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INFINITE HORIZON JUMP-DIFFUSION FORWARD-BACKWARD STOCHASTIC
DIFFERENTIAL EQUATIONS AND THEIR APPLICATION TO BACKWARD

LINEAR-QUADRATIC PROBLEMS ∗

Zhiyong Yu1

Abstract. In this paper, we investigate infinite horizon jump-diffusion forward-backward stochas-
tic differential equations under some monotonicity conditions. We establish an existence and unique-
ness theorem, two stability results and a comparison theorem for solutions to such kind of equations.
Then the theoretical results are applied to study a kind of infinite horizon backward stochastic linear-
quadratic optimal control problems, and then differential game problems. The unique optimal controls
for the control problems and the unique Nash equilibrium points for the game problems are obtained
in closed forms.
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1. Introduction

Coupled forward-backward stochastic differential equations (SDEs) are encountered when one applies the
classical stochastic maximum principle to optimal control or differential game problems (see [6, 20]). The exis-
tence and uniqueness of solutions to such kind of equations are closely linked to that of optimal controls or Nash
equilibrium points. Forward-backward SDEs are also used to give a probabilistic interpretation for quasilinear
second order partial differential equations (PDEs) of elliptic or parabolic type (see [10, 15]), which generalized
the classical Feynman-Kac formula for linear PDEs. Moreover, in mathematical finance forward-backward SDEs
are often adopted to describe the models involving large investors (see for example [3]).

Finite horizon forward-backward SDEs were first investigated by Antonelli [1] and a local existence and
uniqueness result was obtained. He also constructed a counterexample showing that, a large time duration
might lead to non-solvability just under the Lipschitz assumption. For the global solvability results, three
fundamental methods are available. The first one is the method of contraction mapping used by Pardoux and
Tang [10]. The second one concerns a kind of four-step scheme approach introduced by Ma, Protter and Yong [7]
which can be regarded as a combination of the methods of PDEs and probability theory. This method requires
the non-degeneracy of the forward diffusion, and is only effective in Markovian frameworks. The third one
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called method of continuation is probabilistic. This method gets rid of the restriction of non-degeneracy, and
can deal with non-Markovian forward-backward SDEs. As a trade-off, a kind of monotonicity conditions on
the coefficients is introduced to ensure the solvability, which is restrictive in a different way. This method is
initiated by Hu and Peng [5], Peng and Wu [12]. Later, Yong [18,19] made improvements and made the method
more systematic. For some recent developments on finite horizon forward-backward SDEs, one can refer to Ma
et al. [8].

In 2000, Peng and Shi [11], for the first time, studied infinite horizon forward-backward SDEs driven by
Brownian motions employing the method of continuation. Later, Wu [14] studied this problem in some different
monotonicity framework from [11]. Yin [16,17] investigates the same issue by the method of contraction mapping.
Some existence and uniqueness results and comparison theorems were obtained. In this paper, we consider a kind
of generalized infinite horizon forward-backward SDEs driven by both Brownian motions and Poisson processes
as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = b(t, x(t), y(t), z(t), r(t, ·))dt + σ(t, x(t), y(t), z(t), r(t, ·))dW (t)

+
∫
E
γ(t, e, x(t−), y(t−), z(t), r(t, e))Ñ(dt, de),

−dy(t) = g(t, x(t), y(t), z(t), r(t, ·))dt − z(t)dW (t) −
∫
E
r(t, e)Ñ (dt, de),

x(0) = Φ(y(0)),

(1.1)

where the notations and mappings will be given in Sections 2 and 3. We adopt the model with random jumps,
since jump-diffusion processes characterize stochastic phenomena more often and accurate than just diffusion
processes, which provide us with more realistic models in practice. For example, in finance, stock prices often
exhibit some jump behaviors. Moreover, financial markets with jump stock prices provide a rich family of
incomplete financial models. For more information about jump diffusion models, the interested readers may be
referred to [2, 9, 13].

In this paper we study the solvability of forward-backward SDEs by virtue of the method of continuation.
The idea is to introduce a family of infinite horizon forward-backward SDEs parameterized by α ∈ [0, 1] such
that, when α = 1 the forward-backward SDE coincides with (1.1) and when α = 0 the forward-backward SDE
is uniquely solvable. We will show that there exists a fixed step-length δ0 > 0, such that, if, for some α0 ∈ [0, 1),
the parameterized forward-backward SDE is uniquely solvable, then the same conclusion holds for α0 being
replaced by α0 + δ ≤ 1 with δ ∈ [0, δ0]. Once this has been proved, we can increase the parameter α step by
step and finally reach α = 1.

It is worth noting that, we study a kind of more general coupled forward-backward SDEs in comparison
with [11, 14, 16, 17]. Besides the coupling in b, σ, γ and g, in this paper the initial values are also in a coupled
form: x(0) = Φ(y(0)) (see (1.1)). The traditional technique treating the coupling in the initial values (or terminal
values) when the horizon is finite (see for example [5,12,18]) is to parameterize and analyze the initial coefficient
Φ as the same as other coefficients (b, σ, γ, g). When this traditional technique is used to the case of infinite
horizon, we can solve two special cases: (i) The decoupled case: Φ(y(0)) = x0; (ii) The strong monotonicity
case: there exists a constant ν > 0 such that, for any y1, y2 ∈ R

n, 〈Φ(y1) − Φ(y2), y1 − y2〉 ≤ −ν|y1 − y2|2.
However, in many practical stochastic optimization problems, these two kinds of conditions are too strong
to satisfy naturally. In the present paper, instead of the traditional parameterization technique, we employ
the classical mean value theorem of continuous functions and some delicate techniques to handle the coupling
between the two initial values. This technique was introduced for the first time by Wu and Yu [15] to analyze
some algebraic equations. By virtue of the new technique, the conclusion is improved to a general monotonicity
case: 〈Φ(y1) − Φ(y2), y1 − y2〉 ≤ 0 (see (H3.3)–(ii)) which is natural in the viewpoint of practical optimization
problems. A potential application of the new technique is to deal with the associated finite horizon problems
and hope to improve the corresponding results.

Since backward SDEs on an infinite time horizon are well defined dynamic systems (see Thm. 2.5), it is
natural and appealing to study the corresponding optimal control and game problems arising from various
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fields. For example, in mathematical finance, the first process y of solution to some backward SDE is used to
represent the price of some European contingent claim, and the other processes (z, r) of solution are used to
characterize the corresponding portfolio. Then, in an incomplete security market, the minimum price of some
contingent claim can be given by infv(·)∈V yv(0), where (yv, zv, rv) is the solution of some controlled backward
SDEs and v(·) ∈ V is the related control process.

As an application of theoretical results, we study a kind of backward stochastic linear-quadratic (LQ) optimal
control problems, and then the general differential game problems. The LQ problems constitute an extremely
important category of optimization problems, because many problems arising from practice can be modeled by
them, and more importantly, many non-LQ problems can be approximated reasonably by LQ problems. On the
other hand, LQ problems tend to have elegant and complete solutions due to their simple and nice structures,
which also provide some understanding and preliminaries for the general nonlinear problems. By virtue of the
unique solvability of forward-backward SDEs, we obtain unique optimal controls for control problems and unique
Nash equilibrium points for game problems in closed forms. To our best knowledge, it is the first time to study
this kind of infinite horizon backward LQ problems. The theoretical results of forward-backward SDEs can also
be applied to nonlinear infinite horizon backward optimization problems. This subject will be detailed in our
future works.

The present paper has the following improvements. (i) Compared with Peng and Shi [11], we clarify many
ambiguous arguments, supplement some necessary details and improve some proofs. (ii) A general case in which
the two initial values are in a coupled form is studied in this paper, and to deal with it we introduce a new
technique which also can be applied to analyze other problems. (iii) We provide an important application of the
theoretical results to infinite horizon backward LQ problems. (iv) In order to match practical problems more
accurately, we adopt a wider jump-diffusion model.

The rest of this paper is organized as follows. In Section 2, we introduce some notations and some prelim-
inary results on infinite horizon (forward) SDEs and backward SDEs, especially an existence and uniqueness
result of backward SDEs. In Section 3, we devote ourselves to investigating the infinite horizon jump-diffusion
coupled forward-backward SDEs. We establish an existence and uniqueness theorem, two stability results and a
comparison theorem for solutions to forward-backward SDEs. In Section 4, we apply the existence and unique-
ness theorem to study a kind of infinite horizon backward stochastic LQ optimal control and differential game
problems. We obtain the unique optimal control for the control problem, and the unique Nash equilibrium point
for the game problem in closed forms.

2. Notations and preliminaries on SDEs and backward SDEs

Let R
n be the n-dimensional Euclidean space with the usual Euclidean norm | · | and the usual Euclidean

inner product 〈·, ·〉. Let R
n×m be the space consisting of all (n×m) matrices with the inner product:

〈A, B〉 = tr{AB�}, for any A,B ∈ R
n×m,

where � denotes the transpose of matrices. Thus the norm |A| of A induced by the inner product is given by
|A| =

√
trAA�.

Let (Ω,F ,F,P) be a complete filtered probability space. The filtration F = {Ft; 0 ≤ t < ∞} is generated
by two mutually independent stochastic sources augmented by all P-null sets. One is a d-dimensional standard
Brownian motionW = (W1,W2, . . . ,Wd)�, and the other one consists of l independent Poisson random measures
N = (N1, N2, . . . , Nl)� defined on R+ × E , where E ⊂ R

l̄ \ {0} is a nonempty Borel subset of some Euclidean
space. The compensators of N are N̄(dt, de) = (π1(de)dt, π2(de)dt, . . . , πl(de)dt) which make {Ñ((0, t] × A) =
(N − N̄)((0, t] × A); 0 ≤ t < ∞} a martingale for any A belonging to the Borel field B(E) with πi(A) < ∞,
i = 1, 2, . . . , l. Here, for each i = 1, 2, . . . , l, πi is a given σ-finite measure on the measurable space (E ,B(E))
satisfying

∫
E(1 ∧ |e|2)πi(de) <∞.
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We introduce some spaces:

• L2,K
F

(0,∞; Rn) where K ∈ R, the space of R
n-valued F-progressively measurable processes f defined on

[0,∞) such that

‖f(·)‖L2,K
F

:=
(

E

∫ ∞

0

|f(t)|2eKtdt
) 1

2

<∞,

and for simplicity we denote L2
F
(0,∞; Rn) := L2,0

F
(0,∞; Rn);

• S2
F
(0, T ; Rn) where T > 0, the space of F-progressively measurable processes f which have right-continuous

paths with left limits such that

‖f(·)‖S2
F

:=

(
E

[
sup

t∈[0,T ]

|f(t)|2
]) 1

2

<∞,

and S2,loc
F

(0,∞; Rn) :=
⋂

T>0 S
2
F
(0, T ; Rn);

• XK(0,∞; Rn) := L2,K
F

(0,∞; Rn) ∩ S2,loc
F

(0,∞; Rn); similarly, we denote X (0,∞; Rn) := X 0(0,∞; Rn) =
L2

F
(0,∞; Rn) ∩ S2,loc

F
(0,∞; Rn);

• L2(E ,B(E), π; Rn×l), the space of π-almost sure equivalence classes r(·) = (r1(·), . . . , rl(·)) formed by the
mappings from E to the space of R

n×l-valued matrices such that

‖r(·)‖ :=
(∫

E
tr
{
r(e) diag(π(de))r(e)�

}) 1
2

=

(
l∑

i=1

∫
E
|ri(e)|2πi(de)

) 1
2

<∞.

