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OPTIMIZING THE FIRST EIGENVALUE OF SOME QUASILINEAR
OPERATORS WITH RESPECT TO BOUNDARY CONDITIONS

Francesco Della Pietra1, Nunzia Gavitone1 and Hynek Kovař́ık2

Abstract. We consider a class of quasilinear operators on a bounded domain Ω ⊂ R
n and address the

question of optimizing the first eigenvalue with respect to the boundary conditions, which are of the
Robin-type. We describe the optimizing boundary conditions and establish upper and lower bounds on
the respective maximal and minimal eigenvalue.
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1. Introduction

The problem of optimizing first eigenvalues of certain differential operators is well-known from the literature
mainly in connection with the so-called shape optimization. The latter means that one looks for a domain which
minimizes (or maximizes) the first eigenvalue under some geometrical constraint, typically keeping the volume
fixed. The answer in the case of the Laplace operator is that the minimum is achieved by a ball with the prescribed
volume. This was proved in [14,21] for Dirichlet boundary conditions and in [5] for Robin boundary conditions.
Various generalizations and improvements of these results appeared recently, see for example [7–11,15, 16] and
references therein. Another type of shape optimization, concerning domains with holes, was studied in [17–19].

In this paper we analyze a different optimization problem; we keep a bounded domain Ω ⊂ R
n fixed and

vary the boundary conditions. More precisely, we consider the variational problem

inf
u∈W 1,p(Ω)

∫
Ω

|∇u|p dx+
∫

∂Ω

σ |u|p dHn−1

∫
Ω

|u|pdx
, p > 1, (1.1)

and ask which function σ : ∂Ω → [0,∞[ minimizes or maximizes (1.1) under the condition∫
∂Ω

σ dHn−1 = m, (1.2)
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where m is a positive constant. Variational problem (1.1) is related to the study of reinforcement problems; it
concerns determining the optimal distribution of an insulating material around a thermally conducting body Ω,
see e.g. [6].

Under certain regularity conditions on Ω the infimum in (1.1) is a minimum and the corresponding minimizer
solves an eigenvalue equation for the p−Laplace operator with Robin-type boundary conditions, see Section 2
and equation (2.3) for details.

Our main results can be summarized as follows. We show that for sufficiently regular Ω the maximizing σ
always exists and is unique. In fact we provide its explicit construction, see Theorem 3.4. For example if Ω is a
ball then it turns out that the maximizing σ is constant, see Remark 3.5.

As for the minimum, we find that as soon as n > 1 there is no σ which minimizes (1.1) in the class of
nonnegative functions satisfying (1.2). Moreover, if p ≤ n, then the infimum of (1.1) over σ belonging to this
class is zero, see Proposition 4.1. However, if p > n, then this infimum is positive, see Theorem 4.2, and is
achieved in the class of Dirac measures on ∂Ω of total mass m. In other words, it is achieved if σ in (1.1) is
replaced by a Dirac measure concentrated at a point of the boundary, see Theorem 4.3. The position of this
point, which might not be unique, depends of course on m, but it is possible to describe its asymptotic behavior
as m→ ∞. This is done in Proposition 4.4.

1.1. Some open questions

The choice of the constraint (1.2) is motivated by the fact that the functional (1.1) is sub-linear with respect
to σ. However, it would be reasonable to consider also other constraints, possibly including

∫
∂Ω σ

qdHn−1

with q > 1.
Another open problem concerns the position of the concentration point xm ∈ ∂Ω, see Section 4.2 and in

particular Theorem 4.3.

1.2. Outline of the paper

Let us briefly describe the structure of the paper. In Section 2 we fix the necessary notation and provide some
preliminary results which will be needed later. Section 3 is devoted to the analysis of the σ which maximizes (1.1).
The minimum, or more precisely, the infimum is treated in Section 4. It is of course natural to ask how big or
small the maximum and the minimum (or infimum) of (1.1) are. Obviously, this depends on m and on Ω. In
Section 5 we provide upper and lower bounds on these quantities and study their limits for m→ 0 and m→ ∞.

2. Notation and preliminaries

Throughout the paper we will assume that Ω ⊂ R
n is a bounded domain with C1,ε regular boundary, and

1 < p < +∞. We recall that under this assumption, the standard trace embedding theorem, see e.g. [1], assures
that there exists a constant C = C(Ω, p, q) such that

‖u‖Lq(∂Ω) ≤ C‖u‖W 1,p(Ω), for

⎧⎨
⎩
q = p(n−1)

n−p if p < n,

q < +∞ if p = n
q = +∞ if p > n.

