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LOCAL DENSITY OF CAPUTO-STATIONARY FUNCTIONS IN THE SPACE
OF SMOOTH FUNCTIONS ∗

Claudia Bucur
1

Abstract. We consider the Caputo fractional derivative and say that a function is Caputo-stationary
if its Caputo derivative is zero. We then prove that any Ck

(
[0, 1]

)
function can be approximated in

[0, 1] by a function that is Caputo-stationary in [0, 1], with initial point a < 0. Otherwise said, Caputo-
stationary functions are dense in Ck

loc(R).
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1. Introduction

The interest in fractional calculus has increased in the last decades given its numerous applications in vis-
coelasticity, signal processing, anomalous diffusion, biology, geomorphology, materials science, fractals and so
on. Nevertheless, fractional calculus is a classical argument, studied since the end of the seventeenth century by
many great mathematicians like Leibniz (perhaps he was the first to mention it in a letter to L’Hôpital), Euler,
Lagrange, Laplace, Lacroix, Fourier, Abel, Liouville, Heaviside, Weyl, Hadamard, Riemann and so on (see [7]
for an interesting time-line history).

One can find several definitions of fractional derivatives in the literature, just to name a few, the Riemann–
Liouville, the Caputo, the Riesz, the Hadamard fractional derivative, or the generalization given by the Erdlyi–
Kober operator (see [6–8] for more details on fractional integrals, derivatives and applications). The spotlight
in this paper is the Caputo derivative, introduced by Michele Caputo in [3] in the late sixties.

The Caputo fractional derivative is a so-called nonlocal operator, that models long-range interactions. For
instance, if we think of a function depending on time, the Caputo fractional derivative would represent a memory
effect, pointing out that the state of a system at a given time depends on past events. In other words, the Caputo
derivative describes a causal system (also known as a non-anticipative system).

This nonlocal character of the Caputo derivative gives rise to a peculiar behavior: on a bounded interval, say
[0, 1], one can find a Caputo-stationary function “close enough” to any smooth function, without any geometrical
constraints. This is a surprising result when one thinks of the rigidity of the classical derivatives. For instance,
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the functions with null first derivative are constant functions, the functions with null second derivatives are
affine functions. Such functions cannot approximate locally any given Ck function, for any fixed k ∈ N0.

Let a ∈ R and s ∈ (0, 1) be two arbitrary parameters. We define the functional space

C1,s
a :=

{
f : R → R

∣∣ for any x > a, f ∈ AC
(
[a, x]

)
and f ′(·)(x − ·)−s ∈ L1

(
(a, x)

)}
. (1.1)

We denote here by AC(I) the space of absolutely continuous functions on I. Moreover, we recall the Gamma
function (see Chap. 6.1 in [1] for other details), defined for z > 0 as

Γ (z) :=
∫ +∞

0

tz−1e−t dt.

We define now the Caputo derivative.

Definition 1.1. The Caputo derivative of u ∈ C1,s
a with initial point a ∈ R at the point x > a is given by

Ds
au(x) :=

1
Γ (1 − s)

∫ x

a

u′(t)(x − t)−s dt. (1.2)

We define a Caputo-stationary function as follows.

Definition 1.2. We say that u ∈ C1,s
a is Caputo-stationary with initial point a ∈ R at the point x > a if

Ds
au(x) = 0.

Let I be an interval such that a ≤ inf I. We say that u is Caputo-stationary with initial point a in I if Ds
au(x) = 0

holds for any x ∈ I.

For k ∈ N0, we consider Ck
(
[0, 1]

)
to be the space of the k-times continuous differentiable functions on [0, 1],

endowed with the Ck-norm

‖f‖Ck([0,1]) =
k∑

i=0

sup
x∈[0,1]

|f (i)(x)|.

The main result that we prove here is that for any fixed k ∈ N0, given any Ck
(
[0, 1]

)
function, there exists an

initial point a < 0 and a Caputo-stationary function with initial point a, that in [0, 1] is arbitrarily close (in the
Ck norm) to the given function. More precisely:

Theorem 1.3. Let k ∈ N0 and s ∈ (0, 1) be two arbitrary parameters. Then for any f ∈ Ck
(
[0, 1]

)
and any

ε > 0 there exists an initial point a < 0 and a function u ∈ C1,s
a such that

Ds
au(x) = 0 in [0,∞)

and
‖u− f‖Ck([0,1]) < ε.

In the next lines we recall some notions and make some preliminary remarks on the Caputo derivative.
The reader can see Chapter 7.5 in [9] for the definition of absolutely continuous functions. In particular, we

use the following characterization, given in Theorem 7.29 in [9], that we recall in the next Theorem.

Theorem 1.4. A function f is absolutely continuous in [a, b] if and only if f ′ exists almost everywhere in [a, b],
f ′ is integrable on [a, b] and

f(x) − f(a) =
∫ x

a

f ′(t) dt, a ≤ x ≤ b.
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By convention, when we take the Caputo derivative Ds
a of a function, we assume that the function is “causal”,

i.e. that it is constant on (−∞, a). In particular, we take u(x) = u(a) for any x < a and this, by the defini-
tion (1.2), implies that Ds

au(x) = 0 for x < a.
Lastly, we recall the Beta function (see Chap. 6.2 in the book [1] for other details) defined for x, y > 0 as

β(x, y) :=
∫ 1

0

tx−1(1 − t)y−1 dt. (1.3)

We also have that

β(x, y) =
Γ (x)Γ (y)
Γ (x+ y)

·
In particular, the next explicit result holds

β(s, 1 − s) = Γ (s)Γ (1 − s) =
π

sinπs
· (1.4)

2. Strategy of the proof

The proof is inspired from [5], where a similar result is proved for the fractional Laplacian (see [2,4] for details
about this operator). Here, we have to take into account the structure of the Caputo derivative and study in
detail its behavior.

