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Abstract. In this paper, we consider an investment-consumption problem where the consumption is
subject to an upper limit. This upper limit on consumption may reflect the following fact. Investors
may have to finance their consumption first by using credits then pay the balance by cashing out
part of their portfolio in the stock market. Credit companies set up an upper limit for the credit,
thus imposing an upper bound for consumption. We also set up our model in finite horizon, which
makes the problem much harder due to the loss of stationary when T < ∞. We prove that the above
described problem is equivalent to a free boundary problem of nonlinear parabolic equations. We aim
to characterize explicitly the free boundary by applying a dual transformation technique to convert the
original nonlinear parabolic equation to a linear differential equation. This trick allows us to characterize
explicitly the free boundary and the optimal consumption strategy. We also prove that the regularity
of the value function, which is critical for the application of Ito formula.
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1. Introduction and model formulation

We consider a standard Black−Scholes financial market with two assets: a bond and a stock. The price of
the bond is driven by an ordinary differential equation

dPt = rPtdt,

where r is the risk-free interest rate. The price of the stock is driven by a stochastic differential equation:

dSt = αStdt + σStdWt,
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where α is the mean return rate of the stock, σ is the volatility of the stock, and Wt is a standard one-dimensional
Brownian motion on a given complete probability space (Ω,F ,P). We denote by {Ft = σ(Wu, u � t), 0 ≤ t ≤ T }
the filtration generated by the Brownian motion. The interest rate r, the mean rate of return α, and the volatility
σ are assumed to be constants with r > 0, σ > 0, and μ := α − r > 0. There are no transaction fees or taxes
and shorting is also allowed in the market.

Let us consider a small investor in the market. The investor’s trading will not affect the market prices of the
two assets. His trading strategy is self-financing meaning that there is no incoming or outgoing cash flow during
the whole ivestment period. Then it is well−known that the wealth process of the investor is driven by an SDE:{

dXs = (rXs + πsμ − cs)ds + πsσdWs, t < s ≤ T,

Xt = x,
(1.1)

where x > 0 is the initial endowment of the investor at time t, πt is the amount of money invested in the stock,
ct � 0 is the consumption rate at time t. An admissible strategy (πt, ct) should be progressively measurable
processes with constraints

E

[∫ T

0

(π2
t + ct)dt

]
< ∞, ∀T > 0.

In this paper, we assume that bankruptcy is prohibited, that is

Xs � 0, ∀ 0 ≤ s ≤ T, (1.2)

almost surely (a.s.). The target of the investor is to choose the best investment-consumption strategy (π(·), c(·)),
which is subject to certain constraints specified below, to maximize the total expected (discounted) utility from
consumption over an finite trading horizon

maximize E

[∫ T

t

e−β(s−t)U(cs)ds + e−β(T−t)U(XT )

]
, (1.3)

where U : R
+ �→ R

+ is the utility function of the investor, which is strictly increasing, and β > 0 is a constant
discounting factor. In this paper, we consider risk-averse investor only, this is equivalent to say U(·) is concave.

If no constraint on the consumption rate and investment strategy exists, problem (1.3) becomes the classical
Merton’s investment-consumption problem [4, 5]. However, in practice, constraint on the consumption rate
always exists; for example, the consumption rate cannot be too low because an investor has basic needs, which
are the minimal amount of resources necessary required for long-term physical well-being; this is the so-called
the subsistence consumption requirement [1, 2, 8–10]. Those five references are all in infinite time horizon case
with constant lower bound for consumption.

Another practical example is when the manager of a fund requests a fixed salary and a proportion of the
managed wealth as a bonus. Of course, most of the wealth still belongs to the owner, and consequently, the
manager cannot take excessive amounts from the total wealth. These scenarios motivated us to consider an
upper constraint on the consumption rate. In [11] it is assumed that the consumption rate is upper bounded by
a time-invariant linear function of the wealth, kXt + �, in infinite time horizon.

In this paper, specifically, we assume that the consumption rate is bounded from above by a positive con-
stant �:

0 � cs � �. (1.4)

We justify our assumption based on the following reasoning. Investors may not be able to finance their con-
sumption through the investment account directly. But instead consumption has to be financed by a debt card
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or credit card issued by some credit companies which set up an credit limit or withdraw limit at each time t.
Thus consumption at each time is subject to an upper bound � set up by the credit companies, to make things
simple, we assume the investor pay off his credit balance instantaneously (within the grace period) by cashing
out part of their portfolio. We also set up our model in finite horizon. It should be noted that finite horizon set
up makes the investment-consumption problem nonstationary, which tends to be much harder to handle due to
the explicit dependence of the value function on time t.