(2.1)

Let us assume that σ ∈ L1(∂Ω) is nonnegative, and consider the following Robin eigenvalue problem:

�1(σ,Ω) = inf
u∈W 1,p(Ω)

u�=0

Q[σ, u], (2.2)

where

Q[σ, u] =

∫
Ω

|∇u|pdx+
∫

∂Ω

σ(x)|u|pdHn−1

∫
Ω

|u|pdx

if the right-hand side is finite, otherwise Q[σ, u] = +∞.
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If v ∈ W 1,p(Ω) is a minimizer of (2.2), then it is a weak solution of the following Robin boundary value
problem ⎧⎪⎨

⎪⎩
−Δpv = �1(σ,Ω)|v|p−2v in Ω,

|∇v|p−2 ∂v

∂ν
= −σ(x)|v|p−2v on ∂Ω,

(2.3)

where Δpv = div
(|∇v|p−2∇v) is the p-Laplace operator. By a weak solution to (2.3) we mean a function

v ∈W 1,p(Ω) such that σ|v|p ∈ L1(∂Ω) and∫
Ω

|∇v|p−2∇v · ∇ϕdx +
∫

∂Ω

σ(x)|v|p−2v ϕdHn−1 = �1(σ,Ω)
∫

Ω

|v|p−2v ϕdx (2.4)

for any test function ϕ ∈W 1,p(Ω) ∩ L∞(∂Ω). The following result holds.

Proposition 2.1. Let σ ∈ L1(∂Ω), and σ ≥ 0. Then there exists a positive minimizer up ∈ W 1,p(Ω) of (2.2),
which is a weak solution of (2.3) in Ω. Moreover, if σ is positive on Γ ⊆ ∂Ω such that the (n − 1)-Hausdorff
measure Hn−1(Γ ) > 0, then �1(σ,Ω) > 0. Finally, �1(σ,Ω) is simple, that is up is unique up to a multiplicative
constant.

Proof. Let ϕk ∈W 1,p(Ω) be a minimizing sequence of (2.2) such that ‖ϕk‖Lp(Ω) = 1. Then, being ϕk bounded
in W 1,p(Ω) and using the Rellich Theorem, there exists a subsequence, still denoted by ϕk, which weakly
converges to a function up ∈ W 1,p(Ω), with ‖up‖Lp(Ω) = 1. The quoted trace inequality (2.1) gives that, in
particular, ϕk converges almost everywhere on ∂Ω to up. By Fatou’s Lemma,

�1(σ,Ω) = lim
k→+∞

Q[σ, ϕk] ≥ Q[σ, up].

Then up is a minimum. To compete the proof of the first part of the Lemma we observe that |up| is still a
minimum, and then by the Harnack inequality |up| > 0.

Finally, suppose by contradiction that there exists σ1 > 0 on Γ ⊆ ∂Ω, with Hn−1(Γ ) > 0 such that
�1(σ1, Ω) = 0. Then there exists uσ1 ∈W 1,p(Ω) such that ‖uσ1‖Lp(Ω) = 1 and

0 = �1(σ1, Ω) =
∫

Ω

|∇uσ1 |pdx+
∫

∂Ω

σ1|uσ1 |pdHn−1.

Hence uσ1 is constant in Ω̄, and |uσ1 |p
∫

∂Ω σ1dHn−1 = 0. The hypothesis on σ1 implies that uσ1 ≡ 0 in Ω̄,
and this is impossible. Hence �1(σ,Ω) > 0. The simplicity of �1(σ,Ω) follows by standard arguments, see for
example [2, 9] or [4, 11]. �

To conclude this section, we point out that any nonnegative eigenfunction must be a first eigenfunction.

Proposition 2.2. Any nonnegative function v ∈ W 1,p(Ω), v ≡ 0, which satisfies{ −Δpv = η vp−1 in Ω,

|∇v|p−2 ∇v · ν = −σ(x) vp−1 on ∂Ω,
(2.5)

in the weak sense, is a first eigenfunction of (2.5), that is η = �1(σ,Ω) and v = up, where up is given in
Proposition 2.1, up to a multiplicative constant.

Proof. The proof follows line by line the argument given in ([11], Thm. 3.3). �
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2.1. Notation

For a given m > 0, let us consider the set of functions

Σm(∂Ω) =
{
σ ∈ L1(∂Ω) : σ ≥ 0,

∫
∂Ω

σ dHn−1 = m

}
. (2.6)

Note that for every σ ∈ Σm(∂Ω) we have

�1(σ,Ω) ≤ min
{
ΛD

1 (Ω),
m

|Ω|
}
, (2.7)

where

ΛD
1 (Ω) = inf

u∈W 1,p
0 (Ω)

∫
Ω

|∇u|pdx∫
Ω

|u|pdx
denotes the first Dirichlet eigenvalue of −Δp in Ω. Upper bound (2.7) follows by choosing as a test function
in (2.2) the first Dirichlet eigenfuntion of −Δp respectively a constant function. In view of (2.7) we can thus
define the quantities

Λ(m,Ω) = sup
σ∈Σm(∂Ω)

�1(σ,Ω), (2.8)

λ(m,Ω) = inf
σ∈Σm(∂Ω)

�1(σ,Ω). (2.9)

which are the main objects of our interest.

Remark 2.3. It follows directly from its definition that the functional �1(σ,Ω) is concave on Σm(∂Ω). In fact
it will be shown below that the supremum in (2.8) is achieved.

3. Optimization of �1(σ, Ω) with respect to σ: The supremum

The purpose of this section is to analyze the optimization problem (2.8). We start by showing that it is
sufficient to study the supremum of �1(σ,Ω) among the functions σ ∈ Σm(∂Ω) such that the corresponding
minimiser û of Q[σ, u] is constant on the boundary of Ω.