This space is equipped with the following inner product:

〈r(·), r̄(·)〉 :=
∫
E

tr
{
r(e) diag(π(de))r̄(e)�

}
, ∀ r(·), r̄(·) ∈ L2(E ,B(E), π; Rn×l);

• M2,K
F

(0,∞; Rn×l) where K ∈ R, the space of R
n×l-valued, P ⊗ B(E)-measurable processes r such that

‖r(·, ·)‖M2,K
F

:=
(

E

∫ ∞

0

∫
E

tr
{
r(t, e) diag(π(de))r(t, e)�

}
eKtdt

) 1
2

=
(

E

∫ ∞

0

‖r(t, ·)‖2 eKtdt
) 1

2

<∞,

where P is the σ-algebra generated by the F-progressively measurable processes on [0,∞)×Ω, and we denote
M2

F
(0,∞; Rn×l) := M2,0

F
(0,∞; Rn×l);

Clearly, for any K1 < K2, L
2,K2
F

(0,∞; Rn) ⊂ L2,K1
F

(0,∞; Rn) and M2,K2
F

(0,∞; Rn×l) ⊂M2,K1
F

(0,∞; Rn×l), i.e.
the sequences of spaces {L2,K

F
(0,∞; Rn)}K∈R and {M2,K

F
(0,∞; Rn×l)}K∈R are decreasing in K.

Further, we define the space R := R
n × R

n × R
n×d × L2(E ,B(E), π; Rn×l). For any θ1 = (x1, y1, z1, r1(·)),

θ2 = (x2, y2, z2, r2(·)) ∈ R, the inner product is defined by

〈θ1, θ2〉 := 〈x1, x2〉 + 〈y1, y2〉 + 〈z1, z2〉 + 〈r1(·), r2(·)〉.

Then the norm of R is deduced by |θ| :=
√〈θ, θ〉. We also define

L2,K
F

(0,∞) := L2,K
F

(0,∞; Rn) × L2,K
F

(0,∞; Rn) × L2,K
F

(0,∞; Rn×d) ×M2,K
F

(0,∞; Rn×l)
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with the norm

‖θ(·)‖L2,K
F

=
{

E

∫ ∞

0

|θ(t)|2eKtdt
} 1

2

=
{

E

∫ ∞

0

[
|x(t)|2 + |y(t)|2 + |z(t)|2 + ‖r(t, ·)‖2

]
eKtdt

} 1
2

.

Moreover, L2
F
(0,∞) := L2,0

F
(0,∞).

Now, let us consider an infinite horizon (forward) stochastic differential equation (SDE):

x(t) = x0 +
∫ t

0

b(s, x(s))ds +
∫ t

0

σ(s, x(s))dW (s)

+
∫ t

0

∫
E
γ(s, e, x(s−))Ñ(ds, de), t ∈ [0,∞),

which is also expressed in a differential form:⎧⎨
⎩dx(t) = b(t, x(t))dt + σ(t, x(t))dW (t) +

∫
E
γ(t, e, x(t−))Ñ(dt, de), t ∈ [0,∞),

x(0) = x0,

(2.1)

where x0 ∈ R
n, b : Ω × [0,∞) × R

n → R
n, σ : Ω × [0,∞) × R

n → R
n×d and γ : Ω × [0,∞) × E × R

n → R
n×l.

Moreover, we introduce the following assumptions:

(H1.1) For any x ∈ R
n, b(·, x), σ(·, x) are F-progressively measurable and γ(·, ·, x) is P ⊗ B(E)-measurable.

Moreover, there exists a constant K ∈ R such that b(·, 0) ∈ L2,K
F

(0,∞; Rn), σ(·, 0) ∈ L2,K
F

(0,∞; Rn×d)
and γ(·, ·, 0) ∈M2,K

F
(0,∞; Rn×l).

(H1.2) b, σ and γ are Lipschitz continuous with respect to x, i.e. there exists a constant C > 0 such that for
any t ∈ [0,∞), any x1, x2 ∈ R

n,

|b(t, x1) − b(t, x2)| + |σ(t, x1) − σ(t, x2)| + ‖γ(t, ·, x1) − γ(t, ·, x2)‖ ≤ C|x1 − x2|.

By the classical theory of SDEs, under assumptions (H1.1)–(H1.2), SDE (2.1) admits a unique strong solution.
Precisely, for any T ∈ [0,∞),

E

[
sup

x∈[0,T ]

|x(t)|2
]
<∞,

i.e. x ∈ S2
F
(0, T ; Rn), and then x ∈ S2,loc

F
(0,∞; Rn).

Proposition 2.1. Let assumptions (H1.1)–(H1.2) hold. We further assume the unique solution x of SDE (2.1)
belongs to L2,K

F
(0,∞; Rn) where the constant K is given by (H1.1). Then, we have

(i) x ∈ XK(0,∞; Rn);
(ii) E[|x(t)|2eKt] is bounded and continuous;
(iii) limt→∞ E[|x(t)|2eKt] = 0.

Proof. The assertion (i) is obvious since x belongs to both S2,loc
F

(0,∞; Rn) and L2,K
F

(0,∞; Rn). For any t ∈
[0,∞), we apply Itô’s formula to |x(s)|2eKs on the interval [0, t]:

E
[|x(t)|2eKt

]
= |x0|2 + E

∫ t

0

2
〈
x(s), b(s, x(s))

〉
eKsds

+ E

∫ t

0

[
K|x(s)|2 + |σ(s, x(s))|2 + ‖γ(s, ·, x(s))‖2

]
eKsds.
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By the Lipschitz condition (H1.2), we have

E
[|x(t)|2eKt

] ≤ |x0|2 + (1 + |K| + 2C + 4C2)E
∫ t

0

|x(s)|2eKsds

+ E

∫ t

0

[
|b(s, 0)|2 + 2|σ(s, 0)|2 + 2 ‖γ(s, ·, 0)‖2

]
eKsds,

where C is the Lipschitz constant. Due to the fact that x(·), b(·, 0) ∈ L2,K
F

(0,∞; Rn), σ(·, 0) ∈ L2,K
F

(0,∞; Rn×d)
and γ(·, ·, 0) ∈ M2,K

F
(0,∞; Rn×l) (see (H1.1)), the above inequality implies the deterministic process

{E[|x(t)|2eKt]; t ≥ 0} is bounded. Moreover, in the same way, applying Itô’s formula to |x(s)|2eKs on the
interval [t1, t2] leads to∣∣∣E [|x(t2)|2eKt2

]− E
[|x(t1)|2eKt1

] ∣∣∣ ≤ (1 + |K| + 2C + 4C2)E
∫ t2

t1

|x(s)|2eKsds

+ E

∫ t2

t1

[
|b(s, 0)|2 + 2|σ(s, 0)|2 + 2 ‖γ(s, ·, 0)‖2

]
eKsds,

which implies that the process {E[|x(t)|2eKt]; t ≥ 0} is continuous. We have proved (ii). The above inequality also
shows that, E

[|x(t2)|2eKt2
]−E

[|x(t1)|2eKt1
] → 0 as t1, t2 → ∞, then limt→∞ E

[|x(t)|2eKt
]
exists. Furthermore,

due to ∫ ∞

0

E
[|x(t)|2eKt

]
dt <∞,

we get the desired conclusion
lim

t→∞ E
[|x(t)|2eKt

]
= 0. �

In the rest of this section, we shall consider an infinite horizon backward SDE as follows:

y(t) =
∫ ∞

t

[
G(s, y(s), z(s), r(s, ·)) + ϕ(s)

]
ds−

∫ ∞

t

z(s)dW (s)

−
∫ ∞

t

∫
E
r(s, e)Ñ(ds, de), t ∈ [0,∞),

which is denoted also in the following differential form:

−dy(t) =
[
G(t, y(t), z(t), r(t, ·)) + ϕ(t)

]
dt− z(t)dW (t) −

∫
E
r(t, e)Ñ (dt, de), t ∈ [0,∞), (2.2)

where G : Ω × [0,∞) × R
m × R

m×d × L2(E ,B(E), π; Rm×l) → R
m and ϕ : Ω × [0,∞) → R

m. We assume the
following assumptions on the coefficients (G,ϕ):

(H2.1) For any (y, z, r(·)) ∈ R
m × R

m×d × L2(E ,B(E), π; Rm×l), G(·, y, z, r(·)) is F-progressively measurable,
and satisfies G(t, 0, 0, 0) = 0 for any t ∈ [0,∞). Moreover, there exists a constant K ∈ R such that
ϕ ∈ L2,K

F
(0,∞; Rm).

(H2.2) G is Lipschitz continuous with respect to (y, z, r(·)), i.e. there exist constants C0 ≥ 0, C1 ≥ 0 and C2 ≥ 0
such that for any t ∈ [0,∞), any y1, y2 ∈ R

m, any z1, z2 ∈ R
m×d, any r1(·), r2(·) ∈ L2(E ,B(E), π; Rm×l),

|G(t, y1, z1, r1(·)) −G(t, y2, z2, r2(·))| ≤ C0|y1 − y2| + C1|z1 − z2| + C2 ‖r1(·) − r2(·)‖ .
(H2.3) G satisfies some ‘weak monotonicity’ conditions in the following sense: there exists a constant ρ ∈ R

such that for any t ∈ [0,∞), any y1, y2 ∈ R
m, any z ∈ R

m×d, any r(·) ∈ L2(E ,B(E), π; Rm×l),

〈G(t, y1, z, r(·)) −G(t, y2, z, r(·)), y1 − y2〉 ≤ −ρ|y1 − y2|2.
(H2.4) K + 2ρ− 2C2

1 − 2C2
2 > 0.
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Remark 2.2.

(i) In the classical form of backward SDEs, the coefficient is usually denoted by g(t, y, z, r(·)). While in the
present paper, for convenience, we set

G(t, y, z, r(·)) = g(t, y, z, r(·)) − g(t, 0, 0, 0), ϕ(t) = g(t, 0, 0, 0),

and denote the coefficient g by G+ ϕ.
(ii) From the density of real numbers, it is easy to see that (H2.4) is equivalent to the following statement:

(H2.4’) There exists a constant δ > 0 such that

K + 2ρ− 2C2
1 − 2C2

2 − δ > 0. (2.3)

Naturally, a triple of mappings (y(·), z(·), r(·, ·)) is called an adapted solution to backward SDE (2.2) if and
only if y is an R

m-valued F-progressively measurable process, z is an R
m×d-valued F-progressively measurable

process, r is an R
m×l-valued P ⊗B(E)-measurable process, and (y, z, r) satisfies (2.2). Similar to forward SDEs,

we have the following

Corollary 2.3. Let assumptions (H2.1) and (H2.2) hold. We further assume (y, z, r) ∈ L2,K
F

(0,∞; Rm) ×
L2,K

F
(0,∞; Rm×d) × M2,K

F
(0,∞; Rm×l) is a solution to backward SDE (2.2) where the constant K is given

by (H2.1). Then we have

(i) y ∈ XK(0,∞; Rm);
(ii) E[|y(t)|2eKt] is bounded and continuous;
(iii) limt→∞ E[|y(t)|2eKt] = 0.

Proof. Since (y, z, r) is a solution to backward SDE (2.2), then for any t ∈ [0,∞),

y(t) =
∫ ∞

t

[
G(s, y(s), z(s), r(s, ·)) + ϕ(s)

]
ds−

∫ ∞

t

z(s)dW (s) −
∫ ∞

t

∫
E
r(s, e)Ñ(ds, de)

=
∫ ∞

0

[
G(s, y(s), z(s), r(s, ·)) + ϕ(s)

]
ds−

∫ ∞

0

z(s)dW (s) −
∫ ∞

0

∫
E
r(s, e)Ñ(ds, de)

−
∫ t

0

[
G(s, y(s), z(s), r(s, ·)) + ϕ(s)

]
ds+

∫ t

0

z(s)dW (s) +
∫ t

0

∫
E
r(s, e)Ñ (ds, de)

= y(0) −
∫ t

0

[
G(s, y(s), z(s), r(s, ·)) + ϕ(s)

]
ds+

∫ t

0

z(s)dW (s) +
∫ t

0

∫
E
r(s, e)Ñ (ds, de).