Denote the value function by

V (x, t) := sup
(π(·),c(·))

E

[∫ T

t

e−β(s−t)U(cs)ds + e−β(T−t)U(XT )

]
. (1.5)

where the investment-consumption strategy (π(·), c(·)) is subject to the constraints (1.2), and (1.4).
In this paper, we focus on the constant relative risk aversion (CRRA) type utility function

U(c) =
cp

p
, c � 0, 0 < p < 1. (1.6)

In next section we derive an explicit solution of value function for the unconstraint case. In Section 3, we
introduce a dual transformation of the value function and reduce the nonlinear parabolic HJB equation to a
linear one. This allows us to obtain an explicit formula for the free boundary in Section 4. Section 5 proves the
strict concavity of the value function. Section 6 looks at the monotonicity of the free boundary. Section 7 proves
the regularity property of the value function, it will be proved that the value function is a classical solution of
the HJB equation, which is critical for the validity of Ito formula for proving verification theorem. Section 8
presents some financial interpretations and concludes the paper.

2. Unconstraint case

We first solve a benchmark case without consumption constraint. As we shall see the solution in this case
will be useful in presenting the solution in the constrained case.

If there are no constraints on the consumption, problem (1.5) becomes the classical Merton’s investment-
consumption problem ([4, 5]). This situation is equivalent to the case of � = +∞, the HJB equation of prob-
lem (1.5) is

V ∞
t = βV ∞ +

μ2

2σ2

(V ∞
x )2

V ∞
xx

− rxV ∞
x +

p − 1
p

(V ∞
x )

p
p−1 , x > 0, 0 < t < T (2.1)

V ∞(0, t) = 0, (2.2)

V ∞(x, T ) =
1
p

xp, x > 0, (2.3)

Let us assume the value function takes the following functional form:

V ∞(x, t) =
1
p

xpf(t),

which satisfies (2.2). Substituting it into (2.1) and (2.3), we obtain an ODE for f(t):

f ′(t) = [β − p(θ + r)]f(t) + (p − 1)[f(t)]
p

p−1 , 0 < t < T (2.4)
f(T ) = 1, (2.5)

where

θ :=
μ2

2σ2(1 − p)
> 0. (2.6)
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(2.4) is the well known Bernoulli equation, the solution of (2.4) and (2.5) is given by

f(t) =
[
1 + (λ − 1)eλ(t−T )

λ

]1−p

,

where

λ :=
β − p(θ + r)

1 − p
· (2.7)

It follows that

π∗(x, t) = − μ

σ2

V ∞
x (x, t)

V ∞
xx (x, t)

=
μx

σ2(1 − p)
, (2.8)

c∗(x, t) = [V ∞
x (x, t)]

1
p−1 =

λx

1 + (λ − 1)eλ(t−T )
· (2.9)

Theorem 2.1: If λ > 0 and there is no constraint on the consumption rate, i.e., � = +∞, then the optimal
investment-consumption strategy for problem (1.5) is given by

(π∗
t , c∗t ) =

(
μ

σ2(1 − p)
Xt,

λ

1 + (λ − 1)eλ(t−T )
Xt

)
,

and the optimal value

V ∞(x, t) =
1
p
xp

[
1 + (λ − 1)eλ(t−T )

λ

]1−p

· (2.10)

The optimal value in (2.10) will be shown to serve as an upper bound for the optimal value in the constrained
case.

3. HJB equation and dual transformation

Now we turn our attention to the finite horizon constrained case. We start with proving some basic properties
of the value function. The following result says the value function in the unconstrained case serves as an upper
bound for the constrained case.

Proposition 3.1. If λ > 0, then the value function V (x, t) of problem (1.5) satisfies

V (x, t) � 1
p
xp

[
1 + (λ − 1)eλ(t−T )

λ

]1−p

, x > 0. (3.1)

Moreover, V (·, t) is continuous, increasing, and concave on x ∈ [0, +∞) with V (0, t) = 0.

Proof. Both the set of admissible controls and the optimal value of problem (1.5) are increasing in � and
consequently, an upper bound of the optimal value is given by the scenario � = +∞. So the inequality (3.1)
follows from (2.10).

