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REDUCED BASIS APPROXIMATION OF LARGE SCALE PARAMETRIC
ALGEBRAIC RICCATI EQUATIONS
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Abstract. The algebraic Riccati equation (ARE) is a matrix valued quadratic equation with many
important applications in the field of control theory, such as feedback control, state estimation or
H∞-robust control. However, solving the ARE can get very expensive in applications that arise from
semi-discretized partial differential equations. A further level of computational complexity is introduced
by parameter dependent systems and the wish to obtain solutions rapidly for varying parameters.
We thus propose the application of the reduced basis (RB) methodology to the parametric ARE by
exploiting the well known low-rank structure of the solution matrices. We discuss a basis generation
procedure and analyze the induced error by deriving a rigorous a posteriori error bound. We study the
computational complexity of the whole procedure and give numerical examples that prove the efficiency
of the approach in the context of linear quadratic (LQ) control.
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1. Introduction

The solution of many problems in the field of control theory lead to so-called algebraic Riccati equations
(ARE), see for example [1] or [39]. A popular example where the ARE arises, is in the solution of feedback
control problems for linear and time invariant (LTI) systems with quadratic cost functional – the so called linear
quadratic regulator (LQR), see e.g. [37]. Other applications, like the optimal sensor placement, linear quadratic
Gaussian balanced truncation, optimal state estimation and certain robust control problems also require the
solution of AREs, see [26, 32, 33, 42, 66].

Many physical, biological or technical phenomena are modeled in terms of partial differential equations
(PDEs). Often they depend on one or more parameters describing for instance material coefficients, geometric
properties or quantifying uncertainties. For computational purposes one usually semi-discretizes the PDE in
space in the first place, which typically results in large discrete systems. Formulating the AREs for those
systems leads to quadratic matrix equations with the same dimension as the underlying discrete system. Hence,
solving this equation can be a very challenging task, especially in multi-query scenarios like in real-time contexts,
statistical analyses or on small computing devices such as micro controllers. Although in the recent decades
many very efficient solvers for the ARE have been developed, the above mentioned scenarios can usually not
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be tackled, due to the very large dimension of the semi-discretized systems. We refer to [7] for a review of the
state-of-the-art solvers. All large scale solvers are based on the assumption, that the solutions to the ARE are
of low (numerical) rank, such that a so called low-rank factorization can be used to efficiently represent the
solution. This assumption is also the key ingredient for the model reduction technique, which is developed in
this paper.

The focus of this work is to apply parametric model reduction techniques to the ARE in order to obtain
approximate solutions rapidly and with reliable error bounds. One reduction technique that has proved to work
very well for parametric partial differential equations is the Reduced Basis (RB) method, cf . [14, 17, 20, 45].
Extensions to the open loop optimal control of PDEs have been carried out in [34] or [43], and a recent work [56]
shows an application of the RB-technique for parametric Lyapunov equations, which is a special case of the
parametric ARE.

The overall goal in RB methods is to divide the computation in an expensive offline step and a rapid and
cheap online calculation. In the offline part of the procedure, a problem adapted low dimensional solution space
is constructed from high dimensional solutions for suitably selected parameter values. The original problem
is then projected onto this low dimensional space, which results in a small system of equations that can be
solved rapidly online for different parameters. The expensive procedure pays off during the online phase where
solutions to the problem can be obtained rapidly with a complexity ideally completely independent of the high
dimension. A crucial ingredient in all certified RB methods are a posteriori error estimators that can be cheaply
evaluated along with the reduced solution. Such error estimators are used in the online step for the verification
of the approximation quality as well as in the offline step for choosing the worst approximated element in a
greedy loop, cf . [14, 16]. Although we are not directly dealing with partial differential equations, we adopt the
basic RB methodology for the parametric ARE scenario (RB-ARE).

This paper is organized as follows: we describe the basic setup and establish the notation used throughout
this paper in Section 2. In Section 3 the reduction technique is explained and a new algorithm for the basis
generation is presented, followed by a discussion of approximation error statements in Section 4, where we focus
on a new a posteriori error estimator between the true and the approximated solution of the ARE. Furthermore,
we discuss the calculation of the constants involved in the error estimation procedure. In particular, we show
in Section 5 how the whole procedure can be decomposed in an offline/online scheme. Numerical examples in
Section 6 show the performance of our approach. We conclude in Section 7 with final remarks.

2. Problem setting

Throughout this article we are considering the parametric Algebraic Riccati Equation for the unknown
solution P (μ) ∈ Rn×n:

A(μ)T P (μ)E(μ) + E(μ)T P (μ)A(μ) − E(μ)T P (μ)B(μ)R(μ)−1B(μ)T P (μ)E(μ) + C(μ)T Q(μ)C(μ) = 0.
(2.1)

The matrices E(μ), A(μ) ∈ Rn×n, B(μ) ∈ Rn×m, C(μ) ∈ Rp×n, Q(μ) ∈ Rp×p and R(μ) ∈ Rm×m with E(μ)
invertible are given data matrices and the solution matrix P (μ) ∈ Rn×n is sought. We furthermore require
that Q(μ) is symmetric positive semidefinite and R(μ) is symmetric positive definite, which in addition implies
the invertibility of R(μ). We allow parameter dependency on all data matrices, where the parameter vector μ
stems from a bounded parameter set P ⊂ Rq. Due to the direct link of the data matrices in Equation (2.1) to
dynamical systems, we call n the state dimension, m the number of inputs and p the number of outputs, see also
Example 2.2 below. Throughout this paper, we will always consider the full parametric case, but for improved
readability and sake of brevity we will often omit the explicit dependence of the matrices on the parameter μ
from now on.

The solvability of equation (2.1) is not clear unless additional assumptions and requirements on the data
matrices are posed. Indeed, the equation can have none or multiple solutions. Among all possible solutions,
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we are interested in the so called stabilizing solution, which is characterized by the following conditions:

P = PT , P � 0, (E, A − BR−1BT PE) is stable. (2.2)

Here, PT is the transpose of P , the expression P � 0 denotes positive semidefiniteness of the matrix P and a
matrix pair (E, Y ) is called stable when all real parts of all eigenvalues λi(E, Y ) of the generalized eigenvalue
problem Y x = λEx are strictly less than zero. Note that in this case, the matrix pair (E, Y ) is also called
Hurwitz. One possible assumption that guarantees the existence of a unique stabilizing solution to (2.1) is
to require stabilizability and detectability of the matrices E, A, B, C: stabilizability of (E, A, B) means that
rk[A− λE, B] = n for all λ ∈ C with �(λ) ≥ 0, where rk denotes the rank of a matrix and �(·) is the real part
of a complex number. Detectability of (E, A, C) is equivalent to stabilizability of (ET , AT , CT ). As proven for
example in [39], the stabilizability and detectability assumption guarantee the existence of a unique stabilizing
solution P ∈ Rn×n.

Remark 2.1. We will assume that the problems under consideration are stable, i.e. (E, A) is a stable matrix
pair. Unstable systems can be preprocessed by finding a suitable matrix H such that (E, A−BH) is stable and
by replacing A with A − BH in the remainder of this article. This is always possible due to the stabilizability
assumption. We refer to [4] for an example of this procedure.

If not otherwise stated, we will denote by ‖ · ‖ = ‖ · ‖2 the Euclidean 2-norm for vectors and induced operator
norm of an operator. Further, for a matrix A = (a1 . . . an) = (aij)n

i,j=1 ∈ R
n×n with column vectors ai ∈ R

n,
we define the Frobenius norm ‖A‖F :=

√
tr (AT A), where tr(A) :=

∑n
i=1 aii is the trace function. We denote

by colspan(A) = span({a1, . . . , an}) the column span of the matrix A. By | · |, we denote the number of elements
of a set.

Another important property for matrices is the logarithmic norm, cf . [11], which is defined as ν[A] :=
limh→0+

‖In+hA‖−1
h for any induced norm ‖ · ‖ and which can be calculated as ν[A] = maxi λi(1

2 (A + AT )) for
the Euclidean norm. The logarithmic norm of a matrix has the property, that it is directly related to the decay
of the norm of the matrix exponential eAt, i.e. it holds

‖eAt‖ ≤ eν[A]t, t ≥ 0. (2.3)

A proof for this well known inequality can for example be found in [22]. We will make use of this property in
Section 4.2, for proving the stability of the reduced controller in the full dimensional LTI system. A matrix A
with ν[A] < 0 is called dissipative, since it is related to the energy loss in the physical system. Usually we consider
systems with mass matrices E. The logarithmic norm for those systems is defined as νE [A] := ν[E−1A]. For
symmetric E one can employ the Cholesky factorization to show that the calculation of νE [A] can be equivalently
performed by finding the eigenvalue of the generalized eigenvalue problem 1

2 (A + AT )x = λEx with the largest
real part, see also [44].