The main idea of the proof is that one can build a Caputo-stationary function in say I = [0, 1] by choosing a
“good” given function as “boundary” datum. For the nonlocal operators, the “boundary” is the complement of
the given interval, for example, the fractional Laplacian takes into account the entire space and the “boundary”
is R \ I. On the other hand, the Caputo derivative considers only the left-side complement and this reflects in
the lack of symmetry of the boundary conditions. Namely, the “boundary” in the equations with the Caputo
derivative is (−∞, 0], with the added convention that events start at a given point, say t0 < 0 and f is constant
before time t0.

In order the prove Theorem 1.3, we use at first the Stone−Weierstrass Theorem, that we recall here. Let
k ∈ N0 be a fixed arbitrary number.

Theorem 2.1. For any f ∈ Ck
(
[0, 1]

)
and any positive ε there exists a polynomial P such that

‖f − P‖Ck([0,1]) < ε.

Then, if we prove that for any polynomial P there exists a Caputo-stationary function u arbitrarily close to
it, by using Theorem 2.1 we would have that

‖u− f‖Ck([0,1]) ≤ ‖u− P‖Ck([0,1]) + ‖f − P‖Ck([0,1]) < 2ε.

This would conclude the proof of Theorem 1.3.
In order to have this, we claim that it suffices to prove that for any monomial

qm(x) = xm, m ∈ N

and for any εm > 0 there exists a function um that is Caputo-stationary in [0, 1], such that

‖um − qm‖Ck([0,1]) < εm. (2.1)

Indeed, consider an arbitrary n ∈ N and the polynomial P (x) =
n∑

m= 0

cmqm(x). Then the function u(x) :=

n∑
m=0

cmum(x) would satisfy

‖u− P‖Ck([0,1]) ≤
n∑

m=0

|cm| ‖um − qm‖Ck([0,1]) <

n∑
m=0

|cm|εm = ε,
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where one considers for any m the small quantity εm =
ε

|cm|(n+ 1)
. Also, the function u is Caputo-stationary,

since the Caputo derivative is linear. Hence, the function u is Caputo-stationary and is “close” to any polynomial.
This proves the claim.

In the rest of the paper, we prove that we can find a Caputo-stationary function close to any given monomial.
To do this, we proceed as follows.

• In Section 3, we obtain a representation formula for u, when Ds
au(x) = 0 in (b,∞) for a given b > a and

having prescribed u on (−∞, b]. To do this, we prove that having Ds
au(x) = 0 is equivalent to having a

particular integro-differential equation. We then obtain a representation formula for the integro-differential
equation, hence for our initial equation.

• In Section 4, we prove that there exists a sequence (vj)j∈N of Caputo-stationary functions in (0,∞) such
that, uniformly on bounded subintervals of (0,∞), we have that limj→∞ vj(x) = κxs, for a suitable constant
κ > 0.

• In Section 5 we prove that there exists a Caputo-stationary function with an arbitrarily large number of
derivatives prescribed. We do this by taking advantage of the particular structure of the function xs. If we
take any derivative of such a function, say (xs)(i) = s(s−1) . . . (s− i+1)xs−i, for x > 0 this derivative never
vanishes.

• Section 6 deals with the proof of Theorem 1.3. Prescribing the derivatives of u such that, for m ∈ N, they
vanish at 0 until the order m− 1, and are equal to 1 at order m, using a Taylor expansion and performing
a blow-up argument, we can conclude the proof of the main theorem.

3. A representation formula for a Caputo-stationary function

The purpose of this section is to deduce a Poisson-like representation formula for a function u ∈ C1,s
a that is

Caputo-stationary with initial point a in the interval (b,∞) for b > a, and fixed outside, i.e.

Ds
au(x) = 0 in (b,∞),

prescribed data in (−∞, b].

To do this, we prove that this problem is equivalent to the integro-differential equation∫ x

b

u′(t)(x− t)−s dt = g(x) in (b,∞),

prescribed data in (−∞, b],

for a given function g (that depends on the prescribed data of the initial problem). Then, we introduce in
Theorem 3.2 a representation formula for this integro-differential equation. With these two results in hand, we
obtain a representation for the solution of the initial problem. Moreover, we present here an interior regularity
result.

In this section, we fix the arbitrary parameters a, b ∈ R with b > a and s ∈ (0, 1).
We state in the next Lemma the equivalence between the two problems above.

Lemma 3.1. Let ϕ ∈ C
(
(−∞, b]

) ∩ C1
(
[a, b]

)
such that ϕ(x) = ϕ(a) in (−∞, a]. Then u ∈ C1,s

a satisfies the
equation

Ds
au(x) = 0 in (b,∞),
u(x) = ϕ(x) in (−∞, b]

if and only if it satisfies ∫ x

b

u′(t)(x− t)−s dt = −
∫ b

a

ϕ′(t)(x − t)−s dt in (b,∞),

u(x) = ϕ(x) in (−∞, b].
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Figure 1. A Caputo-stationary function in (b,∞) prescribed on (−∞, b].

The reader can see a qualitative graphic of a function described by Lemma 3.1 in Figure 1. An explicit example
of such a function is build in the Appendix, in Figure 3.

Proof. Since ϕ ∈ C1
(
[a, b]

)
we have for any x ≥ b∣∣∣∣

∫ b

a

ϕ′(t)(x − t)−s dt
∣∣∣∣ ≤ sup

t∈[a,b]

|ϕ′(t)| (x− a)1−s − (x − b)1−s

1 − s
<∞·

Hence the map x 	→
∫ b

a

ϕ′(t)(x − t)−s dt is well defined in [b,∞). Using the Definition (1.2) for x > b we have

that

Γ (1 − s)Ds
au(x) =

∫ x

b

u′(t)(x− t)−s dt+
∫ b

a

u′(t)(x − t)−s dt

=
∫ x

b

u′(t)(x− t)−s dt+
∫ b

a

ϕ′(t)(x − t)−s dt.

It follows that Ds
au(x) = 0 on (b,∞) is equivalent to∫ x

b

u′(t)(x − t)−s dt = −
∫ b

a

ϕ′(t)(x − t)−s dt in (b,∞).

This concludes the proof of the Lemma. �

In the following Theorem we introduce a representation formula for an integro-differential equation.

