([52], Chap. 7.8 and [41], Thm. 3.43).

Remark A.4. In this result, the error term R(t, s) is 1-smoothing. Of course, a classical inductive construction
(see [18], Sect. 18.1) allows to replace this by an infinitely smoothing operator. This is not needed in the present
paper since we only carry an analysis at first order.

Remark A.5. In the simplest case H = Λ, we have

• a1 = λ = |ξ|x;
• a0 = 0 because Λ is selfadjoint;
• S(t, s) = ei(t−s)Λ and hence S(s, t) = ei(s−t)Λ and S(s, t)∗ = (ei(s−t)Λ)∗ = ei(t−s)Λ;
• ρ(s, t) = ϕ−

(s−t)(ρ0) = ϕ+
(t−s)(ρ0).
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The conclusion of the Theorem (written with s = 0 and Pm independent on s) is therefore the classical result
that eitΛPme−itΛ is (modulo a 1-smoothing operator) a pseudodifferential operator of order m with principal
symbol q(t, ρ) = pm(ϕ+

t (ρ)).

Proof. First notice that S(t, s) (solution operator at time t, issued from s) satisfies

∂tS(t, s)− iH(t)S(t, s) = 0, S(s, s) = Id .

As a consequence, since S(t, s)S(s, t) = Id, we also have, with H(t)∗ = A1(t)− iA0(t),

∂tS(s, t) + iS(s, t)H(t) = 0,
∂tS(t, s)∗ + iS(t, s)∗H(t)∗ = 0,
∂tS(s, t)∗ − iH(t)∗S(s, t)∗ = 0.

Corollary A.2 yields the following regularity properties

S(t, s) ∈ B(I × I;L(Hσ(M))), ∂tS(t, s), ∂sS(t, s) ∈ B(I × I;L(Hσ(M);Hσ−1(M)))

as well as for S(t, s)∗, for all σ ∈ R.
Now, setting

P (t, s) := S(s, t)∗Pm(s)S(s, t),

and using the above equations, we have P (s, s) = Pm(s) with

∂tP (t, s) = iH(t)∗P (t, s)− iP (t, s)H(t) = i[A1(t), P (t, s)] +A0(t)P (t, s) + P (t, s)A0(t). (A.3)

We now construct an approximate pseudodifferential solution Q(t, s) for (A.3): its principal symbol q(t, s, x, ξ)
should satisfy

∂tq(t, s, ·) = {a1(t, ·), q(t, s, ·)} + 2a0(t, ·)q(t, s, ·), and q(s, s, ρ) = pm(s, ρ), (A.4)

where {·, ·} stands for the Poisson bracket in the (x, ξ) variables.
We first check that the function q(t, s, x, ξ) defined in (A.2) satisfies (A.4). From (A.2), and using χτ,t ◦

χt,s(ρ) = χτ,s(ρ), we have:

q(t, s, χt,s(ρ)) = pm(s, ρ)e2
∫ t

s
a0(τ,χτ,s(ρ))dτ .

This yields q(s, s, ρ) = pm(s, ρ) and

∂t

(
q(t, s, χt,s(ρ))e−2

∫ t
s
a0(τ,χτ,s(ρ))dτ

)
= 0,

which, according to the definition of the flow χt,s, is(
(∂tq)(t, s, ·) + {−a1(t, ·), q(t, s, ·)} − 2a0(t, ·)q(t, s, ·)

)(
χt,s(ρ)

)
e−2

∫
t
s
a0(τ,χτ,s(ρ))dτ = 0,

for all (t, s) ∈ (0, T )2 and ρ ∈ S∗M , which proves (A.4).
Note that we use the homogeneity of a1 of order 1 allows to keep the homogeneity of q(t, ρ). This allows to

select one Q(t, s), so that

Q(t, s) ∈ C∞(
(0, T )2, Ψmphg(M)

)
satisfies σm(Q(t, s)) = q(t, s, ·). (A.5)
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From (A.4) and pseudodifferential calculus, we now have

∂tQ(t, s) = i[A1(t), Q(t, s)] +A0(t)Q(t, s) +Q(t, s)A0(t) +R(t, s)
= iH(t)∗Q(t, s)− iQ(t, s)H(t) +R(t, s), (A.6)

with R ∈ C∞((0, T )2;Ψm−1
phg (M)). We now estimate the remainder Q(t, s)− P (t, s). We set