So the process y ∈ L2,K
F

(0,∞; Rm) can be regarded as an adapted solution to a forward SDE with

b(t, y) = −
[
G(t, y, z(t), r(t, ·)) + ϕ(t)

]
, σ(t, y) = z(t), γ(t, e, y) = r(t, e).

Under assumptions (H2.1) and (H2.2), it is easy to check that the above coefficients (b, σ, γ) satisfy assump-
tions (H1.1) and (H1.2). By Proposition 2.1, we get the conclusions. �

In order to obtain an existence and uniqueness result for backward SDE (2.2), we first establish the following
a priori estimate.
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Lemma 2.4. Let assumptions (H2.1)–(H2.4) hold. Let (y1, z1, r1) and (y2, z2, r2) ∈ L2,K
F

(0,∞; Rm) ×
L2,K

F
(0,∞; Rm×d) × M2,K

F
(0,∞; Rm×l) be solutions to backward SDEs (2.2) with ϕ = ϕ1 and ϕ = ϕ2 re-

spectively. Then we have

E

∫ ∞

0

[
(K + 2ρ− 2C2

1 − 2C2
2 − δ)|y1(t) − y2(t)|2

+
1
2
|z1(t) − z2(t)|2 +

1
2
‖r1(t, ·) − r2(t, ·)‖2

]
eKtdt

≤ 1
δ

E

∫ ∞

0

|ϕ1(t) − ϕ2(t)|2eKtdt,

(2.4)

where δ > 0 is defined in (2.3).

Proof. We denote
ϕ̂(t) := ϕ1(t) − ϕ2(t), ŷ(t) := y1(t) − y2(t),
ẑ(t) := z1(t) − z2(t), r̂(t, e) := r1(t, e) − r2(t, e),

for any (ω, t, e) ∈ Ω× [0,∞)×E . For any given T > 0, we apply Itô’s formula to |ŷ(t)|2eKt on the interval [0, T ]:

E

[
|ŷ(T )|2eKT

]
− |ŷ(0)|2 = E

∫ T

0

[
K|ŷ(t)|2 + |ẑ(t)|2 + ‖r̂(t, ·)‖2

]
eKtdt

− 2E

∫ T

0

〈
ŷ(t), G(t, y1(t), z1(t), r1(t, ·)) −G(t, y2(t), z2(t), r2(t, ·)) + ϕ̂(t)

〉
eKtdt.

Then

|ŷ(0)|2 + E

∫ T

0

[
K|ŷ(t)|2 + |ẑ(t)|2 + ‖r̂(t, ·)‖2

]
eKtdt

= E

[
|ŷ(T )|2eKT

]
+ 2E

∫ T

0

〈ŷ(t), ϕ̂(t)〉 eKtdt

+ 2E

∫ T

0

〈
ŷ(t), G(t, y1(t), z1(t), r1(t, ·)) −G(t, y2(t), z1(t), r1(t, ·))

〉
eKtdt

+ 2E

∫ T

0

〈
ŷ(t), G(t, y2(t), z1(t), r1(t, ·)) −G(t, y2(t), z2(t), r2(t, ·))

〉
eKtdt.

By assumptions (H2.2) and (H2.3), we have

|ŷ(0)|2 + E

∫ T

0

[
K|ŷ(t)|2 + |ẑ(t)|2 + ‖r̂(t, ·)‖2

]
eKtdt

≤ E

[
|ŷ(T )|2eKT

]
+ E

∫ T

0

[
2|ŷ(t)||ϕ̂(t)| − 2ρ|ŷ(t)|2 + 2|ŷ(t)|(C1|ẑ(t)| + C2 ‖r̂(t, ·)‖)

]
eKtdt

≤ E

[
|ŷ(T )|2eKT

]
+ E

∫ T

0

[
(δ − 2ρ+ 2C2

1 + 2C2
2 )|ŷ(t)|2 +

1
2
|ẑ(t)|2 +

1
2
‖r̂(t, ·)‖2 +

1
δ
|ϕ̂(t)|2

]
eKtdt.

Therefore,

|ŷ(0)|2 + E

∫ T

0

[
(K + 2ρ− 2C2

1 − 2C2
2 − δ)|ŷ(t)|2 +

1
2
|ẑ(t)|2 +

1
2
‖r̂(t, ·)‖2

]
eKtdt

≤ E

[
|ŷ(T )|2eKT

]
+

1
δ

E

∫ T

0

|ϕ̂(t)|2eKtdt.
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Let T → ∞. Thanks to Corollary 2.3, we have

|ŷ(0)|2 + E

∫ ∞

0

[
(K + 2ρ− 2C2

1 − 2C2
2 − δ)|ŷ(t)|2 +

1
2
|ẑ(t)|2 +

1
2
‖r̂(t, ·)‖2

]
eKtdt ≤ 1

δ
E

∫ ∞

0

|ϕ̂(t)|2eKtdt,

which implies (2.4). �

Theorem 2.5. Let assumptions (H2.1)–(H2.4) hold. When K > 0, the backward SDE (2.2) admits a unique
solution (y, z, r) ∈ L2,K

F
(0,∞; Rm) × L2,K

F
(0,∞; Rm×d) ×M2,K

F
(0,∞; Rm×l).

Proof. Clearly, the a priori estimate (2.4) implies the uniqueness. For the existence, we employ the method
used in [11] to construct an adapted solution. In detail, for n = 1, 2, . . ., we define

ϕn(t) = �[0,n](t)ϕ(t), t ∈ [0,∞).

Obviously, the sequence {ϕn}∞n=1 converges to ϕ in L2,K
F

(0,∞; Rm). For each n, let (ȳn, z̄n, r̄n) be the unique
adapted solution of the following finite horizon backward SDE:

ȳn(t) =
∫ n

t

[
G(s, ȳn(s), z̄n(s), r̄n(s, ·)) + ϕn(s)

]
ds−

∫ n

t

z̄n(s)dW (s)

−
∫ n

t

∫
E
r̄n(s, e)Ñ(ds, de), t ∈ [0, n].

Furthermore, we define

(yn(t), zn(t), rn(t, ·)) :=
{

(ȳn(t), z̄n(t), r̄n(t, ·)), t ∈ [0, n],
(0, 0, 0), t ∈ (n,∞).

Obviously, (yn, zn, rn) ∈ L2,K
F

(0,∞; Rm) × L2,K
F

(0,∞; Rm×d) ×M2,K
F

(0,∞; Rm×l). Since G(s, 0, 0, 0) = 0 (see
assumption (H2.1)), then (yn, zn, rn) solves the following infinite horizon backward SDE:

yn(t) =
∫ ∞

t

[
G(s, yn(s), zn(s), rn(s, ·)) + ϕn(s)

]
ds−

∫ ∞

t

zn(s)dW (s)

−
∫ ∞

t

∫
E
rn(s, e)Ñ(ds, de), t ∈ [0,∞).

Lemma 2.4 implies that {(yn, zn, rn)}∞n=1 is a Cauchy sequence in L2,K
F

(0,∞; Rm) × L2,K
F

(0,∞; Rm×d) ×
M2,K

F
(0,∞; Rm×l). We denote by (y, z, r) the limit of {(yn, zn, rn)}∞n=1, and shall show that (y, z, r) solves

the backward SDE (2.2).
First, when K > 0 we deduce that

E

[∫ ∞

t

(zn(s) − z(s))dW (s)
]2

= E

∫ ∞

t

|zn(s) − z(s)|2ds

≤ E

∫ ∞

0

|zn(s) − z(s)|2eKsds→ 0, as n→ ∞,

i.e. the item
∫∞

t zn(s)dW (s) converges to
∫∞

t z(s)dW (s) in L2(Ω,F ,P; Rm) which is the space of F -measurable
square integrable random variables. The same argument also leads to a similar conclusion: the item
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∫∞
t

∫
E rn(s, e)Ñ(ds, de) converges to

∫∞
t

∫
E r(s, e)Ñ(ds, de) in L2(Ω,F ,P; Rm). Second, for any K > 0, we

have

E

[∫ ∞

t

(G(s, yn(s), zn(s), rn(s, ·)) −G(s, y(s), z(s), r(s, ·))) ds
]2

≤ E

[∫ ∞

0

∣∣∣G(s, yn(s), zn(s), rn(s, ·)) −G(s, y(s), z(s), r(s, ·))
∣∣∣eK

2 se−
K
2 sds

]2

≤ E

[(∫ ∞

0

∣∣∣G(s, yn(s), zn(s), rn(s, ·)) −G(s, y(s), z(s), r(s, ·))
∣∣∣2eKsds

)(∫ ∞

0

e−Ksds
)]

≤ CE

∫ ∞

0

[
|yn(s) − y(s)|2 + |zn(s) − z(s)|2 + ‖rn(s, ·) − r(s, ·)‖2

]
eKsds

→ 0, as n→ ∞,

i.e. the item
∫∞

t G(s, yn(s), zn(s), rn(s, ·))ds converges to
∫∞

t G(s, y(s), z(s), r(s, ·))ds in L2(Ω,F ,P; Rm). We
notice that, here in order to dominate the L1-norm by the L2-norm, we have to restrict K > 0. This is different
from the case of finite time intervals. The same argument also leads to

∫∞
t
ϕn(s)ds converges to

∫∞
t
ϕ(s)ds in

L2(Ω,F ,P; Rm). At last, since limn→∞ E
∫∞
0 |yn(t) − y(t)|2eKtdt = 0, there exists a subsequence of {yn} such

that

lim
n→∞ E

[
|yn(t) − y(t)|2

]
= 0, for almost everywhere t ∈ [0,∞).

The proof is completed. �

3. Coupled forward-backward SDEs

In this section, we study the following kind of coupled forward-backward SDEs driven by both Brownian
motions and Poisson processes on the infinite interval [0,∞):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = b(t, x(t), y(t), z(t), r(t, ·))dt + σ(t, x(t), y(t), z(t), r(t, ·))dW (t)

+
∫
E
γ(t, e, x(t−), y(t−), z(t), r(t, e))Ñ(dt, de),

−dy(t) = g(t, x(t), y(t), z(t), r(t, ·))dt − z(t)dW (t) −
∫
E
r(t, e)Ñ (dt, de),

x(0) = Φ(y(0)),

(3.1)

where Φ : R
n → R

n, (b, σ, g) : Ω× [0,∞)×R→ R
n ×R

n×d ×R
n and γ : Ω× [0,∞)×E ×R → R

n×l. Similar to
Hu and Peng [5], for any θ = (x, y, z, r(·)) ∈ R, we use the notation A(t, θ) := (−g(t, θ), b(t, θ), σ(t, θ), γ(t, ·, θ)).
Now we give the following assumptions:

(H3.1) For any θ ∈ R, b(·, θ), σ(·, θ), g(·, θ) are F-progressively measurable and γ(·, ·, θ) is P⊗B(E)-measurable.
Moreover, there exists a constant K > 0 such that A(·, 0) ∈ L2,K

F
(0,∞).

(H3.2) A and Φ are Lipschitz continuous with respect to θ and y respectively, i.e. there exists a constant C > 0
such that for any t ∈ [0,∞), any θ1, θ2 ∈ R, any y1, y2 ∈ R

n,

(i) |A(t, θ1) − A(t, θ2)| ≤ C|θ1 − θ2|,
(ii) |Φ(y1) − Φ(y2)| ≤ C|y1 − y2|.
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(H3.3) A and Φ satisfy the monotonicity conditions in the sense: there exists a constant μ > 0 such that for
any t ∈ [0,∞), any θ1, θ2 ∈ R, any y1, y2 ∈ R

n,

(i) 〈A(t, θ1) −A(t, θ2), θ1 − θ2〉 ≤ −μ|θ1 − θ2|2,
(ii) 〈Φ(y1) − Φ(y2), y1 − y2〉 ≤ 0.