Proposition 3.1. Let p > 1, m > 0, σ̂ ∈ Σm(∂Ω). If û ∈ W 1,p(Ω) is a function such that �1(σ̂, Ω) = Q[σ̂, û]
and û is constant on ∂Ω, then

Λ(m,Ω) = �1(σ̂, Ω).

Proof. Let us suppose that û is constant on ∂Ω. Then, for any σ ∈ Σm(∂Ω) we have:

�1(σ,Ω) = min
u∈W 1,p(Ω)

u�=0

Q[σ, u] ≤ Q[σ, û] =

∫
Ω

|∇û|pdx+
∫

∂Ω

σ(x)ûpdHn−1

∫
Ω

ûpdx

=

∫
Ω

|∇û|pdx+m û|p∂Ω∫
Ω

ûpdx
= Q[σ̂, û] = �1(σ̂, Ω).

Hence
Λ(m,Ω) ≤ �1(σ̂, Ω).

Being σ̂ ∈ Σm(∂Ω), the above inequality is an equality and the proof is completed. �
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In order to prove the existence and uniqueness of the maximizing σ we consider, for any fixed ξ ∈]0, ΛD
1 (Ω)[,

the following problem: ⎧⎨
⎩−Δpv =

(
ξ

1
p−1 v + 1

)p−1

in Ω,

v = 0 on ∂Ω.
(3.1)

By ([12], Thms. 1 and 2), the condition ξ < ΛD
1 (Ω) guarantees that there exists a unique nonnegative solution

uξ of (3.1). The boundary regularity theory (see [24], Thm. 1), shows that uξ ∈ C1,β(Ω) for some β > 0.
Moreover, since Δpuξ < 0, by ([27], Thm. 5) we then conclude that uξ is positive in Ω and ∂uξ

∂ν < 0 on ∂Ω.
Hence

uξ1

uξ2

∈ L∞(Ω) ∀ ξ1, ξ2 ∈ ]0, ΛD
1 (Ω)[ . (3.2)

Now let us define the function F : [0, ΛD
1 (Ω)[ → [0,+∞[ by

F (ξ) = ξ

∫
Ω

(
ξ

1
p−1uξ + 1

)p−1

dx.

Lemma 3.2. The function F is strictly increasing, and F (ξ) → +∞ as ξ → ΛD
1 (Ω).

Proof. To simplify the notation, we write ΛD
1 (Ω) = ΛD

1 . We split the proof in three steps.

Claim 1. If 0 ≤ ξ1 < ξ2 < ΛD
1 , then uξ1 ≤ uξ2 in Ω. We employ a variation of the argument used in [12], see

also [4]. Let us define

ϕ1 =
(up

ξ1
− up

ξ2
)+

up−1
ξ1

, ϕ2 =
(up

ξ1
− up

ξ2
)+

up−1
ξ2

,

and
Ω+ = {x ∈ Ω : uξ1 > uξ2}.

In view of (3.2) it is easy to see that the functions ϕ1 and ϕ2 are in W 1,p
0 (Ω). Hence we may use ϕi as test

function for problem (3.1) when ξ = ξi, i = 1, 2. By subtracting and integrating by parts we get

∫
Ω

(
−Δpuξ1

up−1
ξ1

+
Δpuξ2

up−1
ξ2

)
(up

ξ1
− up

ξ2
)+dx

=
∫

Ω+

[
|∇uξ1 |p + |∇uξ2 |p + (p− 1)|∇uξ1 |p

(
uξ2

uξ1

)p

+ (p− 1)|∇uξ2 |p
(
uξ1

uξ2

)p

−p∇uξ1 · ∇uξ2

((
uξ2

uξ1

)p−1

|∇uξ1 |p−2 +
(
uξ1

uξ2

)p−1

|∇uξ2 |p−2

)]
dx. (3.3)

We will show that the integrand on the right hand side of (3.3) is nonnegative. To this end consider the mapping
t �→ tp − pt + p − 1 defined on [0,∞[. By minimising with respect to t we find that tp − pt+ p− 1 ≥ 0 for all
t ≥ 0. Therefore (

uξ1

uξ2

)p |∇uξ2 |p
|∇uξ1 |p

+ p− 1 ≥ p

(
uξ1

uξ2

) |∇uξ2 |
|∇uξ1 |

,

which implies that

|∇uξ2 |p + (p− 1)|∇uξ1 |p
(
uξ2

uξ1

)p

≥ p |∇uξ1 |p−1|∇uξ2 |
(
uξ2

uξ1

)p−1
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provided ∇uξ1 = 0. In the same way it follows that

|∇uξ1 |p + (p− 1)|∇uξ2 |p
(
uξ1

uξ2

)p

≥ p |∇uξ2 |p−1|∇uξ1 |
(
uξ1

uξ2

)p−1

whenever ∇uξ2 = 0. Since the positivity of (3.3) is trivial on the set where ∇uξ1 · ∇uξ2 = 0, we conclude with

∫
Ω

(
−Δpuξ1

up−1
ξ1

+
Δpuξ2

up−1
ξ2

)
(up

ξ1
− up

ξ2
)+dx ≥ 0. (3.4)

On the other hand, by (3.1)

∫
Ω

(
Δpuξ2

up−1
ξ2

− Δpuξ1

up−1
ξ1

)
(up

ξ1
− up

ξ2
)+dx =

∫
Ω

[(
ξ

1
p−1
1 +

1
uξ1

)p−1

−
(
ξ

1
p−1
2 +

1
uξ2

)p−1
]

(up
ξ1

− up
ξ2

)+dx ≤ 0.