Theorem 3.2. Let g ∈ C1,1−s
b . The problem∫ x

b

u′(t)(x − t)−s dt = g(x) in (b,∞),

u(b) = 0
(3.1)

admits on [b,∞) a unique solution u ∈ C1,s
b . Moreover, for any x > b,

u(x) =
sinπs
π

∫ x

b

g(t)(x− t)s−1 dt. (3.2)
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Proof. We prove this theorem by showing that u given in (3.2) is well defined, belongs to the space C1,s
b and is

the unique solution of the problem (3.1).
Since g belongs to C1,1−s

b (recall (1.1)), for any x > b we have that

|u(x)| ≤ sinπs
π

∫ x

b

|g(t)|(x − t)s−1 dt ≤ cs sup
t∈[b,x]

|g(t)|(x − b)s <∞,

where cs is a positive constant. Hence the definition (3.2) is well posed.
We prove that u belongs to C1,s

b . We claim that

g ∈ C1,1−s
b and u as in (3.2) =⇒

u ∈ AC
(
[b,∞)

)
and

u′(y) =
sinπs
π

(∫ y

b

g′(τ)(y − τ)s−1 dτ + g(b)(y − b)s−1

)
a.e. in [b,∞).

(3.3)

We fix an arbitrary x > b. According to definition (1.1), we have g ∈ AC
(
[b, x]

)
and thanks to Theorem 1.4 it

follows that for any t ∈ [b, x]

g(t) =
∫ t

b

g′(τ) dτ + g(b).

And so in (3.2) we have that

π

sinπs
u(x) =

∫ x

b

(∫ t

b

g′(τ) dτ
)

(x− t)s−1 dt+ g(b)
∫ x

b

(x − t)s−1 dt. (3.4)

We compute ∫ x

b

(x− t)s−1 dt =
(x− b)s

s
=
∫ x

b

(y − b)s−1 dy. (3.5)

Tonelli theorem applied to the positive measurable function |g′(τ)|(x − t)s−1 on the domain

Db,x :=
{
(t, τ)

∣∣ b ≤ t ≤ x, b ≤ τ ≤ t
}

(3.6)

with the product measure d(t, τ) gives∫∫
Db,x

|g′(τ)| (x − t)s−1 d(t, τ) =
∫ x

b

|g′(τ)|
(∫ x

τ

(x− t)s−1 dt
)

dτ

=
1
s

∫ x

b

|g′(τ)|(x − τ)s dτ

≤ (x− b)s

s
‖g′‖L1((b,x)),

(3.7)

which is a finite quantity. Hence |g′(τ)|(x − τ)s−1 ∈ L1
(
Db,x, d(t, τ)

)
and by Fubini theorem and using (3.5) it

follows that ∫ x

b

(∫ t

b

g′(τ) dτ
)

(x − t)s−1 dt =
∫ x

b

g′(τ)
(∫ x

τ

(x − t)s−1 dt
)

dτ

=
∫ x

b

g′(τ)
(∫ x

τ

(y − τ)s−1 dy
)

dτ

=
∫ x

b

(∫ y

b

g′(τ)(y − τ)s−1 dτ
)

dy.
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Inserting this and identity (3.5) into (3.4), we obtain that

π

sinπs
u(x) =

∫ x

b

(∫ y

b

g′(τ)(y − τ)s−1 dτ + g(b)(y − b)s−1

)
dy.

Hence u is the integral function of a L1
(
(b, x)

)
function (thanks to (3.7)) and recalling that u(b) = 0, according

to Theorem 1.4 we have that u ∈ AC
(
[b, x]

)
. Moreover, almost everywhere in [b, x]

π

sinπs
u′(y) =

∫ y

b

g′(τ)(y − τ)s−1 dτ + g(b)(y − b)s−1.

With this, given the arbitrary choice of x, we have proved the claim (3.3).
We claim now that u′(·)(x − ·)−s ∈ L1

(
(b, x)

)
. Using the second identity in (3.3), we obtain that

π

sinπs

∫ x

b

|u′(y)|(x− y)−s dy ≤
∫ x

b

(∫ y

b

|g′(τ)|(y − τ)s−1 dτ
)

(x− y)−s dy + |g(b)|
∫ x

b

(y − b)s−1(x− y)−sdy.

(3.8)
Tonelli theorem applied to the positive function |g′(τ)|(y − τ)s−1(x − y)−s on the domain Db,x given in (3.6)
with the product measure d(y, τ) gives∫∫

Db,x

|g′(τ)|(y − τ)s−1(x− y)−s d(y, τ) =
∫ x

b

|g′(τ)|
(∫ x

τ

(y − τ)s−1(x − y)−s dy
)

dτ.

By using the change of variables t =
y − τ

x− τ
, thanks to definition (1.3) and identity (1.4) we have that

∫ x

τ

(y − τ)s−1(x− y)−s dy =
∫ 1

0

ts−1(1 − t)−s dt =
π

sinπs
· (3.9)

Hence we obtain that ∫∫
Db,x

|g′(τ)|(y − τ)s−1(x− y)−s d(y, τ) =
π

sinπs
‖g′‖L1((b,x)). (3.10)

From this and using again (3.9) with b = τ , we obtain in (3.8) that∫ x

b

|u′(y)|(x− y)−s dy ≤ ‖g′‖L1((b,x)) + |g(b)|.

Hence u′(·)(x − ·)−s ∈ L1
(
(b, x)

)
, as claimed. From this and (3.3), recalling definition (1.1) it follows that u

belongs to the space C1,s
b .

We prove now that u is a solution of the problem (3.1). Using the second identity in (3.3) we have that

π

sinπs

∫ x

b

u′(y)(x − y)−s dy =
∫ x

b

(∫ y

b

g′(τ)(y − τ)s−1 dτ
)

(x − y)−s dy

+ g(b)
∫ x

b

(y − b)s−1(x− y)−s dy.
(3.11)

Thanks to (3.10), we have that |g′(τ)|(y − τ)s−1(x − y)−s ∈ L1
(
Db,x, d(y, τ)

)
. We apply Fubini theorem and

using (3.9) we get that∫ x

b

(∫ y

b

g′(τ)(y − τ)s−1(x− y)−s dτ
)

dy =
∫ x

b

g′(τ)
(∫ x

τ

(y − τ)s−1(x− y)−s dy
)

dτ,

=
π

sinπs
(g(x) − g(b)) .
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Thanks again to (3.9), in (3.11) it follows that∫ x

b

u′(y)(x− y)−s dy = g(x),

therefore u is a solution of the problem (3.1).
The solution is unique. We prove this by taking two different solutions u1, u2 ∈ C1,s

b of the problem (3.1).
Let u := u1 − u2, then u satisfies ∫ x

b

u′(t)(x − t)−s dt = 0 in (b,∞),

u(b) = 0.