(H3.4) 2μ−K > 0.

Remark 3.1. Assumption (H3.4) is artificial. In fact, if it does not hold true, then we can find a K̄ ∈ (0,K)
such that 2μ − K̄ > 0. Due to the decreasing property of {L2,K

F
(0,∞; Rn)}K∈R and {M2,K

F
(0,∞; Rn×l)}K∈R,

assumption (H3.1) implies A(·, 0) also belongs to L2,K̄
F

(0,∞). So we can deal with the corresponding problems
in a larger space. However, for convenience, we would like to keep (H3.4) in this paper.

Next we employ the method of continuation originally introduced by Hu and Peng [5] to obtain the existence
and uniqueness of the forward-backward SDE (3.1). For this purpose, we introduce a family of infinite horizon
forward-backward SDEs parametrized by α ∈ [0, 1]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxα(t) = [αb(t, θα(t)) − μ(1 − α)yα(t) + φ(t)] dt
+ [ασ(t, θα(t)) − μ(1 − α)zα(t) + ψ(t)] dW (t)

+
∫
E

[αγ(t, e, θα(t−)) − μ(1 − α)rα(t, e) + ξ(t, e)] Ñ(dt, de),

−dyα(t) = [αg(t, θα(t)) + μ(1 − α)xα(t) + η(t)] dt− zα(t)dW (t)

−
∫
E
rα(t, e)Ñ(dt, de),

xα(0) = Φ(yα(0)),

(3.2)

where (η, φ, ψ, ξ) ∈ L2,K
F

(0,∞) and we denote θα(t) := (xα(t), yα(t), zα(t), rα(t, ·)), θα(t−) :=
(xα(t−), yα(t−), zα(t), rα(t, e)). We notice that, the coefficient Φ is not parameterized as the same as other co-
efficients (b, σ, γ, g). This is a difference from the traditional parameterization technique used in [5,11,12,18,19].

When α = 0, the forward-backward SDE (3.2) is reduced to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx0(t) =
[−μy0(t) + φ(t)

]
dt+

[−μz0(t) + ψ(t)
]
dW (t)

+
∫
E

[−μr0(t, e) + ξ(t, e)
]
Ñ(dt, de),

−dy0(t) =
[
μx0(t) + η(t)

]
dt− z0(t)dW (t) −

∫
E
r0(t, e)Ñ(dt, de),

x0(0) = Φ(y0(0)).

(3.3)

Before proving the unique solvability result for (3.3), we need to consider an algebraic equation related to
the coupling of initial conditions. The technique dealing with the algebraic equation is similar to the proof of
Lemma 3.4 in [15].

Lemma 3.2. Let assumptions (H3.1)–(H3.4) hold. For any p ∈ R
n, the following algebraic equation

x = Φ(x + p) (3.4)

admits a unique solution x ∈ R
n.
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Proof. Firstly, we show the uniqueness. If both x1 and x2 satisfy the algebraic equation (3.4), then

x1 − x2 = Φ(x1 + p) − Φ(x2 + p).

Making inner product with x1 − x2, by the monotonicity condition on Φ (see (H3.3)), we get

|x1 − x2|2 = 〈Φ(x1 + p) − Φ(x2 + p), x1 − x2〉 ≤ 0.

We proved the uniqueness.
Secondly, we prove the existence. We define a new function

λ(x, p) = Φ(x + p) − x, (x, p) ∈ R
n × R

n. (3.5)

Making inner product of λ and x, by the monotonicity condition of Φ, we get

〈λ(x, p), x〉 = 〈Φ(x+ p), x〉 − |x|2
= 〈Φ(x+ p) − Φ(p), x〉 + 〈Φ(p), x〉 − |x|2
≤ − |x|2 + 〈Φ(p), x〉.

From the inequality: 〈a, b〉 ≤ (1/2)(|a|2 + |b|2), we have

〈λ(x, p), x〉 ≤ −1
2
|x|2 +

1
2
|Φ(p)|2. (3.6)

We assert that the above inequality implies that, for any p ∈ R
n, there exists an x(p) such that λ(x(p), p) = 0.

This is equivalent to the existence of the algebraic equation (3.4). In order to highlight the idea of the proof,
here we only prove this conclusion in a simple case where n = 1. For the general case n > 1, the proof is a bit
complicated and technical, we would like to omit it. The interested readers can be referred to Appendix in [15].
When n = 1, the inequality (3.6) is rewritten as

λ(x, p)x ≤ −1
2
x2 +

Φ2(p)
2

· (3.7)

(i) When x < 0, dividing x on both sides of the inequality (3.7), we have

λ(x, p) ≥ −1
2
x+

Φ2(p)
2x

·

Letting x→ −∞, we have λ(x, p) → +∞.
(ii) When x > 0, dividing x on both sides of the inequality (3.7), we have

λ(x, p) ≤ −1
2
x+

Φ2(p)
2x

·

Letting x→ +∞, we have λ(x, p) → −∞.

Obviously λ is a continuous function. From the classical mean value theorem of continuous functions, we know
that, for any p, there exists a real number x(p) such that λ(x(p), p) = 0. We finish the proof of existence. �

Remark 3.3. One conventional approach to prove the solvability of some algebraic equations is by virtue of
a monotone operator with coerciveness (see for example [22], Thm. 26.A). Due to assumption (H3.3), Φ is a
monotone operator. However, there is no coercive condition imposed. So this conventional method cannot be
applied for our problem.
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Lemma 3.4. Let assumptions (H3.1)–(H3.4) hold. For any (η, φ, ψ, ξ) ∈ L2,K
F

(0,∞), the forward-backward
SDE (3.3) admits a unique solution in L2,K

F
(0,∞).

Proof. Let us consider a linear infinite horizon backward SDE:

−dp(t) = [−μp(t) + φ(t) + η(t)] dt− [(1 + μ)q(t) − ψ(t)] dW (t)

−
∫
E

[(1 + μ)k(t, e) − ξ(t, e)] Ñ(dt, de),
(3.8)

and a linear infinite horizon (forward) SDE combined with an algebraic equation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx(t) = [−μ(x(t) + p(t)) + φ(t)] dt+ [−μq(t) + ψ(t)] dW (t)

+
∫
E

[−μk(t, e) + ξ(t, e)] Ñ(dt, de),

x(0) = Φ(x(0) + p(0)).

(3.9)

Due to Theorem 2.5 with C1 = C2 = 0 and ρ = μ, the backward SDE (3.8) admits a unique solution (p, q, k) ∈
L2,K

F
(0,∞; Rn)×L2,K

F
(0,∞; Rn×d)×M2,K

F
(0,∞; Rn×l). Once (p, q, k) is solved, by Lemma 3.2, we can uniquely

solve x(0) from the initial condition x(0) = Φ(x(0)+p(0)). then we solve SDE (3.9). It admits a unique solution x.
Next we shall show that x ∈ L2,K

F
(0,∞; Rn). For any constant T > 0, we apply Itô’s formula to |x(t)|2eKt on

the finite interval [0, T ]:

E
[|x(T )|2eKT

]
+ (2μ−K)E

∫ T

0

|x(t)|2eKtdt

= |x(0)|2 + E

∫ T

0

[
2〈x(t), φ(t) − μp(t)〉 + |ψ(t) − μq(t)|2 + ‖ξ(t, ·) − μk(t, ·)‖2

]
eKtdt.

Since K < 2μ, then there exists a constant ε > 0 such that 2μ − K − ε > 0. By the inequality 2〈a, b〉 ≤
ε|a|2 + (1/ε)|b|2, we have

E
[|x(T )|2eKT

]
+ (2μ−K − ε)E

∫ T

0

|x(t)|2eKtdt

≤ |x(0)|2 + E

∫ T

0

[
1
ε
|φ(t) − μp(t)|2 + |ψ(t) − μq(t)|2 + ‖ξ(t, ·) − μk(t, ·)‖2

]
eKtdt.

Letting T → ∞, we have

(2μ−K − ε)E
∫ ∞

0

|x(t)|2eKtdt

≤ |x(0)|2 + E

∫ ∞

0

[
1
ε
|φ(t) − μp(t)|2 + |ψ(t) − μq(t)|2 + ‖ξ(t, ·) − μk(t, ·)‖2

]
eKtdt.

We have proved x ∈ L2,K
F

(0,∞; Rn).
It is easy to verify that (x0, y0, z0, r0) = (x, x + p, q, k) is a solution to the forward-backward SDE (3.3). We

proved the existence.
We would like to prove the uniqueness in a bigger space: L2

F
(0,∞). Let θ1(·) = (x1(·), y1(·), z1(·), r1(·, ·)) and

θ2(·) = (x2(·), y2(·), z2(·), r2(·, ·)) belonging to L2
F
(0,∞) be two solutions to the forward-backward SDE (3.3).

We denote θ̂(·) = (x̂(·), ŷ(·), ẑ(·), r̂(·, ·)) = (x1(·) − x2(·), y1(·) − y2(·), z1(·) − z2(·), r1(·, ·) − r2(·, ·)) and apply
Itô’s formula to 〈x̂(t), ŷ(t)〉 on the interval [0, T ] to get

E

[
〈x̂(T ), ŷ(T )〉

]
+ μE

∫ T

0

|θ̂(t)|2dt =
〈
Φ(y1(0)) − Φ(y2(0)), ŷ(0)

〉
.
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By the monotonicity condition of Φ, we get

E

[
〈x̂(T ), ŷ(T )〉

]
+ μE

∫ T

0

|θ̂(t)|2dt ≤ 0.

Letting T → ∞, thanks to Proposition 2.1 and Corollary 2.3, we have

μE

∫ ∞

0

|θ̂(t)|2dt ≤ 0.

The uniqueness is proved. �

The above Lemma 3.4 shows that, when α = 0, the forward-backward SDE (3.2) is in a simple form and then is
uniquely solvable. It is clear that, when α = 1 and (η, φ, ψ, ξ) vanish, the forward-backward SDE (3.2) coincides
with (3.1). We will show that there exists a fixed step-length δ0 > 0, such that, if, for some α0 ∈ [0, 1), (3.2)
is uniquely solvable for any (η, φ, ψ, ξ) ∈ L2,K

F
(0,∞), then the same conclusion holds for α0 being replaced by

α0 + δ ≤ 1 with δ ∈ [0, δ0]. Once this has been proved, we can increase the parameter α step by step and
finally reach α = 1, which gives the unique solvability of the forward-backward SDE (3.1). This idea is adopted
from [5,11, 12, 18, 19], and this method is called the method of continuation.

Now, we prove the following continuation lemma.

Lemma 3.5. Under assumptions (H3.1)–(H3.4), there exists an absolute constant δ0 > 0 such that, if, for some
α0 ∈ [0, 1), the forward-backward SDE (3.2) is uniquely solvable in L2,K

F
(0,∞) for any (η, φ, ψ, ξ) ∈ L2,K

F
(0,∞),

then the same is true for α = α0 + δ with δ ∈ [0, δ0] and α0 + δ ≤ 1.