One of the main application for the ARE, which is also our main interest, is the feedback stabilization of
linear and time-invariant (LTI) control systems.

Example 2.2. Consider the following linear quadratic regulator (LQR) problem:

min
u

∫ ∞

0

(y(t)T Qy(t) + u(t)Ru(t))dt (2.4)

s.t.

⎧⎪⎨
⎪⎩

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t)
x(0) = x0.

(2.5)

As explained before, the matrices are given as E, A ∈ R
n×n, B ∈ R

n×m and C ∈ R
p×n, where E is invertible.

Systems of this form typically arise after the spatial discretization of time dependent linear partial differential
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equations, see for example [15, 31]. The function u(t) is called “control” of the system and serves as an input
variable that can be chosen to alter the dynamics in a specific way. The function y(t) is called “output” and can
model measurements of interest. As explained for the ARE, the weighting matrices Q ∈ Rp×p and R ∈ Rm×m

in the cost functional are symmetric and Q must be positive semidefinite, whereas R must be positive definite.
The minimization of the cost functional finds the control input of minimum energy, which steers the system
to the origin x = 0. It can be shown (see for example [39]), that the problem of minimizing (2.4) with respect
to (2.5) is solved by setting u(t) = −R−1BT PEx(t) where P is the unique symmetric and positive semidefinite
solution to the ARE

AT PE + ET PA − ET PBR−1BT PE + CT QC = 0. (2.6)

As mentioned above P is also the stabilizing solution under the stabilizability and detectability assumptions.
This reveals the close relation between AREs and feedback control problems: since the optimal control is given
in the form u(t) = F(x(t)), state information is fed back to the controller. This specific structure has the big
advantage over classical open-loop control, that the feedback structure makes the closed-loop more robust to a
priori unknown disturbances. Since spatial discretizations like the finite element method for linear PDEs lead
to large LTI systems and hence to large AREs, a fast and reliable approximation of (2.6) is the key ingredient
for solving parametric feedback control problems in real-time or multi-query scenarios.

Remark 2.3. Note that we are discussing the ARE in its generalized form (2.1), i.e. with explicit dependence
on the mass matrix E. Since we assume invertibility of E we can substitute P = E−T P̃E−1 in equation (2.1),
which results in

ÃT P̃ + P̃ Ã − P̃ B̃R−1B̃T P̃ + CT QC = 0, (2.7)

with Ã := E−1A and B̃ := E−1B. Many solvers for AREs in the generalized form (2.6) internally transform the
system to the standard form (2.7), and avoid the multiplication of A with E−1 by employing a LU-factorization
and forward and backward substitutions, since the inversion would destroy important properties like sparsity
or symmetry. We refer to the overview article [7] and the thesis [50] for further information.

3. Reduction approach

In cases where the number of inputs m and the number of outputs p is small compared to the number of
degrees of freedom n of the underlying system, the solution matrix P to the ARE (2.1) often can be approximated
by a low rank factorization of the form P ≈ ZZT with Z ∈ Rn×k and k 
 n. This is possible due to a fast
decay in the singular values of P , which means that P is of low numerical rank. In the contributions [3,40,47,60]
theoretical justifications for this observation are carried out, especially for the Lyapunov equation with low rank
right hand side. In [8], an upper bound for the decay of the singular values of P is presented, which can be used
to explain the desired low-rank structure.

We further assume that the manifold that consists of the low-rank factors Z under parameter variation, can
be approximated by linear spaces of much lower dimension than the original system dimension n. Hence, a
projection of equation (2.1) on the relevant subspace might lead to a much smaller problem that can easily be
solved by standard techniques. Projection-based methods for approximating matrix equations are not new: large
scale Lyapunov equations can be solved numerically by projecting the equation on Krylov subspaces, see for
example [28,49,53]. Extensions of those projection methods for the ARE can be found for instance in [24,29,30].
Very recently, for parametric problems, in [56] an RB method for large and sparse Lyapunov equations has been
presented, whereas no previous work for the parametric ARE is known to the authors.

3.1. Projection based approximation of the ARE

A general class of projections can be described by a pair of biorthogonal matrices V, W ∈ R
n×N with WT V =

IN (or WT EV = IN ) and N 
 n. The columns of W span the N dimensional subspace W := colspan(W ) ⊂ Rn.
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We will approximate the ARE in the space of all matrices, whose columns stem from the space W : For that
purpose, we first note that any matrix P̂ ∈ Rn×n with colspan(P̂ ) ⊂ W can be written as WG for some matrix
G ∈ RN×n. Since the stabilizing solution matrices of the ARE are always symmetric, one has the additional
requirement P̂ = WG = GT WT = P̂T . Hence, the matrix P̂ can also be written as P̂ = WḠWT for a symmetric
matrix Ḡ ∈ R

N×N . In the following, we will write PN := Ḡ, since this will be the N dimensional target quantity
for our RB scheme. Substituting the solution P by its approximation

P ≈ P̂ := WPNWT (3.1)

in the left hand side of equation (2.1), we arrive at

R(WPNWT ) := AT WPNWT E + ET WPNWT A − ET WPNWT BR−1BT WPNWT E + CT QC,

where we introduced the matrix-valued residual R(·) of the ARE. Requiring a so called Galerkin condition2

V TR(P̂ )V = 0 leads to

AT
NPNEN + ET

NPNAN − ET
NPNBNR−1BT

NPNEN + CT
NQCN = 0, (3.2)

where the reduced matrices are defined as

EN = WT EV, AN := WT AV, BN = WT B, CN = CV. (3.3)

Equation (3.2) is again an ARE, but now of much lower dimension N × N and can thus be easily solved by
using standard methods like a Hamiltonian approach, which is implemented in the function care in MATLAB.

The projection-based factorization naturally defines a low rank approximation for the full dimensional solution
matrix: we can calculate the low rank factor Ẑ of the approximation P̂ by employing an eigenvalue decomposition
of the small matrix PN = UNSNUT

N and by setting

Ẑ := WUNS
1/2
N ∈ R

n×N , (3.4)

which yields P̂ = ẐẐT , since ẐẐT = WUNS
1/2
N S

1/2
N UT

NWT = WPNWT . Instead of forming the whole and
usually dense n× n matrix P̂ through (3.1), the low rank factor (3.4) is used in places where the full matrix is
required.

Remark 3.1. We want to briefly compare the presented RB-ARE reduction approach to the classical projection
based model reduction techniques for dynamical systems such as Krylov-subspace methods, balanced truncation
or proper orthogonal decomposition, cf . [2]. We will again consider LTI systems of the form (2.5). All these
model reduction approaches are based on the projection of the state to a subspace, whose basis is defined
by the columns of a projection matrix V ∈ Rn×N . If we now introduce a reduced state xN (t) ∈ RN and
approximate x(t) ≈ V xN (t), we can substitute the high dimensional state in the system (2.5). Restricting the
residual to be orthogonal to another test space, defined by a basis matrix W ∈ Rn×N , e.g. after introducing a
Petrov-Galerkin condition, we end up with the reduced system{

WT EV ẋN (t) = WT AV xN (t) + WT Bu(t)
yN(t) = CV xN .

(3.5)

Abbreviating EN := WT EV , AN := WT AV , BN = WT B and CN := CV as in (3.3) reveals the link to the
reduced ARE (3.2): if we define the minimization target

min
∫ ∞

0

(
yN(t)T QyN(t) + u(t)T Ru(t)

)
dt, (3.6)

2See for example [49].
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we see that equation (3.2) solves the reduced LQR problem (3.6), (3.5) when we set u(t) = −R−1BT
NPNENx(t).

Although the reduced closed loop system EN ẋN = (AN − BNR−1BT
NPNEN )xN is optimally controlled by

choosing PN as the stabilizing solution to the reduced ARE (3.2), the reconstruction P̂ := WPNWT must
not necessarily yield a good approximation to the solution P of the full dimensional ARE (2.1), if one of the
above mentioned classical model order reduction techniques is used, as those reduced spaces are only capable of
representing the state well, but not the closed-loop feedback structure of the system, see for example [9,51]. The
procedure presented in this article is able to fill this gap and to allow the efficient approximation of closed-loop
controllers in the LQR framework.