We take any y > x, we multiply both terms by the positive quantity (y−x)s−1, integrate from b to y and obtain
that ∫ y

b

(∫ x

b

u′(t)(x− t)−s dt
)

(y − x)s−1 dx = 0. (3.12)

Since u ∈ C1,s
b , we use Tonelli theorem on Db,y (we recall definition (3.6)) and by (3.9) we obtain that∫∫

Db,y

|u′(t)|(x − t)−s(y − x)s−1 d(x, t) =
∫ y

b

|u′(t)|
(∫ y

t

(x− t)−s(y − x)s−1 dx
)

dt

=
π

sinπs
‖u′‖L1((b,y)),

which is a finite quantity. Fubini theorem then allows us to compute∫ y

b

(∫ x

b

u′(t)(x− t)−s dt
)

(y − x)s−1 dx =
∫ y

b

u′(t)
(∫ y

t

(x − t)−s(y − x)s−1 dx
)

dt

=
π

sinπs
u(y).

It follows from (3.12) and from the initial condition u(b) = 0 that u1(x) = u2(x) on [b,∞). Therefore u given
in (3.2) is the unique solution of the problem (3.1) and this concludes the proof of the Theorem. �

We introduce an interior regularity result.

Lemma 3.3. Let g ∈ C∞([b,∞)
)

and u be defined as in (3.2). Then u ∈ C∞((b,∞)
)
.

Proof. We prove by induction that the next statement, which we call P (n), holds for any n ∈ N:

u ∈ Cn
(
(b,∞)

)
and

u(n)(y) =
sinπs
π

(∫ y

b

g(n)(τ)(y − τ)s−1 dτ +
n−1∑
i= 0

c̃s,ig
(i)(b)(y − b)s−n+i

)

for any y ∈ (b,∞),

(3.13)

where

c̃s,i =

{
(s− 1) . . . (s− n+ i+ 2)(s− n+ i+ 1) for i �= n− 1
1 for i = n− 1.

(3.14)

We denote by

v(y) :=
∫ y

b

g′(τ)(y − τ)s−1 dτ
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and from (3.3) we have that almost anywhere in [b,∞)

u′(y) =
sinπs
π

(
v(y) + g(b)(y − b)s−1

)
. (3.15)

Since g ∈ C∞([b,∞)
)
, we have in particular that g′ ∈ C1,1−s

b hence from the definition of v and (3.3) we
get that v ∈ AC

(
[b,∞)

)
. It follows that u′ ∈ C

(
(b,∞)

)
, since it is a sum of continuous functions. Therefore

u ∈ C1
(
(b,∞)

)
and (3.15) holds pointwise in (b,∞). And so P (1) is true.

In order to prove the inductive step, we suppose that P (n) holds and prove P (n+ 1). Let now

v(y) :=
∫ y

b

g(n)(τ)(y − τ)s−1 dτ.

From (3.13) we have that for any y ∈ (b,∞)

u(n)(y) =
sinπs
π

(
v(y) +

n−1∑
i=0

c̃s,ig
(i)(b)(y − b)s−n+i

)
. (3.16)

Since g ∈ C∞([b,∞)
)
, in particular we have that g(n) ∈ C1,1−s

b , hence from the definition of v and thanks
to (3.3) we get that v ∈ AC

(
[b,∞)

)
and almost everywhere on [b,∞)

v′(y) =
∫ y

b

g(n+1)(τ)(y − τ)s−1 dτ + g(n)(b)(y − b)s−1.

Now, also g(n+1) ∈ C1,1−s
b and so, thanks to (3.3), the map

y 	→
∫ y

b

g(n+1)(τ)(y − τ)s−1 dτ ∈ AC
(
[b,∞)

)
. (3.17)

It yields that v ∈ C1
(
(b,∞)

)
and so from (3.16) we get that u(n+1) ∈ C

(
(b,∞)

)
. Taking the derivative of (3.16)

we have that pointwise in (b,∞)

π

sinπs
u(n+1)(y) =

∫ y

b

g(n+1)(τ)(y − τ)s−1 dτ + g(n)(b)(y − b)s−1 +
n−1∑
i=0

c̃s,ig
(i)(b)(s− n+ i)(y − b)s−n+i−1

=
∫ y

b

g(n+1)(τ)(y − τ)s−1 dτ +
n∑

i=0

c̃s,ig
(i)(b)(y − b)s−n+i,

where we have used (3.14) in the last line. Therefore the statement P (n+ 1) is true and the proof by induction
is concluded.

It finally yields that u ∈ C∞((b,∞)
)

and this concludes the proof of the Lemma. �

4. Existence of a sequence of Caputo-stationary functions that tends

to the function xs

In this Section we introduce some preliminary results, on which we will base the proof of Theorem 1.3. The
purpose of this section is to build a sequence of functions that are Caputo-stationary in (0,∞) and that tends
uniformly on bounded subintervals of (0,∞) to the function xs. We do this by building a Caputo-stationary
function in (1,∞), that at the point 1 + ε is asymptotic to εs and then we use a blow-up argument.

We fix the arbitrary parameter s ∈ (0, 1). We introduce the first Lemma of this Section.
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Lemma 4.1. Let ψ0 ∈ C1
(
[0, 1]

) ∩ C((−∞, 1]
)

be such that

ψ0(x) = ψ0(0) for any x ∈ (−∞, 0],

ψ0(x) = 0 for any x ∈
[
3
4
, 1
]
,

ψ′
0(x) < 0 for any x ∈

[
0,

3
4

)
·

(4.1)

Let ψ ∈ C1,s
0 be the solution of the problem

Ds
0ψ(x) = 0 in (1,∞),
ψ(x) = ψ0(x) in (−∞, 1].