T (t, s) := S(t, s)∗
(
Q(t, s)− P (t, s)

)
S(t, s) = S(t, s)∗Q(t, s)S(t, s)− Pm(s),

so that we have

∂tT (t, s) = ∂t
(
S(t, s)∗Q(t, s)S(t, s)

)
= S(t, s)∗

(− iH(t)∗Q(t, s) + ∂tQ(t, s) + iQ(t, s)H(t)
)
S(t, s)

= S(t, s)∗R(t, s)S(t, s),

after having used (A.6). This yields

Q(t, s)− P (t, s) = S(s, t)∗
(
Q(s, s)− Pm(s) +

∫ t

s

S(t′, s)∗R(t′, s)S(t′, s)dt′
)
S(s, t),

where R ∈ C∞((0, T )2;Ψm−1
phg (M)) and Q(s, s)− Pm(s) ∈ C∞((0, T );Ψm−1

phg (M)). This now implies

Q(t, s)− P (t, s) ∈ B((0, T )2,L(Hσ(M), Hσ+1−m(M))
)
,

∂t
(
Q(t, s)− P (t, s)

)
, ∂s

(
Q(t, s)− P (t, s)

) ∈ B((0, T )2,L(Hσ(M), Hσ−m(M))
)
,

for any σ ∈ R. This, together with the expression of Q in (A.5) concludes the proof of the theorem. �

A.3. Smoothing properties of some operators

The following lemma is taken from ([11], Lem. A.1) and inspired by [10].

Lemma A.6. Let γ ∈ R∗ and B0 ∈ Ψ0
phg(M). Then, the operator defined by

B(T ) =
∫ T

0

eitγΛB0eitγΛdt,

satisfies B ∈ Bloc(R;L(Hσ(M), Hσ+1(M))) for all σ ∈ R.

This lemma suffices for the study of the Klein–Gordon equation in Section 2.2 (in which it is only used for
γ = ±1). In the general case of Section 2.4 however, we need the following non-autonomous version of this
result.

Lemma A.7. Let I ⊂ R be an interval containing 0, and let H+, H− ∈ C∞(I;Ψ1
phg(M)) such that λ =

σ1(H+) = −σ1(H−) ∈ R is time independant and elliptic. Then for any B0 ∈ Ψmphg(M), m ∈ R, the operator
defined by

B(T ) =
∫ T

0

S+(t, 0)∗B0S−(t, 0)dt,

where S±(t, 0) is the solution operator for the evolution equation ∂t − iH±(t), satisfies for all σ ∈ R, B ∈
Bloc(I;L(Hσ(M), Hσ+1−m(M))).

We refer to Corollary A.2 for the properties of S±(t, 0). We shall need the following lemma.
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Lemma A.8. Let I ⊂ R be an interval containing 0, and let H(t) ∈ C ∞(I;Ψ1
phg(M)) with real principal symbol

and denote by S(t, s) the solution operator for the evolution equation ∂t−iH(t) with initial data at time s. Then,
for any A ∈ Ψmphg(M), we have

[A,S(t, 0)] =
∫ t

0

S(t, s)[A, iH(s)]S(s, 0)ds. (A.7)

In particular if A = Λ and H(t) = Λ+ iR(t), with R ∈ C ∞(I;Ψ0
phg(M)), we have

[Λ, S(t, 0)], [Λ, S(t, 0)∗] ∈ Bloc(I;L(Hs(M)))

for all s ∈ R.

Proof of Lemma A.8. The function u(t) = [A,S(t, 0)]u0 = AS(t, 0)u0 − S(t, 0)Au0 satisfies u(0) = 0 and solves

∂tu(t) = AiH(t)S(t, 0)u0 − iH(t)S(t, 0)Au0 = [A, iH(t)]S(t, 0)u0 + iH(t)u(t),

so that the Duhamel formula directly yields (A.7). �

Proof of Lemma A.7. We first notice that B(T ) ∈ Bloc(I;L(Hs(M), Hs−m(M))) since S±(t, 0) preserve regu-
larity. We recall also that

∂tS±(t, 0)− iH±(t)S±(t, 0) = 0, ∂tS±(t, 0)∗ + iS±(t, 0)∗H±(t)∗ = 0, (A.8)

To prove the result, it suffices to prove that ΛB(T ) ∈ Bloc(I;L(Hs(M), Hs−m(M))). We thus compute

iΛB(T ) =
∫ T

0

iS+(t, 0)∗ΛB0S−(t, 0)dt+
∫ T

0

i[S+(t, 0)∗, Λ]B0S−(t, 0)dt.