If the initial endowment of problem (1.5) is 0 at time t, then the unique admissible investment-consumption
strategy is (π(·), c(·)) ≡ (0, 0), so V (0, t) = 0 and consequently, V (·, t) is continuous at 0 from (3.1). By the
definition of V (x, t) and (1.6), it is not hard to prove its the concavity and monotonicity. The continuity of V (·, t)
on (0, +∞) follows from its finiteness and concavity since the concave function is continuous in the interior of
the definition domain. �
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Applying Dynamic Programming Principle [7], the value function V (x, t) of problem (1.5) satisfies HJB
equation

Vt = βV − sup
π

(
1
2σ2π2Vxx + πμVx

)− sup
0�c��

(U(c) − cVx) − rxVx

= βV +
μ2

2σ2

V 2
x

Vxx
+ (c(x, t) − rx)Vx − cp(x, t)

p
, x > 0, 0 < t < T (3.2)

V (0, t) = 0, (3.3)

V (x, T ) =
1
p

xp (3.4)

where

c(x, t) := min
{

(Vx(x, t))
1

p−1 , �
}

, x > 0, 0 < t < T. (3.5)

Note that equation (3.2) is a fully nonlinear parabolic equation. (3.5) shows that

Vx(x, t) = �p−1 (3.6)

implicitly determines a free boundary x = g(t). On the left side of the free boundary x = g(t) in the (x, t)
plane, consumption c(x, t) = (Vx(x, t))

1
p−1 , and on the right side, c(x, t) = �. Due to the complexity of the

equation (3.2), it is hard to find the properties of the free boundary x = g(t).
Dual transformation can be used to simplify some type ([6,7]), like (3.2), into a linear equation. Now we try

to use it to the equation (3.2). Fortunately, we will get the explicit formula of the free boundary x = g(t) in
next section.

Define dual transformation of V (x, t) by

v(y, t) := max
x>0

(V (x, t) − xy), y > 0. (3.7)

Then v(·, t) is a finite decreasing convex function on (0, +∞). Suppose Vx(·, t) is strictly decreasing, which is
equivalent to strict concavity of V (·, t) (We will confirm this fact in Sect. 5). Making coordinate transformation

y = Vx(x, t), (3.8)

its inverse function is denoted by

x = I(y, t). (3.9)

From (3.7),

v(y, t) = [V (x, t) − xVx(x, t)]
∣∣∣
x=I(y,t)

= V (I(y, t), t) − yI(y, t). (3.10)

Differentiating with respect to y and t,

vy(y, t) = Vx(I(y, t), t)Iy(y, t) − yIy(y, t) − I(y, t) = −I(y, t), (3.11)

vyy(y, t) = −I ′(y, t) = − 1
Vxx(I(y, t), t)

, (3.12)

vt(y, t) = Vt(I(y, t), t) + Vx(I(y, t), t)It(y, t) − yIt(y, t) = Vt(I(y, t), t), (3.13)

Insert (3.11) into (3.10),

V (I(y, t), t) = v(y, t) − yvy(y, t). (3.14)
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With the transformation (3.8), and applying (3.9)–(3.14), HJB equation (3.2) becomes

vt = β(v − yvy) − μ2

2σ2
y2vyy + yd(y, t) + ryvy − 1

p
dp(y, t), y > 0, 0 < t < T, (3.15)

where

d(y, t) := c(x, t) = min
{

y
1

p−1 , �
}

. (3.16)

Now we derive the terminal condition for v(y, T ). Note that Vx(x, T ) = xp−1, i.e., [Vx(x, T )]
1

p−1 = x, it follows
that y

1
p−1 = I(y, T ) = −vy(y, T ) and by (3.14),

v(y, T ) = V (I(y, T ), T ) + yvy(y, T ) =
1
p
y

p
p−1 − y

p
p−1 . (3.17)

Combining (3.15), (3.16) and (3.17),

−vt + β(v − yvy) − μ2

2σ2
y2vyy + ryvy =

⎧⎨
⎩

1−p
p y

p
p−1 , y ≥ �p−1, 0 < t < T,

1
p�p − �y, 0 < y < �p−1, 0 < t < T,

(3.18)

v(y, T ) =
1 − p

p
y

p
p−1 , y > 0. (3.19)

(3.18) is a linear parabolic equation on (0, +∞) × (0, T ).

4. Finding free boundary x = g(t)

Recall (3.6), the free boundary x = g(t) is determined by Vx(g(t), t) = �p−1. Thus for a given t,

g(t) = (the inverse of Vx)(�p−1, t).

From (3.9) and (3.11), for each fixed t,

(the inverse of Vx)(y, t) = I(y, t) = −vy(y, t),

it follows that
g(t) = −vy(�p−1, t).