(4.2)

Then ψ ∈ C∞((1,∞)
)

and if x = 1 + ε, we have that

ψ(1 + ε) = κεs + O(εs+1) (4.3)

as ε→ 0, for some κ > 0.

An explicit example of a function described in Lemma 4.1 is depicted in Figure 4 in the Appendix.

Proof of Lemma 4.1. Thanks to Lemma 3.1 we have that ψ ∈ C1,s
0 is solution of the problem (4.2) if and only if

∫ x

1

ψ′(t)(x − t)−s dt = −
∫ 3/4

0

ψ′
0(t)(x − t)−s dt in (1,∞),

ψ(x) = ψ0(x) in (−∞, 1].

On [1,∞) we define the function

g(x) := −
∫ 3/4

0

ψ′
0(t)(x− t)−s dt, (4.4)

hence our problem is now ∫ x

1

ψ′(t)(x − t)−s dt = g(x) in (1,∞),

ψ(x) = ψ0(x) in (−∞, 1].
(4.5)

We claim that g ∈ C∞([1,∞)
)
. For that, let F : [1,∞) × [0, 3/4] → R be defined as F (x, t) := ψ′

0(t)(x − t)−s.
Now, for any h > 0 arbitrarily small we have that∣∣∣∣F (x+ h, t) − F (x, t)

h

∣∣∣∣ ≤ sup
t∈[0,3/4]

|ψ′
0(t)|

∣∣∣∣ (x+ h− t)−s − (x − t)−s

h

∣∣∣∣·
Since the map [1,∞) � x 	→ (x − t)−s is differentiable for any t ∈ [0, 3/4], by the mean value theorem we have
that for θ ∈ (0, h) ∣∣∣∣ (x+ h− t)−s − (x − t)−s

h

∣∣∣∣ ≤ s(x+ θ − t)−s−1 ≤ s(x− t)−s−1.

Then ∣∣∣∣F (x+ h, t) − F (x, t)
h

∣∣∣∣ ≤ s sup
t∈[0,3/4]

|ψ′
0(t)|(x − t)−s−1 ∈ L1

(
[0, 3/4], dt

)
,
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hence by the dominated convergence theorem, we can pass the limit inside the integral and obtain that

g′(x) = −
∫ 3/4

0

∂xF (x, t) dt = s

∫ 3/4

0

ψ′
0(t)(x− t)−s−1 dt.

We can now take for any n ∈ N the function Fn : [1,∞) × [0, 3/4] → R to be Fn(x, t) := ψ′
0(t)(x − t)−s−n and

repeat the above argument. We obtain that g is C∞([1,∞)
)
, as claimed and moreover for any n ∈ N0 we have

that

g(n)(x) = −c̄s,n
∫ 3/4

0

ψ′
0(t)(x − t)−s−n dt, (4.6)

where

c̄s,n =

{
(−s)(−s− 1) . . . (−s− n+ 1) for n �= 0
1 for n = 0.

(4.7)

Since ψ(1) = 0 and g ∈ C∞([1,∞)
)

(hence in particular g ∈ C1,1−s
1 ), thanks to Theorem 3.2 we get that the

problem (4.5) admits a unique solution ψ ∈ C1,s
1 given by

ψ(x) =
sinπs
π

∫ x

1

g(t)(x − t)s−1 dt in (1,∞),

ψ(x) = ψ0(x) in (−∞, 1].
(4.8)

Moreover, we claim that ψ ∈ C1,s
0 . Indeed, from Lemma 3.3 we get that ψ ∈ C∞((1,∞)

)
. Also limx→1+ ψ(x) =

0 = ψ(1) and so from this and the hypothesis we have that ψ ∈ C∞((1,∞)
) ∩ C1

(
[0, 1]

) ∩ C(R), hence
ψ ∈ AC

(
[0,∞)

)
. Also for any x > 0

∫ x

0

|ψ′(t)(x − t)−s| dt ≤ cs‖ψ′‖L∞((0,x))x
1−s <∞,

and so the claim follows from definition (1.1). Therefore, ψ ∈ C1,s
0 is the unique solution of problem (4.5) and

from Lemma 3.1 it follows that (4.8) is also the unique solution of problem the (4.2).
We prove now the claim (4.3). Let x = 1 + ε. Then from (4.8) we have that

π

sinπs
ψ(1 + ε) =

∫ 1+ε

1

g(τ)(1 + ε− τ)s−1 dτ.

The change of variables z = (τ − 1)/ε gives

π

sinπs
ψ(1 + ε) = εs

∫ 1

0

g(εz + 1)(1 − z)s−1 dz.

Using definition (4.4) we have that

g(εz + 1) = −
∫ 3/4

0

ψ′
0(t)(εz + 1 − t)−s dt,

hence
π

sinπs
ψ(1 + ε) = −εs

∫ 1

0

(∫ 3/4

0

ψ′
0(t)(εz + 1 − t)−s dt

)
(1 − z)s−1 dz.
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Tonelli theorem on [0, 1] × [0, 3/4] applied to the function |ψ′
0(t)|(εz + 1 − t)−s(1 − z)s−1 yields∫∫

[0,1]×[0,3/4]

|ψ′
0(t)|(εz + 1 − t)−s(1 − z)s−1d(t, z)

=
∫ 3/4

0

|ψ′
0(t)|

(∫ 1

0

(1 − z)s−1(εz + 1 − t)−s dz
)

dt.