We finish this section with a useful property that allows verifying zero error whenever the projection matrix
contains the whole (low rank) solution space of the ARE.

Proposition 3.2 (Reproduction of Solutions). Let V, W ∈ Rn×N be given. Let the symmetric and positive
semidefinite matrix P ∈ Rn×n be the unique stabilizing solution to the ARE (2.1) and assume colspan(P ) ⊂
colspan(W ). We assume that (EN , AN , BN ) is stabilizable and (EN , AN , CN ) from (3.3) is detectable. Then it
follows

P = WPNWT = P̂

where PN solves the reduced ARE (3.2).

Proof. Due to symmetry of P and the assumption that colspan(P ) ⊂ colspan(W ), there exists a unique sym-
metric and positive semidefinite matrix G ∈ RN×N with P = WGWT . Using the definition of the ARE, we
get

AT WGWT E + ET WGWT A − ET WGWT BR−1BT WGWT E + CT QC = 0.

Multiplying this equation with V T from left and V from right yields

AT
NGEN + ET

NGAN − ET
NGBNR−1BT

NGEN + CT
NQCN = 0, (3.7)

where the reduced matrices are defined as in (3.3). Due to the assumption of stabilizability and detectability of
the reduced matrices, the reduced ARE (3.7) has a unique positive semidefinite and symmetric solution G. As
by construction P̂ = WGWT is a symmetric and positive semidefinite solution to the full dimensional ARE, we
can conclude due to the uniqueness of the stabilizing solution that P = P̂ and thus G = PN , see [39]. �

3.2. Low rank factor greedy

Besides biorthogonality WT V = IN (or WT EV = IN ) we have not yet made any further assumptions on
the matrices W, V . There are many possible ways how a basis can be constructed. In a parametric scenario, the
reduced basis (RB) approach has proven to work well for the approximation of partial differential equations,
see for example [14,45,48,61]. The goal in all RB methods is to split the calculation in an offline/online scheme,
where the online computation ideally does not depend on the high dimension n. This is achieved by accepting a
possibly expensive offline phase, where a problem adapted solution space is constructed which then allows the
fast solution in the online phase. Rigorous error bounds that are likewise fast to evaluate are the key ingredient
for justifying the approach online.

The standard approach for constructing the reduced basis works in a greedy fashion as it has been introduced
for RB methods in [61]. The greedy procedure is an iterative algorithm that tries to uniformly minimize the
approximation error on a finite, but possibly large, training set Ptrain ⊂ P by subsequently adding vectors
constructed from the worst approximated element to the basis. A crucial ingredient in all greedy approximations
is the choice of a suitable error indicator for selecting the worst approximated element. There are several
possible choices, each with its own advantages and disadvantages. One possibility would certainly be the true
approximation error. However, this is often not possible, since the evaluation in each iteration would be too
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expensive as the true solution for all training parameters would be required. A better approach makes use of
error indicators that are cheaply computable for all parameters in the training set Ptrain.

In this paper, we propose a new algorithm for the construction of a subspace for the RB-ARE method,
which we denote Low-Rank Factor Greedy (LRFG) procedure. The pseudocode is listed in Algorithm 1. The
basic structure of the algorithm follows the greedy-principle: in a loop the error indicator is evaluated for all
elements μ in the training set Ptrain ⊂ P and for the current reduced basis, that is spanned by the columns
of W . If the algorithm determines a maximum error indicator value beneath a given desired tolerance ε, the
loop terminates and the basis construction for W is complete. The biorthogonal counterpart V can simply be
chosen as V := W , but also an orthogonalization with respect to the mass matrix is possible, such that V is
chosen such that WT EV = IN . If the tolerance is not yet reached, the parameter μ∗ ∈ Ptrain of the worst
approximated solution for the current basis is selected by finding the parameter μ∗ that maximizes the error
indicator Δ(W, μ). The next step requires an expensive calculation of the low rank factor Z(μ∗) for the solution
of the ARE P (μ∗). The next step consists in finding the relevant information in the low rank factor Z(μ∗). As
a preprocessing step, only the part which is not yet captured in the current basis Z⊥ := (In − WWT )Z(μ∗) is
considered. Afterwards the remaining information in the column space of Z⊥ is compressed and added to the
basis. This essentially is similar to the POD-Greedy procedure for parametric and time-dependent problems,
where the low-rank factors Z(μ∗) replace the solution trajectories, see [19].

For the compression we propose to use the proper orthogonal decomposition-technique (POD), which essen-
tially is the principal component analysis. This has been successfully applied in the basis building procedure for
time-dependent problems, see e.g. [21, 62]. The idea behind POD is to find orthogonal vectors z̃1, . . . , z̃l ∈ Rn

that capture the essential information in the columns of (z1, . . . , zk) = Z⊥ ∈ Rn×k. Mathematically speaking,
we seek the solution of the following constrained maximization problem:

max
z̃1,...,z̃l∈Rn

l∑
i=1

k∑
j=1

|〈zj , z̃i〉|2, subject to 〈z̃i, z̃j〉 = δij , for i, j = 1, . . . , l (3.8)

where 〈·, ·〉 denotes the standard inner product in Rn. Problem (3.8) can be solved by setting z̃i = ui for
i = 1, . . . , l, where ui ∈ Rn are the first columns of the matrix U1 in the thin singular value decomposition
Z = U1SUT

2 , with S = diag(σ1, . . . , σk) ∈ Rk×k and U1 ∈ Rn×k with orthogonal columns. In the following we
will call z̃i POD modes. A natural approach would be to add the most dominant POD-mode in each greedy-
iteration, but this can lead to large offline times as in (almost) each iteration an ARE has to be solved, see
also the numerical examples in Section 6. A different approach is to add more elements by describing an inner
tolerance toli ∈ [0, 1], which correlates to the amount of information that should be captured from the low rank
factor Z⊥. To quantify this amount, we use the indicator function

E(l) :=
∑l

i=1 σi∑r
i=1 σi

, r := rk(Z⊥). (3.9)

We find the smallest number l̃ ≥ 1, such that E(l) ≥ toli for all l ≥ l̃, meaning that we capture at least the
fraction toli of all information. We abbreviate this POD-procedure by (z̃1, . . . , z̃l̃) = Z̃ = POD(Z⊥, toli) and
refer to [62] for more information on POD in the context of model reduction. The add-one strategy described
above, as well as a full inclusion of the low rank factor in the basis, is captured by this procedure by setting
toli = 0 and toli = 1, respectively. There is a trade-off between the resulting basis size and the number of offline
solves of the ARE. We refer to Section 6 for a numerical example.

In practice, the algorithm must certainly be extended at some points. For example it must be ensured
that the algorithm terminates with a reasonably sized basis. This can be achieved by prescribing a maximum
number of basis elements or by using techniques such as adaptive basis enrichment or P-partitioning, cf . [18].
Furthermore, the calculated snapshots should be cached, since the same parameter could be chosen during
the greedy-iterations. This is due to the fact that incluision of few modes does not necessarily imply exact
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approximation of a given matrix snapshot. A similar phenomenon can be observed in RB approximation for
unsteady problems, see [19].

Algorithm 1: Low-Rank Factor Greedy Algorithm (LRFG) for the basis generation.
Data: Initial basis matrix W0, training set Ptrain ⊂ P , tolerance ε, inner tolerance toli ∈ [0, 1], error indicator

Δ(W,μ)
Set W := W0.
while maxµ∈Ptrain Δ(W,μ) > ε do

μ∗ := arg maxµ∈Ptrain
Δ(W,μ)

Solve the full dimensional ARE for the low rank factor Z(μ∗)
Set Z⊥ := (In − WW T )Z(μ∗)
Z̃ = POD(Z⊥, toli)
Extend the current basis matrix W = (W, Z̃)

Set V := W (or choose V such that W T EV = In)
Return V, W .

4. Error estimation

A crucial ingredient in certified RB methods is the validation of the procedure by means of error bounds.
They should be rigorous and cheaply computable, which means that in the ideal case the evaluation complexity
of the bound is independent of the high dimension n. The main result in this section is a computable a posteriori
error bound for the error between the approximated and the true solution (potentially non low-rank) to the
ARE. The application of the bound however requires the knowledge of several constants that are very expensive
to calculate. As a remedy we state bounds for those constants and show how different techniques can be
used to achieve fast (but possibly nonrigorous) approximations to those constants. A complete offline/online
decomposition of the procedure allows the calculation of the approximation and the corresponding bounds in a
complexity independent of the high dimension n and thus ensures a good online performance.