In the following we will find the explicit formula for −vy(�p−1, t). Let τ = T − t, denote

u(y, τ) = −vy(y, t), (4.1)

then

g(t) = u(�p−1, τ) = u(�p−1, T − t). (4.2)

Differentiating (3.18) and (3.19) to y, applying (4.1),

uτ − μ2

2σ2
y2uyy +

(
r − β − μ2

σ2

)
yuy + ru =

{
y

1
p−1 , y ≥ �p−1, 0 < τ < T,

�, 0 < y < �p−1, 0 < τ < T.
(4.3)

u(y, 0) = y
1

p−1 , y > 0. (4.4)
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Equation (4.3) is degenerate on y = 0. Let y = ez and

u(y, τ) = w(z, τ), (4.5)

then yuy = wz , y2uyy = wzz − wz , from (4.3) and (4.4), w(z, τ) satisfies

wτ − μ2

2σ2
wzz +

(
r − β − μ2

2σ2

)
wz + rw =

{
e

1
p−1 z, z ≥ (p − 1) ln �, 0 < τ < T,

�, z < (p − 1) ln �, 0 < τ < T,
(4.6)

w(z, 0) = e
1

p−1 z, z ∈ IR. (4.7)

In order to simplify the calculations for w(z, τ), note that function

w(z, τ) =
[
e−λτ +

1
λ

(1 − e−λτ )
]

e
1

p−1 z

(λ was defined in (2.7)) satisfies

wτ − μ2

2σ2
wzz +

(
r − β − μ2

2σ2

)
wz + rw = e

1
p−1 z, z ∈ IR, τ > 0, (4.8)

w(z, 0) = e
1

p−1 z, z ∈ IR. (4.9)

Let

w(z, τ) = w(z, τ) + w̃(z, τ)

=
[
e−λτ +

1
λ

(1 − e−λτ )
]

e
1

p−1 z + w̃(z, τ), (4.10)

from (4.8) and (4.9), w̃(z, τ) satisfies

w̃τ − μ2

2σ2
w̃zz +

(
r − β − μ2

2σ2

)
w̃z + rw̃ =

{
0, z ≥ (p − 1) ln �, 0 < τ < T,

� − e
1

p−1 z, z < (p − 1) ln �, 0 < τ < T,
(4.11)

w̃(z, 0) = 0, z ∈ IR. (4.12)

The solution to problem (4.11) and (4.12) (see Appendix A) is

w̃(z, τ) = �

∫ τ

0

e−rηN

(−z + (p − 1) ln � + 2bk2η

k
√

2η

)
dη−e

1
p−1z

∫ τ

0

e−ληN

(−z + (p − 1) ln � + 2k2(b + 1
1−p )η

k
√

2η

)
dη,

(4.13)
where λ was defined in (2.7) and (see (A.4) and (A.8))

b = (r − β)
σ2

μ2
− 1

2
, k =

μ√
2 σ

, N(x) =
1√
2π

∫ x

−∞
e−

ζ2

2 dζ.

It follows from (4.10),

w(z, τ) =
[
e−λτ +

1
λ

(1 − e−λτ )
]

e
1

p−1 z

+ �

∫ τ

0

e−rηN

(−z + (p − 1) ln � + 2bk2η

k
√

2η

)
dη

− e
1

p−1 z

∫ τ

0

e−ληN

(−z + (p − 1) ln � + 2k2(b + 1
1−p )η

k
√

2η

)
dη.
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Applying (4.5), replacing z by lny,

u(y, τ) =
[
e−λτ +

1
λ

(1 − e−λτ )
]

y
1

p−1 + �

∫ τ

0

e−rηN

(− ln y + (p − 1) ln � + 2bk2η

k
√

2η

)
dη

−y
1

p−1

∫ τ

0

e−ληN

(− ln y + (p − 1) ln � + 2k2(b + 1
1−p )η

k
√

2η

)
dη. (4.14)

According to (4.2), we obtain

g(t) = u(�p−1, τ)

= �

[
e−λτ +

1
λ

(1 − e−λτ )
]

+ �

∫ τ

0

e−rηN
(
kb
√

2η
)

dη

−�

∫ τ

0

e−ληN

(
k(b +

1
1 − p

)
√

2η

)
dη, (4.15)

where τ = T − t. More precisely, two integrations in (4.15) can be calculated (see Appendix B), and we have

g(t) = u(�p−1, τ)

= �

[
e−λτ +

1
λ

(1 − e−λτ )
]

+ �
1
r

[
1
2
− e−rτN(kb

√
2τ) +

kb√−a

(
N(

√−2aτ) − 1
2

)]

− �
1
λ

[
1
2
− e−λτN

(
k(b +

1
1 − p

)
√

2τ

)
+

k(b + 1
1−p )√−a

(
N(

√−2aτ) − 1
2

)]
· (4.16)

From (4.2), the main theorem is the following.

Theorem 4.1. The free boundary, x = g(t), has an explicit formula (4.15) or (4.16), which is proportional to
the constraint � and is infinitely differentiable.