The second term belongs to Bloc(I;L(Hs(M), Hs−m(M))) according to Lemma A.8. The first term may be
rewritten as∫ T

0

iS+(t, 0)∗ΛB0S−(t, 0)dt =
∫ T

0

iS+(t, 0)∗H+(t)∗B0S−(t, 0)dt+
∫ T

0

i(Λ−H+(t)∗)S+(t, 0)∗B0S−(t, 0)dt.

The second term belongs to Bloc(I;L(Hs(M), Hs−m(M))) since Λ−H+(t)∗ ∈ C∞(I;Ψ0
phg(M)), and it remains

only to examine the first one. Using (A.8), we now have, for some R ∈ Bloc(I;L(Hs(M), Hs−m(M))),

iΛB(T ) =
∫ T

0

−∂tS+(t, 0)∗B0S−(t, 0)dt+R

=
∫ T

0

S+(t, 0)∗B0∂tS−(t, 0)dt− [S+(t, 0)∗B0S−(t, 0)]T0 +R,

after an integration by parts (note that this is done in the weak sense, i.e. when applied to a function). Using
again (A.8), we obtain, for other remainders R ∈ Bloc(I;L(Hs(M), Hs−m(M))),

iΛB(T ) =
∫ T

0

S+(t, 0)∗B0iH−(t)S−(t, 0)dt+R,

=
∫ T

0

S+(t, 0)∗B0i(−Λ)S−(t, 0)dt+R,
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where we used that −Λ−H−(t) ∈ C∞(I;Ψ0
phg(M)). Using [B0, Λ] ∈ Ψmphg(M), we now have

iΛB(T ) =
∫ T

0

S+(t, 0)∗(−iΛ)B0S−(t, 0)dt+R,

that is, using again Lemma A.8,

iΛB(T ) = −iΛB(T ) +R,

with R ∈ Bloc(I;L(Hs(M), Hs−m(M))). This concludes the proof of the lemma. �

A.4. Uniform estimates on compact manifolds

We give here for the sake of completeness a version of the sharp G̊arding inequality (and also boundedness
estimates for pseudodifferential operators) on a compact manifold, with a uniform dependence of the constant
w.r.t. the operator involved. Its counterpart on Rn (of which the result presented here is a consequence) is given
in Theorem 2.5.4 of [27] for instance.

We use the notation Mε = {(x, y) ∈M ×M, dist(x, y) > ε}.
Theorem A.9. Let (Uj , κj)j=1...N be a fixed atlas of M and (ψj)j=1...N a subordinated partition of unity. Let
ψ̃j ∈ C∞

c (Uj) be such that ψ̃j = 1 on supp(ψj). Then, for all s ∈ R, there exists γ a seminorm on S0
phg(T

∗Rn),
there exist ε > 0, � > 0 and C > 0 such that, for all A ∈ Ψ0

phg(M) and all u ∈ Hs(M), we have

‖Au‖Hs(M) ≤ C
(

sup
j∈{1...N}

γ(aj) + ‖KA‖W �,∞(Mε)

)
‖u‖Hs(M), (A.9)

and, if moreover σ0(A) ≥ 0 on T ∗M ,

Re(Au, u)Hs(M) ≥ −C
(

sup
j∈{1...N}

γ(aj) + ‖KA‖W �,∞(Mε)

)
‖u‖2Hs−1/2(M), (A.10)

where aj ∈ S0
phg(T

∗Rn) is the (full) symbol of the operator (κ−1
j )∗ψjAψ̃jκ∗j ∈ Ψ0

phg(R
n).

As a direct consequence, we have the following corollary.

Corollary A.10. Let s ∈ R, T1 < T2 and assume At ∈ C 0([T1, T2];Ψ0
phg(M)). Then, there exists a constant

C > 0 such that

‖Atu‖Hs(M) ≤ C‖u‖Hs(M), for all t ∈ [T1, T2], and u ∈ Hs(M),

and, if moreover σ0(A) ≥ 0 on [T1, T2]× T ∗M ,

Re(Atu, u)Hs(M) ≥ −C‖u‖2Hs−1/2(M), for all t ∈ [T1, T2], and u ∈ Hs(M).