We have that (εz + 1 − t)−s ≤ (1 − t)−s ≤ 4s, hence∫ 3/4

0

|ψ′
0(t)|

(∫ 1

0

(1 − z)s−1(εz + 1 − t)−s dz
)

dt ≤ 4s
∫ 3/4

0

|ψ′
0(t)|

(∫ 1

0

(1 − z)s−1 dz
)

dt

≤ 3 · 4s−1

s
sup

t∈[0,3/4]

|ψ′
0(t)|,

which is finite. Therefore |ψ′
0(t)|(εz+ 1− t)−s(1− z)s−1 ∈ L1

(
[0, 1]× [0, 3/4], d(t, z)

)
and by Fubini theorem we

have that
π

sinπs
ψ(1 + ε) = − εs

∫ 3/4

0

ψ′
0(t)

(∫ 1

0

(εz + 1 − t)−s(1 − z)s−1 dz
)

dt

= − εs
∫ 3/4

0

ψ′
0(t)Is(ε, t) dt.

(4.9)

We consider the function f(z) = (εz + 1 − t)−s and make a Taylor expansion with a Lagrange reminder in 0.
Namely, one has that there exists c ∈ (0, z) such that

f(z) =
n∑

i=0

f (i)(0)
zi

i!
+
f (n+1)(c)
(n+ 1)!

zn+1·

We have that for some c ∈ (0, z)

(εz + 1 − t)−s =
n∑

i=0

c̄s,i
i!
εi(1 − t)−s−izi +

c̄s,n+1

(n+ 1)!
εn+1(εc+ 1 − t)−s−n−1zn+1,

where c̄s,i is given in (4.7). Using this, we have that

Is(ε, t) =
n∑

i= 0

c̄s,i
i!
εi(1 − t)−s−i

∫ 1

0

(1 − z)s−1zi dz

+
c̄s,n+1

(n+ 1)!
εn+1(εc+ 1 − t)−s−n−1

∫ 1

0

(1 − z)s−1zn+1 dz.

We use the definition (1.3) of the Beta function and continue

Is(ε, t) =
n∑

i=0

c̄s,iβ(i+ 1, s)
i!

εi(1 − t)−s−i +
c̄s,n+1β(n+ 2, s)

(n+ 1)!
εn+1(εc+ 1 − t)−s−n−1.

In (4.9) we obtain that

π

sinπs
ψ(1 + ε) = − εs

n∑
i= 0

c̄s,iβ(i+ 1, s)
i!

εi
∫ 3/4

0

ψ′
0(t)(1 − t)−s−i dt

− εs+n+1 c̄s,n+1β(n+ 2, s)
(n+ 1)!

∫ 3/4

0

ψ′
0(t)(εc+ 1 − t)−s−n−1 dt.

(4.10)



LOCAL DENSITY OF CAPUTO-STATIONARY FUNCTIONS 1373

We notice that (εc+ 1 − t)−s−n−1 ≤ 4s+n+1 and it follows that

∣∣∣∣
∫ 3/4

0

ψ′
0(t)(εc+ 1 − t)−s−n−1 dt

∣∣∣∣ ≤ 3 · 4s+n sup
t∈[0,3/4]

|ψ′
0(t)|,

which is finite. We define then the finite quantities

Cs,ψ0,i := − c̄s,iβ(i+ 1, s)
i!

∫ 3/4

0

ψ′
0(t)(1 − t)−s−i dt

=
β(i+ 1, s)

i!
g(i)(1) for i = 0, . . . , n

and

Cs,ψ0,n+1 := − c̄s,n+1β(n+ 2, s)
(n+ 1)!

∫ 3/4

0

ψ′
0(t)(εc+ 1 − t)−s−n−1 dt

=
β(n+ 2, s)
(n+ 1)!

g(n+1)(εc+ 1),

where we have used (4.6).
It follows in (4.10) that

π

sinπs
ψ(1 + ε) =

n+1∑
i=0

Cs,ψ0,iε
s+i.

This gives for ε→ 0 that
ψ(1 + ε) = κεs + O(εs+1),

where

κ = Cs,ψ,0 = β(1, s)g(1)= − β(1, s)
∫ 3/4

0

ψ′
0(t)(1 − t)−s dt.

Since −ψ′
0(x) > 0 in [0, 3/4) by hypothesis (see (4.1)), we have that

−
∫ 3/4

0

ψ′
0(t)(1 − t)−s dt > 0.

This implies that κ is strictly positive and it concludes the proof of the Lemma. �

Blowing up the function built in Lemma 4.2, we obtain a sequence of Caputo-stationary functions in (0,∞)
that on (0,∞) tends to the function xs.

Lemma 4.2. There exists a sequence (vj)j∈N of functions vj ∈ C1,s
−j ∩ C∞((0,∞)

)
such that for any j ∈ N

Ds
−jvj(x) = 0 in (0,∞),

vj(x) = 0 in
[
− j

4
, 0
]

(4.11)

and for any x > 0
lim
j→∞

vj(x) = κxs, (4.12)

for some κ > 0. Moreover, on any bounded subinterval I ⊆ (0,∞) the convergence is uniform.

A qualitative example of a sequence described in Lemma 4.2 is depicted in Figure 2.
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Figure 2. A sequence of Caputo-stationary functions in (0,∞).

Proof. We consider the function ψ solution of the problem (4.2) as introduced in Lemma 4.1, and define for any
j ∈ N

vj(x) := jsψ

(
x

j
+ 1
)
·

We prove that for any j ∈ N the function vj is solution of the problem (4.11).

Recalling Lemma 4.1, we have that ψ(x) = ψ0(x) in (−∞, 1], hence vj(x) = jsψ0

(x
j

+1
)

when
x

j
+1 ≤ 1, i.e.

when x ≤ 0. Moreover, from conditions (4.1) we have that vj(x) = jsψ0(0) when
x

j
+1 ≤ 0, hence when x ≤ −j

and vj(x) = 0 when
3
4
≤ x

j
+ 1 ≤ 1, hence for x ∈

[
− j

4
, 0
]
. According to the fact that ψ ∈ C1,s

0 ∩C∞((1,∞)),

we have that vj ∈ C1,s
−j ∩ C∞((0,∞)). Furthermore, since ψ is solution of the problem (4.2), we have by the

definition (1.2) that

Ds
−jvj(x) =

1
Γ (1 − s)

∫ x

−j
v′j(t)(x − t)−s dt

=
js−1

Γ (1 − s)

∫ x

−j
ψ′
( t
j

+ 1
)
(x− t)−s dt.