Remark 4.2. It should be noted that the consumption constraint represents credit market frictions. Those
frictions in the credit market manifest in the model as a welfare loss. This is seen in the Proposition 3.1 which
says, in general, the value function in the constraint case will be lower than the unconstrained case. This welfare
loss can also be seen through the region where the constraint becomes binding. As the credit limit � increases,
the free boundary x = g(t) shifts to the right (as seen from the explicit formula of g(t)); thus reducing the area
of the constrained region (right hand side of the free boundary).

5. Confirming strict concavity of V (x, t) in x

Proposition 3.1 says that V (·, t) is concave on x ∈ [0, +∞), and transformation (3.8) required that V (·, t) is
strict concave on x ∈ [0, +∞). Now we confirm this condition. By the use of (3.12), (4.1) and (4.5),

Vxx(x, t) = − 1
vyy(y, t)

=
1

uy(y, τ)
=

ez

wz(z, τ)
, (5.1)

so it is enough to prove wz(z, τ) < 0. In fact, from (4.10),

wz(z, τ) = wz(z, τ) + w̃z(z, τ)

=
1

p − 1

[
e−λτ +

1
λ

(1 − e−λτ )
]

e
1

p−1 z + w̃z(z, τ). (5.2)
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Now we pay attention to the last term w̃z(z, τ) in (5.2). Differentiating (4.11) and (4.12) to z,

(w̃z)τ − μ2

2σ2
(w̃z)zz +

(
r − β − μ2

2σ2

)
(w̃z)z + rw̃z =

{
0, z ≥ (p − 1) ln �,

1
1−pe

1
p−1 z, z < (p − 1) ln �,

(5.3)

w̃z(z, 0) = 0, z ∈ IR. (5.4)

Corresponding to (A.9), the solution of (5.3) and (5.4)

w̃z(z, τ) =
1

1 − p
I2

=
1

1 − p
e

1
p−1 z

∫ τ

0

e−ληN

(−z + (p − 1) ln � + 2k2(b + 1
1−p )η

k
√

2η

)
dη

≤ 1
1 − p

e
1

p−1 z

∫ τ

0

e−ληdη

=
1

1 − p
e

1
p−1 z 1

λ
(1 − e−λτ ) (5.5)

back to (5.2), we obtain that

wz(z, τ) ≤ 1
p − 1

[
e−λτ +

1
λ

(1 − e−λτ )
]

e
1

p−1 z +
1

1 − p
e

1
p−1 z 1

λ
(1 − e−λτ )

= e−λτ 1
p − 1

e
1

p−1z < 0. (by p < 1) (5.6)

It follows that, by (5.1), V (·, t) is strict concave on x ∈ [0, +∞).

6. Monotonicity of the free boundary

Differentiating (4.15) to t yields

g′(t) = −uτ(�p−1, τ) (6.1)

= �(λ − 1)e−λτ − �e−rτN(kb
√

2τ ) + �e−λτN

(
k(b +

1
1 − p

)
√

2τ

)
, (6.2)

where τ = T − t.
Now we look for a condition under which g′(t) ≤ 0. From (6.2),

g′(t) ≤ �(λ − 1)e−λτ + �e−λτN

(
k(b +

1
1 − p

)
√

2τ

)
.

If b + 1
1−p ≤ 0, then N

(
k(b + 1

1−p )
√

2τ
)
≤ 1

2 and

g′(t) ≤ �(λ − 1)e−λτ +
1
2
�e−λτ = �

(
λ − 1

2

)
e−λτ ·

So if λ ≤ 1
2 , then g′(t) ≤ 0.

In the following we take a different approach to find a condition under which g′(t) ≥ 0. From (4.5),

uτ (y, τ) = wτ (z, τ). (6.3)
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�

�

λ ≤ 1
2

x

t

T

λ ≥ 1

�

�

Figure 1. Monotonicity of free boundary.

And applying (4.10),

wτ (z, τ) = (1 − λ)e−λτ e
1

p−1 z + w̃τ (z, τ). (6.4)

Now we prove w̃τ (z, τ) ≤ 0. Differentiating (4.11) to τ ,

(w̃τ )τ − μ2

2σ2
(w̃τ )zz +

(
r − β − μ2

2σ2

)
(w̃τ )z + rw̃τ = 0, z ∈ IR, 0 < τ < T. (6.5)

let τ = 0 in (4.11) and applying condition (4.12), we have

w̃τ (z, 0) =

{
0, z ≥ (p − 1) ln �,

� − e
1

p−1z , z < (p − 1) ln �.