This in combination with (3.4) shows that uξ1 ≤ uξ2 in Ω and consequently F (ξ1) < F (ξ2).
In the rest of the proof we show that F (ξ) diverges as ξ approaches ΛD

1 .

Claim 2. ‖uξ‖L∞(Ω) → +∞ as ξ → ΛD
1 . It follows from Claim 1 that the function ξ → ‖uξ‖L∞(Ω) is nonde-

creasing on ]0, ΛD
1 [. Hence we only have to show that ‖uξ‖L∞(Ω) is unbounded. By contradiction, we suppose

that ‖uξ‖L∞(Ω) ≤ M for any 0 ≤ ξ < ΛD
1 and some M . Then uξ is uniformly bounded in W 1,p

0 (Ω) and then it
converges weakly to a function ψ ∈ W 1,p

0 (Ω)∩L∞(Ω) which is a weak nonnegative solution of (3.1) for ξ = ΛD
1 .

Let us consider a constant C > 1. We have:

−Δp(Cψ) = − Cp−1Δpψ = Cp−1
(
(ΛD

1 )
1

p−1ψ + 1
)p−1

=
(
(ΛD

1 )
1

p−1Cψ + C
)p−1

≥
[(

(ΛD
1 )

1
p−1 + δM (C)

)
Cψ + 1

]p−1

in D′,

where δM (C) = C−1
CM . Hence Cψ is a positive supersolution of (3.1) for

ξ =
(
(ΛD

1 )
1

p−1 + δM (C)
)
> (ΛD

1 )
1

p−1 .

Being v = 0 a subsolution, then for such ξ there exists a nonnegative weak solution w ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

This contradicts the necessary condition for the existence of a solution of (3.1) formulated in ([12], Thm. 2),
and Claim 2 is proved.

Claim 3. When ξ → ΛD
1 , then

uξ

‖uξ‖∞ → v ∈W 1,p
0 (Ω) ∩ L∞(Ω), (3.5)

where v is the first positive Dirichlet eigenfunction of Δp such that ‖v‖∞ = 1. To prove the above claim, we
point out that the function

vξ :=
uξ

‖uξ‖∞
satisfies ⎧⎨

⎩−Δpvξ =
(
ξ

1
p−1 vξ +

1
‖uξ‖∞

)p−1

in Ω,

vξ = 0 on ∂Ω.
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and maxΩ vξ = 1, hence vξ are bounded in W 1,p
0 (Ω) and then weakly converge in W 1,p

0 (Ω), as ξ → ΛD
1 , to a

function v ≥ 0 such that {−Δpv = ΛD
1 v

p−1 in Ω,

v = 0 on ∂Ω.
(3.6)

Moreover, since vξ are uniformly bounded in L∞(Ω), they are also uniformly bounded in C0,α(Ω̄) for some
α ∈]0, 1[ (see e.g [24], Thm. 1) or [22]. Hence vξ converges to v uniformly. This ensures that maxΩ v = 1, and
then v ≡ 0. Actually, v is a first Dirichlet eigenfunction of Δp. This proves (3.5) which in turn implies that

lim
ξ→λD

1

F (ξ)
‖uξ‖p−1∞

= ΛD
1

∫
Ω

vp−1 dx > 0. (3.7)

Hence in view of Claim 2 we have F (ξ) → +∞ as ξ → ΛD
1 (Ω) and the proof of the Lemma is complete. �

Remark 3.3. Claim 1 can be proved in a different way by using Picone’s identity, see [26]. We thank one of
the referees for this comment.

Lemma 3.2 allows us to define the function ξ : ]0,∞[ → ]0, ΛD
1 (Ω)[ by

ξ(m) := F−1(m).

For each m > 0 there exists a unique function uξ(m) which solves problem (3.1) for ξ = ξ(m).
We are now in position to give an explicit formula for σ which maximises �1(σ,Ω).

Theorem 3.4. The supremum Λ(m,Ω) = sup
σ∈Σm(∂Ω)

�1(σ,Ω) is attained for any m > 0, and satisfies

Λ(m,Ω) = �1(σm, Ω) = ξ(m),

where

σm = −ξ(m) |∇uξ(m)|p−2 ∂uξ(m)

∂ν
,

and uξ(m) is the unique solution of (3.1) with ξ = ξ(m). Moreover, the maximiser σm is unique.

Proof. We first prove that σm ∈ Σm(∂Ω). Indeed by the divergence theorem contained in [3] and by the
definitions of σm, F and ξ(m), we have∫

∂Ω

σm dHn−1 = − ξ(m)
∫

∂Ω

|∇uξ(m)|p−2 ∂uξ(m)

∂ν
dHn−1 = ξ(m)

∫
Ω

−Δpuξ(m) dx

= ξ(m)
∫

Ω

(
ξ

1
p−1uξ(m) + 1

)p−1

dx = F (ξ(m)) = m.

