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ON THE VARIATION OF LONGITUDINAL AND TORSIONAL FREQUENCIES
IN A PARTIALLY HINGED RECTANGULAR PLATE
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Abstract. We consider a partially hinged rectangular plate and its normal modes. There are two
families of modes, longitudinal and torsional. We study the variation of the corresponding eigenvalues
under domain deformations. We investigate the possibility of finding a shape functional able to quantify
the torsional instability of the plate, namely how prone is the plate to transform longitudinal oscillations
into torsional ones. This functional should obey several rules coming from both theoretical and practical
evidences. We show that a simple functional obeying all the required rules does not exist and that the
functionals available in literature are not reliable.
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1. Introduction

We consider a thin rectangular elastic plate Ω which is hinged on two opposite edges and free on the remaining
two edges. Thanks to scaling, we may restrict our attention to the plate Ω = (0, π)× (−�, �) where the width 2�
is assumed to be much smaller than the length π, that is, 2�� π. In this plate we study the following eigenvalue
problem ⎧⎪⎨⎪⎩

Δ2u = λu in Ω,

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0 for y ∈ (−�, �),
uyy(x,±�) + σuxx(x,±�) = uyyy(x,±�) + (2 − σ)uxxy(x,±�) = 0 for x ∈ (0, π),

(1.1)

where σ denotes the Poisson ratio of the material forming the plate. For most elastic materials one has 0 <
σ < 0.5; since we aim to model the deck of a bridge, which is a mixture of concrete and steel, we will take
σ = 0.2. The boundary conditions on the short edges tell that the deck is hinged and this models the connection
of the deck with the ground; these conditions are named after Navier since their first appearance in [49]. The
boundary conditions on the large edges model the fact that the deck is free to move vertically and they may
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also be written in the equivalent form (cf. [25])

(1 − σ)
∂2u

∂ν2
+ σΔu =

∂Δu

∂ν
+ (1 − σ)div∂Ω(ν ·D2u)∂Ω = 0 on (0, π) × {−�, �}. (1.2)

In two recent papers [7, 29], the eigenvalue problem (1.1) was analyzed in order to study the stability of
suspension bridges. It turns out that these bridges, as well as any elastic plate modeled by (1.1), display two
kinds of oscillations: the longitudinal and the torsional ones. In Section 2 we emphasize their classification
and the corresponding shapes of oscillations (the related eigenfunctions, that is, the normal modes). We also
compute numerically some of the eigenvalues.

There is a growing interest of engineers on the shape optimization for the design of bridges and, in particular,
on the sensitivity analysis of certain eigenvalue problems (see [41], Chap. 6). As pointed out by Banerjee [3],
the free vibration analysis is a fundamental pre-requisite before carrying out a flutter analysis. Whence, since
the eigenvalues of (1.1) are the squared frequencies of the normal modes of Ω, in order to improve the stability
of the plate one has to analyze the behavior of the eigenvalues with respect to perturbations of the domain Ω;
since we have in mind the application to bridges, we cannot vary the two short edges of the plate and, therefore,
we will consider domain variations which may not preserve its area. Classical references for the behavior of
the eigenvalues of an elliptic operator under domain perturbation are [15, 28, 33, 35, 36, 58]. In Theorem 3.1 we
establish the explicit formula for the derivatives of the eigenvalues when the perturbation of Ω merely consists
in varying its width 2�; in fact, for later use, we prove a result allowing to compute the derivative of any smooth
function depending on couples of eigenvalues. Concerning shape deformations leading to geometries different
from a rectangle, a major difficulty for problem (1.1) is that it is a fourth order equation and this fact usually
yields very complicated formulas for the derivatives of the eigenvalues, in particular the boundary condition (1.2)
is very delicate: in Theorem 3.3 we overcome this difficulty by taking advantage of recent results obtained in
his doctoral dissertation by the second author [16].

Then we apply these results to a stability problem. The most dangerous oscillations for the deck of a bridge,
leading to fractures and collapses, are the torsional ones and the target of engineers is to find possible ways
to prevent their appearance; we refer to Section 4 for detailed explanations. We investigate the possibility of
defining a domain functional able to quantify how much a plate is prone to transform longitudinal oscillations
into torsional ones. Such a functional should depend on the particular couple of (longitudinal,torsional) modes
considered (see [3], Sect. 2.5).

Together with some colleagues, the first and the third author made several attempts to mathematically
describe the torsional instability for different bridge models, see [4,7–9] and also [31] for a survey of the available
results. The conclusion of these works is that the instability depends not only on the couple of torsional and
longitudinal frequencies involved but also on the amount of energy present within the structure. This result is
reached by studying some second order 2-DOF Hamiltonian systems that naturally arise while approximating the
PDE modeling the dynamics of the deck. For this reason, in Section 5 we study some prototype Hamiltonian
systems and we compute their energy thresholds for stability. As far as we are aware, there is no similar
systematic study in literature. It turns out that the energy threshold is very sensitive to the (nonlinear) coupling
terms and it appears very hard to derive a general rule. However, the studied Hamiltonian systems also share
a common feature: their energy threshold only depends on the ratio of the two frequencies considered.

In Section 6, we combine the above facts with some “axioms” from the engineering literature, that is, some
fundamental properties that are to be expected from bridges and that are obtained either from experimental
tests or from actual bridges. Then, by exploiting the explicit form of the shape derivatives previously found in
Section 3, we investigate whether some shape functionals fit the obtained requirements. These functionals do not
simply depend on the eigenvalues but also on the shape of the domain: in these situations, the analysis usually
requires a suitable combination of variational methods from shape optimization and numerical methods, see
e.g. [2,34,42,50] for some examples. We show that some of these functionals partially fulfill the basic rules of a
shape functional aiming to compute the energy threshold for the torsional stability. But none of these functionals
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works for all the couples of (longitudinal,torsional) eigenvalues. Our conclusion is that there exists no general
and simple shape functional obeying all these rules and able to measure the stability of bridges.

In Section 7 we quickly survey a part of the engineering literature where one can find some attempts to derive
thresholds for the stability of the deck. By applying again Theorems 3.1 and 3.3, we show that also the most
popular formula used to compute the energy threshold does not satisfy the fundamental properties observed
in actual bridges. Sections 8–11 are devoted to the proofs of the results stated in Sections 2 and 3 while in
Section 12 we summarize the results and we draw our conclusions.

2. Longitudinal and torsional eigenfunctions and eigenvalues

The natural functional space where to study problem (1.1) is

H2
∗ (Ω) =

{
u ∈ H2(Ω) : u = 0 on {0, π} × (−�, �)},

that we endow with the scalar product and corresponding norm

(u, v) =
∫

Ω

(1 − σ)D2u : D2v + σΔuΔv dA ∀u, v ∈ H2
∗ (Ω), ‖u‖2 = (u, u), (2.1)

where D2u : D2v = uxxvxx + 2uxyvxy + uyyvyy and dA denotes the area element. Then problem (1.1) may also
be formulated in the following weak sense∫

Ω

(1 − σ)D2u : D2v + σΔuΔvdA = λ

∫
Ω

uvdA ∀v ∈ H2
∗ (Ω).

First we slightly improve ([29], Thm. 7.6) (see also [7], Prop. 3.1) by showing that the eigenfunctions of (1.1)
may have one of the forms listed below.

Theorem 2.1. The set of eigenvalues of (1.1) may be ordered in an increasing sequence of strictly positive
numbers diverging to +∞ and any eigenfunction belongs to C∞(Ω); the set of eigenfunctions of (1.1) is a
complete system in H2

∗ (Ω). Moreover:

(i) for any m � 1, there exists a unique eigenvalue λ = μm,1 ∈ ((1 − σ2)m4,m4) with corresponding eigen-
function⎡⎣[μ1/2

m,1 − (1 − σ)m2
] cosh

(
y
√

m2+μ
1/2
m,1

)
cosh

(
�
√

m2+μ
1/2
m,1

) +
[
μ

1/2
m,1 + (1 − σ)m2

] cosh

(
y
√

m2−μ
1/2
m,1

)
cosh

(
�
√

m2−μ
1/2
m,1

)
⎤⎦ sin(mx);

(ii) for any m � 1 and any k � 2 there exists a unique eigenvalue λ = μm,k > m4 satisfying(
m2 + π2

�2

(
k − 3

2

)2
)2

< μm,k <
(
m2 + π2

�2 (k − 1)2
)2

and with corresponding eigenfunction

⎡⎣[μ1/2
m,k − (1 − σ)m2

] cosh

(
y
√

μ
1/2
m,k+m2

)
cosh

(
�
√

μ
1/2
m,k+m2

) +
[
μ

1/2
m,k + (1 − σ)m2

] cos

(
y
√

μ
1/2
m,k−m2

)
cos

(
�
√

μ
1/2
m,k−m2

)
⎤⎦ sin(mx);

(iii) for any n � 1 and any j � 2 there exists a unique eigenvalue λ = νn,j > n4 with corresponding eigenfunc-
tions ⎡⎣[ν1/2

n,j − (1 − σ)n2
] sinh

(
y
√

ν
1/2
n,j +n2

)
sinh

(
�
√

ν
1/2
n,j +n2

) +
[
ν

1/2
n,j + (1 − σ)n2

] sin

(
y
√

ν
1/2
n,j −n2

)
sin

(
�
√

ν
1/2
n,j −n2

)
⎤⎦ sin(nx);
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(iv) for any n � 1 satisfying �n
√

2 coth(�n
√

2) >
(

2−σ
σ

)2 there exists a unique eigenvalue λ = νn,1 ∈ (μn,1, n
4)

with corresponding eigenfunction⎡⎣[ν1/2
n,1 − (1 − σ)n2

] sinh

(
y
√

n2+ν
1/2
n,1

)
sinh

(
�
√

n2+ν
1/2
n,1

) +
[
ν

1/2
n,1 + (1 − σ)n2

] sinh

(
y
√

n2−ν
1/2
n,1

)
sinh

(
�
√

n2−ν
1/2
n,1

)
⎤⎦ sin(nx).

Finally, if the unique positive solution s > 0 of the equation

tanh(
√

2s�) =
(

σ

2 − σ

)2 √
2s� (2.2)

is not an integer, then the only eigenvalues and eigenfunctions are the ones given in (i)−(iv).

A sketch of the proof of the improved bounds in Theorem 2.1 is given in Section 8. Condition (2.2) has
probability 0 to occur in general plates; if it occurs, there is an additional eigenvalue and eigenfunction, see [29].
From [7,29] we recall that the eigenvalues are solutions of explicit equations.