It follows that

w̃τ (z, 0) ≤ 0, z ∈ IR, (6.6)

applying maximum principle to the system (6.5) and (6.6), we obtain

w̃τ (z, τ) ≤ 0

Backing to (6.4), we see that wτ (z, τ) ≤ 0 if λ ≥ 1. Hence uτ (y, τ) ≤ 0 by (6.3). Moreover g′(t) ≥ 0 by (6.1).
Summarizing above results, we have

Theorem 6.1.

(1) If b + 1
1−p ≤ 0 and λ ≤ 1

2 , then the free boundary x = g(t) is decreasing (Fig. 1, the curve in right hand
side),

(2) If λ ≥ 1, then x = g(t) is increasing (Fig. 1, the curve in left hand side).

7. Regularity of V (x, t)

Denote
Q = (0, +∞) × [0, T ]).
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In this section we prove the value function V (x, t) ∈ C2,1(Q) ∩ C(Q), i.e., V (x, t) is a classical solution of HJB
equation (3.2)–(3.4). This regularity guarantees the applicability of Ito formula which is the key in the proof of
verification theorem.

In fact, since the right hand sides of (3.18) is Hölder continuous, applying regularity theory of parabolic
equation [3] we see that

v(y, t) ∈ C2,1(Q)

which implies that

v(y, t), vy(y, t), vyy(y, t), vt(y, t) ∈ C(Q). (7.1)

It follows that, by (3.11),

I(y, t) = −vy(y, t) ∈ C(Q). (7.2)

Hence inverse function of x = I(y, t)

Vx(x, t) ∈ C(Q). (7.3)

Moreover, by (3.14), (3.12) and (3.13),

V (x, t) = v(Vx(x, t), t) + xVx(x, t) ∈ C(Q), (7.4)

Vxx(x, t) = − 1
vyy(y, t)

= − 1
vyy(Vx(x, t), t)

∈ C(Q), (7.5)

Vt(x, t) = vt(y, t) = vt(Vx(x, t), t) ∈ C(Q). (7.6)

(7.3)−(7.6) reveal V (x, t) ∈ C2,1(Q), recalling that Proposition 3.1 says V (·, t) is continuous on x ∈ [0, +∞)
with V (0, t) = 0. Thus the value function V (x, t) is a classical solution of HJB equation (3.2)–(3.4).

8. Optimal strategy and concluding remark

Let g(t) be defined as in (4.15) or (4.16). The optimal investment-consumption strategy (π∗
t , c∗t ) for prob-

lem (1.5) is given in a feedback form (π∗
t , c∗t ) = (π∗(Xt, t), c∗(Xt, t)), where

π∗(x, t) = − μ

σ2

Vx(x, t)
Vxx(x, t)

, x > 0,

c∗(x, t) =

{
Vx(x, t)

1
p−1 , 0 < x < g(t);

�, x � g(t),

Utilize the dual relationship of (3.7), the optimal value function

V (x, t) = max
y>0

(v(y, t) + xy), x > 0. (8.1)

9. Conclusion

The main purpose of this paper is to study finite horizon investment-consumption problem with credit market
frictions. We model the credit market frictions by imposing a credit limit on investors. Using dual transformation
techniques, we are able to explicitly characterize the free boundary thus characterizing the region in which the
credit limit will be binding. This free boundary is shown to be proportional to the credit limit. The area in the
right hand side of the free boundary indicates how severe the frictions are in the credit market. We are also able
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to find out the optimal invest strategies which is negatively proportional to market volatility, proportional to
market expected rate of return, Moreover, it is shown to be negatively proportional to absolute risk aversion of
the value function. Due to the assumption of finite horizon, this value function depends on time explicitly. Thus
the optimal investment strategy will be explicitly time dependent. On the other hand, the optimal consumption
strategy is given by the marginal value of wealth (in the region where credit limit is not binding). This also
depends on time explicitly (unlike the in.nite horizon case).

Appendix A. The solution of (4.11) and (4.12)

We transfer equation (4.11) into heat equation, and then use Poisson formula. Making transformation

w̃(z, τ) = eaτ+bzW (z, τ), (A.1)

where a, b will be determined later on. Then

w̃τ = eaτ+bz(Wτ + aW ),
w̃z = eaτ+bz(Wz + bW ),
w̃zz = eaτ+bz(Wzz + 2bWz + b2W ),

from (4.11) and (4.12), W (z, τ) satisfies

Wτ − μ2

2σ2
Wzz +

(
r − β − μ2

2σ2
− b

μ2

σ2

)
Wz +

(
r + b(r − β − μ2

2σ2
) − b2 μ2

2σ2
+ a

)
W

=

{
0, z ≥ (p − 1) ln �, 0 < τ < T,

(� − e
1

p−1 z)e−aτ−bz, z < (p − 1) ln �, 0 < τ < T,
(A.2)