We claim that um = ξ(m)
1

p−1uξ(m) + 1 is a solution to the problem (2.3) with σ = σm. Indeed

−Δpum = −ξ(m)Δpuξ(m) = ξ(m)
(
ξ

1
p−1uξ(m) + 1

)p−1

= ξ(m)up−1
m .

As regards the boundary condition, we have

|∇um|p−2 ∂um

∂ν
= ξ(m)|∇uξ(m)|p−2 ∂uξ(m)

∂ν
= −σm.



1388 F. DELLA PIETRA ET AL.

Since um = 1 on ∂Ω, we have shown that um is a solution to the problem (2.3) with σ = σm. Moreover, by
Proposition 3.1 it follows that �1(σm, Ω) = Λ(m,Ω). On the other hand, being um > 0 in Ω, Proposition 2.2
implies that �1(σm, Ω) = ξ(m).

To conclude the proof it remains to show the uniqueness of σm. Let σ̄ ∈ Σm(∂Ω) another maximiser.
Reasoning as in Proposition 3.1, and recalling that um = 1 on ∂Ω, then

�1(σm, Ω) = �1(σ̄, Ω) ≤ Q[σ̄, um] = Q[σm, um] = �1(σm, Ω).

Then um satisfies (2.3) with σ = σ̄. Hence σ̄ = −|∇um|p−2 ∂um

∂ν = σm almost everywhere on ∂Ω. �

Let us notice that the problem of the maximizing σ in the linear case p = 2 was treated already in [20].

Remark 3.5. If Ω is a ball, then the unique positive solution of (3.1) is a radial function. Hence in this case
Theorem 3.4 implies that the maximizing σ is constant;

σm =
m

|∂Ω| ·

4. Optimization of �1(σ, Ω) with respect to σ: The infimum

The aim of this section is to describe the behavior of the infimum of �1(σ,Ω) when σ ≥ 0 has a fixed L1−norm.
Our purpose consists in the analysis of the problem (2.9) for a given m > 0. We will prove that λ(m,Ω) is never
achieved, unless n = 1. Moreover λ(m,Ω) is positive if and only if p > n.

4.1. The case p ≤ n

Proposition 4.1. Let 1 < p ≤ n, n ≥ 2, and m > 0. Then

λ(m,Ω) = 0

and the infimum is not achieved.

Proof. Let us denote by Br(x) the ball centered at x with radius r > 0. For x0 ∈ ∂Ω fixed, and for any j ∈ N

let

σj(x) =

{
αj if x ∈ B2−j (x0) ∩ ∂Ω,
0 elsewhere,

where αj > 0 is a number such that ‖σj‖L1(∂Ω) = m.
If p < n, let

uj(x) =

{
j|x− x0| in B 1

j
(x0) ∩Ω,

1 in Ω \B 1
j
(x0).

Then

0 ≤ Q[σj , uj] ≤
jp
∣∣∣B 1

j
(x0)

∣∣∣+ jp 2−jpm

|Ω| − |B 1
j
| → 0 as j → ∞.

If p = n, let

uj(x) =

⎧⎪⎨
⎪⎩

− log j
log(|x − x0|) in B 1

j
(x0) ∩Ω,

1 in Ω \B 1
j
(x0).

As before, a direct computation shows that lim
j→+∞

Q[σj , uj] = 0. Finally, Lemma 2.1 assures that the infimum

is not attained. �
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4.2. The case p > n

4.2.1. Positivity of the infimum

The substantial difference to the case p ≤ n is that now λ(m,Ω) is positive.

Theorem 4.2. If p > n, then
λ(m,Ω) > 0.

Moreover, if n > 1, then λ(m,Ω) is not achieved.

Proof. Let p > n. We first show, arguing by contradiction, that the infimum is positive. Let us suppose that
σk ∈ Σm(∂Ω) and uk ∈ W 1,p(Ω) are such that

�1(σk, Ω) = Q[σk, uk] → 0 as k → +∞.

Moreover, we assume that uk ≥ 0 and ‖uk‖p = 1. Hence, we have that∫
Ω

|∇uk|pdx→ 0,
∫

∂Ω

σk u
p
k dHn−1 → 0. (4.1)

Together with the Morrey inequality, see e.g. ([13], Thm. 5.6.5), and the condition ‖uk‖p = 1, we have that,
up to a subsequence, uk converges in C0,α(Ω̄) to a constant C > 0. Hence, passing to the limit in (4.1), and
recalling that

∫
∂Ω

σk = m, we have

0 = lim
k→∞

(∫
∂Ω

σk(up
k − Cp)dHn−1 + Cp

∫
∂Ω

σkdHn−1

)
= Cpm

that gives that C = 0. This contradicts the condition ‖uk‖p = 1, and then the infimum λ(m,Ω) is positive.
Now we prove that if p > n > 1, the infimum is not achieved. If λ(m,Ω) were a minimum, then σ̄ ∈ Σm(∂Ω)

exists such that
λ(m, σ̄) = Q[σ̄, ū],

where ū ∈ W 1,p(Ω), ū ≥ 0 and ū is not constant on ∂Ω, see Proposition 3.1. Being ū ∈ C0,α(Ω̄), we take
x0 ∈ ∂Ω such that ū(x0) = min∂Ω ū. Then∫