Proposition 2.2. Let

Φm(λ, �) :=
√

m2−λ1/2
(
λ1/2+(1−σ)m2

)2
tanh(�

√
m2−λ1/2)−

√
m2+λ1/2

(
λ1/2−(1−σ)m2

)2
tanh(�

√
m2+λ1/2),

Υ m(λ, �) :=
√

λ1/2−m2
(
λ1/2+(1−σ)m2)2

tan(�
√

λ1/2−m2)+
√

λ1/2+m2
(
λ1/2−(1−σ)m2)2

tanh(�
√

λ1/2+m2),

Ψn(λ, �) :=
√

λ1/2−n2
(
λ1/2+(1−σ)n2)2

tanh(�
√

λ1/2+n2)−
√

λ1/2+n2
(
λ1/2−(1−σ)n2)2

tan(�
√

λ1/2−n2),

Γ n(λ, �) :=
√

n2−λ1/2
(
λ1/2+(1−σ)n2

)2
tanh(�

√
λ1/2+n2)−

√
λ1/2+n2

(
λ1/2−(1−σ)n2

)2
tanh(�

√
λ1/2−n2).

Then:

(i) the eigenvalue λ = μm,1 is the unique value λ ∈ ((1 − σ2)m4,m4) such that Φm(λ, �) = 0;
(ii) the eigenvalues λ = μm,k (k � 2) are the solutions λ > m4 of the equation Υm(λ, �) = 0;
(iii) the eigenvalues λ = νn,j (j � 2) are the solutions λ > n4 of the equation Ψn(λ, �) = 0;
(iv) the eigenvalue λ = νn,1 is the unique value λ ∈ ((1 − σ2)n4, n4) such that Γn(λ, �) = 0.

The eigenfunctions in (i)−(ii) are even with respect to y whereas the eigenfunctions in (iii)−(iv) are odd. We call
longitudinal eigenfunctions the eigenfunctions of the kind (i)−(ii) and torsional eigenfunctions the eigenfunctions
of the kind (iii)−(iv). Since � is small, the former are quite similar to cm sin(mx) whereas the latter are similar
to cny sin(nx).

In the sequel, we consider realistic values of σ and �, as in some actual bridges; we take

σ = 0.2, � =
π

150
, (2.3)

but very similar results are obtained for values of σ and � close to (2.3). This choice of � models the case where
the main span of the bridge is 1 kilometer long and the width 2� is about 13 meters. These values are taken
from the original Tacoma Narrows Bridge, see [1, 7]. We denote by

μ̄m,k and ν̄n,j the eigenvalues of (1.1) given in Theorem 2.1 and Proposition 2.2 when (2.3) holds. (2.4)

Then, from Theorem 2.1, we infer that

0.96m4 < μ̄m,1 < m4, (m2 + 752(2k − 3)2)2 < μ̄m,k < (m2 + 1502(k − 1)2)2 ∀k � 2

for all integer m. Furthermore, a direct inspection yields that

ν̄n,1 does not exist for 1 � n � 2734. (2.5)
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Table 1. Numerical values of some eigenvalues of problem (1.1) when (2.3) holds.

μ̄1,1 μ̄2,1 μ̄3,1 μ̄4,1 μ̄5,1 μ̄6,1 μ̄7,1 μ̄8,1 μ̄9,1 μ̄10,1 μ̄11,1 μ̄12,1 μ̄13,1 μ̄14,1

0.96 15.36 77.77 245.8 600.14 1244.6 2306.05 3934.57 6303.42 9609.09 14 071.4 19 933.4 27 461.6 36 946

ν̄1,2 ν̄2,2 ν̄3,2 ν̄4,2 ν̄5,2

10 943.63 43 785.82 98 560.47 17 5324.1 27 4155.8

μ̄1,2 μ̄2,2 μ̄3,2 μ̄4,2 μ̄5,2 μ̄6,2 μ̄7,2 μ̄8,2 μ̄9,2 μ̄10,2 μ̄11,2 μ̄12,2 μ̄13,2 μ̄14,2 ×
1.626 1.628 1.63 1.634 1.638 1.643 1.649 1.657 1.665 1.674 1.684 1.695 1.707 1.72 108

ν̄1,3 ν̄2,3 ν̄3,3 ν̄4,3 ν̄5,3

1.2356 × 109 1.2359 × 109 1.2365 × 109 1.2372 × 109 1.2382 × 109

In Table 1 we collect some numerical values of μ̄m,k and ν̄n,j as defined in (2.4).
These results are fairly precise and reliable. The “exact” value of these eigenvalues will be important in the

following sections. Here we just point out that

μ̄1,1 < . . . < μ̄10,1 < ν̄1,2 < μ̄11,1 < . . . < μ̄14,1 < ν̄2,2, (2.6)

ν̄n,2 < μ̄m,2 < ν̄n,3 for all m = 1, . . . , 14 and n = 1, . . . , 5. (2.7)

In fact, we considered all the k = 1, 2, 3, 4, and j = 2, 3, 4, 5, for μ̄m,k and ν̄n,j with m � 14 and n � 5. Let
us briefly summarize what we observed numerically.

• The map m �→ μ̄m,1 is strictly increasing and 0.96 < μ̄m,1 < 36 946.004 for m = 1, . . . , 14.
• The map m �→ μ̄m,2 is strictly increasing and 1.62 × 108 < μ̄m,2 < 1.721× 108 for m = 1, . . . , 14.
• The map m �→ μ̄m,3 is strictly increasing and 4.74 × 109 < μ̄m,3 < 4.786× 109 for m = 1, . . . , 14.
• The map m �→ μ̄m,4 is strictly increasing and 2.895 × 1010 < μ̄m,4 < 2.904× 1010 for m = 1, . . . , 14.
• The map n �→ ν̄n,2 is strictly increasing and 10 943.6 < ν̄n,2 < 274 155.9 for n = 1, . . . , 5.
• The map n �→ ν̄n,3 is strictly increasing and 1.235 × 109 < ν̄n,3 < 1.239× 109 for n = 1, . . . , 5.
• The map n �→ ν̄n,4 is strictly increasing and 1.297 × 1010 < ν̄n,4 < 1.299× 1010 for n = 1, . . . , 5.
• The map n �→ ν̄n,5 is strictly increasing and 5.648 × 1010 < ν̄n,5 < 5.65 × 1010 for n = 1, . . . , 5.

In terms of the frequencies (the square roots of the eigenvalues) the above observations show that

the smallest frequencies of the normal modes are those listed in Table 1. (2.8)

These facts explain why we mainly restricted our attention to the eigenvalues in Table 1 (i.e. k = 1, 2 and
j = 2, 3). Moreover, the eigenvalues μ̄m,2 are much bigger than the eigenvalues μ̄m,1, and this translates in
larger frequencies. This means that a bigger amount of energy is needed in order to trigger the normal modes
associated with μ̄m,2, so that it is quite unlikely to observe them. The same remark holds also for ν̄n,2, ν̄n,3.

Note that the restrictions m � 14 and n � 5 are not just motivated by the lack of space in this paper but
also by the behavior in actual bridges; at the collapsed Tacoma Narrows Bridge the longitudinal oscillations
appeared with at most ten nodes and the torsional oscillation appeared with one node, see [1] and Section 12
below.

Finally, by (2.5) we know that the torsional eigenvalues ν̄n,1 do not exist for n � 2734, while for n � 2735
the frequencies are very large.

3. Domain perturbations and variation of the frequencies

The aim of this section is to study the variation of the longitudinal and torsional frequencies when the
rectangular plate Ω changes width or, more generally, shape.
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We start by considering the effect of the variation of the width: we assume (2.3) and we use the notations (2.4).
By the Implicit Function Theorem, the relation Φm(λ, �) = 0 implicitly defines, in a neighborhood U of � = π

150 ,
a smooth function μm,1 = μm,1(�) such that

μm,1

( π

150

)
= μ̄m,1, Φm

(
μm,1(�), �

)
= 0 ∀� ∈ U.

Similarly, we define the smooth functions μm,k = μm,k(�), νn,1 = νn,1(�), νn,j = νn,j(�). Then, we further exploit
the Implicit Function Theorem to derive the following

Theorem 3.1. Let σ = 0.2 and let μm,k(�) and νn,j(�) be the functions defined above. Furthermore,
let Φm, Υm, Ψn, Γn be as defined in Proposition 2.2 and Φm

� and Φm
λ denote the partial derivatives of Φm and

similarly for Υm, Ψn and Γn. If (μ, ν) ∈ R
2 �→ f(μ, ν) ∈ R is a differentiable map, then for all positive integers

m, k, n, j the functions
� �→ f(μm,k(�), νn,j(�))

are differentiable and their derivatives for � = π/150 are given by (here j, k � 2)

d
d�

(f(μm,1(�), νn,1(�)))
( π

150

)
= −fμ(μ̄m,1, ν̄n,1)

Φm
�

(
μ̄m,1,

π
150

)
Φm

λ

(
μ̄m,1,

π
150

) − fν(μ̄m,1, ν̄n,1)
Γn

�

(
ν̄n,1,

π
150

)
Γn

λ

(
ν̄n,1,

π
150

) ,
d
d�

(f(μm,k(�), νn,1(�)))
( π

150

)
= −fμ(μ̄m,k, ν̄n,1)

Υm
� (μ̄m,k,

π
150 )

Υm
λ

(
μ̄m,k,

π
150

) − fν(μ̄m,k, ν̄n,1)
Γn

�

(
ν̄n,1,

π
150

)
Γn

λ

(
ν̄n,1,

π
150

) ,
d
d�

(f(μm,1(�), νn,j(�)))
( π

150

)
= −fμ(μ̄m,1, ν̄n,j)

Φm
�

(
μ̄m,1,

π
150

)
Φm

λ

(
μ̄m,1,

π
150

) − fν(μ̄m,1, ν̄n,j)
Ψn

�

(
ν̄n,j ,

π
150

)
Ψn

λ

(
ν̄n,j ,

π
150

) ,
d
d�

(f(μm,k(�), νn,j(�)))
( π

150

)
= −fμ(μ̄m,k, ν̄n,j)

Υm
�

(
μ̄m,k,

π
150

)
Υm

λ

(
μ̄m,k,

π
150

) − fν(μ̄m,k, ν̄n,j)
Ψn

�

(
ν̄n,j ,

π
150

)
Ψn

λ

(
ν̄n,j ,

π
150

) ,
where fμ and fν denote the partial derivatives of f , μ̄m,1 = μm,1( π

150 ), μ̄m,k = μm,k( π
150 ), ν̄n,1 = νn,1( π

150 ),
ν̄n,j = νn,j( π

150 ), see (2.4).