Proof of Theorem A.9. We only prove the uniform G̊arding inequality (A.10). The proof of the uniform bound-
edness estimate (A.9) is the same (using e.g. [27], proof of Thm. 1.1.4).

Notice first that the result in Hs(M) is a consequence of the result in L2(M) and (A.9): For u ∈ C ∞(M),
applying (A.10) to Λsu yields

(AΛsu, Λsu)L2(M) ≥ −C0‖Λsu‖2H−1/2(M) = −C0‖u‖2Hs−1/2(M),

with C0 = supj∈{1...N} γ(aj) + ‖KA‖W �,∞(Mε). Writing now

|(AΛsu, Λsu)L2(M) − (ΛsAu,Λsu)L2(M)| = |(Λ1/2[A,Λs]u, Λs−1/2u)L2(M)| ≤ CA‖u‖2Hs−1/2(M),

where the constant CA has the same form as C0 according to (A.9), yields the result in Hs(M).
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Let us now prove the case s = 0. We have

A =
∑

j=1...N

ψjA =
∑

j=1...N

ψjAψ̃j + ψjA(1 − ψ̃j). (A.11)

The kernel of each operator ψjA(1− ψ̃j) is given by Kj(x, y) := ψj(x)KA(x, y)(1− ψ̃j(y)). Since ψj(1− ψ̃j) = 0,
it is supported in the set Mεj for some εj > 0. As a consequence, this operator is infinitely smoothing and we
have in particular

‖ψjA(1 − ψ̃j)‖L(H−1/2(M);H1/2(M)) ≤ Cj‖KA‖W �,∞(Mεj ),

so that ∣∣(ψjA(1− ψ̃j)u, u
)
L2(M)

∣∣ ≤ ‖(ψjA(1 − ψ̃j)u‖H1/2(M)‖u‖H−1/2(M)

≤ Cj‖KA‖W �,∞(Mεj )‖u‖2H−1/2(M). (A.12)

Next, concerning the terms of the form ψjAψ̃j in (A.11), we write(
ψjAψ̃ju, u

)
L2(M)

=
((

(κ−1
j )∗ψjAψ̃jκ∗j

)
(κ−1
j )∗u, (κ−1

j )∗u
)
L2(Rn,

√
det(g)dL)

,

where the principal symbol of the operator (κ−1
j )∗ψjAψ̃jκ∗j is (κ−1

j )∗(ψjσ0(a)) ≥ 0 on T ∗Rn. Using the sharp
G̊arding inequality in R

n as stated in ([27], Thm. 2.5.4), we obtain, for smooth compactly supported functions v,((
(κ−1
j )∗ψjAψ̃jκ∗j

)
v, v

)
L2(Rn,

√
det(g)dL)

≥ −Cjγ(aj)‖v‖2H−1/2(Rn). (A.13)

Note that we have used here that the sharp G̊arding inequality remains unchanged under the addition of an
operator in Ψ−1

phg(R
n).

Finally, combining (A.12), (A.13), with (A.11), and recalling that there is a finite number of coordinate
patches Uj , we obtain the result of Theorem A.9. �

Appendix B. Geometric facts

B.1. Definitions and notations

Recall that M is a compact manifold without boundary, that for x ∈ M , TxM denotes the tangent space
to M at the point x, and T ∗

xM its dual space, the cotangent space to M at x. We also denote π : TM → M
and π : T ∗M → M the canonical projections to the manifold, the duality bracket at x being denoted by
〈·, ·〉x = 〈·, ·〉T∗

xM,TxM . The manifold M is endowed with a Riemannian metric g, that is: for any x ∈ M , gx is
a positive definite quadratic form on TxM , depending smoothly on x. The Riemannian metric g furnishes an
isomorphism TxM → T ∗

xM , v �→ v� := gx(v, ·), with inverse v = (v�)�. The metric g on TM induces a metric g∗

on T ∗M , canonically defined by g∗x(ξ, η) = gx(ξ�, η�) for x ∈M , and ξ, η ∈ T ∗
xM . We denote by SM (resp.S∗M)

the Riemannian sphere (resp.cosphere) bundle over M , with fiber over x ∈M given by {v ∈ TM, gx(v, v) = 1}
(resp.{ξ ∈ T ∗M, g∗x(ξ, ξ) = 1}).