∂Ω

σ̄ |ū|p dHn−1 −mū(x0)p > 0. (4.2)

Let σj ∈ Σm(∂Ω) such that ∫
∂Ω

σj |ū|p dHn−1 → mū(x0)p. (4.3)

For example, we can choose

σj(x) =

{
αj if x ∈ B 1

j
(x0) ∩ ∂Ω,

0 elsewhere,
(4.4)

where αj > 0 is a number such that ‖σj‖L1(∂Ω) = m. The continuity of ū up to the boundary of Ω guarantees
that (4.3) holds. Hence, recalling (4.2) there exists k ∈ N which satisfies∫

∂Ω

σk|ū|p dHn−1 <

∫
∂Ω

σ̄|ū|p dHn−1.

This implies that Q[σk, ū] < λ(m,Ω) which is a contradiction. �
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4.2.2. The relaxed problem and the concentration effect

In view of Theorem 4.2 it is natural, for p > n, to consider the relaxed variational problem

�1(μ,Ω) = inf
u∈W 1,p(Ω)

∫
Ω

|∇u|pdx+
∫

∂Ω

|u|p dμ∫
Ω

|u|pdx
, μ ∈ M(m), (4.5)

where
M(m) := {set of Radon measures on ∂Ω such that μ(∂Ω) = m} .

Moreover, we introduce the subset of M(m) consisting of Dirac measures concentrated at a boundary point
of Ω.

D(m) :=
{
μ ∈ M(m) : ∃x ∈ ∂Ω :

∫
∂Ω

|u|pdμ = m |u(x)|p ∀ u ∈W 1,p(Ω)
}
.

Armed with this notation we can show that λ(m,Ω) is equal to the minimum of �1(μ,Ω) on D(m).

Theorem 4.3. Let p > n. Then for any m > 0 there exists xm ∈ ∂Ω such that

λ(m,Ω) = �1(μm, Ω) = inf
μ∈D(m)

�1(μ,Ω), (4.6)

where μm ∈ D(m) is the Dirac measure concentrated at xm.

Proof. Let μ ∈ D(m) and let uμ be the corresponding minimizer for �1(μ,Ω). In view of the proof of Theorem 4.2,
see equations (4.3) and (4.4), there exists a sequence σk ∈ Σm(∂Ω) such that∫

∂Ω

σk |uμ|p dHn−1 →
∫

∂Ω

|uμ|p dμ,

as k → ∞. This shows that
λ(m,Ω) ≤ �1(μ,Ω) ∀μ ∈ D(m), (4.7)

and therefore
λ(m,Ω) ≤ inf

μ∈D(m)
�1(μ,Ω). (4.8)

To prove the opposite inequality let σj ∈ Σm(∂Ω) be a minimizing sequence for λ(m,Ω). In other words,
�1(σj , Ω) → λ(m,Ω). We denote by uj,m ∈ W 1,p(Ω) the nonnegative functions such that ‖uj,m‖Lp = 1 and
�1(σj , Ω) = Q[σj , uj,m]. Then

∫
Ω

|∇uj,m|p dx+
∫

∂Ω

σj u
p
j dHn−1 → λ(m,Ω). (4.9)

Being p > n and ∂Ω of class C1,ε, equation (4.9) and the Morrey inequality, assure that uj,m is a bounded
sequence in C0,α(Ω̄). Hence, up to a subsequence, uj,m converges uniformly to some nonnegative ūm ∈ C0,α(Ω̄).
On the other hand, σj is uniformly bounded in L1(∂Ω). Hence it contains a subsequence, which we still denote
by σj , converging weakly in the sense of measures to some μ ∈ M(m). Then, μ(∂Ω) = m and

λ(m,Ω) =
∫

Ω

|∇ūm|p dx+
∫

∂Ω

ūp
m dμ.



QUASILINEAR OPERATORS WITH ROBIN BOUNDARY CONDITIONS 1391

Now, let xm ∈ ∂Ω be such that ūm(xm) = min∂Ω ūm, and consider μm = mδxm , where δxm is the Dirac measure
of unit mass concentrated at xm. Then

λ(m,Ω) =
∫

Ω

|∇ūm|p dx+
∫

∂Ω

ūp
m dμ ≥

∫
Ω

|∇ūm|p dx+mūm(xm)p

=
∫

Ω

|∇ūm|p dx+
∫

∂Ω

ūp
m dμm ≥ �1(μm, Ω). (4.10)

This in combination with (4.8) completes the proof. �

The point of concentration xm introduced in Theorem 4.3 need not be unique, since the domain Ω might
possess some rotational symmetries. Indeed, in case of a ball it is obvious that �1(μ,Ω) = �1(ν,Ω) for all
μ, ν ∈ D(m). In general, the position of xm depends in a complicated way on m and Ω.