In view of (2.5), only the last two derivatives will be useful for our purposes. Furthermore, Theorem 3.1 has
the following immediate consequence.

Corollary 3.2. Under the same assumptions of Theorem 3.1, for all positive integers m, k, n, j the functions

� �→ μm,k(�) and � �→ νn,j(�)

are differentiable and their derivatives for � = π/150 are given by (here j, k � 2)

d
d�

(μm,1(�))
( π

150

)
= −Φ

m
�

(
μ̄m,1,

π
150

)
Φm

λ

(
μ̄m,1,

π
150

) , d
d�

(νn,1(�))
( π

150

)
= −Γ

n
�

(
ν̄n,1,

π
150

)
Γn

λ

(
ν̄n,1,

π
150

) ,
d
d�

(μm,k(�))
( π

150

)
= −Υ

m
�

(
μ̄m,k,

π
150

)
Υm

λ

(
μ̄m,k,

π
150

) , d
d�

(νn,j(�))
( π

150

)
= −Ψ

n
�

(
ν̄n,j ,

π
150

)
Ψn

λ

(
ν̄n,j ,

π
150

) ,
where μ̄m,1 = μm,1( π

150 ), μ̄m,k = μm,k( π
150 ), ν̄n,1 = νn,1( π

150 ), ν̄n,j = νn,j( π
150 ).
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Now we turn to the effect of the variation of the shape of the plate. We consider problem (1.1) in a family
of open sets parameterized by suitable diffeomorphisms ξ defined on Ω, by maintaining fixed the short edges
Γ1 = {0, π} × (−�, �). Namely, we set

AΩ =
{
ξ ∈ C2

b (Ω; R2) : inf
p1,p2∈Ω
p1 �=p2

|ξ(p1) − ξ(p2)|
|p1 − p2| > 0, ξ(p) = p ∀p ∈ Γ1

}
,

where C2
b (Ω; R2) denotes the space of functions from Ω to R

2 of class C2, with bounded derivatives up to
order 2. We recall that since ∂Ω ∈ C0,1 then C2

b (Ω; R2) ⊂ C0(Ω; R2). Note that if ξ ∈ AΩ then ξ is injective,
Lipschitz continuous and infΩ |det∇ξ| > 0; we denote by ∇ both the gradient (vector) of a scalar function and
the Jacobian (matrix) of a vector function. Moreover, ξ(Ω) is a bounded open set and the inverse map ξ−1

belongs to Aξ(Ω). Then we define

H2
∗ (ξ(Ω)) = {u ∈ H2(ξ(Ω)) : u ◦ ξ ∈ H2

∗ (Ω)}.
In view of (1.2) we may write problem (1.1) as follows

Δ2u=λu in ξ(Ω), u=uxx =0 on Γ1, (1−σ)
∂2u

∂ν2
+σΔu=

∂Δu

∂ν
+ (1−σ)div∂ξ(Ω)(ν ·D2u)∂ξ(Ω) =0 on Γ2, (3.1)

where Γ2 = ξ(∂Ω \ Γ1). We consider problem (3.1) and study the dependence of the eigenvalues λ[ξ(Ω)] on
ξ ∈ AΩ. We endow the space C2

b (Ω; R2) with its usual norm ‖f‖C2
b
(Ω;R2) = sup|α|�2, p∈Ω |Dαf(p)|. Note that

AΩ is an open set in C2
b (Ω; R2) (see [44], Lem. 3.11). Thus, we may study differentiability and analyticity

properties of the maps ξ �→ λ[ξ(Ω)] defined for ξ ∈ AΩ. We intend to deform only the free edges of the deck,
therefore we investigate deformations of the form

ψ(x, y) = (x, τ(x) + y(δ(x) + 1)) , (3.2)

where τ, δ ∈ C2[0, π] are such that τ(0) = τ(π) = δ(0) = δ(π) = 0. Let Aλ = {ξ ∈ AΩ; λ[ξ(Ω)] is simple}. Then
we have the following result, whose proof is given in Section 10.

Theorem 3.3. The set Aλ is open in AΩ, and the map ξ �→ λ[ξ(Ω)] from Aλ to R is real analytic. Moreover,
if v is an eigenfunction of λ[Ω] normalized with respect to the scalar product (2.1), and ψ is as in (3.2), then
we have the following formula for the Fréchet differential

d|ξ=Idλ[ξ(Ω)][ψ − Id] = 2�λ[Ω]
∫ π

0

(
(1 − σ)|D2v|2 + σ(Δv)2 − λ[Ω]v2

) |y=�δ(x)dx. (3.3)

We observe that the derivative in formula (3.3) does not depend on τ . The reason is that τ acts in “opposite”
ways on the two long edges. Therefore, from now on we will take τ(x) ≡ 0. In this case,

ψ(x, y) − Id(x, y) = (0, y δ(x)) , ∀(x, y) ∈ Ω.

In particular, ±�δ represent the variations of the edges y = ±�. For later use, we set

φ(x) = �δ(x) ∀x ∈ (0, π). (3.4)

Since φ(0) = φ(π) = 0, we may expand φ in its Fourier series,

φ(x) =
∞∑

h=1

ah sin(hx),

and analyze the effects term by term. We have the following corollary, where we consider deformations of the
type φ(x) = h sin(hx). We use these deformations (with coefficient h) in order to have the same area increment
with respect to the original rectangle, a fact which enables us to compare the results.
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Corollary 3.4. Under the same hypotheses of Theorem 3.3, we have

d|ξ=Idλ[ξ(Ω)][(0, h
� y sin(hx))] = 2hλ[Ω]

∫ π

0

(
(1 − σ)|D2v|2 + σ(Δv)2 − λ[Ω]v2

) |y=� sin(hx)dx. (3.5)

Note that if h is even, then the derivative (3.5) vanishes, and therefore produces no differences for the shape
deformation problem. This can be seen using Lemmas 11.1 and 11.2, coupled with the following elementary
equalities∫ π

0

sin2(mx) sin(hx)dx =
1
2

∫ π

0

sin(hx)dx − 1
2

∫ π

0

cos(2mx) sin(hx)dx =
(−1)h+1 + 1

2
4m2

h(4m2 − h2)

and ∫ π

0

cos2(mx) sin(hx)dx =
1
2

∫ π

0

sin(hx)dx +
1
2

∫ π

0

cos(2mx) sin(hx)dx =
(−1)h+1 + 1

2
4m2 − 2h2

h(4m2 − h2)

which are both zero if h is even. We used here the fact that∫ π

0

cos(ax) sin(bx)dx = b
(−1)a+b − 1
a2 − b2

∀a, b ∈ N, a �= b.

Whence, we will concentrate on odd sines only.

Remark 3.5. When Ω simply changes width, definition (3.4) has to be thought with φ(x) = 1. We observe
that the perturbations φ(x) = 1 and φ(x) = h sin(hx) should not be compared, since their behavior on the shape
is different. Indeed, contrary to the latter, the former does not preserve the hinged edges. Also, the respective
formulas for the derivatives of the eigenvalues are obtained in different ways, see Theorems 3.1 and 3.3.

We conclude this section with some numerical computations of the derivatives of the eigenvalues considered
in (2.6)−(2.7). For the sake of readability, we denote by Dh(·) the derivative in (3.5), for any eigenvalue (or
combination of eigenvalues). With abuse of notation, we also denote by D�(·) the derivative with respect to the
width, as in Theorem 3.1.

The numerical values in Tables 2 and 3 will be quite useful in the sequel. We see that

the derivatives with respect to φ = 1 (D�) and to φ = sinx (D1) have the same sign. (3.6)

We also emphasize the following facts.
• The absolute value of the derivatives with respect to φ = 1 is increasing with respect to m, n, k, and j;

this is not fully visible for νn,3 in Table 2 but more precise numerical values confirm this behavior.
• When φ = 1, the derivatives of μm,1 are all positive and they are strictly increasing with respect to m,

whereas the derivatives of μm,2 are all negative and they are strictly decreasing with respect to m; the latter
behavior is also visible for μm,3 and μm,4.

• When φ = 1, the derivatives of νn,j (j = 2, 3) are all negative and they are strictly decreasing with respect
to n; this behavior is also visible for νn,4 and νn,5.

• For φ(x) = 3 sin 3x, 5 sin 5x, the derivatives do not display a clear behavior neither with respect to the
absolute value nor with respect to the sign; this is due to the combination of the sine appearing in φ with the sine
appearing in the eigenfunctions, see Theorem 2.1. The same happens also for φ(x) = 7 sin 7x, 9 sin 9x, 11 sin 11x.
It is clear that a rule exists but its determination falls beyond the scopes of the present paper.

• We also compared the values of the ratios γ(m) = ν2,2
μm,1

for m = 1, . . . , 14 with their derivatives Dkγ(m) =
Dk( ν2,2

μm,1
) for k = �, 1, 3. In all three cases, we deduce from Table 3 that these ratios and their derivatives almost

perfectly obey to the following linear law

Dkγ(m)
c0,k+c1,k γ(m) = −1, (3.7)
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Table 2. Numerical values of the derivatives of some eigenvalues when (2.3) holds.