Proof. Let δ0 be determined as follows. Let δ ∈ [0, δ0]. For each θ(·) = (x(·), y(·), z(·), r(·, ·)) ∈ L2,K
F

(0,∞), we
consider the following forward-backward SDE (compared to (3.2) with α = α0 + δ):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX(t) =
[
α0b(t, Θ(t)) − μ(1 − α0)Y (t) + δ

(
b(t, θ(t)) + μy(t)

)
+ φ(t)

]
dt

+
[
α0σ(t, Θ(t)) − μ(1 − α0)Z(t) + δ

(
σ(t, θ(t)) + μz(t)

)
+ ψ(t)

]
dW (t)

+
∫
E

[
α0γ(t, e, Θ(t−)) − μ(1 − α0)R(t, e)

+ δ
(
γ(t, e, θ(t−)) + μr(t, e)

)
+ ξ(t, e)

]
Ñ(dt, de),

−dY (t) =
[
α0g(t, Θ(t)) + μ(1 − α0)X(t) + δ

(
g(t, θ(t)) − μx(t)

)
+ η(t)

]
dt

− Z(t)dW (t) −
∫
E
R(t, e)Ñ(dt, de),

X(0) = Φ(Y (0)).

(3.10)

It is easy to check that
(
δ
(
g(·, θ(·)) − μx(·)) + η(·), δ

(
b(·, θ(·)) + μy(·)) + φ(·), δ

(
σ(·, θ(·)) + μz(·)) +

ψ(·), δ
(
γ(·, ·, θ(·−)) + μr(·, ·)) + ξ(·, ·)) ∈ L2,K

F
(0,∞). Then, by our assumptions, the above forward-

backward SDE is uniquely solvable in the space L2,K
F

(0,∞). We denote the unique solution by Θ(·) =
(X(·), Y (·), Z(·), R(·, ·)). We have established a mapping

Θ = Iα0+δ(θ) : L2,K
F

(0,∞) → L2,K
F

(0,∞).

Next we shall prove it is a contraction.
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Let θ1 = (x1, y1, z1, r1), θ2 = (x2, y2, z2, r2) ∈ L2,K
F

(0,∞) and Θ1 = (X1, Y1, Z1, R1) = Iα0+δ(θ1), Θ2 =
(X2, Y2, Z2, R2) = Iα0+δ(θ2). Let

θ̂ = (x̂, ŷ, ẑ, r̂) = (x1 − x2, y1 − y2, z1 − z2, r1 − r2),

Θ̂ = (X̂, Ŷ , Ẑ, R̂) = (X1 −X2, Y2 − Y2, Z1 − Z2, R1 −R2).

For any T > 0, applying Itô’s formula to 〈X̂(t), Ŷ (t)〉eKt on the interval [0, T ], we have

E

[ 〈
X̂(T ), Ŷ (T )

〉
eKT

]
−
〈
Φ(Y1(0)) − Φ(Y2(0)), Ŷ (0)

〉

= α0E

∫ T

0

〈
A(t, Θ1(t)) −A(t, Θ2(t)), Θ̂(t)

〉
eKtdt− μ(1 − α0)E

∫ T

0

|Θ̂(t)|2eKtdt

+ δE

∫ T

0

〈
A(t, θ1(t)) −A(t, θ2(t)), Θ̂(t)

〉
eKtdt+ δμE

∫ T

0

〈
θ̂(t), Θ̂(t)

〉
eKtdt

+KE

∫ T

0

〈
X̂(t), Ŷ (t)

〉
eKtdt.

By assumptions (H3.2) and (H3.3), we deduce

E

[ 〈
X̂(T ), Ŷ (T )

〉
eKT

]
+ (μ− 1

2
K)E

∫ T

0

|Θ̂(t)|2eKtdt

≤ δ(C + μ)E
∫ T

0

|θ̂(t)||Θ̂(t)|eKtdt.

Since 1
2K < μ (see assumption (H3.4)), then there exists a constant ε > 0 such that μ− 1

2K − ε > 0. Then we
have

E

[ 〈
X̂(T ), Ŷ (T )

〉
eKT

]
+ (μ− 1

2
K − ε)E

∫ T

0

|Θ̂(t)|2eKtdt

≤ δ2 · (C + μ)2

4ε
E

∫ T

0

|θ̂(t)|2eKtdt.

Letting T → ∞, we have

E

∫ ∞

0

|Θ̂(t)|2eKtdt ≤ δ2 · (C + μ)2

2ε(2μ−K − 2ε)
E

∫ T

0

|θ̂(t)|2eKtdt.

Now we choose δ20 = ε(2μ−K−2ε)
2(C+μ)2 , then for any δ ∈ [0, δ0], we have the following estimate:

∥∥∥Θ̂(·)
∥∥∥
L2,K

F

≤ 1
2

∥∥∥θ̂(·)∥∥∥
L2,K

F

.

This implies that the mapping Iα0+δ is a contraction. Hence, it has a unique fixed point, which is the unique
solution of (3.2) for α = α0 + δ. We complete the proof. �

Now, we give an existence and uniqueness result for the forward-backward SDE (3.1).

Theorem 3.6. Under assumptions (H3.1)–(H3.4), the forward-backward SDE (3.1) admits a unique solution
(x(·), y(·), z(·), r(·, ·)) ∈ L2,K

F
(0,∞).

Proof. By Lemmas 3.4 and 3.5, we can solve the forward-backward SDE (3.2) uniquely for any α ∈ [0, 1] and
(η, φ, ψ, ξ) ∈ L2,K

F
(0,∞). Particularly, (3.2) with α = 1 and (η, φ, ψ, ξ) = 0, which is (3.1), admits a unique

solution. We finish the proof. �
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Remark 3.7.

(i) By a similar proof as that of Lemma 3.4, the uniqueness holds true in the bigger space L2
F
(0,∞).

(ii) By Proposition 2.1 and Corollary 2.3, the unique solution (x,y,z,r) of the forward-backward SDE (3.1)
belongs to XK(0,∞; Rn) ×XK(0,∞; Rn) × L2,K

F
(0,∞; Rn×d) ×M2,K

F
(0,∞; Rn×l) exactly.

In the rest of this section, we would like to establish some properties of the solutions to forward-backward
SDEs including two stability results and a comparison theorem. First we establish the stability results.

Proposition 3.8. Let (b1, σ1, γ1, g1, Φ1) and (b2, σ2, γ2, g2, Φ2) be two sets of coefficients of forward-backward
SDEs satisfying assumptions (H3.1)–(H3.4). Let θ1 = (x1, y1, z1, r1) and θ2 = (x2, y2, z2, r2) be the corresponding
solutions.

(i) If we assume that Φ1 = Φ2, then

E

∫ ∞

0

|θ1(t) − θ2(t)|2eKtdt ≤ CE

∫ ∞

0

|A1(t, θ2(t)) −A2(t, θ2(t))|2eKtdt, (3.11)

where C is a constant depending on μ and K.
(ii) If we strengthen the monotonicity condition on Φ1 as follows: there exists a constant ν > 0 such that for

any y1, y2 ∈ R
n,

〈Φ1(y1) − Φ1(y2), y1 − y2〉 ≤ −ν|y1 − y2|2, (3.12)

then
|y1(0) − y2(0)|2 + E

∫ ∞

0

|θ1(t) − θ2(t)|2eKtdt

≤ C

{
|Φ1(y2(0)) − Φ2(y2(0))|2 + E

∫ ∞

0

|A1(t, θ2(t)) −A2(t, θ2(t))|2eKtdt
}
,

(3.13)

where C is a constant depending on μ, ν and K.

Proof. We apply Itô’s formula to 〈x̂(t), ŷ(t)〉eKt on the interval [0, T ]:

E

[
〈x̂(T ), ŷ(T )〉eKT

]
− 〈Φ1(y1(0)) − Φ1(y2(0)), ŷ(0)〉

− E

∫ T

0

〈
A1(t, θ1(t)) −A1(t, θ2(t)), θ̂(t)

〉
eKtdt

= 〈Φ1(y2(0)) − Φ2(y2(0)), ŷ(0)〉

+ E

∫ T

0

{〈
A1(t, θ2(t)) −A2(t, θ2(t)), θ̂(t)

〉
+K

〈
x̂(t), ŷ(t)

〉}
eKtdt,

where the notations x̂ := x1 − x2, etc. By the monotonicity condition on A1, we have

E

[
〈x̂(T ), ŷ(T )〉eKT

]
− 〈Φ1(y1(0)) − Φ1(y2(0)), ŷ(0)〉 +

(
μ− K

2

)
E

∫ T

0

|θ̂(t)|2eKtdt

≤ 〈Φ1(y2(0)) − Φ2(y2(0)), ŷ(0)〉 + E

∫ T

0

〈
A1(t, θ2(t)) −A2(t, θ2(t)), θ̂(t)

〉
eKtdt.

(3.14)

(i) When Φ1 = Φ2, considering the monotonicity condition on Φ1 (see assumption (H3.3)), (3.14) is reduced
to

E

[
〈x̂(T ), ŷ(T )〉eKT

]
+
(
μ− K

2

)
E

∫ T

0

|θ̂(t)|2eKtdt ≤ E

∫ T

0

〈
A1(t, θ2(t)) −A2(t, θ2(t)), θ̂(t)

〉
eKtdt.

By a similar technique as that in the proof of Lemma 3.5, we obtain the estimate (3.11).
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(ii) When Φ1 satisfies the strong monotonicity condition (3.12), the inequality (3.14) is reduced to

E

[
〈x̂(T ), ŷ(T )〉eKT

]
+ ν|ŷ(0)|2 +

(
μ− K

2

)
E

∫ T

0

|θ̂(t)|2eKtdt

≤ 〈Φ1(y2(0)) − Φ2(y2(0)), ŷ(0)〉 + E

∫ T

0

〈
A1(t, θ2(t)) −A2(t, θ2(t)), θ̂(t)

〉
eKtdt.

Similar to the proof of Lemma 3.5, we get the estimate (3.13). �

Remark 3.9. In the proof of the above proposition, it is easy to see, even if the Lipschitz condition and the
monotonicity conditions are not satisfied by (b2, σ2, γ2, g, Φ), the estimates (3.11) and (3.13) still hold.

We would like to point out that the L2-estimate (see (3.11) and (3.13)) for solutions of forward-backward SDEs
will play a key role in studying Pontryagin’s maximum principle and Bellman’s dynamic programming principle
for stochastic optimal control and stochastic differential game problems of infinite horizon forward-backward
SDEs.

Next we prove a comparison theorem. As same as before, let θ1 = (x1, y1, z1, r1) and θ2 = (x2, y2, z2, r2) be
the solutions of (3.1) with coefficients (b, σ, γ, g, Φ1) and (b, σ, γ, g, Φ2) respectively. Denote

θ̂ := θ1 − θ2 = (x1 − x2, y1 − y2, z1 − z2, r1 − z2) =: (x̂, ŷ, ẑ, r̂).

Similar to Lemma 7 in [11], one can easily prove the following lemma.

Lemma 3.10. Let assumptions (H3.1)–(H3.4) holds for (b, σ, γ, g, Φ1) and (b, σ, γ, g, Φ2).

(i) For any t ∈ [0,∞), we have
〈x̂(t), ŷ(t)〉 ≥ 0.

(ii) If we define an F-stopping time: τ = inf{t ≥ 0; 〈x̂(t), ŷ(t)〉 = 0}, then we further have

θ̂(t)�[τ,∞)(t) = (x̂(t), ŷ(t), ẑ(t), r̂(t, ·))�[τ,∞)(t) = 0.

Proof.

(i) Clearly, for any t ∈ [0,∞), there exists a sequence of times {Ti}∞i=1, which increases and diverges as i→ ∞,
such that

lim
i→∞

E

[
〈x̂(Ti), ŷ(Ti)〉

∣∣∣ Ft

]
= 0.