We use the change of variables y = t/j + 1 and obtain

Ds
−jvj(x) =

1
Γ (1 − s)

∫ x/j+1

0

ψ′(y)
(x
j

+ 1 − y
)−s

dy

= Ds
0ψ

(
x

j
+ 1
)
·

This implies that Ds
−jvj(x) = 0 whenever Ds

0ψ

(
x

j
+ 1
)

= 0. From (4.2), this happens when
x

j
+ 1 > 1, hence

for x > 0. And so in conclusion we have that for any j ∈ N the functions vj ∈ C1,s
−j ∩C∞((0,∞)

)
satisfy

Ds
−jvj(x) = 0 in (0,∞),

vj(x) = 0 in
[
− j

4
, 0
]
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and

vj(x) = jsψ0

(
x

j
+ 1
)

in (−∞, 0],

vj(x) = jsψ0(0) in (−∞,−j].
In particular, vj is solution of the problem (4.11) for any j ≥ 1.

We prove now that as j → ∞, the sequence vj(x) tends on (0,∞) to the function κxs, for a suitable constant
κ > 0. Using (4.3), for x > 0 and for a large j we have that

vj(x) = jsψ

(
x

j
+ 1
)

= js
(
κ
xs

js
+ O

(
xs+1

js+1

))
= κxs + O

(
xs+1

j

)
·

By sending j to infinity we obtain that
lim
j→∞

vj(x) = κxs.

On any bounded subinterval I ⊆ (0,∞), we have that

lim
j→∞

sup
x∈I

|vj(x) − κxs| = 0.

It follows also that on any bounded subinterval I ⊆ (0,∞) the sequence vj is uniformly bounded. This concludes
the proof of the Lemma. �

5. Existence of a Caputo-stationary function with arbitrarily

large number of derivatives prescribed

Using Lemma 4.2 we prove that there exists a Caputo-stationary function with arbitrarily large number of
derivatives prescribed. Namely, for any m ∈ N we want to prove that we can find a Caputo-stationary function
v and a point p, such that the derivatives of v in p vanish until the order m− 1. More precisely:

Theorem 5.1. For any m ∈ N there exist a point p > 0, a constant R > 0 and a function v ∈ C1,s
−R∩C∞((0,∞)

)
such that

Ds
−Rv(x) = 0 in (0,∞),

v(x) = 0 in
[
−R

4
, 0
]

(5.1)

and
v(l)(p) = 0 for any l < m

v(m)(p) = 1.
(5.2)

Proof. We consider Z to be the set of the pairs (v, x) of all functions v ∈ C1,s
−R ∩ C∞((0,∞)

)
satisfying

conditions (5.1) for some R > 0, and x ∈ (0,∞). More precisely

Z =
{
(v, x)

∣∣ x ∈ (0,∞) and ∃R > 0 s.t. v ∈ C1,s
−R ∩C∞((0,∞)

)
, Ds

−Rv = 0 in (0,∞), v = 0 in
[
−R

4
, 0
]}

·

We fix m ∈ N. To each pair (v, x) ∈ Z we associate the vector
(
v(x), v′(x), . . . , v(m)(x)

) ∈ R
m+1 and consider

V to be the vector space spanned by this construction. We claim that this vector space exhausts R
m+1. Suppose

by contradiction that this is not so and V lays in a hyperplane. Then there exists a vector (c0, c1, . . . , cm) ∈
R
m+1 \ {0} orthogonal to any vector

(
v(x), v′(x), . . . , v(m)(x)

)
with (v, x) ∈ Z, hence

m∑
i= 0

civ
(i)(x) = 0.
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We notice that for any j ≥ 1 the pairs (vj , x) with vj satisfying problem (4.11) and x ∈ (0,∞) belong to the
set Z. It follows that for any j ≥ 1 we have that

m∑
i= 0

civ
(i)
j (x) = 0. (5.3)

Let ϕ ∈ C∞
c

(
(0,∞)

)
be a smooth compactly supported function. Integrating by parts we have that for

every i ∈ N0 ∫
R

v
(i)
j (x)ϕ(x) dx = (−1)i

∫
R

vj(x)ϕ(i)(x) dx.

Thanks to Lemma 4.2, the sequence vj is uniformly convergent to κxs on any bounded subinterval I ⊆ (0,∞),
for some κ > 0. By the dominated convergence theorem we have that

lim
j→∞

∫
R

v
(i)
j (x)ϕ(x) dx = (−1)i lim

j→∞

∫
R

vj(x)ϕ(i)(x) dx = (−1)i
∫

R

κxsϕ(i)(x) dx.

We integrate by parts one more time and obtain that

(−1)i
∫

R

κxsϕ(i)(x) dx =
∫

R

κ(xs)(i)ϕ(x) dx.

It follows that

lim
j→∞

∫
R

v
(i)
j (x)ϕ(x) dx =

∫
R

κ(xs)(i)ϕ(x) dx.

Multiplying by ci and summing up, we obtain that

lim
j→∞

∫
R

m∑
i=0

civ
(i)
j (x)ϕ(x) dx =

∫
R

m∑
i= 0

ciκ(xs)(i)ϕ(x) dx.

From this and equality (5.3) we finally obtain that

0 =
∫

R

m∑
i=0

ciκ(xs)(i)ϕ(x) dx

for any ϕ ∈ C∞
c

(
(0,∞)

)
. This implies that on (0,∞)

0 = κ

m∑
i=0

ci(xs)(i) = κ

m∑
i=0

cis(s− 1) . . . (s− i+ 1)xs−i.

We divide this relation by κ (that is strictly positive), multiply by xm−s and obtain that for any x ∈ (0,∞)

m∑
i=0

cis(s− 1) . . . (s− i+ 1)xm−i = 0.