However, it is possible to characterize the behavior of convergent subsequences of xm in the limitm→ ∞. Note
that the existence of at least one convergent subsequence is guaranteed by the Bolzano–Weierstrass Theorem.
It turns out that the limiting behavior of these sequences is related to the following eigenvalue problem:

λ1(x;Ω) := inf

{‖∇u‖p
Lp(Ω)

‖u‖p
Lp(Ω)

; u ∈W 1,p(Ω), u(x) = 0

}
, x ∈ ∂Ω. (4.11)

By Lemma 4.7, see Section 4.3, the function λ1(· ;Ω) is continuous and therefore admits a minimum on ∂Ω:

λ1(Ω) := min {λ1(x;Ω); x ∈ ∂Ω} . (4.12)

We have

Proposition 4.4. Any convergent subsequence of xm tends to a point of minimum of λ1(· ;Ω) as m→ ∞.

Proof. Let ūm and xm be as in the proof of Theorem 4.3 so that ‖ūm‖p = 1 and∫
Ω

|∇ūm|p dx+mūm(xm)p = λ(m,Ω).

By definition of λ1(x;Ω), and equation (4.7) it follows that

λ(m,Ω) ≤ λ1(x;Ω) ∀ m, ∀x ∈ ∂Ω. (4.13)

Hence
ūm(xm) → 0, m→ ∞. (4.14)

Now let ū ∈ W 1,p(Ω) be a weak limit of (a weakly convergent subsequence of) ūm. Then ‖ū‖p = 1 by the
Rellich–Kondrachov Theorem (see e.g. [23], Thm. 8.9). Next consider a convergent subsequence of xm. Let
x̄ ∈ ∂Ω be its limit. Then by (4.14) we have ū(x̄) = 0. Hence ū is an admissible test function for λ1(x̄;Ω) and
from (4.10) and the weak lower-semicontinuity of

∫
Ω |∇u|p we infer that

lim inf
m→∞ λ(m,Ω) ≥ lim inf

m→∞

∫
Ω

|∇ūm|p dx ≥
∫

Ω

|∇ū|p dx

≥ λ1(x̄;Ω) ≥ λ1(Ω) .

In view of (4.13) it thus follows that λ1(x̄;Ω) = λ1(Ω). �
Remark 4.5. As in the linear case p = 2 (see [20], Prop. 3.5), it can be shown that in the one-dimensional
case, when Ω =]a, b[, the minimum of �1(m,Ω) is achieved and that

λ(m,Ω) = �1(σa, Ω) = �1(σb, Ω) (4.15)

where σa, σb ∈ Σm({a, b}) are such that σa(a) = m, σa(b) = 0, and σa(b) = 0, σa(b) = m. Note that here
σ ∈ L1(∂Ω) means that σ is a sum of two Dirac measures of total mass m. Hence equation (4.15) is in
agreement with Theorem 4.3.
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4.3. Auxiliary results concerning λ1(x, Ω)

Lemma 4.6. Let p > n and let x ∈ Ω. Then λ1(x;Ω) defined by (4.11) is a minimum.

Proof. Consider a minimising sequence uk ∈W 1,p(Ω) such that

‖uk‖Lp(Ω) = 1, uk(x) = 0 ∀ k ∈ N.

Clearly uk is bounded in W 1,p(Ω) and therefore contains a subsequence which converges weakly to a function
u ∈ W 1,p(Ω). The Morrey inequality then implies that ‖u‖Lp(Ω) = 1 and u(x) = 0. Hence in view of the weak
lower semi-continuity of ‖∇u‖p

Lp(Ω) we have

λ1(x;Ω) = lim
k→∞

‖∇uk‖p
Lp(Ω) ≥ ‖∇u‖p

Lp(Ω) ≥ λ1(x;Ω) .

This shows that u is a minimiser for the problem (4.11). �
Lemma 4.7. Let p > n. Then there exists a constant C(n, p,Ω) such that

|λ1(x,Ω) − λ1(y,Ω)| ≤ C(n, p,Ω) |x− y|1−n
p ∀ x, y ∈ ∂Ω. (4.16)

Proof. By Lemma 4.6 there exist functions u, v ∈ W 1,p(Ω) such that

‖u‖p
Lp(Ω) = ‖v‖p

Lp(Ω) = 1, (4.17)

and
λ1(x,Ω) = ‖∇u‖p

Lp(Ω), u(x) = 0, λ1(y,Ω) = ‖∇v‖p
Lp(Ω), v(y) = 0 . (4.18)

Using u(·) − u(y) as a test function for λ1(y,Ω) we obtain

λ1(y,Ω) ≤
‖∇u‖p

Lp(Ω)

‖u(·) − u(y)‖p
Lp(Ω)

· (4.19)

By the Taylor expansion
|u(x) − u(y)|p ≥ |u(x)|p − p |u(y)| |u(x)|p−1

holds for all x ∈ Ω. Hence by using the Hölder inequality and (4.17) we obtain∫
Ω

|u(x) − u(y)|p dx ≥ 1 − p |u(y)|
∫

Ω

|u(x)|p−1 dx ≥ 1 − p |u(y)| |Ω| 1p .