We apply Itô’s formula to 〈x̂(s), ŷ(s)〉 on the interval [t, Ti] to have

E

[
〈x̂(Ti), ŷ(Ti)〉

∣∣∣ Ft

]
− 〈x̂(t), ŷ(t)〉 = E

[ ∫ Ti

t

〈
A(s, θ1(s)) −A(s, θ2(s)), θ̂(s)

〉
ds

∣∣∣∣ Ft

]

≤ − μE

[ ∫ Ti

t

|θ̂(s)|2ds
∣∣∣∣ Ft

]
.

Then, letting i→ ∞, we have

〈x̂(t), ŷ(t)〉 ≥ lim
i→∞

μE

[ ∫ Ti

t

|θ̂(s)|2ds
∣∣∣∣ Ft

]
≥ 0.
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(ii) For the given F-stopping time τ , it is easy to see, for any T ∈ [0,∞),

〈x̂(T ), ŷ(T )〉 − 〈x̂(τ ∧ T ), ŷ(τ ∧ T )〉 ≥ 0.

On the other hand, from Itô’s formula,

E

[
〈x̂(T ), ŷ(T )〉 − 〈x̂(τ ∧ T ), ŷ(τ ∧ T )〉

]
= E

∫ T

τ∧T

〈
A(s, θ1(s)) −A(s, θ2(s)), θ̂(s)

〉
ds

≤ − μE

∫ T

τ∧T

|θ̂(s)|2ds ≤ 0.

Then, by the above two inequalities, we obtain

θ̂(s)�[τ∧T,T ](t) = 0.

Due to the arbitrariness of T , we get the desired conclusion θ̂(s)�[τ,∞)(t) = 0. �

Theorem 3.11. Let n = 1. Let assumptions (H3.1)–(H3.4) hold for (b, σ, γ, g, Φ1) and (b, σ, γ, g, Φ2).

(i) If Φ1(y2(0)) > Φ2(y2(0)), then ŷ(0) > 0.
(ii) If Φ1(y2(0)) = Φ2(y2(0)), then ŷ(0) = 0.

Proof. When n = 1, Lemma 3.10–(i) is read as x̂(t)ŷ(t) ≥ 0 for any t ∈ [0,∞). Especially, taking t = 0, we have
x̂(0)ŷ(0) ≥ 0. Then from the monotonicity condition on Φ1,

0 ≤
(
Φ1(y1(0)) − Φ2(y2(0))

)
ŷ(0)

=
[(
Φ1(y1(0)) − Φ1(y2(0))

)
+
(
Φ1(y2(0)) − Φ2(y2(0))

)]
ŷ(0)

≤
(
Φ1(y2(0)) − Φ2(y2(0))

)
ŷ(0).

(3.15)

(i) If Φ1(y2(0)) > Φ2(y2(0)), then (3.15) implies ŷ(0) ≥ 0. Moreover, if ŷ(0) = 0, then the stopping time τ
defined in Lemma 3.10–(ii) is equal to 0. By Lemma 3.10–(ii), we have x̂(0) = 0. Since y1(0) = y2(0), then

Φ1(y2(0)) − Φ2(y2(0)) = Φ1(y1(0)) − Φ2(y2(0)) = x̂(0) = 0.

This is a contradiction. Therefore, in this case we must have ŷ(0) > 0.
(ii) When Φ1(y2(0)) = Φ2(y2(0)), we also use a framework of reduction to absurdity to show ŷ(0) = 0. We

assume that ŷ(0) �= 0. From (3.15), we deduce that

x̂(0) = Φ1(y1(0)) − Φ2(y2(0)) = 0.

By Lemma 3.10–(ii) once again, we have ŷ(0) = 0. We obtain a contradiction, and then finish the
proof. �

4. Application to backward stochastic LQ problems

In this section, we apply the solvability result of forward-backward SDEs studied in the above section to deal
with two kinds of backward stochastic linear-quadratic (LQ) problems with jumps, including an LQ stochastic
optimal control (SOC) problem and an LQ nonzero-sum stochastic differential game (NZSSDG) problem.
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Firstly, for the control problem, the system is given by the following controlled linear backward SDE on the
infinite interval [0,∞):

−dy(t) =

[
A(t)y(t) +

d∑
i=1

Bi(t)zi(t) +
l∑

i=1

∫
E
Ci(t, e)ri(t, e)πi(de) +D(t)v(t) + α(t)

]
dt

−
d∑

i=1

zi(t)dWi(t) −
l∑

i=1

∫
E
ri(t, e)Ñi(dt, de),

(4.1)

where A, Bi (i = 1, 2, . . . , d), D are F-progressively measurable, matrix-valued, bounded processes with ap-
propriate dimensions; Ci (i = 1, 2, . . . , l) is a P ⊗ B(E)-measurable, (n × n) matrix-valued process such
that

∫
E |Ci(t, e)|2πi(de) is uniformly bounded for any (ω, t) ∈ Ω × [0,∞); and the nonhomogeneous term

α ∈ L2,K
F

(0,∞; Rn) where K > 0 is a constant. The admissible control set is defined by

V :=
{
v ∈ L2,K

F
(0,∞; Rk)

∣∣∣ with respect to v, (4.1) admits a unique solution

(yv, zv, rv) ∈ L2,K
F

(0,∞; Rn) × L2,K
F

(0,∞; Rn×d) ×M2,K
F

(0,∞; Rn×l)
}
,

in which each element v is called an admissible control, and (yv, zv, rv) is called the state trajectory corresponding
to v. In what follows, we will show the admissible control set V is nonempty under some suitable conditions. In
addition, we are given a cost functional associated with v in a quadratic form:

J(v(·)) =
1
2
〈Qy(0), y(0)〉 +

1
2

E

∫ ∞

0

[
〈L(t)y(t), y(t)〉 +

d∑
i=1

〈Mi(t)zi(t), zi(t)〉

+
l∑

i=1

∫
E
〈Si(t, e)ri(t, e), ri(t, e)〉πi(de) + 〈R(t)v(t), v(t)〉

]
dt,

(4.2)

where Q is an (n × n) symmetric and positive semi-definite matrix; L, Mi (i = 1, 2, . . . , d) are F-progressively
measurable, (n× n) symmetric and positive semi-definite matrix-valued, bounded processes; Si (i = 1, 2, . . . , l)
is a P ⊗ B(E)-measurable, (n × n) symmetric and positive semi-definite matrix-valued, bounded process; R
is an F-progressively measurable, (k × k) symmetric and positive definite matrix-valued, bounded process.
Moreover, R−1 is also bounded.

Problem (SOC). The problem is to find an admissible control u ∈ V such that

J(u(·)) = inf
v(·)∈V

J(v(·)). (4.3)

Such an admissible control u is called an optimal control, and (y, z, r) := (yu, zu, ru) is called the corresponding
optimal state trajectory.

The following result links Problem (SOC) to a forward-backward SDE.
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Lemma 4.1. If the following forward-backward SDE:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) =
[
A�(t)x(t) − L(t)y(t)

]
dt+

d∑
i=1

[
B�

i (t)x(t) −Mi(t)zi(t)
]
dWi(t)

+
l∑

i=1

∫
E

[
C�

i (t, e)x(t−) − Si(t, e)ri(t, e)
]
Ñi(dt, de),

−dy(t) =
[
D(t)R−1(t)D�(t)x(t) +A(t)y(t) +

d∑
i=1

Bi(t)zi(t)

+
l∑

i=1

∫
E
Ci(t, e)ri(t, e)πi(de) + α(t)

]
dt−

d∑
i=1

zi(t)dWi(t)

−
l∑

i=1

∫
E
ri(t, e)Ñi(dt, de),

x(0) = −Qy(0)

(4.4)

admits a solution (x, y, z, r) ∈ L2,K
F

(0,∞), then

u(t) = R−1(t)D�(t)x(t), t ∈ [0,∞), (4.5)

provides an optimal control of Problem (SOC). Moreover the optimal control is unique.

Proof. First, we prove that u defined by (4.5) is an optimal control for Problem (SOC). For each v ∈ V , the
corresponding state trajectory is denoted by (yv, zv, rv). Let us consider the difference of J(v(·)) and J(u(·))
(the argument (t, e) is suppressed):

J(v(·)) − J(u(·)) =
1
2

[
〈Qyv(0), yv(0)〉 − 〈Qy(0), y(0)〉

]

+
1
2

E

∫ ∞

0

{[
〈Lyv, yv〉 − 〈Ly, y〉

]
+

d∑
i=1

[
〈Miz

v
i , z

v
i 〉 − 〈Mizi, zi〉

]

+
l∑

i=1

∫
E

[
〈Sir

v
i , r

v
i 〉 − 〈Siri, ri〉

]
πi(de) +

[
〈Rv, v〉 − 〈Ru, u〉

]}
dt

=
1
2
〈Q(yv(0) − y(0)), yv(0) − y(0)〉

+
1
2

E

∫ ∞

0

{
〈L(yv − y), yv − y〉 +

d∑
i=1

〈Mi(zv
i − zi), zv

i − zi〉

+
l∑

i=1

∫
E
〈Si(rv

i − ri), rv
i − ri〉πi(de) + 〈R(v − u), v − u〉

}
dt+ Λ,

(4.6)

where

Λ = 〈Qy(0), yv(0) − y(0)〉 + E

∫ ∞

0

{
〈Ly, yv − y〉 +

d∑
i=1

〈Mizi, z
v
i − zi〉

+
l∑

i=1

∫
E
〈Siri, r

v
i − ri〉πi(de) + 〈Ru, v − u〉

}
dt.
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Applying Itô’s formula to 〈x(t), yv(t) − y(t)〉 on the interval [0, T ], by the initial condition of x (see (4.4)) and
the definition of u (see (4.5)), we have

E

[
〈x(T ), yv(T ) − y(T )〉

]
+ 〈Qy(0), yv(0) − y(0)〉

= − E

∫ T

0

{
〈Ly, yv − y〉 +

d∑
i=1

〈Mizi, z
v
i − zi〉 +

l∑
i=1

∫
E
〈Siri, r

v
i − ri〉πi(de) + 〈Ru, v − u〉

}
dt.

Letting T → ∞, we get Λ = 0. Then, since Q, L, Mi (i = 1, 2, . . . , d), Si (i = 1, 2, . . . , l) are positive semi-
definite, and R is positive definite, we have J(v(·))− J(u(·)) ≥ 0. Due to the arbitrariness of v, we prove that u
defined by (4.5) is an optimal control.

For the uniqueness, besides u given by (4.5), let ū ∈ V be another optimal control, and denote by (yū, zū, rū)
the corresponding optimal state trajectory. Obviously J(ū(·)) = J(u(·)). Coming back to (4.6), we have

0 =
1
2
〈Q(yū(0) − y(0)), yū(0) − y(0)〉

+
1
2

E

∫ ∞

0

{
〈L(yū − y), yū − y〉 +

d∑
i=1

〈Mi(zū
i − zi), zū

i − zi〉

+
l∑

i=1

∫
E
〈Si(rū

i − ri), rū
i − ri〉πi(de) + 〈R(ū− u), ū− u〉

}
dt

≥ 1
2

E

∫ ∞

0

〈R(ū − u), ū− u〉dt.

Because R is positive definite, we get ū(·) = u(·). We have proved the uniqueness of the optimal control. �

In order to obtain the solvability of (4.4), we assume the following assumptions:

(A1.1) There exists a constant μ > 0 such that for any (ω, t, e) ∈ Ω × [0,∞) × E , any i = 1, 2, . . . , d, any
j = 1, 2, . . . , l,

D(t)R−1(t)D�(t) ≥ μI, L(t) ≥ μI, Mi(t) ≥ μI, Sj(t, e) ≥ μI.

(A1.2) 2μ−K ≥ 0.