μ1,1 μ2,1 μ3,1 μ4,1 μ5,1 μ6,1 μ7,1 μ8,1 μ9,1 μ10,1 μ11,1 μ12,1 μ13,1 μ14,1

D� 89 × 10−5 57 × 10−3 65 × 10−2 3.6 13.7 40.8 102.2 225.7 453.2 843.6 1476.8 2457.2 3917 6019.6

D1 19 × 10−5 31 × 10−3 39 × 10−2 2.23 8.58 25.6 64.4 143 287 534 936 16 × 102 25 × 102 38 × 102

D3 26 × 10−4 −57 × 10−3 13 × 10−2 1.55 7.02 22.5 58.7 133 272 512 904 15 × 102 24 × 102 37 × 102

D5 19 × 10−4 24 × 10−2 −1.47 −0.66 2.89 15.0 45.9 112 240 464 836 14 × 102 23 × 102 36 × 102

μ1,2 μ2,2 μ3,2 μ4,2 μ5,2 μ6,2 μ7,2 μ8,2 μ9,2 μ10,2 μ11,2 μ12,2 μ13,2 μ14,2 × ↓
D� −3.106 −3.107 −3.109 −3.113 −3.117 −3.122 −3.128 −3.135 −3.142 −3.151 −3.16 −3.17 −3.18 −3.19 1010

D1 −2.636 −2.110 −2.036 −2.013 −2.004 −2.001 −2.002 −2.004 −2.007 −2.011 −2.016 −2.022 −2.029 −2.037 1010

D3 1.583 −4.524 −2.641 −2.307 −2.182 −2.121 −2.088 −2.069 −2.059 −2.053 −2.051 −2.052 −2.055 −2.059 1010

D5 0.377 3.522 −6.488 −3.257 −2.650 −2.409 −2.286 −2.215 −2.171 −2.143 −2.125 −2.114 −2.107 −2.104 1010

ν1,2 ν2,2 ν3,2 ν4,2 ν5,2 ν1,3 ν2,3 ν3,3 ν4,3 ν5,3

D� −106 −42 × 105 −94 × 105 −17 × 106 −26 × 106 −24 × 1010 −24 × 1010 −24 × 1010 −24 × 1010 −24 × 1010

D1 −11 × 105 −30 × 105 −63 × 105 −11 × 106 −17 × 106 −20 × 1010 −16 × 1010 −15 × 1010 −15 × 1010 −15 × 1010

D3 17 × 105 −95 × 105 −10 × 106 −14 × 106 −20 × 106 12 × 1010 −34 × 1010 −20 × 1010 −17 × 1010 −17 × 1010

D5 92 × 104 12 × 106 −33 × 106 −24 × 106 −28 × 106 29 × 109 27 × 1010 −49 × 1010 −25 × 1010 −20 × 1010

Table 3. Numerical values of the ratios ν2,2
μm,1

and their derivatives when (2.3) holds.

μ1,1 μ2,1 μ3,1 μ4,1 μ5,1 μ6,1 μ7,1 μ8,1 μ9,1 μ10,1 μ11,1 μ12,1 μ13,1 μ14,1
ν2,2
μm,1

45609.8 2850.53 563.04 178.14 72.96 35.18 18.99 11.13 6.95 4.56 3.11 2.2 1.6 1.18
ν2,2
μ1,1

ν2,2
μ2,1

ν2,2
μ3,1

ν2,2
μ4,1

ν2,2
μ5,1

ν2,2
μ6,1

ν2,2
μ7,1

ν2,2
μ8,1

ν2,2
μ9,1

ν2,2
μ10,1

ν2,2
μ11,1

ν2,2
μ12,1

ν2,2
μ13,1

ν2,2
μ14,1

× ↓
D� −4.3104 −2721.2 −537.5 −170.1 −69.6 −33.6 −18.1 −10.6 −6.6 −4.3 −3 −2.01 −1.5 −1.1 102

D1 −31103 −20102 −388 −123 −50.3 −24.2 −13.1 −7.67 −4.79 −3.14 −2.15 −1.51 −1.10 −0.82 102

D3 −99103 −62102 −12102 −387 −158 −76.4 −41.2 −24.2 −15.1 −9.89 −6.76 −4.77 −3.46 −2.57 102

for k = �, 1, 3 and m = 1, . . . , 14, with

c0,� = 0.14, c1,� = 95.53, c0,1 = 1.897× 10−3, c1,1 = 1.443, c0,3 = 19 × 10−4, c1,3 = 4.546.

These facts will be exploited in Section 6.

4. Thresholds for the torsional stability

In recent years the attention of civil engineers has shifted towards the sensitivity analysis and optimal design
aiming to improve the performances of suspension bridges, see [32, 41]. As explicitly mentioned in the preface
of the monograph by Jurado, Hernández, Nieto, and Mosquera [41], the trend is nowadays to avoid expensive
tests in wind tunnels and to test numerically the performances of different designs; hopefully, these tests should
be preceded by a suitable mathematical modeling and, possibly, by analytic arguments, see [43].

According to the Federal Report [1], the main reason for the Tacoma Narrows Bridge collapse [62] was the
sudden transition from longitudinal to torsional oscillations. Several other bridges collapsed for the same reason,
see (e.g. [31], Sect. 1) or the introduction in [7]. Hence, the most dangerous oscillations, leading to fractures
and collapses, are the torsional ones and a common target of engineers is to find possible ways to prevent their
appearance in the deck. Our purpose in this second part of the paper is to discuss the possibility of finding
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a domain functional able to quantify how much a plate is prone to transform longitudinal oscillations into
torsional ones. To this end, we need to review some rules that a deck is known to obey, starting from the
aerodynamic mechanism generating oscillations.

When the wind hits the deck of a bridge the direction of the flow is modified and goes around the body.
Behind the deck, or a corner of it, the flow creates vortices which are, in general, asymmetric. This asymmetry
generates a forcing lift which launches the vertical oscillations of the deck. Up to some minor details, this
explanation is shared by the whole community and has been studied with great precision in wind tunnel tests,
see e.g. [45, 53, 55].

Inspired by previous results by Bleich [5,6], Rocard ([51], p. 163) shows that for common bridges there exists
a threshold for the velocity of the wind (that we denote by Vc) above which the bridge undergoes to flutter,
namely a form of instability which is visible in many objects and appears as an uncontrolled vibration, see the
videos [63]. On the other hand, the vortices induced by the wind increase the internal energy of the structure
and generate wide longitudinal oscillations which look periodic in time and are maintained in amplitude by a
somehow perfect equilibrium between the input of energy from the wind and internal dissipation: at this point,
one may assume that the deck is isolated. Then one wonders how the longitudinal oscillations may transform
into torsional ones. Recent results in [4, 7–9] show that the transition is due to some internal resonance, a
phenomenon typical of (conservative) Hamiltonian systems, see [52, 59]. This resonance appears in nonlinear
systems and depends on the amount of energy inside the system: when an energy threshold (that we denote
by Ec) is reached, there is a sudden transfer of energy between the different components of the Hamiltonian
system. For bridges this translates into the possible appearance of wide torsional oscillations from an apparently
pure longitudinal oscillation.

In fact, the thresholds for flutter and for internal resonance are linked by the well-known formula for the
kinetic energy

Ec = k V 2
c , (4.1)

for some k > 0 depending on the air density. We refer to [21, 37, 40] for a clear explanation of the relationship
between flutter and internal resonance.

The main idea for computing the energy threshold Ec is as follows. The starting point is a nonlinear evolution
equation associated to (1.1) such as

utt +Δ2u+ g(u) = 0, for x ∈ Ω t > 0, (4.2)

complemented with the same boundary conditions and some initial data; here, g(u) is a general nonlinearity,
possibly nonlocal, describing both the nonlinear behavior of the structure and the nonlinear action of the
sustaining cables. Well-posedness for this problem is proved in [29] by using the Galerkin method, that is,
an approximation of (4.2) involving a finite number of modes. By restricting the attention to a couple of
(longitudinal,torsional) modes, problem (4.2) is reduced to a second order 2-DOF Hamiltonian system of the
form

ẍ+Gx(x, y) = 0, ÿ +Gy(x, y) = 0, (4.3)

which has a first integral representing the conserved energy (ẋ2 + ẏ2)/2 + G(x, y) for some potential G. The
stability of (4.3) is studied by taking initial data which concentrate almost all the energy on the mode x, that
is, |ẏ(0)| + |y(0)| � |ẋ(0)| + |x(0)|; this models the situation where the deck is initially oscillating with a wide
longitudinal time-dependent width x = x(t) and with an imperceptible torsional amplitude y = y(t).

For a nonlinear string equation, Cazenave and Weissler [23] (see also [22]) were able to study the stability for
each couple of modes; this was possible because their nonlinearity was due to a nonlocal term which allowed
the dynamics to remain concentrated on the initially excited modes (through separation of variables) and,
hence, they obtained a system such as (4.3). We also refer to [4] for stability results for a nonlinear nonlocal
beam equation. A much more difficult case appears to be that involving local terms, although recent attempts
in [7] show that, at least with suitable truncations and approximations, this seems to be possible: it was found
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there that if the total energy overcomes a threshold Ec > 0 that can be computed numerically, then there is
a transfer of energy from x to y, that is, the amplitude of the torsional component suddenly grows up. This
phenomenon is related to the theory of normal forms (see e.g. [52]) and has sound explanations through the
Floquet theory and Poincaré maps (see e.g. [26]).

Since the “exact and explicit” form of g(u) in (4.2) is not known due to the extreme complexity of the
mechanical system, in the next section we consider some “toy models” from which we derive a general rule
for (4.3), independently of G.

5. Energy thresholds for some simple Hamiltonian systems

We report below on five numerical experiments that we performed. For each experiment, on the left we write
the Hamiltonian system considered and the corresponding conserved energy, whereas on the right we plot the
dependence of the energy threshold Ec on the ratio γ of the eigenvalues (or squared frequencies); this plot is
obtained by increasing with step 0.1 the ratio starting from γ = 1 and then by interpolation.

(A)
{
ẍ+ (1 + x2 + y2)x = 0
ÿ + γ(1 + x2 + y2)y = 0

E =
ẋ2

2
+
ẏ2

2γ
+
x2

2
+
y2

2
+

(x2 + y2)2

4

1.5 2.0 2.5 3.0
Γ

50

100

150

Ec

System (A) was derived by Cazenave and Weissler [22] while considering a nonlinear nonlocal wave equation; up
to minor changes it may also be obtained from a beam equation, see [4]. We observe that the energy threshold Ec

is a convex and increasing function of γ (the squared frequency ratio). It has a behavior similar to a(γb −1)c for
some a, b, c > 0 although no choice of these parameters really fits into the displayed plot: in fact, the growth of
Ec(γ) is more similar to an exponential. We detected no instability for (A) when γ � 1; it is proved analytically
in [4] that (A) is stable whenever γ < 0.955 although the conjecture is precisely that (A) is stable for γ � 1.
With simple scalings of (A) one can derive the energy thresholds also for the systems (with α, β > 0)

(A′)
{
ẍ+ (α+ x2 + y2)x = 0
ÿ + γ(α+ x2 + y2)y = 0, (A′′)

{
ẍ+ (1 + β(x2 + y2))x = 0
ÿ + γ(1 + β(x2 + y2))y = 0.

It is clear that, qualitatively, the plot of Ec remains the same although it is quantitatively different.
A slightly different qualitative behavior is exhibited by system (B). This system is also derived from a

nonlinear nonlocal wave equation, see [22, 23].