W (z, 0) = 0, −∞ < z < +∞. (A.3)

let

b = (r − β)
σ2

μ2
− 1

2
, (A.4)

a = b2 μ2

2σ2
− b

(
r − β − μ2

2σ2

)
− r = b2 μ2

2σ2
− b · μ2

σ2
b − r

= −b2 μ2

2σ2
− r. (A.5)

Thus

Wτ − k2Wzz =

{
0, z ≥ (p − 1) ln �, 0 < τ < T,

(� − e
1

p−1 z)e−aτ−bz, z < (p − 1) ln �, 0 < τ < T,
(A.6)

W (z, 0) = 0, −∞ < z < +∞. (A.7)

where

k2 =
μ2

2σ2
. (A.8)

Applying Poisson formula of heat equation to (A.6) and (A.7),

W (z, τ) =
∫ τ

0

dη

∫ (p−1) ln �

−∞

1
2k
√

π(τ − η)
e−

(z−ξ)2

4k2(τ−η)

(
� − e

1
p−1 ξ

)
e−aη−bξdξ.
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Backing to (A.1),

w̃(z, τ) = eaτ+bzW (z, τ) = I1 − I2, (A.9)

where

I1 = eaτ+bz

∫ τ

0

dη

∫ (p−1) ln �

−∞

1
2k
√

π(τ − η)
e−

(z−ξ)2

4k2(τ−η)
(
�e−aη−bξ

)
dξ

= �

∫ τ

0

ea(τ−η)dη

∫ (p−1) ln �

−∞

1
2k
√

π(τ − η)
e−

(z−ξ)2

4k2(τ−η) eb(z−ξ)dξ,

I2 = eaτ+bz

∫ τ

0

dη

∫ (p−1) ln �

−∞

1
2k
√

π(τ − η)
e−

(z−ξ)2

4k2(τ−η)

(
e

1
p−1 ξe−aη−bξ

)
dξ

= e
1

p−1 z

∫ τ

0

ea(τ−η)dη

∫ (p−1) ln �

−∞

1
2k
√

π(τ − η)
e−

(z−ξ)2

4k2(τ−η) e
1

1−p (z−ξ)eb(z−ξ)dξ.

We calculate I1 first. Note that

− (z − ξ)2

4k2(τ − η)
+ b(z − ξ) = − 1

4k2(τ − η)
[
(z − ξ)2 − 4bk2(τ − η)(z − ξ)

]
= − 1

4k2(τ − η)

{[
z − ξ − 2bk2(τ − η)

]2 − 4b2k4(τ − η)2
}

= − 1
4k2(τ − η)

[
z − ξ − 2bk2(τ − η)

]2
+ b2k2(τ − η), (A.10)

so let

ζ =
−z + ξ + 2bk2(τ − η)

k
√

2(τ − η)
,

then

I1 = �

∫ τ

0

ea(τ−η)dη
1√
2π

∫ −z+(p−1) ln �+2bk2(τ−η)
k
√

2(τ−η)

−∞
e−

ζ2

2 eb2k2(τ−η)dζ

= �

∫ τ

0

ea(τ−η)eb2k2(τ−η)N

(
−z + (p − 1) ln � + 2bk2(τ − η)

k
√

2(τ − η)

)
dη

= �

∫ τ

0

e−r(τ−η)N

(
−z + (p − 1) ln � + 2bk2(τ − η)

k
√

2(τ − η)

)
dη (by (A.5))

= �

∫ τ

0

e−rηN

(−z + (p − 1) ln � + 2bk2η

k
√

2η

)
dη, (A.11)

Now we calculate I2. Note that, similar to (A.10),

− (z − ξ)2

4k2(τ − η)
+
(

b +
1

1 − p

)
(z−ξ) = − 1

4k2(τ − η)

[
z − ξ − 2k2

(
b +

1
1 − p

)
(τ − η)

]2
+k2

(
b +

1
1 − p

)2

(τ−η),

so let

ζ =
−z + ξ + 2k2(b + 1

1−p )(τ − η)

k
√

2(τ − η)
,
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then

I2 = e
1

p−1 z

∫ τ

0

ea(τ−η)dη
1√
2π

∫ −z+(p−1) ln �+2k2(b+ 1
1−p

)(τ−η)

k
√

2(τ−η)

−∞
e−

ζ2

2 ek2(b+ 1
1−p )2(τ−η)dζ

= e
1

p−1 z

∫ τ

0

ea(τ−η)ek2(b+ 1
1−p )2(τ−η)N

(−z + (p − 1) ln � + 2k2(b + 1
1−p )(τ − η)

k
√

2(τ − η)