4.1. A posteriori error estimator for the parametrized ARE

In this section we present a new residual based error estimator for approximations to the generalized
ARE (2.1). We recall the definition of the residual of the ARE for P ∈ R

n×n:

R(P ) := AT PE + ET PA − ET PBR−1BT PE + CT QC. (4.1)

The ARE can be seen as a nonlinear problem defined on the Banach space R
n×n. We make use of a generic

theorem that can be found in [10], and which can be used to derive a posteriori residual based error bounds for
nonlinear problems. We begin with a rigorous statement and later relax the assumptions to allow online efficient
computations.

Theorem 4.1 (Residual Based Error Bound). Let P̂ ∈ Rn×n be an approximate solution to the ARE (2.1).
Abbreviate Y (P̂ ) := A−BR−1BT P̂E and define the linear operator LP̂ := DR|P̂ , i.e. LP̂ (N) := Y (P̂ )T NE +
ET NY (P̂ ). Assume LP̂ is invertible and define

γ := ‖L−1

P̂
‖ = sup

‖S‖=1

‖L−1

P̂
(S)‖, ε := ‖R(P̂ )‖, L := 2‖E‖2‖BR−1BT ‖.

Then: If the validity criterion

4γ2εL ≤ 1 (4.2)
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holds true, there exists a unique solution P ∗ ∈ B2γε(P̂ ) := {X ∈ Rn×n| ‖X − P̂‖ ≤ 2γε} to the ARE, i.e.
R(P ∗) = 0, and the following upper bound holds

‖P ∗ − P̂‖ ≤ ΔP :=
1

2γL
(1 −

√
1 − 4γ2Lε). (4.3)

Proof. The proof is performed in two steps: We first prove the existence of the solution P ∗ by applying Banach’s
fixed-point theorem. This follows in large parts the proof of Theorem 2.1 in [10]. The second part shows how
the bound (4.3) can be established.

Since the residual (4.1) is quadratic in P it is Fréchet differentiable with derivative DR|P̂ = LP̂ . In the
sequel we need the following Lipschitz-property of the derivative with respect to the evaluation argument: let
S, P ∈ R

n×n, then∥∥(LP̂ − LP )(S)
∥∥ =

∥∥∥(BR−1BT (P̂ − P )E)T SE + ET S(BR−1BT (P̂ − P )E)
∥∥∥

≤ 2‖E‖2‖BR−1BT ‖‖P − P̂‖‖S‖ = L‖P − P̂‖ ‖S‖
⇒ ∥∥LP̂ − LP

∥∥ ≤ L
∥∥∥P̂ − P

∥∥∥ . (4.4)

Next, we define the mapping H : Rn×n → Rn×n by H(P ) := P − L−1

P̂
R(P ). Then it clearly holds H(P ) =

P ⇔ R(P ) = 0. We next prove the existence of a fixed-point of H , by showing that H is a contraction and
self-mapping in a closed ball Bα := Bα(P̂ ) = {P ∈ Rn×n|‖P − P̂‖ ≤ α} around the approximate solution P̂ .
We first show that H is a contraction in the set Bα, whenever the radius α is small enough. For this purpose
we calculate with P, P ′ ∈ Bα

‖H(P ) − H(P ′)‖ =
∥∥∥P − P ′ − L−1

P̂
(R(P ) −R(P ′))

∥∥∥ =
∥∥∥L−1

P̂

[LP̂ (P − P ′) − (R(P ) −R(P ′))
]∥∥∥ . (4.5)

Using the fundamental theorem of calculus, we obtain the representation

R(P ) −R(P ′) =
∫ 1

0

LP ′+t(P−P ′)(P − P ′)dt, (4.6)

which can be combined with (4.5) to get the bound

‖H(P ) − H(P ′)‖ =

∥∥∥∥∥∥∥(LP̂ )−1

∫ 1

0

(LP̂ − LP ′+t(P−P ′)︸ ︷︷ ︸
∈Bα

)(P − P ′)dt

∥∥∥∥∥∥∥
≤ γ[ sup

P∈Bα

∥∥LP̂ − LP

∥∥] ‖P − P ′‖
(4.1)

≤ γLα ‖P − P ′‖ !≤ τ ‖P − P ′‖ , with τ < 1. (4.7)

Whenever the last inequality is satisfied, H is a contraction on Bα. For proving the self-mapping property, we
find a condition on α such that ‖H(P ) − P̂‖ ≤ α, since then H(P ) ∈ Bα. Let P ∈ Bα, then∥∥∥H(P ) − P̂

∥∥∥ =
∥∥∥L−1

P̂

[
LP̂ (P − P̂ ) − (R(P ) −R(P̂ ))

]
− L−1

P̂
R(P̂ )

∥∥∥
(4.6)
=
∥∥∥∥L−1

P̂

∫ 1

0

(LP̂ − LP̂+t(P−P̂ ))(P − P̂ )dt − L−1

P̂
R(P̂ )

∥∥∥∥
≤ ‖LP̂ − LP̂+t(P−P̂ )‖‖P − P̂‖ + γε ≤ γα2L + γε

!≤ α. (4.8)
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We first choose α = 2γε =: α̂. Then from (4.7) we have ‖H(P )−H(P ′)‖ ≤ 2γ2Lε‖P −P ′‖ ≤ 1
2‖P −P ′‖, where

we made use of the validity criterion (4.2). Furthermore, from (4.8) we obtain γ4γ2ε2L+γε = γε(4γ2εL)+γε ≤
2γε = α̂. Thus the mapping H is a contraction and a self-mapping in Bα̂ := B2γε(P̂ ) and we can apply the
Banach fixed-point theorem to prove the existence of P ∗ ∈ Bα̂ with R(P ∗) = 0. Note that this already gives an
a posteriori error bound ‖P̂ −P ∗‖ ≤ 2γε. However this bound can be sharpened by rechecking the bounds (4.7),
(4.8): the contraction property is valid for α ≤ α̂. Furthermore by explicitly solving the inequality γLα2+γε ≤ α
for the interval [α−, α+] yields

α± =
1

2γL

(
1 ±
√

1 − 4γ2εL
)

.

Hence H is a self-mapping of Bα for all values α ∈ [α−, α̂] and ‖P ∗ − P̂‖ ≤ α. Choosing α = α− yields the
desired bound. �

Remark 4.2 (Comparison to existing bounds). We want to provide a short comparison of existing error bounds
for the ARE and want to highlight the difference to the bound stated in Proposition 4.1. Articles devoted to
residual based error bounds for the ARE can for example be found in [13, 35, 36, 59]. All existing error bounds
are formulated for the case where E = In, hence our bound generalizes the existing work. More importantly,
the theorem can be used to a posteriori characterize the existence of a full solution in the neighborhood to
the reduced solution, whereas all other bounds must assume the existence. Furthermore, it also works for
non-stabilizing solutions of the ARE, as long as LP̂ is an invertible operator.

Remark 4.3. The assumption of invertibility of LP̂ is not a strong assumption. The theory for the Lyapunov
equation states that LP̂ is invertible when λj + λ̄k �= 0 for all eigenvalues λj and λk of the generalized eigenvalue
problem (E, Y (P̂ )), where λ̄ denotes the complex conjugate of λ, see [46]. If (E, Y (P̂ )) is stable, which is what
we expect from our approximation, this condition is guaranteed.

The application of Theorem 4.1 requires the knowledge of the constants γ, L and the norm of the residual ε, all
depending on the n-dimensional data. In order to get an error bound that only depends on the RB dimension
N , we state the following proposition, where the constants are replaced by computable upper bounds.