Here, I denotes the (n× n) identity matrix and the expression A ≥ B means A−B is positive semi-definite as
usual. We notice that, in the viewpoint of Remark 3.1, assumption (A1.2) is artificial. If it does not hold true,
then we can consider Problem (SOC) in some larger space. However, for the convenience of presentation, we
keep it here.

Theorem 4.2. Under assumptions (A1.1)–(A1.2), the forward-backward SDE (4.4) admits a unique solution
(x, y, z, r) ∈ L2,K

F
(0,∞). Moreover, u defined by (4.5) is the unique optimal control for Problem (SOC).

Proof. It is easy to check that assumptions (A1.1)–(A1.2) imply assumptions (H3.1)–(H3.4). Then by Theo-
rem 3.6, the forward-backward SDE (4.4) is uniquely solvable. Moreover, thanks to Lemma 4.1, we can finish
the proof. �

Next we extend the LQ SOC problem to an LQ nonzero-sum stochastic differential game (NZSSDG) problem.
Without loss of generality, we only consider the case of two players in this paper. The case of n (≥3) players can
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be treated in the same way. In detail, the game system is described by the following controlled linear backward
SDE on [0,∞):

−dy(t) =
[
A(t)y(t) +

d∑
i=1

Bi(t)zi(t) +
l∑

i=1

∫
E
Ci(t, e)ri(t, e)πi(de) +D1(t)v1(t)

+D2(t)v2(t) + α(t)
]
dt−

d∑
i=1

zi(t)dWi(t) −
l∑

i=1

∫
E
ri(t, e)Ñi(dt, de),

(4.7)

where A, Bi (i = 1, 2, . . . , d), D1, D2 are F-progressively measurable, matrix-valued, bounded processes with
appropriate dimensions; Ci (i = 1, 2, . . . , l) is a P ⊗ B(E)-measurable, (n × n) matrix-valued process such
that

∫
E |Ci(t, e)|2πi(de) is uniformly bounded for any (ω, t) ∈ Ω × [0,∞); and the nonhomogeneous term α ∈

L2,K
F

(0,∞; Rn) where K > 0 is a constant. v1 and v2 are the control processes of Player 1 and Player 2,
respectively. We introduce the admissible control set for the two players:

V :=
{

(v1, v2) ∈ L2,K
F

(0,∞; Rk1) × L2,K
F

(0,∞; Rk2)
∣∣∣ with respect to (v1, v2), (4.7) admits

a unique solution (yv1,v2 , zv1,v2 , rv1,v2) ∈ L2,K
F

(0,∞; Rn) × L2,K
F

(0,∞; Rn×d)

×M2,K
F

(0,∞; Rn×l)
}
,

in which each element (v1, v2) is called an admissible control pair, and (yv1,v2 , zv1,v2 , rv1,v2) is called the state
trajectory corresponding to (v1, v2). As same as Problem (SOC), we will show the admissible control set V is
nonempty under suitable conditions. For any (v1, v2) ∈ V , let

V1(v2) = {v̄1 | (v̄1, v2) ∈ V},
V2(v1) = {v̄2 | (v1, v̄2) ∈ V}.

Additionally, the cost functionals of the two players are given as follows: for i = 1, 2,

Ji(v1(·), v2(·)) =
1
2
〈Qiy(0), y(0)〉 +

1
2

E

∫ ∞

0

[
〈Li(t)y(t), y(t)〉 +

d∑
j=1

〈Mij(t)zj(t), zj(t)〉

+
l∑

j=1

∫
E
〈Sij(t, e)rj(t, e), rj(t, e)〉πj(de) + 〈Ri(t)vi(t), vi(t)〉

]
dt, (4.8)

where Qi is an (n×n) symmetric and positive semi-definite matrix; Li, Mij (j = 1, 2, . . . , d) are F-progressively
measurable, (n×n) symmetric and positive semi-definite matrix-valued, bounded processes; Sij (j = 1, 2, . . . , l)
is a P⊗B(E)-measurable, (n×n) symmetric and positive semi-definite matrix-valued, bounded process; Ri is an
F-progressively measurable, (k× k) symmetric and positive definite matrix-valued, bounded process. Moreover,
R−1

i is also bounded.
Suppose each player hopes to minimize his/her cost functional Ji(v1(·), v2(·)) by selecting an appropriate

admissilbe control vi (i = 1, 2), then the game problem is formulated as follows.

Problem (NZSSDG). The problem is to find a pair of admissible controls (u1, u2) ∈ V such that

J1(u1(·), u2(·)) = inf
v1(·)∈V1(u2)

J1(v1(·), u2(·)),
J2(u1(·), u2(·)) = inf

v2(·)∈V2(u1)
J2(u1(·), v2(·)).

(4.9)

Such a pair of admissible controls (u1, u2) is called a Nash equilibrium point. For the sake of notations, we
denote the state trajectory corresponding to (u1, u2) by (y, z, r) := (yu1,u2 , zu1,u2 , ru1,u2).
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Lemma 4.3. If the following forward-backward SDE:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) =
[
A�(t)x1(t) − L1(t)y(t)

]
dt+

d∑
j=1

[
B�

j (t)x1(t) −M1j(t)zj(t)
]
dWj(t)

+
l∑

j=1

∫
E

[
C�

j (t, e)x1(t−) − S1j(t, e)rj(t, e)
]
Ñj(dt, de),

dx2(t) =
[
A�(t)x2(t) − L2(t)y(t)

]
dt+

d∑
j=1

[
B�

j (t)x2(t) −M2j(t)zj(t)
]
dWj(t)

+
l∑

j=1

∫
E

[
C�

j (t, e)x2(t−) − S2j(t, e)rj(t, e)
]
Ñj(dt, de),

−dy(t) =
[
D1(t)R−1

1 (t)D�
1 (t)x1(t) +D2(t)R−1

2 (t)D�
2 (t)x2(t) +A(t)y(t)

+
d∑

j=1

Bj(t)zj(t) +
l∑

j=1

∫
E
Cj(t, e)rj(t, e)πj(de) + α(t)

]
dt

−
d∑

j=1

zj(t)dWj(t) −
l∑

j=1

∫
E
rj(t, e)Ñj(dt, de),

x1(0) = −Q1y(0), x2(0) = −Q2y(0)

(4.10)

admits a solution (x1, x2, y, z, r) ∈ L2,K
F

(0,∞; Rn) × L2,K
F

(0,∞), then

(
u1(t)
u2(t)

)
=
(
R−1

1 (t)D�
1 (t)x1(t)

R−1
2 (t)D�

2 (t)x2(t)

)
, t ∈ [0,∞), (4.11)

provides a Nash equilibrium point for Problem (NZSSDG).

Proof. We shall link Problem (NZSSDG) with two LQ SOC problems. Precisely, for i = 1, 2, we fix u3−i(·)
which is defined in (4.11). To minimize (the argument (t, e) is suppressed)

Ji(vi(·), u3−i(·)) =
1
2
〈Qiy

vi(0), yvi(0)〉 +
1
2

E

∫ ∞

0

[
〈Liy

vi , yvi〉 +
d∑

j=1

〈Mijz
vi

j , z
vi

j 〉

+
l∑

j=1

∫
E
〈Sijr

vi

j , r
vi

j 〉πj(de) + 〈Rivi, vi〉
]
dt

(4.12)

subject to

−dyvi =
[
Ayvi +

d∑
j=1

Bjz
vi

j +
l∑

j=1

∫
E
Cjr

vi

j πj(de) +Divi +
(
D3−iu3−i + α

)]
dt

−
d∑

j=1

zvi

j dWj −
l∑

j=1

∫
E
rvi

j Ñj(dt, de)

(4.13)
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over Vi(u3−i) is an LQ SOC problem. Since (4.10) admits a solution (x1, x2, y, z, r), then (xi, y, z, r) solves the
following forward-backward SDE:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi =
[
A�xi − Liy

]
dt+

d∑
j=1

[
B�

j xi −Mijzj

]
dWj

+
l∑

j=1

∫
E

[
C�

j xi − Sijrj

]
Ñj(dt, de),

−dy =
[
DiR

−1
i D�

i xi +Ay +
d∑

j=1

Bjzj +
l∑

j=1

∫
E
cjrjπj(de) +

(
D3−iu3−i + α

)]
dt

−
d∑

j=1

zjdWj −
l∑

j=1

∫
E
rjÑj(dt, de),

xi(0) = −Qiy(0).

(4.14)

By Lemma 4.1, the LQ SOC problem (4.12)–(4.13) admits a unique optimal control with the form

ui(t) = R−1
i (t)D�

i (t)xi(t), t ∈ [0,∞),

which is coincided with (4.11). In other words, the following equation holds:

Ji(ui(·), u3−i(·)) = inf
vi(·)∈Vi(u3−i)

Ji(vi(·), u3−i(·)).

Since i = 1, 2, from the definition of the Nash equilibrium point (see (4.9)), (u1, u2) defined by (4.11) provides
a Nash equilibrium point for Problem (NZSSDG). �

The forward-backward SDE (4.10) is more complicated. In order to obtain the solvability of (4.10), we would
like to employ a linear transform which is originally introduced by Hamadène [4] (see also Yu [21]). For this
transform, we need to introduce the following assumptions:

(A2.1) The matrix-valued processes DiR
−1
i D�

i , i = 1, 2, are independent of t.
(A2.2) The following commutation relations among matrices hold true:

Di(t)R−1
i (t)D�

i (t)H(t) = H(t)Di(t)R−1
i (t)D�

i (t), t ∈ [0,∞), i = 1, 2,

where H(t) = A�(t), B�
j (t) (j = 1, 2, . . . , d), C�

j (t) (j = 1, 2, . . . , l).
(A2.3) There exists a constant δ > 0 such that, for any (ω, t) ∈ Ω × [0,∞),

2A(t) +
d∑

j=1

Bj(t)B�
j (t) +

l∑
j=1

∫
E
Cj(t, e)C�

j (t, e)πj(de) +KI ≤ −δI.

We notice that, assumption (A2.3) is not necessary when the corresponding finite horizon game problems were
studied (see for example [4, 21]). Here we assume it due to the infinite time horizon.
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Now we introduce another forward-backward SDE (the argument (t, e) is suppressed):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̄ =
[
A�x̄− (

D1R
−1
1 D�

1 L1 +D2R
−1
2 D�

2 L2

)
ȳ
]
dt

+
d∑

j=1

[
B�

j x̄−
(
D1R

−1
1 D�

1 M1j +D2R
−1
2 D�

2 M2j

)
z̄j

]
dWj

+
l∑

j=1

∫
E

[
C�

j x̄− (
D1R

−1
1 D�

1 S1j +D2R
−1
2 D�

2 S2j

)
r̄j

]
Ñj(dt, de),

−dȳ =
[
x̄+Aȳ +

d∑
j=1

Bj z̄j +
l∑

j=1

∫
E
Cj r̄jπj(de) + α

]
dt

−
d∑

j=1

z̄jdWj −
l∑

j=1

r̄jÑj(dt, de),

x̄(0) = − (
D1(0)R−1

1 (0)D�
1 (0)Q1 +D2(0)R−1

2 (0)D�
2 (0)Q2

)
ȳ(0),

(4.15)

and give the following result.

Lemma 4.4. Under assumptions (A2.1)–(A2.3), the existence and uniqueness of (4.10) are equivalent to that
of (4.15).

Proof. On the one hand, by assumptions (A2.1) and (A2.2), if (x1, x2, y, z, r) ∈ L2,K
F

(0,∞; Rn)×L2,K
F

(0,∞) is
a solution of (4.10), then

{
x̄(t) = D1(t)R−1

1 (t)D�
1 (t)x1(t) +D2(t)R−1

2 (t)D�
2 (t)x2(t),

ȳ(t) = y(t), z̄j(t) = zj(t) (j = 1, 2, . . . , d), r̄j(t, e) = rj(t, e) (j = 1, 2, . . . , l),
t ∈ [0,∞)

belonging to L2,K
F

(0,∞) solves (4.15).