(B)
{
ẍ+ (1 + x4 + y2)x = 0
ÿ + γ(1 + x2 + y4)y = 0

E =
ẋ2

2
+
ẏ2

2γ
+
x2

2
+
y2

2
+
x6

6
+
y6

6
+
x2y2

2
1.5 2.0 2.5 3.0

Γ

1

2

3

4

Ec

The map γ �→ Ec(γ) is again increasing and convex for γ � 1 but there are two crucial differences: we have
Ec(1) > 0 and also Ec(γ) > 0 for all γ > 0.84 while it seems that there is no energy transfer for γ < 0.84.
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Whence, there may be energy transfer also from the component with larger frequency towards the component
with smaller frequency. We found that Ec exists and is decreasing for γ ∈ (0.84, 0.98). Even if the numerical
results exhibit some instability, they are neat and we think that they are reliable. But we have no explanation of
these facts, besides the possible unexpected behavior of resonance tongues in some Hill equations, see e.g. [13,14].

A completely different behavior is displayed by system (C) which was intensively studied in [9] in order to
figure out a criterion for the energy transfer in Hamiltonian systems with more than 2-DOF.

(C)
{
ẍ+ (1 + y2)x = 0
ÿ + γ(1 + x2)y = 0

E =
ẋ2

2
+
ẏ2

2γ
+
x2

2
+
y2

2
+
x2y2

2

1.5 2.0 2.5 3.0
Γ

0.5

1.0

1.5

2.0

2.5

Ec

The map γ �→ Ec(γ) is now strictly decreasing although it maintains convexity. This has a sound explanation
in terms of the Mathieu tongues of instability, see [9]. Roughly speaking, if y is small then (C) has solutions
close to (x(t), y(t)) ≈ (x(0) · cos t, 0) when ẋ(0) = 0. By replacing this solution into the second equation, we
obtain the Mathieu equation ÿ+ γ(1 + x(0)2 cos2 t)y = 0 for which the resonance tongues are explicitly known,
see e.g. [24, 26]. By following the Mathieu functions, one may justify the displayed behavior of Ec(γ).

The just described results show that the energy thresholds of Hamiltonian systems are very sensitive to the
coupling terms. The energies of the three Hamiltonians (A), (B), and (C), all have the terms

ẋ2

2
+
ẏ2

2γ
+
x2

2
+
y2

2
+
x2y2

2
· (5.1)

In (C) there is no additional term, in (A) there is the additional term x4

4 + y4

4 , whereas in (B) this term is
replaced by x6

6 + y6

6 . Still, they exhibit fairly different behaviors.
At this point, one may wonder if the ratio of the eigenvalues γ is put in the right place in the energy (5.1).

Therefore we performed numerical experiments also for the systems (D) and (E). What we discovered is dis-
arming.

(D)
{
ẍ+ (1 + x2 + y2)x = 0
ÿ + (γ + x2 + y2)y = 0.

E =
ẋ2

2
+
ẏ2

2
+
x2

2
+ γ

y2

2
+

(x2 + y2)2

4
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The linearizations of (D) and (A) are the same, that is ẍ + x = 0 and ÿ + γy = 0, the ratio of the squared
frequencies is γ and the plots of the two critical energies is qualitatively similar (increasing and convex). On
the other hand, if we perturb (D) and consider (E) the energy becomes increasing and concave.
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(E)
{
ẍ+ (1 + x2 + y2 + 2x6)x = 0
ÿ + (γ + x2 + y2)y = 0.

E =
ẋ2

2
+
ẏ2

2
+
x2

2
+ γ

y2

2
+

(x2+y2)2

4
+
x8

4
1.2 1.4 1.6 1.8 2.0 2.2 2.4

Γ
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0.6

0.8

1.0
Ec

We conclude this section with some remarks aiming to derive a general rule between the considered Hamil-
tonian systems. The energy (5.1) and its perturbations may not satisfy the crucial property that Ec(1) = 0
whereas the energy of systems (D) and (E) satisfies this property. On the other hand, (D) and (E) show that

there is no common rule on the convexity of the map γ �→ Ec(γ).

However, all the considered Hamiltonian systems also share a common feature: all the plots displayed in this
section show that the map γ �→ Ec(γ) has a “nice and regular” graph, representing some simple looking smooth
function. These results suggest that

the energy threshold for the instability of a 2-DOF Hamiltonian system
depends on the ratio of the squared frequencies.

(5.2)

6. Is there a shape functional able to compute the torsional instability?

In his pioneering monograph, Rocard ([51], p. 164) writes that a wide bridge is more stable than a narrow
bridge. For rectangular plates Ω� = (0, π) × (−�, �), this means that

the map � �→ Vc(Ω�) is strictly increasing.

In fact, Rocard ([51], p. 186) also writes that if all the other factors remain equal and if the natural frequency
of bending has a fixed value, then a bridge twice as wide will have exactly double critical speed Vc. This may be
rephrased for rectangular plates as:

the map � �→ Vc(Ω�) is linearly increasing. (6.1)

Condition (6.1) shows that a functional aiming to compute the flutter velocity of Ω� should have the form
Vc = c �ϕ(μ, ν) (with c > 0) for the couple of (longitudinal,torsional) eigenvalues (μ, ν); as we shall see in
formula (7.2) below, this is precisely the form derived by Rocard. In view of (4.1), we may rewrite this formula
in terms of the critical energy of the rectangular plate Ω�, depending on its width:

Ec(Ω�) = c �2 f(μ, ν). (6.2)

So far, we have only considered rectangular plates Ω�. However, in some cases, there is no physical space to
enlarge the hinged part of the deck, see for instance the Aizhai Suspension Bridge [60] and its pictures available
on the web; see also the pictures of the cross sections of the decks of the Severn Bridge and of the Humber Bridge
in ([41], Sect. 2.3.1). Therefore, one may also be interested in modifying the shape of the free edges without
altering the width of the hinged ones, as in Theorem 3.3. Physically meaningful shapes should be symmetric
with respect to the midline of the deck. Therefore, we focus our attention on plates which can be described by

Ωφ =
{
(x, y) ∈ R

2; 0 < x < π, −�− φ(x) < y < �+ φ(x)
}
, (6.3)
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Figure 1. A possible non-rectangular plate Ωφ.

where φ(0) = φ(π) = 0 is a continuous function on [0, π] as defined in (3.4), see Figure 1. With this notation
we have that Ω0 = Ω�.

We now generalize (6.2) to the case of plates Ωφ of the kind (6.3). In particular, we must modify the factor �2

with a term which also depends on the function φ. The radius of gyration of a plate is related to the moment
of inertia with respect to its axis of symmetry: it is the quadratic mean distance of the parts of the plate from
the midline axis (see also Sect. 7). Therefore, we replace the squared half-width �2 of the rectangular plate Ω�

with the mean value of the squared half-width:

L(φ) :=
1
π

∫ π

0

(
�+ φ(x)

)2
dx. (6.4)

A possible generalization of (6.2) able to measure also the flutter velocity of the plate Ωφ in (6.3) then reads

Ec(Ωφ) = C L(φ) f(μ, ν). (6.5)

Using the fact that Ω0 = Ω� in (6.5), we find (6.2): hence (6.5) is indeed a generalization of (6.2). Even if
Remark 3.5 states that variations of Ω with respect to φ = 1 and with respect to φ = sinx should not be
compared, in view of (3.6) and since they both contribute to enlarge the width of the plate, it is reasonable to
expect that

Ec has the same monotonicity when the long edges of Ω�

are perturbed by φ = 1 and by φ = sin(x).
(6.6)

In order to understand if the plate increases or decreases its stability, we need to compute the variation of Ec.
To this aim, we perturb the free edges (0, π) × {−�, �} of Ω� with the function φ and compute the derivative
of L in the direction φ that we denote by

L′(φ) := lim
ε→0

L(εφ) − L(0)
ε

=
2�
π

∫ π

0

φ(x) dx. (6.7)

Note that when φ = 1 we get L′(1) = 2� which is the derivative of �2.

Remark 6.1. The shape derivative formula (6.7) does not change if we replace (6.4) with

L̃(φ) :=
(

1
π

∫ π

0

(
�+ φ(x)

)
dx

)2

which represents the squared mean value of the half-width.

Let us now turn to the function f = f(μ, ν). Rocard ([51], p. 169) claims that for the usual design of bridges
the torsional frequency ωt is larger than the longitudinal frequency ωv; further evidence of this fact comes
from Irvine ([39], p. 178). Moreover, Rocard claims that the bridge is stable if ωt < ωv and very unstable
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(with small Vc) if ωt ≈ ωv with ωt > ωv. This results in the following properties for the function f , assumed to
be continuous:

f(μ, ν) > 0 ∀ν > μ > 0, f(μ, μ) = 0 ∀μ > 0.

Notice that, in view of (2.6)−(2.8), we restrict our attention to the following couples of eigenvalues

(μ̄m,1, ν̄1,2) with m = 1, . . . , 10;
(μ̄m,1, ν̄n,2) with m = 1, . . . , 14;n = 2, . . . , 5; (6.8)
(μ̄m,k, ν̄n,3) with k = 1, 2;m = 1, . . . , 14;n = 1, . . . , 5.

Furthermore, since from (5.2) we learn that the energy threshold for the instability should depend on the ratio
of the squared frequencies, we end up with the following family of functions

f(μ, ν) = g

(
ν

μ

)
with g ∈ C0[1,+∞] : g(s) > 0 ∀s > 1, g(1) = 0. (6.9)

This behavior is qualitatively the one displayed by the Hamiltonian systems (A), (D), and (E) in Section 5, while
the systems (B) and (C) fail to satisfy the last condition in (6.9). Keeping in mind (6.9), by using Corollary 3.2
and Corollary 3.4, one may compute the variation of Ec(Ω�) and Ec(Ωφ) as defined in (6.2) and (6.5). In the
first case, assuming g also differentiable, we obtain

D�Ec(Ω�) = c�

[
2g

(
ν

μ

)
+ �g′

(
ν

μ

)
D�

(
ν

μ

)]
, (6.10)

and a similar formula may be derived for Ec(Ωφ). Since from Table 2 we inferred the empirical rule (3.7),
formula (6.10) contradicts (6.1) for ν ≈ μ (recall that the corresponding frequencies are ωv =

√
μ and ωt =

√
ν).

Namely,
there exists no function f such that (6.1) and (6.9) hold for all ν > μ > 0. (6.11)

Nevertheless, functions in the form (6.9) for which (6.1) holds for most of the couples of eigenvalues (6.8) can
be found. We quote here below two examples of g and, in turn, of f .