Proposition 4.4 (Computable Error Bound). Let the assumptions of Theorem 4.1 be valid. Assume further,
that rapidly computable upper bounds γ ≤ γN , L ≤ LN and ε ≤ εN are available. Then it holds: if

4γ2
NLNεN ≤ 1 (4.9)

is valid, there exists a unique solution P ∗ ∈ B2γN εN (P̂ ) to the ARE and the following bound holds

‖P ∗ − P̂‖ ≤ ΔP,N :=
1

2γNLN

(
1 −
√

1 − 4γ2
NLNεN

)
. (4.10)

Proof. The application of Theorem 4.1 requires the validity of criterion (4.2), which is satisfied due to 4γ2εL ≤
4γ2

NεNLN ≤ 1 by assumption. Hence Theorem 4.1 is applicable, where we used the corresponding bounds, and
results in the upper bound (4.10). �

In the following sections we see how suitable upper bounds εN and γN can be obtained, such that an online
complexity independence of n is guaranteed. We want to emphasize, that the above bound in Proposition 4.4
can theoretically be made arbitrarily sharp, as the residual norm εN is directly dependent on the quality of the
reduced space. In particular, if the validity criterion (4.9) is not valid, the reduced space should be improved
(e.g. by some additional greedy steps or by rerunning the greedy procedure with lower tolerances). A simple but
important consequence of the Propositions 3.2 and 4.4 is the correct prediction of zero error when the reduced
space contains the complete low rank factor for a given parameter:
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Corollary 4.5 (Zero Error Prediction). Let the assumptions of Proposition 3.2 hold, i.e. in particular
colspan(P ) ⊂ colspan(W ). Assume that εN := ε. Then ΔP,N = 0.

Proof. From Proposition 3.2 we can conclude P̂ = P ∗ and hence R(P̂ ) = R(P ∗) = 0 resulting in ε = 0 and
hence ΔP,N = 0 from Proposition 4.4. �

Note that Theorem 4.1 and Proposition 4.4 are valid for the approximation of any solution to the ARE. In the
next section we establish a criterion that allows us to prove that P ∗ is indeed the stabilizing solution.

4.2. Stabilizing solution

In the sequel, we will often consider matrices of the form E−1(A−BR−1BT PE) and thus abbreviate Y (P ) :=
A−BR−1BT PE, where P ∈ Rn×n is an arbitrary matrix. We are usually only interested in finding the stabilizing
solution P ∗ of the ARE, which is characterized by its symmetry, positive-semidefiniteness and stabilization
property. The latter means, that the matrix E−1Y (P ∗) is stable.

In order to make sure that the matrix P ∗, which exists due to Theorem 4.1, is indeed the stabilizing solution,
we need additional criteria and conditions. Symmetry and positive-semidefiniteness are always satisfied when
we use the Galerkin-procedure as it is described in Section 3, as the reduced solution PN is symmetric and
positive semi-definite and those properties are inherited by the approximation WPNWT . Thus, it remains to
prove the stability of (E, Y (P ∗)) to get the desired result. One possible way how this can be done is to make
use of the stability of the approximation (E, Y (P̂ )), which can be verified a posteriori. For this purpose, we
begin with an important characterization of γ = ‖L−1

P̂
‖:

Lemma 4.6. Let Y (P̂ ) be stable and let H ∈ Rn×n solve Y (P̂ )T HE + ET Y (P̂ )E = −In. Then γ = ‖H‖.
Proof. See for example [58]. �

The next proposition provides a way to prove the stability of E−1Y (P ∗). Note that a similar result in the
context of Krylov-based approximations for the ARE has recently been formulated in [54] independently.

Proposition 4.7. Let the assumptions of Theorem 4.1 be satisfied. Let P ∗ ∈ B2γε(P̂ ) be the ARE solution that
is being approximated together with the error estimate ΔP according to Theorem 4.1. Let (E, Y (P̂ )) be stable.
Then: if 2γ‖BR−1BT ‖ ‖E‖

‖E−1‖ΔP ≤ 1, the matrix pair (E, Y (P ∗)) is stable and P ∗ is the unique stabilizing
solution of the ARE.

Proof. The proof is based on Theorem 2.2 in [23], which we cite for convenience: “Let Ỹ be stable and let H̃
satisfy Ỹ T H̃ + H̃Ỹ = −In. Let ΔỸ satisfy ‖ΔỸ ‖ ≤ 1/(2‖H̃‖). Then Ỹ + ΔỸ is stable”. In our case, we set
Ỹ := E−1Y (P̂ ) and ΔỸ := E−1BR−1BT (P ∗ − P̂ )E, then E−1Y (P ∗) = E−1Y (P̂ ) + E−1ΔỸ . We apply the
above cited theorem to this setting: Let H̃ ∈ R

n×n be the unique solution to

Y (P̂ )T E−T H̃ + H̃E−1Y (P̂ ) = −In.

We now substitute H̃ = ET HE and see that H solves Y (P̂ )T HE + ET HY (P̂ ) = −In. We thus get

γ = ‖H‖ = ‖E−T H̃E−1‖ ≤ ‖E−1‖2‖H̃‖ ⇒ 1
‖H̃‖ ≤ ‖E−1‖2

γ
· (4.11)

We can now apply the theorem and get stability of E−1Y (P ∗) when the following inequality holds true:

‖E−1ΔY ‖ ≤ 1
2‖H̃‖

(4.11)

≤ ‖E−1‖2

2γ
⇔ 2γ‖E−1ΔY ‖ 1

‖E−1‖2
≤ 1.

Using ‖E−1ΔY ‖ = ‖E−1BR−1BT ‖ΔP ‖E‖ ≤ ‖E−1‖‖E‖‖BR−1BT ‖ΔP , and the uniqueness of the stabilizing
solution due to the detectability and stabilizability assumption, we get the desired result. �
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For the application of the above theorem, we need to verify the stability of (E, Y (P̂ )) a posteriori. This usually
requires the calculation of the eigenvalue with the largest real part, which should be avoided in the RB setting
to retain online efficieny. To avoid this, we propose a sufficient condition for proving the stability, which makes
use of the properties of the logarithmic norm:

Proposition 4.8 (Sufficient Condition for Stability by Exponential Bounds). Let (E, A) be stable. Then
(E, Y (P̂ )) is stable whenever one of the following requirements is valid

1. νE [Y ] < 0
2. νE [A] + νE [BR−1BT P̂E] < 0
3. νE [A] + ‖E−1BR−1BT P̂E‖F < 0.

Proof. If νE [Y ] < 0, the stability follows from ‖eE−1Y t‖ ≤ eν[E−1Y ]t → 0 as t → ∞. The inequality νE [Y ] =
ν[E−1A − E−1BR−1BT P̂E] ≤ ν[E−1A] + ν[−E−1BR−1BT P̂E] implies the second statement. Finally, the
bound ν[E−1BR−1BT P̂E] ≤ ‖E−1BR−1BT P̂E‖ ≤ ‖E−1BR−1BT P̂E‖F proves the last result. �

For more details and proofs of the used properties for the logarithmic norm ν[·] we refer to [55]. Applying
this Lemma requires a way to calculate or approximate the logarithmic norm νE [A]. This can for example be
implemented efficiently by employing the inverse power iteration. Furthermore, more sophisticated methods
like the successive constraint method or the min-Θ approach allow the rapid calculation of lower bounds of
stability factors with a complexity independent of n which could as well be applied to our situation, see for
example [27, 45]. Especially the last criterion of Proposition 4.8 is easy to check a posteriori since it only
involves the calculation of the norm of ‖E−1BR−1BT P̂E‖F which can be efficiently performed due to a possible
offline/online decomposition, see Section 5.

Note that Proposition 4.8 has only limited applicability, since the logarithmic norm of a stable matrix
(E, Y (P̂ )) can be positive. A more detailed analysis indeed shows, that the value νE [Y (P̂ )] is an indicator
for the transient growth at time t = 0, since

d
dt+

‖eE−1Y t‖
∣∣∣
t=0

= νE [Y ],

where d
dt+ is the right-hand derivative, see for instance ([25], Prop. 5.5.8). Hence νE [Y ] > 0 only shows that the

norm of the matrix exponential initially grows and it does not make any predictions for the long term behaviour
of ‖eE−1Y t‖.

Proposition 4.8 furthermore indicates, that the magnitude of the matrix R could be a way to ensure stability
for the closed loop system whenever the requirement νE [A] + ‖E−1BR−1BT P̂E‖ for the application of Propo-
sition 4.8 is not fulfilled: scaling R to large values decreases the norm of ‖E−1BR−1BT P̂E‖ and can finally
ensure that one of the conditions of Lemma 4.8 holds true. However, if we relate the ARE again to the LQR
problem in Example 2.2, we see that large values of R introduce a strong penalization of the control and thus
lead to weaker control influence, which is not always desirable.