On the other hand, if (x̄, ȳ, z̄, r̄) ∈ L2,K
F (0,∞) is a solution of (4.15), we let y = ȳ, z = z̄, r = r̄ and (x1, x2)

be the unique solution of the following SDE:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1 =
[
A�x1 − L1y

]
dt+

d∑
j=1

[
B�

j x1 −M1jzj

]
dWj +

l∑
j=1

∫
E

[
C�

j x1 − S1jrj

]
Ñj(dt, de),

dx2 =
[
A�x2 − L2y

]
dt+

d∑
j=1

[
B�

j x2 −M2jzj

]
dWj +

l∑
j=1

∫
E

[
C�

j x2 − S2jrj

]
Ñj(dt, de),

x1(0) = −Q1y(0), x1(0) = −Q2y(0).

Obviously (x1, x2) ∈ S2,loc
F

(0,∞; Rn)×S2,loc
F

(0,∞; Rn). Moreover, assumption (A2.3) ensures it also belongs to
L2,K

F
(0,∞; Rn)×L2,K

F
(0,∞; Rn). In fact, for i = 1, 2, we apply Itô’s formula to |xi(t)|2eKt on the interval [0, T ]
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to have

E

[
|xi(T )|2eKT

]
− |xi(0)|2

= E

∫ T

0

[〈(
2A+

d∑
j=1

BjB
�
j +

l∑
j=1

∫
E
CjC

�
j πj(de) +KI

)
xi, xi

〉

+ 2
〈(

− Liy +
d∑

j=1

BjMijzj +
l∑

j=1

∫
E
CjSijrjπj(de)

)
, xi

〉

+
d∑

j=1

|Mijzj|2 +
l∑

j=1

∫
E
|Sijrj |2πj(de)

]
eKtdt.

By assumption (A2.3) and the inequality: 2〈y, x〉 ≤ (2/δ)|y|2 + (δ/2)|x|2,

δ

2
E

∫ T

0

|xi|2eKtdt ≤ |xi(0)|2 + E

∫ T

0

[
2
δ

∣∣∣∣− Liy +
d∑

j=1

BjMijzj +
l∑

j=1

∫
E
CjSijrjπj(de)

∣∣∣∣
2

+
d∑

j=1

|Mijzj|2 +
l∑

j=1

∫
E
|Sijrj |2πj(de)

]
eKtdt.

Letting T → ∞, we get xi ∈ L2,K
F

(0,∞; Rn). In what follows, we shall show that (x1, x2, y, z, r) ∈
L2,K

F
(0,∞; Rn) × L2,K

F
(0,∞) defined above is a solution of the forward-backward SDE (4.10). Actually, the

remaining thing is to show (x1, x2, y, z, r) satisfies the backward equation in (4.10). Compared with the back-
ward equation in (4.15), we only need to show D1R

−1
1 D�

1 x1 + D2R
−1
2 D�

2 x2 = x̄. For the convenience, we
let

x̃(t) = D1(t)R−1
1 (t)D�

1 (t)x1(t) +D2(t)R−1
2 (t)D�

2 (t)x2(t).

By assumptions (A2.1) and (A2.2), we know x̃ satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̃ =
[
A�x̃− (

D1R
−1
1 D�

1 L1 +D2R
−1
2 D�

2 L2

)
y
]
dt

+
d∑

j=1

[
B�

j x̃−
(
D1R

−1
1 D�

1 M1j +D2R
−1
2 D�

2 M2j

)
zj

]
dWj

+
l∑

j=1

∫
E

[
C�

j x̃− (
D1R

−1
1 D�

1 S1j +D2R
−1
2 D�

2 S2j

)
rj

]
Ñj(dt, de),

x̃(0) = − (
D1(0)R−1

1 (0)D�
1 (0)Q1 +D2(0)R−1

2 (0)D�
2 (0)Q2

)
y(0),

which coincides with the forward equation in (4.15). Regarding (y, z, r) as fixed processes, from the uniqueness
of SDE, we have x̄ = x̃ and we proved that (x1, x2, y, z, r) solves (4.10).

In a similar way, one can prove that the uniqueness of (4.10) is equivalent to that of (4.15). �

For the solvability of (4.15), and then (4.10), we impose the following assumptions:

(A3.1) The matrix D1(0)R−1
1 (0)D�

1 (0)Q1 +D2(0)R−1
2 (0)D�

2 (0)Q2 is positive semi-definite.
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(A3.2) There exists a constant μ > 0 such that

D1(t)R−1
1 (t)D�

1 (t)H1(t) +D2(t)R−1
2 (t)D�

2 (t)H2(t) ≥ μI, t ∈ [0,∞),

where Hi(t) = Li, Mij (j = 1, 2, . . . , d), Sij (j = 1, 2, . . . , l), i = 1, 2.
(A3.3) 2 min{μ, 1} −K ≥ 0.

Once again, in the viewpoint of Remark 3.1, assumption (A3.3) is artificial. We keep it here for the convenience
of presentation.

Remark 4.5.

(i) For the symmetric matrices Di(0)R−1
i (0)D�

i (0) and Qi (i = 1, 2), if they are commutative, then there
exists an orthogonal matrix P such that both P−1Di(0)R−1

i (0)D�
i (0)P and P−1QiP are diagonal matrices.

Moreover, due to the semi-definiteness of Di(0)R−1
i (0)D�

i (0) and Qi, we have the following statement: if
Di(0)R−1

i (0)D�
i (0)Qi = QiDi(0)R−1

i (0)D�
i (0) (i = 1, 2), then (A3.1) holds true.

(ii) Similarly, if there exist two constants β1 ≥ 0 and β2 ≥ 0 satisfying β1 + β2 > 0 such that

Hi(t) ≥ βiI, Di(t)R−1
i (t)D�

i (t) ≥ βiI,

Di(t)R−1
i (t)D�

i (t)Hi(t) = Hi(t)Di(t)R−1
i (t)D�

i (t),

where Hi(t) = Li, Mij (j = 1, 2, . . . , d), Sij (j = 1, 2, . . . , l), i = 1, 2, then (A3.2) holds true.

Theorem 4.6. Let assumptions (A2.1)–(A2.3) and (A3.1)–(A3.3) hold.

(i) The forward-backward SDE (4.10) admits a unique solution (x1, x2, y, z, r) ∈ L2,K
F

(0,∞; Rn)×L2,K
F

(0,∞).
Moreover, (u1, u2) defined by (4.11) is a Nash equilibrium point for Problem (NZSSDG).

(ii) If we further assume that, for any (ω, t, e) ∈ Ω × [0,∞) × E, any i = 1, 2, j = 1, 2, . . . , d, k = 1, 2, . . . , l

Di(t)R−1
i (t)D�

i (t) ≥ μI, Li(t) ≥ μI, Mij(t) ≥ μI, Sik(t, e) ≥ μI, (4.16)

then (u1, u2) defined by (4.11) is the unique Nash equilibrium point for Problem (NZSSDG).

Proof.

(i) Under assumptions (A3.1)–(A3.3), by Theorem 3.6, the forward-backward SDE (4.15) admits a unique
solution in L2,K

F
(0,∞). With the help of assumptions (A2.1)–(A2.3) and Lemma 4.4, the forward-backward

SDE (4.10) admits also a unique solution in the space L2,K
F

(0,∞; Rn) × L2,K
F

(0,∞). Moreover, by
Lemma 4.3, (u1, u2) defined by (4.11) provides a Nash equilibrium point for Problem (NZSSDG).

(ii) Let (ū1, ū2) be another Nash equilibrium point for Problem (NZSSDG). From the viewpoint of Lemma 4.3,
for any i = 1, 2, fix ū3−i, then ūi is an optimal control of the LQ SOC problem (4.12)–(4.13). Thanks
to (4.16) and Theorem 4.2, ūi must have the form:

ūi(t) = R−1
i (t)D�

i (t)xi(t), t ∈ [0,∞),

where (xi, y, z) satisfies (4.14). Combining the two cases: i = 1 and i = 2, we get the conclusion:
(
ū1(t)
ū2(t)

)
=
(
u1(t)
u2(t)

)
=
(
R−1

1 (t)D�
1 (t)x1(t)

R−1
2 (t)D�

2 (t)x2(t)

)
, t ∈ [0,∞),

where (x1, x2, y, z, r) is the unique solution of (4.10). We complete the proof. �
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Example 4.7. In this example, we would like to focus ourselves on a special case to illustrate the results
obtained in this section. Let the dimension of the state process y, the dimension of Brownian motion and the
number of Poisson random measures are 1. Under this ‘1 dimension’ setting, all the involving matrix-valued
processes are real-valued indeed. Moreover, let A, B, C, D, Q, L, M , S, R in Problem (SOC) and A, B, C,
Di, Qi, Li, Mi, Si, Ri (i = 1, 2) in Problem (NZSSDG) are independent of the time variable t (and then they
are independent of ω also due to the F-adaptedness of processes). Furthermore, let the nonhomogeneous term
α in (4.1) and (4.7) vanish.

(i). Let D �= 0, Q ≥ 0, L > 0, M > 0, R > 0, and there exists a constant κ > 0 such that S(e) ≥ κ for all e ∈ E .
Define

μ = min
{
D2

R
,L,M, κ

}
.

For any K ∈ (0, 2μ), assumptions (A1.1)–(A1.2) are satisfied. By Theorem 4.2, the forward-backward SDE (4.4)
admits a unique solution, and Problem (SOC) has a unique optimal control which is given by (4.5).

(ii). For i = 1, 2, let Di �= 0, Qi ≥ 0, Li > 0, Mi > 0, Ri > 0, and there exists a constant κ > 0 such that
S(e) ≥ κ for all e ∈ E . Moreover, we assume

A < −1
2
B2 − 1

2

∫
E
|C(e)|2π(de). (4.17)

Define

μ = min
{
D2

1

R1
,
D2

2

R2
, L1, L2,M1,M2, κ,

D2
1

R1
L1 +

D2
2

R2
L2,

D2
1

R1
M1 +

D2
2

R2
M2,

(
D2

1

R1
+
D2

2

R2

)
κ

}
,

ρ = min
{
− 1

2
B2 − 1

2

∫
E
|C(e)|2π(de) −A, μ, 1

}
.

For any K ∈ (0, 2ρ), it is easy to check assumptions (A2.1)–(A2.3), (A3.1)–(A3.3), and (4.16) are satisfied. By
Theorem 4.6, the forward-backward SDE (4.10) admits a unique solution, and Problem (NZSSDG) has a unique
Nash equilibrium point which is given by (4.11).

5. Conclusion

In this paper, we investigate a kind of forward-backward stochastic differential equations (SDEs) driven by
both Brownian motions and Poisson processes on an infinite horizon. In our setting, besides the coupling of
mappings b, σ, γ and g, the two initial values are also coupled. We employ a new technique to treat the coupling
between the initial values. For this kind of forward-backward SDEs, we establish an existence and uniqueness
theorem by virtue of the method of continuation under some monotonicity conditions. Some important properties
including stability and comparison of solutions are also addressed. These results generalize that of Peng and
Shi [11].

The theoretical results are applied to solve an infinite horizon linear-quadratic (LQ) backward stochastic op-
timal control problem and an LQ nonzero-sum backward stochastic differential game. Under suitable conditions,
we get the solvability of the Hamiltonian systems related to the LQ control problem and LQ game problem,
which are linear forward-backward SDEs of the type studied previously. Then the unique optimal control and
the unique Nash equilibrium point are obtained in closed forms, respectively.
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