• g(s) = (s − 1)1/10 + 1
10 (s − 1) gives positive numbers in (6.10) for all couples in (6.8) except for (μ̄m,1, ν̄n,3)

with m = 1, . . . , 14 and n = 1, . . . , 5.
If we consider instead D1Ec(Ωφ), we have that: it is negative for the couples (μ̄m,1, ν̄1,2) with m = 1, . . . , 10

and for the couples (μ̄m,1, ν̄n,3) with m = 1, . . . , 14 and n = 1, . . . , 5; positive for (μ̄m,2, ν̄n,3) with m = 1, . . . , 14
and n = 1, . . . , 5. For (μ̄m,1, ν̄n,2) we get both positive and negative derivatives depending on m and n � 2.

• g(s) = (s − 1)1/4 gives positive numbers in (6.10) for all couples in (6.8) except for (μ̄10,1, ν̄1,2) and
(μ̄14,1, ν̄2,2).

If we consider instead D1Ec(Ωφ), we have that: it is negative for the couples (μ̄m,1, ν̄n,3) with m = 1, . . . , 14
and n = 1, . . . , 5; positive for the couples (μ̄m,2, ν̄n,3) with m = 1, . . . , 14 and n = 1, . . . , 5. For (μ̄m,1, ν̄n,2) we
get both positive and negative derivatives depending on m and n.

We observe that these functions violate both (6.1) and (6.6) for some couples of eigenvalues. This gives
additional evidence to the statement (6.11).

7. A quick overview of the engineering literature

Let M be the mass of the unit length of the deck (steel and concrete assembled within the same unit length)
and let M0 be the mass of air in a square parallelepiped erected above unit length. For common bridges the
ratio M/M0 is around 50 (see [51], p. 151). Rocard ([51], p. 169) considers the natural longitudinal and torsional
frequency of the bridge denoted, respectively, by ωv and ωt: he claims that for common bridges one has ωt > ωv
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and that the critical velocity of the wind for which the bridge undergoes to flutter may be computed through
the formula ([51], p. 163)

V 2
c =

2r2�2

2r2 + �2
M

M0
(ω2

t − ω2
v), (7.1)

where 2� is the width of the deck and r is the radius of gyration of the unit length in the deck. Rocard ([51],
p. 142) well explains the role of the radius of gyration and shows that r ≈ �/

√
2. Therefore, formula (7.1)

becomes
V 2

c (Ω�) = C �2(ω2
t − ω2

v), (7.2)

where C > 0 is a physical constant depending on the shape and the material composing the deck.
formula (7.1) was later modified by Selberg [56] and, more recently, in ([46], formula (20)); in both cases,

there is a different multiplicative constant C in front of �2(ω2
t − ω2

v). Let us also mention that related formulas
were suggested by Irvine ([39], formula (4.91)) and by Como, Del Ferraro, and Grimaldi ([27], Sect. 8). All
these references share the idea of the dependence of the stability on the quantity �2(ω2

t −ω2
v). We refer to ([31],

Sect. 1.7.4) for more details and references.
Summarizing, there is an evident disagreement on the exact value of the constant C > 0, the reason being that

in most cases the value of the “characteristic parameters” of a bridge are not found theoretically but with wind
tunnel tests, which allow to compute the so-called flutter derivatives also known as aeroelastic (or aerodynamic)
derivatives. These are the coefficients to be inserted in suitable linear ODE’s used to find the longitudinal and
torsional frequencies, as first suggested by Scanlan and Tomko [54]. The flutter speed may then be computed
through closed formulas (see e.g. [43], formula (9.156)), which, however, are very different from (7.2).

We tested (7.2) numerically: by (4.1), this formula also reads

Ec(Ω�) = c �2 f(μ, ν) with f(μ, ν) = max{ν − μ, 0}.

Again, in view of (2.6)−(2.7), we focused our attention only on the three families of couples in (6.8). By using
Theorems 3.1 and 3.3 as well as their corollaries, we obtained the following results.

• When φ = 1, the derivatives of Ec are negative for all the couples in (6.8) except for (μ̄m,1, ν̄n,2) with
n = 2, . . . , 5 and m = 1, . . . , n− 1.

• When φ = sinx, the derivatives of Ec are negative for all the couples in (6.8).
• When φ = 3 sin 3x, the derivatives of Ec are negative for the couples in (6.8) with n �= 1.

From Remark 3.5 we recall that the case φ = 1 and the cases φ = h sinhx are not directly comparable, since the
former is broadening the hinged edges, while the latter is just modifying the free edges. However, these results
show that the functional (7.2) and its extension (6.5) fail to satisfy (6.6). Moreover, the results for φ = 1 show
that (7.2) fails to satisfy (6.1). Overall, this suggests to consider (7.2) unreliable. Let us emphasize that also the
engineering literature is quite skeptic about (7.2); in particular, Holmes ([38], p. 293) shows that the Selberg’s
formula does not always agree with experimental measurements.

8. Proof of Theorem 2.1

Theorem 2.1 is essentially proved in [7, 29], except for two improvements on the bounds for the eigenvalues.
First, by Proposition 2.2 we know that the least longitudinal eigenvalue μm,1 corresponding to eigenfunctions

with (m−1) nodes in the x-direction is known to be the unique value λ ∈ ((1−σ)2m4,m4) such that Φm(λ, �) = 0.
In Theorem 2.1 we have a larger lower bound which we now prove.

Lemma 8.1. For any m � 1, there holds

μm,1 > (1 − σ2)m4. (8.1)



VARIATION OF FREQUENCIES IN A RECTANGULAR PLATE 79

Proof. Note that Φm((1 − σ)2m4, �) > 0 and Φm(m4, �) < 0; whence, (8.1) follows if we show that Φm((1 −
σ2)m4, �) > 0. After division by m5, after computing the two squared parenthesis (·)2, and after a further
division by 2(1 − σ), we see that the sign of Φm((1 − σ2)m4, �) is the same as

tanh(�m
√

1 − (1 − σ2)1/2)√
1 − (1 − σ2)1/2

− tanh(�m
√

1 + (1 − σ2)1/2)√
1 + (1 − σ2)1/2

·

But the sign of this term is positive since the map s �→ tanh s
s is strictly decreasing. This proves (8.1). �

Next, the (new) bounds for μm,k are obtained as follows.

Lemma 8.2. For any m � 1 and k � 2, there holds(
m2 +

π2

�2

(
k − 3

2

)2
)2

< μm,k <

(
m2 +

π2

�2
(k − 1)2

)2

.

Proof. By definition and by Proposition 2.2, for m fixed, μm,k is the (k − 1)−th positive solution λ of the
equation Υm(λ, �) = 0. It is readily seen that the map λ �→ Υm(λ, �) is continuous, strictly increasing and goes
from −∞ to a positive value in any interval ((m2 + π2

�2 (k − 3
2 )2)2, (m2 + π2

�2 (k − 1)2)2), from which the thesis
follows. �

9. Proof of Theorem 3.1

For � = π/150, Proposition 2.2 states that the longitudinal eigenvalue μ̄m,1 is the unique value of λ ∈
(0.96m4,m4) such that Φm(μ̄m,1,

π
150 ) = 0 and the torsional eigenvalue ν̄n,1 is the unique value of λ ∈ (0.96n4, n4)

such that Γn(ν̄n,1,
π

150 ) = 0. By the Implicit Function Theorem, the relation Φm(λ, �) = 0 implicitly defines, in
a neighborhood U of � = π

150 , a smooth function μm,1 = μm,1(�) such that

μm,1

( π

150

)
= μ̄m,1, Φm

(
μm,1(�), �

)
= 0 ∀� ∈ U.

Similarly, the relation Γn(λ, �) = 0 implicitly defines, in a neighborhood V of � = π
150 , a smooth function

νn,1 = νn,1(�) such that

νn,1

( π

150

)
= ν̄n,1, Γn

(
νn,1(�), �

)
= 0 ∀� ∈ V.

In particular, if we denote by Φm
� and Φm

λ the partial derivatives of Φm and by Γn
� and Γn

λ the partial
derivatives of Γn, we have that

dμm,1

d�

( π

150

)
= −

Φm
� (μ̄m,1,

π

150
)

Φm
λ

(
μ̄m,1,

π

150

) and
dνn,1

d�

( π

150

)
= −

Γn
�

(
ν̄n,1,

π

150

)
Γn

λ

(
ν̄n,1,

π

150

) ·
Hence,

d
d�

(f(μm,1(�), νn,1(�)))
( π

150

)
= −fμ(μ̄m,1, ν̄n,1)

Φm
�

(
μ̄m,1,

π

150

)
Φm

λ

(
μ̄m,1,

π

150

) − fν(μ̄m,1, ν̄n,1)
Γn

�

(
ν̄n,1,

π

150

)
Γn

λ

(
ν̄n,1,

π

150

) ,
This gives the explicit form of the derivative of f(μm,1(�), νn,1(�)). The proofs for the other couples follow

similarly.
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10. Proof of Theorem 3.3

We consider the operator P from H2∗ (ξ(Ω)) to its dual, which takes u ∈ H2∗ (ξ(Ω)) to P [u], implicitly defined
by (we omit the duality crochet 〈·, ·〉 in order to avoid heavy notations)

P [u][v] =
∫

φ(Ω)

(1 − σ)D2u : D2v + σΔuΔvdA ∀v ∈ H2
∗ (ξ(Ω))

=: (1 − σ)M(u, v) + σN(u, v).

The operator P is easily seen to be a linear homeomorphism of H2∗ (ξ(Ω)) onto its dual. We also denote by J
the continuous embedding of H2∗ (ξ(Ω)) into its dual, implicitly defined by

J [u][v] :=
∫

ξ(Ω)

uvdA ∀v ∈ H2
∗ (ξ(Ω)).

Then (3.1) can be written in the weak form

P [u][v] = λJ [u][v] ∀v ∈ H2
∗ (ξ(Ω)). (10.1)

We define the operator T := P−1 ◦ J from H2
∗ (ξ(Ω)) to itself. We have the following

Lemma 10.1. Let φ ∈ AΩ. The operator T is a non-negative compact selfadjoint operator in the Hilbert
space H2

∗ (ξ(Ω)). Its spectrum is discrete and consists of a decreasing sequence of positive eigenvalues of finite
multiplicity converging to zero. Moreover, the equation Tu = (λ−1)u is satisfied for some u ∈ H2

∗ (ξ(Ω)) if and
only if equation (10.1) is satisfied for any v ∈ H2

∗ (ξ(Ω)).