4.3. The constant γ

One of the main ingredients in the error estimation theory shown in the previous section is the constant γ.
It is crucial to have a good upper bound or a suitable approximation γN as it enters the validity criterion (4.2)
quadratically and also enters in the bound (4.3). We recall the definition of γ:

γ = ‖L−1

P̂
‖ = ‖ DR|−1

P̂
‖, with LP̂ (N) = Y (P̂ )NE + ET NY (P̂ ).

We see that LP̂ is a Lyapunov-operator, for which the theory has already been extensively studied, cf . [28,
40, 46, 47, 57, 58], however only few work has been dedicated to the efficient calculation of γ in the large scale
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context. Recalling Lemma 4.6, we see that γ can be calculated directly by solving a Lyapunov equation of the
type

Y (P̂ )T HE + ET HY (P̂ ) = −In (4.12)

and setting γ = ‖H‖. As the right hand side has no low-rank structure, the solution H has very likely also no
low-rank structure, which makes the Lyapunov equation extremely hard to solve, since no structure (except of
potential sparsity of Y (P̂ ) and E) is available. A direct calculation usually requires at least O(n3) and iterative
methods fail at latest when it comes to storing the dense n2 dimensional solution matrix for large n. We thus
need different approaches and upper bounds to be able to cope with these issues.

We begin with giving an explicit formula for the calculation of the solution to the Lyapunov equation:

Lemma 4.9. Let Y (P̂ ), E ∈ Rn×n be such that (E, Y (P̂ )) is stable. Then the inverse of the operator LP̂ is
explicitly given by

L−1

P̂
(X) = −E−T

∫ ∞

0

e(E−1Y (P̂ ))T tXe(E−1Y (P̂ ))tdtE−1, X ∈ R
n×n. (4.13)

Proof. The proof makes use of the equivalence of the generalized Lyapunov equation (4.12) and the Lyapunov
equation in the case where E is nonsingular. The latter is defined as L̃(X) := (E−1Y (P̂ ))T X + X(E−1Y (P̂ )).
For this representation, a result from [38] shows, that the inverse operator is explicitly given by

L̃−1(X) = −
∫ ∞

0

e(E−1Y (P̂ ))T tXe(E−1Y (P̂ ))tdt.

On the other hand, we can easily verify LP̂ (X) = L̃(ET XE) and hence we have L−1

P̂
(X) = E−T L̃−1(X)E−1

which proves the claimed result. �

Remark 4.10. If we again consider the case of the LQR Example 2.2, a more detailed discussion of γ reveals
deeper insights to interesting properties of the closed loop LTI system with E = In. The closed loop system is
defined as ẋ(t; x0) = (A − BR−1BT P )x(t; x0) together with x(0; x0) = x0. The discussion in [35] shows that
there is a close link between the “damping” of the closed-loop solution x(t; x0) and the constant γ:

√
γ = max

‖x0‖=1
‖x(·, x0)‖L2([0,∞),Rn).

This equivalence shows that large γ values indicate a weak damping of the closed loop solution.

In the following we will discuss different possibilities to approximate γ. We will divide this in rigorous bounds
and non-rigorous estimates, where the latter will lack an analytic justification but still may be accurate and are
rapidly computable.

Rigorous Bounds for γ

The explicit formula (4.13) in Lemma 4.9 shows that an upper bound for γ can be obtained once a bound
for the norm of the matrix exponential eE−1Y (P̂ )t is available. We state one possibility which is based on the
logarithmic norm.

Lemma 4.11. Let ν := νE [E−1Y (P̂ )] < 0. Then the following upper bound for γ is valid:

γ ≤ γN,1 := −‖E−1‖2

2ν
· (4.14)
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Proof. After bounding the explicit solution formula (4.13), it follows

γ = ‖L−1(−In)‖ ≤ ‖E−1‖2

∫ ∞

0

‖eE−1Y t‖2dt ≤ ‖E−1‖2

∫ ∞

0

e2νt dt = −‖E−1‖2

2ν
,

which proves the claimed bound. �

The calculation of ‖E−1‖ can be done without an explicit formation of the inverse matrix, by using the equality
‖E−1‖ = 1

σmin
with σmin denoting the smallest singular value of E. Note that the logarithmic norm νE [Y (P̂ )] is

not available in the online phase, unless the largest eigenvalue of an n-dimensional matrix is calculated, which
can be infeasible. However, by using the same arguments as in the proof of Proposition 4.8, νE [Y (P̂ )] can be
replaced by the upper bound νE [A] + ‖E−1BR−1BT P̂E‖F as long as the latter is less than 0, which can be
calculated in O(N):

Corollary 4.12. If νE [A] + ‖E−1BR−1BT P̂E‖F < 0, the upper bound

γ ≤ γN,2 := − ‖E−1‖2

2(νE [A] + ‖E−1BR−1BT P̂E‖F )
(4.15)

is valid.

Although many problems that describe physically stable phenomena yield LTI systems with νE [A] < 0, the closed
loop system with the applied feedback control must not be dissipative. In this case the bounds in Lemma 4.11
and Corollary 4.12 cannot be applied and other approaches must be used.

Interpolation-Based Approximation of γ

Besides the rigorous error bounds presented above, one can also use interpolation methods that may not lead
to rigorous bounds but provide very efficient and often quite accurate approximations.

The first method we are proposing is to use a kernel interpolation of the γ values over P : let {μ1, . . . , μM} =
Ptrain,γ ⊂ P be a finite set of training parameters with corresponding values (γ(μi))M

i=1, computed by using
the Lyapunov equation from Lemma 4.6. The goal is then to find a function Γ (μ) : P → R that interpolates
between the calculated γ values. If the points in Ptrain,γ are located on a structured grid in the parameter
domain, techniques like linear, cubic or spline interpolation can be employed to construct Γ (μ). Large parameter
dimensions or a fine grid resolution for Ptrain,γ can result in a very large number of training points such that
the procedure might become too expensive, as solving the corresponding Lyapunov equation is a very time- and
memory-consuming task. A better and more flexible approach is to use scattered data interpolation techniques
such as kernel interpolation. With those methods, the sampling points must not be located on a structured
set but can be chosen for example as random elements from the parameter domain. The idea behind those
techniques is to choose a kernel function k(x, y) and compute weights α = (αi)M

i=1, such that the interpolation
takes the form

Γ (μ) :=
M∑
i=1

αik(μ, μi), with μi ∈ Ptrain,γ .

Once suitable weights αi are calculated, the interpolation can be evaluated rapidly for new values μ. We use
so called thin plate splines as kernel function k(x, y) = ‖x − y‖2 ln(‖x − y‖) as this turns out to provide good
results. Other possible choices are the Gaussian function k(x, y) = e−‖x−y‖/σ2

or multiquadratic radial basis
functions k(x, y) =

√
1 + a‖x − y‖2. The weights can be determined by solving the linear equation system

Kα = g, where K = (k(μi, μj))i,j=1,...M , g := (γ(μi))i=1,...,M . We then define the kernel-based interpolation
to γ as γN,interpol(μ) := Γ (μ). For more details concerning the scattered data approximation by using radial
basis functions we refer to the monograph [63] and to [41, 65].
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Projection Based Calculation of γ

A rather different approach is to use a projection based technique for reducing the dimension of the Lyapunov
equation Y (P̂ )T HE + ET HY (P̂ ) = −In for the calculation of γ. As we are only interested in the calculation
of the 2-norm of H , which is due to the symmetry of H equal to the largest eigenvalue of H , we can try to
build a suitable linear subspace for approximating the eigenspace corresponding to its largest eigenvalue: let
VL ∈ Rn×NL be a matrix with orthonormal columns. We then define the approximation Ĥ := VLHNLV T

L , where
HNL ∈ RNL×NL solves the NL-dimensional Lyapunov equation

YNL(P̂ )T HNLENL + ET
NLHNLYNL(P̂ ) = −INL ,

where the reduced matrices are defined as YNL(P̂ ) := V T
L Y (P̂ )VL and ENL := V T

L EVL. Note that this procedure
is very similar to the approximation of the ARE, as discussed in Section 3. We can now define the approximation

γN,proj(μ) := ‖Ĥ‖ = ‖HNL‖. (4.16)

For building the reduced space, we again consider a finite training set Ptrain ⊂ P with |Ptrain| = T , and
construct a linear subspace consisting of suitable snapshots colspan(VL) ⊂ span({v1, . . . , vT }). Since we want
to approximate the dominant eigenvalue of H , a good choice for the reduced space is certainly to choose the
snapshots vi as the eigenvectors corresponding to the largest eigenvalues of H . However, this procedure can be
very expensive, as the full matrices H for the training parameters must be available. This is infeasible in large
scale scenarios, since the Lyapunov equation for H cannot be solved efficiently. We thus propose a different
approach, which is motivated by the relationship between the weakest damping of the closed loop solution√

γ = ‖x(t; x0)‖L2([0,∞),Rn and γ, see also Remark 4.10. A heuristic approach to find the initial value with the
slowest decay in ‖x(t; x0)‖, is to choose the initial value as the eigenvector corresponding to the eigenvalue with
the smallest magnitude of the n-dimensional eigenvalue problem (A − BR−1BT P̂E)x = λEx, which can be
implemented quite efficiently. Thus, we extend the offline phase and precalculate T eigenvalue problems, collect
all eigenvectors which correspond to the smallest magnitude and build the reduced basis VL by applying a SVD
to the snapshots {vi}T

i=1. In order to obtain a non-complex basis, we only take the real-parts of the eigenvectors
in the SVD. We give a comparison of the presented methods in Section 6.