Inserting this lower bound into (4.19) and taking into account (4.18) gives

λ1(y,Ω) ≤ λ1(x,Ω)

1 − p |u(y)| |Ω| 1p
· (4.20)

Now, equation(4.18) and the Morrey inequality yields

|u(y)| ≤ c |x− y|1−n
p , |v(x)| ≤ c |x− y|1−n

p , (4.21)

where c depends only on n, p and Ω. Since 1
1−t ≤ 1+2t for 0 ≤ t ≤ 1/2, we conclude from (4.20) that for |x− y|

small enough

λ1(y,Ω) ≤ λ1(x,Ω) + 2pc |Ω| 1p |x− y|1−n
p .

In the same way, using v(·) − v(x) as a test function for λ1(x,Ω) we get

λ1(x,Ω) ≤ λ1(y,Ω) + 2pc |Ω| 1p |x− y|1−n
p .

This proves the claim. �
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5. Estimates on λ(m, Ω) and Λ(m, Ω)

The aim of this section is to establish lower bounds for λ(m,Ω) and Λ(m,Ω) in terms of m and |Ω|.
5.1. A lower bound for Λ(m, Ω)

Proposition 5.1. For any p > 1 and m > 0 it holds that

Λ(m,Ω) ≥ mΛD
1 (Ω)[(|Ω|ΛD

1 (Ω)
)1/(p−1) +m1/(p−1)

]p−1 · (5.1)

Proof. For the sake of simplicity, we denote again ΛD
1 = ΛD

1 (Ω). From the proof of Theorem 3.4 it follows that

Λ(m,Ω) = �1(σm, Ω) = inf
u∈F

Q[σm, u]

where
F = {u ∈ W 1,p(Ω), ‖u‖p = 1, u = k on ∂Ω, 0 ≤ k}.

If u ∈ F , recalling the variational characterisation of ΛD
1 we have that

Q[σm, u] =
∫

Ω

|∇u|pdx+ kpm =
∫

Ω

|∇(u− k)|pdx+ kpm

≥ ΛD
1

∫
Ω

|u− k|pdx + kpm

≥ ΛD
1

∣∣∣1 − k|Ω| 1p
∣∣∣p + kpm, (5.2)

where the last line follows by the Minkowski inequality and the condition ‖u‖Lp(Ω) = 1. By minimising (5.2)
with respect to k we have that

Q[σm, u] ≥ mΛD
1[(|Ω|ΛD

1

)1/(p−1) +m1/p−1
]p−1 ,

and the thesis follows. �

5.2. A lower bound for λ(m, Ω)

Proposition 5.2. Let p > n. Then

λ(m,Ω) ≥ mλ1(Ω)[
(|Ω|λ1(Ω))1/(p−1) +m1/(p−1)

]p−1 , (5.3)

where λ1(Ω) is defined in (4.12).

Proof. By Theorem 4.3 we have

λ(m,Ω) = �1(μm, Ω) =
∫

Ω

|∇ūm|pdx+mūp
m(xm), (5.4)

where ‖ūm‖Lp(Ω) = 1. Then arguing as in the proof of Proposition 5.1 and recalling (4.11), by (5.4) we have

λ(m,Ω) = �1(μm, Ω) ≥ mλ1(xm;Ω)[
(|Ω|λ1(xm;Ω))1/(p−1) +m1/p−1

]p−1 ·

Maximizing the right hand side with respect to xm gives the claim. �
Remark 5.3. Clearly, by Proposition 4.1, the inequality (5.3) is trivial if p ≤ n, being all the quantities involved
equal to zero.
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5.3. Upper bounds and limiting behavior

In view of (4.13), for any x ∈ ∂Ω and any m > 0 it holds

λ(m,Ω) ≤ λ1(Ω).

This in combination with (2.7) gives

λ(m,Ω) ≤ min
{
λ1(Ω),

m

|Ω|
}
, Λ(m,Ω) ≤ min

{
ΛD

1 (Ω),
m

|Ω|
}

(5.5)

An immediate consequence of these estimates and Propositions 5.1 and 5.2 is the following

Corollary 5.4. We have

lim
m→0

λ(m,Ω) = lim
m→0

Λ(m,Ω) = 0,

lim
m→+∞Λ(m,Ω) = ΛD

1 (Ω),

lim
m→+∞λ(m,Ω) = λ1(Ω) if p > n.

Remark 5.5. We observe that it is possible to study the behavior of Λ(m,Ω) = Λ(m,Ω; p) as p→ 1. It is well
known that as p→ 1, the first Dirichlet eigenvalue ΛD

1 (Ω) = ΛD
1 (Ω; p) converges to the Cheeger constant h(Ω),

namely

h(Ω) = inf
E⊂Ω

P (E)
|E|

(see for example the survey paper [25] and the references therein). Hence, the bounds (5.1) and (2.7) give

lim
p→1

Λ(m,Ω; p) = min
{
m

|Ω| , h(Ω)
}
·

Remark 5.6. We finally recall that if σ(x) = σ is a positive constant, and Ω is a bounded convex set, it is
possible to obtain a lower bound of �1(σ,Ω) in terms of the inradius RΩ of Ω. Indeed, applying ([11], Prop. 3.1)
(see also [20], Thm. 4.5 for p = 2) then

�1(σ,Ω) ≥
(
p− 1
p

)p
σ

RΩ

(
1 + σ

1
p−1RΩ

)p−1
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