Proof. For the selfadjointness, it suffices to observe that

〈Tu, v〉 = 〈(P−1 ◦ J )[u], v〉 = P
[
(P−1 ◦ J )[u]

]
[v] = J [u][v],

for any u, v ∈ H2
∗ (ξ(Ω)). For the compactness, just observe that the operator J is compact. The remaining

statements are straightforward. �

In order to prove Theorem 3.3 we fix ξ ∈ Aλ, consider equation (10.1) in ξ(Ω), and pull it back to Ω. The
pull-back Mξ to Ω of the operator M on ξ(Ω) is defined by

Mξ[u][v] =
∫

Ω

(
D2(u ◦ ξ−1) : D2(v ◦ ξ−1)

) ◦ ξ|det∇ξ|dA,

for all u, v ∈ H2∗ (Ω), and similarly for Nξ and Pξ = (1 − σ)Mξ + σNξ. We also note that

Jξ[u][v] =
∫

Ω

uv|det∇ξ|dA ∀u, v ∈ H2
∗ (Ω),

and that the map fromH2
∗ (Ω) toH2

∗ (ξ(Ω)) which maps u to u◦ξ−1 for all u ∈ H2
∗ (Ω) is a linear homeomorphism.

Hence, equation (10.1) is equivalent to

Pξ[u][ϕ] = λJξ[u][ϕ] ∀ϕ ∈ H2
∗ (Ω),

where u = v◦ξ. It turns out that the operator T defined in Lemma 10.1 is unitarily equivalent to the operator Tξ

defined on H2
∗ (Ω) by

Tξ := P−1
ξ ◦ Jξ. (10.2)
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We endow the space H2∗ (Ω) also with the bilinear form

〈u, v〉ξ = Pξ[u][v] ∀u, v ∈ H2
∗ (Ω). (10.3)

We have the following lemma where L(H2
∗ (Ω)) denotes the space of linear bounded operators from H2

∗ (Ω) to
itself and and Bs(H2∗ (Ω)) denotes the space of bilinear forms on H2∗ (Ω) (both spaces are equipped with their
usual norms).

Lemma 10.2. The operator Tξ defined in (10.2) is non-negative selfadjoint and compact on the Hilbert space
H2∗ (Ω) endowed with (10.3). The equation (10.1) is satisfied for some v ∈ H2∗ (ξ(Ω)) if and only if the equation
Tξu = (λ−1)u is satisfied with u = v ◦ ξ. Moreover, the map from AΩ to L(H2∗ (Ω)) × Bs(H2∗ (Ω)) which takes
ξ ∈ AΩ to (Tξ, 〈·, ·〉ξ) is real-analytic.

Proof. (See [18], Lem. 3.2 and also [19]). �

We also need the next statement whose proof can be done following step-by-step those of ([16], Lems. 2.4
and 2.5) (see also [17], Lem. 7 and [20], Lem. 4.4).

Lemma 10.3. Let θ ∈ C2
b (Ω; R2) be of the form θ(x, y) = (0, τ(x) + yδ(x)), where τ, δ are as in (3.2). Then

for all w1, w2 ∈ H4(Ω) we have

d|ξ=IdMξ[w1][w2][θ] =
∫

∂Ω

(D2w1 : D2w2)θ · νdH1

+
∫

∂Ω

(
div∂Ω(ν ·D2w1)∂Ω∇w2 + div∂Ω(ν ·D2w2)∂Ω∇w1

) · θdH1

+
∫

∂Ω

(
∂Δw1

∂ν
∇w2 +

∂Δw2

∂ν
∇w1

)
· θdH1 −

∫
Ω

(
Δ2w1∇w2 +Δ2w2∇w1

) · θdH1

−
∫

∂Ω

(
∂2w1

∂ν2
∇w2 +

∂2w2

∂ν2
∇w1

)
· ∂θ
∂ν

dH1 −
∫

∂Ω

(
∂2w1

∂ν2

∂

∂ν
∇w2 +

∂2w2

∂ν2

∂

∂ν
∇w1

)
· θdH1,

(10.4)

and

d|ξ=IdNξ[w1][w2][θ] =
∫

∂Ω

Δw1Δw2θ · νdH1

+
∫

∂Ω

(
∂Δw1

∂ν
∇w2 +

∂Δw2

∂ν
∇w1

)
· θdH1 −

∫
Ω

(
Δ2w1∇w2 +Δ2w2∇w1

) · θdH1

−
∫

∂Ω

(Δw1∇w2 +Δw2∇w1) · ∂θ
∂ν

dH1 −
∫

∂Ω

(
Δw1

∂

∂ν
∇w2 +Δw2

∂

∂ν
∇w1

)
· θdH1.

(10.5)

The proof of these results in [16] is lengthy and delicate, covering a number of pages. There, the domain Ω
is assumed to be of class at least C4, while in Lemma 10.3 it is only piecewise smooth. This translates in the
appearance of some corner-terms whenever the Tangential Divergence Theorem is used (namely, at pages 21,
23, 24, 27 in [16]). However, those terms happen to vanish due to the particular form of θ, thereby yielding
formulas (10.4) and (10.5).

Proof of Theorem 3.3. By Lemma 10.2, Tξ is selfadjoint with respect to the scalar product (10.3) and both Tξ

and 〈·, ·〉ξ depend real-analytically on ξ. Thus, by applying ([44], Thm. 2.30), it follows that Aλ is an open set
in C2

b (Ω; R2) and the map which takes ξ ∈ Aλ to λ[ξ(Ω)]−1 is real-analytic and therefore also ξ �→ λ[ξ(Ω)] is
real-analytic (see also [44], Thm. 3.21).
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It remains to prove formula (3.3). Let vλ be as in the statement so that vλ ∈ H4(Ω). By ([44], Thm. 2.30),
it follows that

d|ξ=Idλ[ξ(Ω)]−1[ζ] = 〈d|ξ=IdTξ[vλ][ζ], vλ〉
for all ζ ∈ C2

b (Ω; R2). We have

〈d|ξ=IdTξ[vλ][ζ], vλ〉 = d|ξ=IdJξ[vλ][vλ][ζ] − λ[Ω]−1d|ξ=IdPξ[vλ][vλ][ζ].

Moreover, by standard calculus, d|ξ=Id (det∇ξ) [ζ] = divζ, and therefore

d|ξ=IdJξ[vλ][vλ][ζ] =
∫

Ω

v2
λdivζdA.

Using (1.2), Lemma 10.3, the fact that (1 − σ)∂2vλ

∂ν2 + σΔvλ = 0 on ∂Ω, observing that∫
Ω

∇(v2
λ) · ζdA =

∫
∂Ω

v2
λζ · νdH1 −

∫
Ω

v2
λdivζdA,

and taking ζ = ψ − Id with ψ in the form (3.2), we get

d|φ=Idλ[φ(Ω)][ψ − Id] = −λ[Ω]
∫ π

0

(
(1 − σ)|D2v|2 + σ(Δv)2 − λ[Ω]v2

) |y=−� (τ(x) − �δ(x)) dx

+λ[Ω]
∫ π

0

(
(1 − σ)|D2v|2 + σ(Δv)2 − λ[Ω]v2

) |y=� (τ(x) + �δ(x)) dx.

Now we observe that all the eigenfunctions show symmetry properties, i.e., they are either even or odd in
the y variable, and symmetric or skew-symmetric with respect to x, see Theorem 2.1. In particular this implies
that |D2v|2, (Δv)2 and v2 are equal for y = ±� and symmetric with respect to x = π/2. This proves formula (3.3)
and completes the proof of Theorem 3.3. �

11. Some technical lemmas

In this section we quote some results that were used for the numerical computations of the derivatives of the
eigenvalues in Table 2.

Lemma 11.1. Let vm,k be the eigenfunction associated with the eigenvalue μm,k as in Theorem 2.1. Then

(1 − σ)|D2vm,k|2 + σ(Δvm,k)2 − μm,kv
2
m,k|y=� = Am,k sin2(mx) +Bm,k cos2(mx),

where
Am,k = 4μm,k(m4 − σ2m4 − μm,k)

and

Bm,k = 4(1 − σ)m2μm,k(μ1/2
m,k +m2)

(
μ

1/2
m,k − (1 − σ)m2

μ
1/2
m,k + (1 − σ)m2

)2

tanh2

(
�

√
m2 + μ

1/2
m,k

)
.

Proof. We have
vm,k|y=� = 2μ1/2

m,k sin(mx), (vm,k)xx|y=� = −2m2μ
1/2
m,k sin(mx),

(vm,k)yy|y=� =
(
(μ1/2

m,k − (1 − σ)m2)(μ1/2
m,k +m2) + (μ1/2

m,k + (1 − σ)m2)(m2 − μ
1/2
m,k)

)
sin(mx)

= 2m2σμ
1/2
m,k sin(mx),
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and, if k � 2,

(vm,k)xy|y=� =
(

(μ1/2
m,k − (1 − σ)m2)

√
μ

1/2
m,k +m2 tanh

(
�

√
μ

1/2
m,k +m2

)
−(μ1/2

m,k + (1 − σ)m2)
√
μ

1/2
m,k −m2 tan

(
�

√
μ

1/2
m,k −m2

))
m cos(mx)

=m

(
1 +

μ
1/2
m,k − (1 − σ)m2

μ
1/2
m,k + (1 − σ)m2

)
(μ1/2

m,k − (1 − σ)m2)
√
μ

1/2
m,k +m2 tanh

(
�

√
μ

1/2
m,k +m2

)
cos(mx)

= 2mμ1/2
m,k

μ
1/2
m,k − (1 − σ)m2

μ
1/2
m,k + (1 − σ)m2

√
μ

1/2
m,k +m2 tanh

(
�

√
μ

1/2
m,k +m2

)
cos(mx),

where in the second equality we used the fact that μm,k is the (k−1)th positive zero of the function λ �→ Υm(λ, �),
see Proposition 2.2. By collecting terms, the proof is concluded observing that

(1 − σ)|D2vm,k|2 + σ(Δvm,k)2 − μm,kv
2
m,k|y=�

= (vm,k)2xx|y=� + (vm,k)2yy|y=� + 2σ(vm,k)xx(vm,k)yy|y=� − μm,kv
2
m,k|y=� + 2(1 − σ)(vm,k)2xy|y=�.