5. Offline/Online decomposition

The key to an efficient implementation of the whole procedure is a separation of expensive calculations in the
offline phase, which then enables a rapid online phase. This is possible when we assume that all data matrices
have a special structure that can be exploited to identify precomputable components, which can be reused in
the online phase. The presented procedure relies on the parameter separability of the data and system matrices,
this means we assume representations of the form

A(μ) =
QA∑
qA

ΘqA

A (μ)AqA , B(μ) =
QB∑
qB

ΘqB

B (μ)BqB

C(μ) =
QC∑
qC

ΘqC

C (μ)CqC , E(μ) =
QE∑
qE

ΘqE

E (μ)EqE .

(5.1)

If the data matrices are not given in the above form, techniques like empirical interpolation can be employed to
achieve such approximate decompositions, see [5,12] or [64] for a function, operator or matrix discrete empirical
interpolation approach. This structure allows the precalculation of many parts of the residual norm and other
quantities in an offline step. The online step then only requires matrix operations with a complexity depending
on the quantities QA, QB, QC , QE and the dimension of the reduced system N . Hence, those numbers should
be preferably small. Note that we do not pose any requirements on R(μ) and Q(μ). Since they are of low
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dimension and also not touched by the reduction procedure, we can explicitly calculate them in the online
phase. The calculation of the residual norm ε(μ) = ‖R(P̂ (μ))‖ can take an excessive amount of time for large
n. This is due to the matrix multiplications that are necessary for forming the residual matrix and the calculation
of the norm. We will now show how the residual norm can be obtained in a complexity completely independent
of the high dimension.

Clearly the induced 2-norm of R(P̂ (μ)) is not feasible for large scale applications, since this would require
the knowledge of the largest eigenvalue of an n × n matrix. A better choice involves the Frobenius norm,
which is an upper bound εN (μ) for the induced 2-norm of a matrix. Indeed, the norm equivalence inequality
‖A‖ ≤ ‖A‖F ≤ √

n‖A‖ indicates, that it does not differ more than a factor
√

n from the 2 norm of A ∈ Rn×n.
Indeed, in practice we often observed a very accurate approximation of the Euclidean-norm. We use the trace

representation of the Frobenius norm ‖R(P̂ )‖F =
√

tr(R(P̂ )TR(P̂ )) and obtain the following decomposition of
the residual:

‖R(P̂ ))‖2
F = tr(CT QCCT QC) + 4 tr(CT QCAT P̂E) − 4 tr(ET P̂BR−1BT P̂EAT P̂E)

− 2 tr(ET P̂BR−1BT P̂ECT QC) + tr(ET P̂BR−1BT P̂EET P̂BR−1BT P̂E)

+ 2 tr(ET P̂AAT P̂E) + 2 tr(ET P̂AET P̂A).

(5.2)

We here made use of the identity tr(ABC) = tr(CAB) and tr(AT B) = tr(ABT ). If we now use the definition
of the reconstruction of the reduced solution P̂ = WPNWT , we can exploit the structure further and identify
matrices that can be treated by an offline/online decomposition, for example

tr(CT QCAT P̂E) = tr(WT ECT QCAT WPN )

tr(ET P̂BR−1BT P̂EAT P̂E) = tr(WT EET WPNWT BR−1BT WPNWT EAT WPN ).

All underlined matrices are low dimensional, i.e. the dimension only depends on N , m and p. By using the
parameter separability, they can be assembled rapidly. For example the product WT ECT QCAT W can be
treated in the following way3:

WT E(μ)C(μ)T Q(μ)C(μ)A(μ)W =

⎛
⎜⎜⎝

QE∑
i=1

QC∑
j=1

(Θi
EΘj

C)(μ)WT EiC
T
j︸ ︷︷ ︸

=:Mi,j
1

⎞
⎟⎟⎠Q(μ)

⎛
⎜⎝QC∑

k=1

QA∑
l=1

(Θk
CΘl

A)(μ)CkAlW︸ ︷︷ ︸
=:Mk,l

2

⎞
⎟⎠ .

This sum only requires matrix operations on N × N matrices, once the parameter independent components
Mi,j

1 and Mk,l
2 are calculated and stored in an offline step. All other parts in the Frobenius norm containing

P̂ can be treated in a similar way. The matrix R(μ) is inverted directly, since it is only a small m dimensional
matrix. The overall complexity for the calculation of the Frobenius norm in the online step is

O (Q2
C + p + N + N2

(
QEQAQ2

C + Q2
E + Q2

B + Q2
A + QEQA + Q2

EQ2
C

))
. (5.3)

Hence, if the parameter independent components are precalculated and stored in an offline phase, the Frobenius
norm of the residual can be assembled in a complexity independent of n. The calculation time depends quartic
on the number of terms in the expansion of C(μ) and quadratically on C(μ), E(μ) and B(μ).

Finally, we note that the computable a posteriori error bound for the ARE, as stated in Proposition 4.4, can
be calculated online in a complexity independent of n: we have already seen that the Frobenius norm of the
residual can be calculated online, which indeed gives an upper bound to the residual norm. Furthermore, we
assume that a rapidly computable approximation γN(μ) is available, by using any of the methods presented in
Section 4.3. An upper bound on the validity check 4Lγ2

NεN ≤ 1 can also be decomposed in an offline/online
fashion, by using the same techniques for the norm calculations in L as for the residual. If QE = 1 or QB = 1, the
direct calculation of ‖B(μ)‖2 = (Θ1

B(μ))2‖B1‖2 and ‖E(μ)‖2 = (Θ1
E(μ))2‖E1‖2 might yield sharper validity

criteria, since the Frobenius norm can differ from the Euclidean norm by a factor of
√

n.

3We use the abbreviation (Θ1Θ2)(µ) := Θ1(µ)Θ2(µ).
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6. Numerical examples

We will now present two examples that show, that the RB-ARE approach together with the Low Rank
Factor Greedy procedure indeed yield accurate approximations to the full solutions of the ARE. The examples
stem from the solution of parametric linear quadratic optimal control problems, the so called linear quadratic
regulator (LQR), see also Example 2.2 for a more detailed description. The first problem is a test model, intended
to provide numerical examples for the theoretical results, that were obtained in Section 4. The second model is
a real-world application and shows the great runtime benefit of the RB-ARE approach in multi-query scenarios.

All calculations were performed on a Debian Linux compute-server with eight Intel (R) Xeon CPU E7 CPUs,
each with 2.13 Ghz, and 256 GB RAM. The algorithms were implemented and tested in MATLAB R2015b
(8.6.0.267246), where we used parallel loops whenever possible. The examples and benchmarks are implemented
within the MATLAB package RBmatlab, which can be freely obtained from the Morepas website4. All high
dimensional AREs have been solved by using the package MESS5.

We will study the basis generation and the error which is induced by the RB-ARE reduction technique. For
the basis generation, we choose the normalized residual

Δ(V, μ) :=
‖R(P̂ (μ))‖F

‖C(μ)T Q(μ)C(μ)‖F
, (6.1)

as error indicator for the LRFG-algorithm in all of the following examples. This measure is frequently used in
numerical solution algorithms for large scale AREs to quantify the approximation quality and as a stopping
criterion, see for example [7,50]. Furthermore, due to the offline/online decomposition, the error indicator (6.1)
can be cheaply calculated, even in cases where the number of training elements is large. This is possible due to
parameter separability, see also Section 5. For the initialization of the LRFG procedure, we choose the desired
tolerance ε := 10−6, and as inital basis we calculate the full solution for the first parameter in the training set,
and choose the most-dominant POD-mode as initial basis.