We define the Hamiltonian λ(x, ξ) = |ξ|x =
√
g∗x(ξ, ξ) ∈ C∞(T ∗M \ 0), which is a homogeneous function of

degree one in the variable ξ ∈ T ∗
xM . We denote by Hλ and ϕt = ϕ+

t the associated Hamiltonian vector field
and flow, that is

d
dt
ϕt(ρ) = Hλ(ϕt(ρ)), ϕ0(ρ) = ρ ∈ T ∗M,

with, in local charts, Hλ = ∂ξλ · ∂x − ∂xλ · ∂ξ. Writing ϕt(ρ) = (x(t), ξ(t)), we have, still in local charts,

ẋ(t) = ∂ξλ(x(t), ξ(t)), and ξ̇(t) = −∂xλ(x(t), ξ(t)). (B.1)
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This flow is globally defined, for it preserves the function λ. In particular (x(t), ξ(t)) ∈ S∗M = {(x, ξ) ∈
T ∗M,λ(x, ξ) = 1} for all t ∈ R if (x(0), ξ(0)) ∈ S∗M . The following lemma gives the link between geodesics
and projections on M of the curves of ϕt (see for instance [15], Thm. 2.124 in the case of Hλ2/2 = λHλ, which
gives the same result up to a reparametrization of the curve x(t)).

Lemma B.1. Let I = [a, b] ⊂ R. A curve (x(t), ξ(t))t∈I on T ∗M \ 0 is a Hamiltonian curve of λ (i.e.
satisfies (B.1)) in T ∗M \ 0 if and only if the curve (x(t))t∈I on M is a geodesic curve of the metric g on M

(parametrized by arclength) such that (x(t), ẋ(t)) ∈ SM , t ∈ I. Moreover, we have ẋ(t) = ξ(t)�

|ξ(t)|x(t)
∈ Sx(t)M ,

t ∈ I.

In the main part of the article, we also use the Hamiltonian flow ϕ−
t associated to the Hamiltonian −λ (which,

as well, is global and preserves S∗M). Of course, it is linked with that of λ according to the following lemma.

Lemma B.2. For all t ∈ R and ρ ∈ T ∗M , we have ϕ−
t (ρ) = ϕ−t(ρ). Moreover, denoting by σ : T ∗M → T ∗M

the involution (x, ξ) �→ (x,−ξ), we have σ ◦ ϕt(ρ) = ϕ−t ◦ σ(ρ).

This is classical. The first fact is e.g. a consequence of ([11], Lem. B.1), and the second of ([11], Lem. B.3).
In the main part of the paper, we use the Riemannian distance to a subset E ⊂M , defined by

dist(x1, E) = inf
x0∈E

dist(x0, x1),

with

dist(x0, x1) = inf
γ∈C1([0,1];M),γ(0)=x0,γ(1)=x1

length(γ),

where the Riemannian length of a path γ ∈ C1([0, 1];M) is given by length(γ) =
∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) dt.

Given a smooth function u on M , we define the vector field ∇u by ∇u(x) =
(
du(x)

)�. As well, the Laplace–
Beltrami operator may be defined by the identity∫

M

(Δu)(x)v(x)dx = −
∫
M

gx(∇u(x),∇v(x))dx,

where dx is the Riemannian volume element (given by
√

det(g)dL(x) in local charts, where dL(x) is the Lebesgue
measure).

As a corollary of Lemma B.2, we may now give a Proof of Lemma 2.15.

Proof of Lemma 2.15. Recalling that ϕ−
s (ρ) = ϕ+

−s(ρ) = ϕ−s(ρ) according to Lemma B.2, (2.49) can be rewrit-
ten, using (x(s), ξ(s)) = ϕs(x0, ξ0) for s ∈ R as

g±T (x0, ξ0) =
∫ T

0

b2ω(x(±t)) exp

(∫ t

0

Re(b0)(τ, x(±τ)) ±
〈

ξ(±τ)
|ξ(±τ)|x(±τ) ,Re(b1)(τ, x(±τ))

〉
x(±τ)

dτ

)
dt.