The case k = 1 is analogous. �
Lemma 11.2. Let wn,j be the eigenfunction associated with the eigenvalue νn,j as in Theorem 2.1. Then

(1 − σ)|D2wn,j |2 + σ(Δwn,j)2 − νn,jw
2
n,j |y=� = Ãn,j sin2(nx) + B̃n,j cos2(nx),

where
Ãn,j = 4νn,j(n4 − σ2n4 − νn,j)

and

B̃n,j = 4(1 − σ)n2νn,j(ν
1/2
n,j + n2)

(
ν

1/2
n,j − (1 − σ)n2

ν
1/2
n,j + (1 − σ)n2

)2

coth2

(
�

√
n2 + ν

1/2
n,j

)
.

Proof. The proof is identical to that of Lemma 11.1. �

Note that from (8.1) we deduce that Am,k, Ãn,j < 0 and Bm,k, B̃n,j > 0 for all m, k, n, j.
Now we compute the H2

∗ (Ω)-norms, see (2.1), of the eigenfunctions characterized in Theorem 2.1.

Lemma 11.3. Let μm,k, νn,j be the eigenvalues of problem (1.1), and let vm,k, wn,j be the respective eigenfunc-
tions as described in Theorem 2.1. Let also

αm,k =
∣∣m2 −√

μm,k

∣∣ , βm,k = m2 +
√
μm,k and α̃n,j =

∣∣n2 −√
νn,j

∣∣ , β̃n,j = n2 +
√
νn,j .

Then

||vm,1||2 =
�πμm,1

2
(σm2 − αm,1)2

cosh2(�
√
βm,1)

+
�πμm,1

2
(βm,1 − σm2)2

cosh2(�√αm,1)

+πμm,1(σm2 − αm,1)2
√
βm,1 tanh(�

√
βm,1)

(
m2

m4 − μm,1
+

4(1 − σ)m2

μm,1 − (1 − σ)2m4

)
,

and, for k > 1,

||vm,k||2 =
�πμm,k

2
(σm2 + αm,k)2

cosh2(�
√
βm,k)

+
�πμm,k

2
(βm,k − σm2)2

cos2(�√αm,k)

+πμm,k(σm2 + αm,k)2
√
βm,k tanh(�

√
βm,k)

(
m2

m4 − μm,k
+

4(1 − σ)m2

μm,k − (1 − σ)2m4

)
·
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Similarly,

||wn,1||2 = − �πνn,1

2
(σn2 − α̃n,1)2

sinh2(�
√
β̃n,1)

− �πνn,1

2
(β̃n,1 − σn2)2

sinh2(�
√
α̃n,1)

+πνn,1(σn2 − α̃n,1)2
√
β̃n,1 coth(�

√
β̃n,1)

(
n2

n4 − νn,1
+

4(1 − σ)n2

νn,1 − (1 − σ)2n4

)
,

and, for j > 1,

||wn,j ||2 = − �πνn,j

2
(σn2 + α̃n,j)2

sinh2(�
√
β̃n,j)

+
�πνn,j

2
(β̃n,j − σn2)2

sin2(�
√
α̃n,j)

+πνn,j(σn2 + α̃n,j)2
√
β̃n,j coth(�

√
β̃n,j)

(
n2

n4 − νn,j
+

4(1 − σ)n2

νn,j − (1 − σ)2n4

)
·

Proof. Here we provide the computations only for vm,1, the other cases being similar. We recall some identities
which will be extensively used in the following computations:∫ π

0 sin2(mx)dx =
∫ π

0 cos2(mx)dx = π
2 ∀m ∈ N,∫ �

−� cosh2(ay)dy = sinh(a�) cosh(a�)
a + �,∫ �

−� cosh(ay) cosh(by)dy = 2
a2−b2 (a sinh(a�) cosh(b�) − b sinh(b�) cosh(a�)),

for any a, b ∈ R such that a2 �= b2. We shall also make use of the implicit characterization (i) following
Theorem 2.1 for the eigenvalue μm,1 associated with the eigenfunction vm,1, that is,

(βm,1 − σm2)2
√
αm,1 tanh(l

√
αm,1) = (σm2 − αm,1)2

√
βm,1 tanh(l

√
βm,1),

where we have set αm,1 = m2 −√
μm,1, βm,1 = m2 + √

μm,1. Hence

2
π

∫
Ω v

2
m,1 =

(σm2 − αm,1)2

cosh2(�
√
βm,1)

∫ �

−� cosh2(y
√
βm,1)dy +

(βm,1 − σm2)2

cosh2(�√αm,1)

∫ �

−� cosh2(y√αm,1)dy

+2
(σm2 − αm,1)(βm,1 − σm2)
cosh(�√αm,1) cosh(�

√
βm,1)

∫ �

−� cosh(y√αm,1) cosh(y
√
βm,1)dy

=
(σm2 − αm,1)2√

βm,1

tanh(�
√
βm,1)+

�(σm2 − αm,1)2

cosh2(�
√
βm,1)

+
(βm,1 − σm2)2√

αm,1
tanh(�√αm,1)+

�(βm,1 − σm2)2

cosh2(�√αm,1)

+4
(σm2 − αm,1)(βm,1 − σm2)

αm,1 − βm,1

(√
αm,1 tanh(�√αm,1) −

√
βm,1 tanh(�

√
βm,1)

)
=
�(σm2 − αm,1)2

cosh2(�
√
βm,1)

+
�(βm,1 − σm2)2

cosh2(�√αm,1)
+ (σm2 − αm,1)2

√
βm,1 tanh(�

√
βm,1)

(
1

βm,1
+

1
αm,1

)
+(σm2 − αm,1)2

√
βm,1 tanh(�

√
βm,1)

(
σm2 − αm,1

βm,1 − σm2
− βm,1 − σm2

σm2 − αm,1

)
4

αm,1 − βm,1

=
�(σm2 − αm,1)2

cosh2(�
√
βm,1)

+
�(βm,1 − σm2)2

cosh2(�√αm,1)
+ (σm2 − αm,1)2

√
βm,1 tanh(�

√
βm,1)

2m2

m4 − μm,1

+(σm2 − αm,1)2
√
βm,1 tanh(�

√
βm,1)

8(1 − σ)m2

μm,1 − (1 − σ)2m4
·

Since ||v||2 = λ||v||2L2(Ω) for any eigenfunction v ∈ H2
∗ (Ω) associated with the eigenvalue λ, this concludes the

proof. �
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12. Conclusions

Following suggestions from the engineering literature [41], we have set up an analytic approach to the study
of the behavior of frequencies in partially hinged rectangular plates subject to shape variations. This is usually
considered a very difficult task (see [41], Chap. 6), and several simplifications in the model are necessary, provided
they maintain the behavior of the structure. In particular, our approach does not take into account the elastic
deformation of the plate which is however considered a negligible phenomenon, see again [41]. The present paper
should be considered as a first simple attempt to analyze the torsional stability of a deck with respect to shape
variations. We do not pretend it to be exhaustive, it may certainly be improved. But, at least, it gives very
strong hints on the impossibility of having a simple and reliable formula able to quantify the torsional stability,
and raises severe criticisms against the formulas available in literature.

From Theorem 2.1 we learn that a longitudinal oscillation may be a linear combination of infinitely many
different eigenfunctions. For instance, a linear combination of eigenfunctions associated with μm,k for k � 1 has
the form Y (y) sin(mx) with Y being an even function of y. This means that any such function is approximately
of the form C sin(mx) and, in turn, a longitudinal oscillation of the plate. A similar argument works also
for torsional oscillations. Therefore, a precise characterization of longitudinal or torsional normal modes is not
straightforward. However, the extremely larger frequencies that appear in Table 1 suggest to restrict the attention
to the eigenvalues in (2.6). In this respect, let us recall what happened at the Tacoma Bridge. A few days prior
to its collapse, the project engineer L.R. Durkee wrote a letter (see [1], p. 28) describing the oscillations which
were observed so far. He wrote: Altogether, seven different motions have been definitely identified on the main
span of the bridge, and likewise duplicated on the model. These different wave actions consist of motions from
the simplest, that of no nodes, to the most complex, that of seven modes. Moreover, Farquharson ([1], V-10)
witnessed the collapse and wrote that the motions, which a moment before had involved a number of waves
(nine or ten) had shifted almost instantly to two. This means that the instability occurred from the ninth or
tenth longitudinal mode to the second torsional one. Smith and Vincent ([57], p. 21) state that this shape of
torsional oscillations is the only possible one, see also ([31], Sect. 1.6) for further evidence and more historical
facts. For these reasons, the eigenvalues in (2.6) appear more than enough for a reliable stability analysis.

On the other hand, from ([3], Sect. 2.5) we learn that the flutter speed Vc of a bridge depends on the couple of
modes considered. All this suggests to study the torsional stability of the plate for several (but not all) couples
of (longitudinal,torsional) normal modes. When the parameters are fixed according to the Tacoma Narrows
Bridge data, see (2.3), the most interesting ones are (μ̄m,1, ν̄2,2) for m = 1, . . . , 14 since they correspond to low
frequencies, they satisfy μ < ν, and they involve the second torsional mode.

In this paper we have generalized the definition of critical energy (or flutter velocity), see formula (6.5), in
order to make it also usable for plates having shapes other than rectangular, see (6.3). Then we discovered
several rules that the critical energy of a couple of (longitudinal,torsional) eigenvalues is supposed to satisfy:
these are summarized in (5.2), (6.1), (6.6), and (6.9). Nevertheless, the empirical formula (3.7) shows that these
suggestions cannot be simultaneously satisfied. From Section 7 we learn that a fully accepted way to compute
the flutter velocity is not available and that the most popular formula coming from engineering literature is not
reliable. Clearly, a formula able to quantify the torsional stability of a deck would be very important for the
safety of bridges and any progress in this direction would be extremely welcome. But our conclusion is that it
cannot be found in an explicit and simple form.

Finally, let us mention a related challenging problem. The deck of a bridge is often strengthened with stiffening
trusses [48,61]. It would be of great interest to study the variation of the frequencies of oscillations in presence of
trusses. In this respect, the framework could be that of Michell trusses [47], see also [30] for a first naif attempt.
Related recent works are [10–12], which deal with second order energies (leading to fourth order equations such
as (1.1)) on thin structures such as a plate modeling the deck of a bridge.
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[10] G. Bouchitté, G. Buttazzo and P. Seppecher, Energies with respect to a measure and applications to low dimensional structures.
Calc. Var. 5 (1997) 37–54.
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