We have here a polynomial that vanishes for any positive x. Thanks to the fact the s ∈ (0, 1) the product
s(s − 1) . . . (s − i + 1) is never zero, therefore one must have ci = 0 for every i ∈ N0. This is a contradiction
since the vector (c0, . . . , cm) was assumed not null. Hence the vector space V exhausts R

m+1 and there exists
(v, p) ∈ Z such that

(
v(p), v′(p), . . . , v(m)(p)

)
= (0, 0, . . . , 1). This concludes the proof of Theorem 5.1. �
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6. Proof of Theorem 1.3

This section is dedicated to the proof of Theorem 1.3. We translate and rescale the function v as given in
Theorem 5.1. The derivatives of the rescaled function vanish in 0 until the order m− 1, and the mth derivative
equals 1. Using a Taylor expansion, we obtain that this rescaled function well approximates the monomial
q(x) = cmx

m.

Proof of Theorem 1.3. In Section 2 we explained why it suffices to prove that for any m ∈ N and any monomial
qm(x) = xm there exists a Caputo-stationary function u such that

‖u− qm‖Ck([0,1]) < ε.

For an arbitrary m ∈ N, we take for convenience the monomial

qm(x) =
xm

m!
·

Also, we consider p,R > 0 and the function v as introduced in Theorem 5.1 and we translate and rescale v. Let
δ be a positive quantity (to be taken conveniently small in the sequel) and let u be the function

u(x) :=
v(δx + p)

δm
·

Since v ∈ C1,s
−R ∩ C∞((0,∞)

)
we have that u ∈ C1,s

−p−R
δ

∩ C∞
((

− p

δ
,∞
))

and

Γ (1 − s)Ds
−p−R

δ

u(x) =
∫ x

−p−R
δ

u′(t)(x − t)−s dt

= δ1−m
∫ x

−p−R
δ

v′(δt+ p)(x− t)−s dt.

We change the variable y = δt+ p and obtain that

Γ (1 − s)Ds
−p−R

δ

u(x) = δs−m
∫ δx+p

−R
v′(y)(δx+ p− y)−s dy

= Γ (1 − s)Ds
−Rv(δx+ p).

Let a :=
−p−R

δ
. Using the properties (5.1) of v we obtain that

Ds
au(x) = 0 in

(
− p

δ
,∞
)
·

With this notation, we have that u ∈ C1,s
a and since −p

δ
< 0, that Ds

au(x) = 0 in [0,∞).

Furthermore, from the conditions (5.2) and the definition of u we get that

u(l)(0) = δl−mv(l)(p) = 0 for any l < m

u(m)(0) = v(m)(p) = 1.

Let for any x > −p/δ
g(x) := u(x) − qm(x).

We have that
g(l)(0) = 0 for any l ≤ m and

g(m+l)(x) = u(m+l)(x) for any l ≥ 1.
(6.1)
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Moreover for l ≥ 1 we have that u(m+l)(x) = δlv(m+l)(δx+ p) and it follows that

|g(m+l)(x)| = δl|v(m+l)(δx + p)|.
Hence for x ∈ [0, 1] we have the bound

|g(m+l)(x)| ≤ δl sup
y∈[p,p+δ]

|v(m+l)(y)| = C̃δl, (6.2)

where C̃ is a positive constant. We consider the derivative of order k of g and take its Taylor expansion with
the Lagrange reminder. Thanks to (6.1), for some c ∈ (0, x) we have that

g(k)(x) =
k+m+1∑

i=max{k,m+1}
g(i)(0)

xi−k

(i− k)!
+ g(m+k+2)(c)

xm+2

(m+ 2)!
·

Using (6.2) for any x ∈ [0, 1], eventually renaming the constants we have that

|g(k)(x)| ≤ C
k+2∑

i=max{1,k−m}
δi,

therefore for k ∈ N0

|g(k)(x)| = |q(k)m (x) − u(k)(x)| = O(δ).

If we let δ → 0 we have that u(k) approximates q(k)m . Finally, for any small ε(δ) > 0

‖u− qm‖Ck([0,1]) < ε

and this concludes the proof of Theorem 1.3. �

Appendix A.

In this Appendix, we want to give some explicit examples related to some Lemmas that were introduced in
this paper.

At this purpose, to give an example of Lemma 3.1, we take a = 0, b = 1, s = 1/2 and the function ϕ(x) = x

in [0, 1] and ϕ(x) = 0 in (−∞, 0). We built the function u ∈ C
1,1/2
0 that satisfies

D
1
2
0 u(x) = 0 in (1,∞),
u(x) = x in [0, 1],
u(x) = 0 in (−∞, 0).

(A.1)

Let

g(x) := −
∫ 1

0

ϕ′(t)√
x− t

dt = −
∫ 1

0

(x− t)
1
2 dt = 2

√
x− 1 − 2

√
x.

According to Lemma 3.1 and to Theorem 3.2, the unique solution of the problem (A.1) is given by

u(x) = u(1) +
1
π

∫ x

1

g(t)√
x− t

dt,

and computing, this gives

u(x) =
2
π

(
x arcsin

1√
x
−√

x− 1
)
·
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Figure 3. A Caputo-stationary function in (1,∞) prescribed on (−∞, 1].

We depict this function in the following Figure 3.
In Lemma 4.1, we take a = 0, b = 1, s = 1/2 and the quadratic function

ψ0(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

16
9

(
x− 3

4

)2

in
[
0,

3
4

]
,

0 in
[
3
4
, 1
]
·

So we are looking for a function ψ ∈ C
1,1/2
0 that satisfies

D
1
2
0 ψ(x) = 0 in (1,∞),
ψ(x) = ψ0(x) in (−∞, 1].

(A.2)

The solution, according again to Lemma 3.1 and to Theorem 3.2 is given by

ψ(x) =
1
π

∫ x

1

g(t)(x− t)−
1
2 dt, where g(t) = −

∫ 3
4

0

ψ′
0(t)(x − t)−

1
2 dt·

Computing this, we have that

g(t) = −16
27

(
8t

3
2 − 9t

1
2 − (4t− 3)

3
2

)
and

ψ(x) =
1

27π

[
27π +

√
x− 1(−48x+ 52) + arcsin

1√
x

(96x2 − 144x) − arcsin
1√

4x− 3
(96x2 − 144x+ 54)

]
·

We depict this function in the following Figure 4.
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Figure 4. A Caputo-stationary function in (1,∞) prescribed on (−∞, 1].
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