According to Lemma B.2, we also have σ ◦ ϕs = ϕ−s ◦ σ (where σ(x, ξ) = (x,−ξ)), that is, denoting
(x(s, x0, ξ0), ξ(s, x0, ξ0)) = ϕs(x0, ξ0),

x(−s, x0,−ξ0) = x(s, x0, ξ0)), ξ(−s, x0,−ξ0) = −ξ(s, x0, ξ0)), s ∈ R, (x0, ξ0) ∈ T ∗M.
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Plugging this into the expression of g−T , we obtain

g−T (x0,−ξ0) =
∫ T

0

b2ω(x(−t, x0,−ξ0)) exp

(∫ t

0

Re(b0)(τ, x(−τ, x0,−ξ0))

−
〈

ξ(−τ, x0,−ξ0)
|ξ(−τ, x0,−ξ0)|x(−τ,x0,−ξ0)

,Re(b1)(τ, x(−τ, x0,−ξ0))
〉
x(−τ,x0,−ξ0)

dτ

)
dt

=
∫ T

0

b2ω(x(t, x0, ξ0)) exp

(∫ t

0

Re(b0)(τ, x(τ, x0, ξ0))

−
〈 −ξ(τ, x0, ξ0)
|ξ(τ, x0, ξ0)|x(τ,x0,ξ0)

,Re(b1)(τ, x(τ, x0, ξ0))
〉
x(τ,x0,ξ0)

dτ

)
dt

= g+
T (x0, ξ0).

This is g−T ◦ σ = g+
T . �

Note that Lemma 2.15 contains in particular the following result.

Corollary B.3. For any function f ∈ C 0(M), for any T > 0, we have

min
ρ∈S∗M

∫ T

0

f ◦ π ◦ ϕ+
t (ρ)dt = min

ρ∈S∗M

∫ T

0

f ◦ π ◦ ϕ−
t (ρ)dt.

B.2. Comparing TUC(ω) and TGCC(ω)

In this section, we briefly prove that 2L(M,ω) = TUC(ω) ≤ TGCC(ω) (where these quantities are defined
in (1.5), (1.6) and (1.7) respectively) in general and study the case of equality.

Lemma B.4. We always have TGCC(E) ≥ 2L(M,E).

Proof. Let ε > 0, we prove that for any x ∈M , 2 dist(x,E) ≤ TGCC(E) + 2ε.
Fix x ∈M . By definition, there exists x1 ∈ E so that

dist(x,E) ≤ d1 := dist(x, x1) ≤ dist(x,E) + ε. (B.2)

Take any ξ ∈ S∗
xM and define the geodesic path γ(t) = π ◦ ϕt((x, ξ)) for t ∈ [0, d1]. According to Lemma B.1,

we have

length
(
π ◦ ϕt((x, ξ))|[0,T ]

)
= T, for all T > 0.

Hence, we have γ(t) /∈ E for t ∈ [0, d1−ε], otherwise we would have dist(x,E) ≤ d1−ε, which contradicts (B.2).
The same arguments proves that if we define γ̃(t) = π ◦ ϕt((x,−ξ)) defined on [0, d1 − ε], we have γ̃(t) /∈ E for
t ∈ [0, d1 − ε]. Using Lemma B.2, we also have γ̃(t) = π ◦ ϕ−t((x, ξ)) on [0, d1 − ε].

The curve t �→ π ◦ ϕt((x, ξ)) for t ∈ [−d1 + ε, d1 − ε] is thus the concatenation of the two geodesics γ and γ̃.
This is still a geodesic of length 2d1 − 2ε that does not intersect E. Therefore, we have TGCC(E) ≥ 2d1 − 2ε.
The first part of (B.2) gives TGCC(E) ≥ 2 dist(x,E) − 2ε. This gives the result. �

Remark B.5. In the case ∂M �= ∅, we also have TUC(ω) ≤ TGCC(ω) for ω open subsets of M , as well as
TUC(Γ ) ≤ TGCC(Γ ) for Γ open subsets of ∂M . The proof is similar, replacing ϕt by the appropriate broken
bicharacteristic flow (see [31] or [18], Chap. XXIV).

In what follows, we assume ∂M = ∅.
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Lemma B.6 (Equality case). Assume TGCC(E) = 2L(M,E) = 2R0 > 0, then, there is x0 ∈ M such that
dist(x0, E) = R0 and for every ξ ∈ S∗

x0
M

π ◦ ϕt((x0, ξ)) /∈ E ∀|t| < R0

π ◦ ϕt((x0, ξ)) ∈ E ∀|t| = R0.

Moreover, these properties are also satisfied by any x0 ∈M such that dist(x0, E) = R0.
Finally, for any x ∈M , we have the following alternative:

• either dist(x,E) < R0,
• or dist(x,E) = R0 and the connected component of M \ E containing x is the open ball B(x,R0).