)
dη

= e
1

p−1 z

∫ τ

0

e−λ(τ−η)N

(−z + (p − 1) ln � + 2k2(b + 1
1−p )(τ − η)

k
√

2(τ − η)

)
dη (by (A.13))

= e
1

p−1 z

∫ τ

0

e−ληN

(−z + (p − 1) ln � + 2k2(b + 1
1−p )η

k
√

2η

)
dη, (A.12)

where we used relationship

a + k2

(
b +

1
1 − p

)2

= a + k2

(
b2 +

2b

1 − p
+

1
(1 − p)2

)

= −r + k2

(
2b

1 − p
+

1
(1 − p)2

)

= −r + (1 − p)θ

( r−β
θ(1−p) − 1

1 − p
+

1
(1 − p)2

)

= −r +
r − β

1 − p
− θ +

θ

1 − p

=
pr − β + pθ

1 − p
= −λ. (A.13)

Hence (4.13) follows from (A.9), (A.11) and (A.12).

Appendix B. Calculating two integrations in (4.15)

We use integration by parts. The first integration in (4.15)∫ τ

0

e−rηN
(
kb
√

2η
)

dη = −1
r

∫ τ

0

N(kb
√

2η)de−rη

= −1
r

[
e−τηN(kb

√
2η)
∣∣∣τ
0
−
∫ τ

0

e−rη 1√
2π

e−k2b2η kb√
2η

dη

]

= −1
r

[
e−rτN(kb

√
2τ) − 1

2
− kb

2
√

π

∫ τ

0

eaη 1√
η
dη

]

= −1
r

[
e−rτN(kb

√
2τ) − 1

2
− kb

2
√

π

∫ √−2aτ

0

e−
μ2

2

√
2
−a

dμ

]
(μ =

√
−2aη)

= −1
r

[
e−rτN(kb

√
2τ) − 1

2
− kb√−a

1√
2π

∫ √−2aτ

0

e−
μ2
2 dμ

]

= −1
r

[
e−rτN(kb

√
2τ) − 1

2
− kb√−a

(
N(

√−2aτ) − 1
2

)]

=
1
r

[
1
2
− e−rτN(kb

√
2τ) +

kb√−a

(
N(

√−2aτ) − 1
2

)]
.
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In a same way, the second integration in (4.15)

∫ τ

0

e−ληN

(
k(b +

1
1 − p

)
√

2η

)
dη =

1
λ

[
1
2
− e−λτN

(
k(b +

1
1 − p

)
√

2τ

)
+

k(b + 1
1−p )√−a

(
N(

√−2aτ) − 1
2

)]
·
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[3] O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type, Translated
from the Russian by S. Smith. Vol. 23 of Transl. Math. Monogr. American Mathematical Society, Providence, R.I. (1967).

[4] R.C. Merton, Lifetime portfolio selection under uncertainty: the continuous-time case, Rev. Econ. Stat. 51 (1969) 247–257.

[5] R.C. Merton, Optimum consumption and portfolio rules in a continuous time model. J. Econ. Theory 3 (1971) 373-413.

[6] M. Milevsky, K. Moose and V. Young, Asset allocation and annuity-purchase strategies to minimize probability of financial
ruin. Math. Finance 16 (2006) 647–671.

[7] H. Pham, Continuous-time Stochastic Control and Optimization with Financial Applications. Springer-Verlag, Berlin (2009).

[8] E. Presman and S. Sethi, Risk-aversion behavior in consumption/investment problems. Math. Finance 1 (1991) 101–124.

[9] E. Presman and S. Sethi, Distribution of bankruptcy time in a consumption/portfolio problem. J. Econ. Dyn. Control 20
(1996) 471–477.

[10] S. Sethi, M. Taksar and E. Presman, Explicit solution of a general consumption/portfolio problem with subsistence consumption
and bankruptcy. J. Econ. Dyn. Control 16 (1992) 747–768.

[11] Z. Xu and F. Yi, An Optimal Consumption-Investment Model with Constraint on Consumption Rate. Math. Control Relat.
Fields (MCRF) 6 (2016) 517–534.


	Introduction and model formulation
	Unconstraint case
	HJB equation and dual transformation
	Finding free boundary x=g(t)
	Confirming strict concavity of V(x,t) in x
	Monotonicity of the free boundary
	Regularity of V(x,t)
	Optimal strategy and concluding remark
	Conclusion
	Appendix A. The solution of (4.11) and (4.12)
	Appendix B. Calculating two integrations in (4.15)
	References