Proof. The function x �→ dist(x,E) is a continuous function on the compact manifold M . Consider x0 one of
the points where it takes its maximum R0 = dist(x0, E) = L(M,E).

For any ξ ∈ S∗
x0
M , we have necessarily π ◦ ϕt((x0, ξ)) /∈ E ∀|t| < R0, otherwise, we would have

dist(x0, E) < R0.
Moreover, assume that there exists ξ0 ∈ S∗

x0
M so that π ◦ ϕR0((x0, ξ0)) /∈ E. By continuity of t �→ π ◦

ϕt((x0, ξ0)) and the fact that the complementary of E is open, there exists ε > 0 so that π ◦ϕt((x0, ξ0)) /∈ E for
t ∈ ]R0 − ε,R0 + ε[. In particular, by combining with the previous result, we have that π ◦ ϕt((x0, ξ0)) /∈ E for
t ∈ ]−R0, R0 + ε[. We have constructed a geodesic path of length at least 2R0 + ε/2 that does not intersect E.
This implies, in particular, that TGCC(E) ≥ 2R0 + ε/2, which is a contradiction.

We now prove the last statement. According to the definition of R0 = L(M,E), the situation dist(x,E) > R0

does not happen, so that we only have to consider points x0 with dist(x0, E) = R0. For such a point x0, let U be
the connected component of M \E containing x0. We first prove that U ⊂ B(x0, R0). The set M \E is open so
that U is connected and open, an hence pathwise connected. Given x ∈ U , there exists γ : [0, 1]→ U ⊂M \E a
continuous path so that γ(0) = x0 and γ(1) = x. In particular, γ(t) /∈ E for t ∈ [0, 1]. Assume dist(x0, x) ≥ R0.
By continuity, there exists t0 ∈ [0, 1] so that dist(x0, γ(t0)) = R0. There is a geodesic miminizing the distance
between γ(t0) and x0. That is, there exists ξ0 ∈ S∗

x0
M so that π ◦ ϕR0((x0, ξ0)) = γ(t0). In particular, by

the previous statement, γ(t0) ∈ E. This is a contradiction. So, we have proved U ⊂ B(x0, R0). Now, we
check that dist(x0, E) = R0 implies B(x0, R0) ⊂ M \ E. Indeed, let x ∈ M with dist(x0, x) < R0. Then,
x /∈ E since otherwise we would have dist(x0, E) < R0 which contradicts dist(x0, E) = dist(x0, E) = R0. So
B(x0, R0) ⊂ M \ E. But since B(x0, R0) is connected and contains x0, we have B(x0, R0) ⊂ U by definition
of U . This gives finally B(x0, R0) = U . �

Remark B.7. Note that we have the two equivalences TGCC(E) = 0⇐⇒ (E satisfies GCC and E = M), and
TUC(E) = 0⇐⇒ E = M .

The following result is used in Section 2.3.

Lemma B.8. Let ω be an open subset of M satisfying GCC and such that TUC(ω) < TGCC(ω). Then, there
exists an open subset ω0 of M such that

ω0 ⊂ ω, and TUC(ω0) < TGCC(ω).

Proof. We prove the more general fact for an open set ω ⊂M :

For any ε > 0, there exists an open set ω0 with ω0 ⊂ ω so that L(M,ω0) ≤ L(M,ω) + ε. (B.3)

By compactness of M , we can find a finite family of points (xi)i∈I , xi ∈M , with I finite, so that

M = ∪i∈IB(xi, ε/2),
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where B(y, r) = {x ∈ M, dist(x, y) < r}. By definition of L(M,ω), for any xi, we have dist(xi, ω) ≤ L(M,ω)
and there exists yi ∈ ω so that dist(xi, yi) ≤ L(M,ω) + ε/2.

Now, since ω is an open set, there exists ri > 0 so that B(yi, ri) ⊂ ω. Now, we take

ω0 := ∪i∈IB(yi, ri).

For any x ∈ M , we can pick i ∈ I so that x ∈ B(xi, ε/2). In particular, dist(x, yi) ≤ dist(x, xi) + dist(xi, yi) ≤
L(M,ω) + ε. Therefore, for any x ∈M , we have dist(x, ω0) ≤ L(M,ω) + ε. This gives L(M,ω0) ≤ L(M,ω) + ε.
That ω0 ⊂ ω comes from B(yi, ri) ⊂ ω for all i ∈ I and the finiteness of I. This concludes the proof of (B.3),
and hence of the lemma. �
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