6.1. LQ-feedback control of a 2D-heat transfer problem

The first example stems from a semi-discretized heat-transfer control problem on the unit square Ω =
[0, 1]2. The stationary version of this thermal-block model is often used as a standard example in the RB
community, as its solution variety captures many interesting phenomena. We refer to [17] for details. The
model has homogeneous Dirichlet boundary conditions (i.e. constant zero temperature) on ΓD[0, 1] × {1} and
homogeneous Neumann boundary conditions (i.e. perfect insulation) on the remaining boundary. We introduce
a distributed control u(t) on ΩB := [0.2, 0.4] × [0.4, 0.6] and take an average temperature measurement s(t; μ)
on the boundary ΓC = {0} × [0, 1]. The partial differential equation for the temperature w(ξ, t; μ) with ξ ∈ Ω,
t ≥ 0 and the output of interest thus reads as follows:

wt(ξ, t; μ) − a(μ; ξ)Δw(ξ, t; μ) = 5 · 1ΩB (ξ)u(t) for ξ ∈ Ω, t > 0, (6.2a)

w(ξ, t; μ) = 0 for ξ ∈ ∂Ω, t ≥ 0, (6.2b)
w(ξ, 0; μ) = w0(ξ; μ), for ξ ∈ Ω (6.2c)

s(t; μ) := 5
∫

ΓC

w(·, t; μ), for t ≥ 0. (6.2d)

We introduce parameter dependency by defining the diffusion coefficient as a(μ; ξ) := 1Ω1(ξ)μ1 + 1Ω2(ξ)μ2,
where 1X(ξ) denotes the characteristic function of the set X at the point ξ. This function provides different heat
conductivities on the subdomains Ω1 := [0, 0.5] × [0, 1] and Ω2 := (0.5, 1] × [0, 1] with μ1, μ2 ∈ [1, 5]. We aim
at minimizing the cost functional

∫∞
0 (μQ‖s(t)‖2 + μR‖u(t)‖2)dt with weights μQ ∈ [0.1, 10] and μR ∈ [0.1, 10].

4http://www.morepas.org
5MESS (Matrix Equation Sparse Solver) has been gratefully provided by J. Saak from the MPI Magdeburg.

http://www.morepas.org
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Table 1. Basis sizes, number of high dimensional solves, calculation time t and average number
of added basis vectors in each iteration.

toli Basis size #Solves t[s] Avg. added
0.000 51 14 286.18 1.00
0.500 51 12 151.82 2.22
0.800 56 10 103.31 4.67
0.900 59 9 84.70 6.56
0.950 60 7 72.57 7.50
0.960 59 7 70.04 8.43
0.970 64 7 75.02 9.14
0.990 66 6 62.13 11.00
0.999 67 5 53.26 13.40
1.000 349 4 761.47 87.25

Overall the model depends on four parameters: μ = (μ1, μ2, μQ, μR) ⊂ P := [1, 5]2 × [0.1, 1]2. The above PDE
and the cost functional are semidiscretized in space by using linear finite elements on a regular triangular grid,
resulting in an n = 1.891 dimensional LQR-control problem with m = p = 1:

min
∫ ∞

0

(x(t; μ)T (CT μQC)x(t; μ) + μRu(t)2)dt

s.t. E
d
dt

x(t; μ) = A1x(t; μ) + μ1A2x(t; μ) + μ2A3x(t; μ) + Bu(t),

Ex(0; μ) = x0,

y(t; μ) = Cx(t; μ).

The Dirichlet boundary values are mapped by A1 and the parameter dependency directly yields a parameter
separated discrete representation. The training set Ptrain for this example is chosen as a set of 400 randomly
choosen parameters from the parameter domain.

As a first insight to the basis generation, we investigate the basis sizes and number of iterations of the LRFG-
algorithm for varying inner tolerances toli ∈ [0, 1]. Table 1 gives an overview of the results. Setting toli = 0
means, that in each iteration of the algorithm only one element is added to the basis, what explains the large
offline time since many iterations (and thus also high dimensional ARE solves) are required until the greedy
procedure terminates. On the other hand, if we set toli = 1, we add the full low-rank factor to the basis.
This requires less ARE solves to reach the desired tolerance, but results in a very large basis, as no additional
compression is used. For values toli in between, we see that there is a tradeoff between the basis size, the number
of full dimensional solutions and the offline time. An “optimal” value in our case with respect to computation
time and basis size is obtained for toli ≈ 0.96. We will use the corresponding basis with size N = 59 in all
subsequent examples.

In Figure 1, the error indicator (6.1) is plotted together with the corridor of the true relative errors ‖P (μ)−
P̂ (μ)‖F /‖P (μ)‖F and the mean relative true error for increasing basis sizes. We can conclude that the relative
residual indicator (6.1) is a good choice for the construction of the basis. In this example, the greedy algorithm
took eight iterations until the desired tolerance is achieved. However, only seven full AREs need to be solved,
as the same parameter was revisited during the basis construction.

The crucial ingredient for the calculation of the error estimator is the constant γ. As it was shown in
Lemma 4.6, it can be calculated by solving a generalized Lyapunov equation, which however, due to the lack
of any low-rank structure, is very expensive to solve. For the 1.891-dimensional thermalblock-example a single
solve using the lyap command from MATLAB takes about 8 min. We thus need to approximate it and therefore
presented a rigorous bound (Cor. 4.12) and two approximation techniques (kernel approximation, projection-
based calculation), which we will now compare. For the kernel-approach and the construction of the basis
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Figure 1. Error indicator and true relative error decay for increasing basis sizes. The true
error lies within the dashed area.

Table 2. Comparison of relative errors for the approximation of γ through the kernel and
projection approach. The maximum, mean and variance was taken over the test set Ptest.

Train size
10 20 50 80 100

Projection
maxµ η(μ) 0.5486 6.2663 0.3740 0.0144 0.0076
meanµ η(μ) 0.3433 0.4944 0.2280 0.0040 0.0018
varµ η(μ) 0.0121 0.8974 0.0041 0.0000 0.0000

Kernel
maxµ η(μ) 1.3565 0.8120 0.2803 0.2493 0.2175
meanµ η(μ) 0.7686 0.3420 0.0788 0.0540 0.0223
varµ η(μ) 0.0727 0.0456 0.0059 0.0036 0.0036

for the projection-based approach, we choose a training set Pγ,train with |Pγ,train| = 100 random elements
from the parameter domain P . For the kernel approach, we choose the thin-plate spline kernel k(x, y) :=
ln(‖x − y‖)‖x − y‖2 as radial basis function.

In Table 2 the maximum maxµ∈Ptest η(μ) and mean meanµ∈Ptest η(μ) relative approximation error η(μ) :=
|γ(μ)−γ̂(μ)|/γ(μ) for both approaches, as well as the variance varµ∈Ptest η(μ) in the relative error is given. Here
γ̂(μ) is the corresponding approximation, i.e. either the kernel interpolation or the projection-based calculated
value. For the calculations, we choose a random parameter test set Ptest ⊂ P with 40 random elements. We
see that both approaches perform well. However, the overall average relative error of the projection approach
is smaller, and especially the variance in the approximation error is significantly lower than the corresponding
variance for the kernel approximation errors. A comparison of the red offline preparation time reveals, that the
kernel approach suffers from the expensive calculation of the solution of the Lyapunov equation in Lemma 4.6:
the offline time for the calculation of the training data takes almost an hour, whereas the calculation of the
eigenvectors for the projection-based calculation only requires a couple of seconds. Hence, we can conclude that
the projection based approach yields accurate approximations with relatively low computational complexity
in the offline phase, but we observed that increasing the number of training parameters does not improve the
results any further. On the other hand, the kernel interpolation can be made very precise by adding more sample
values or doing a more sophisticated tuning of the kernel parameters, which however is far beyond the scope of
this work. We refer to [63] for more details about this topic. The rigorous bound from Corollary 4.12 can be
applied in certain parameter regions in this example, but the resulting bound overestimates the true error by
a factor of ≈200, which renders the validity criterion for the application of the error bound invalid. However,
if the system is first transformed to a system without mass matrix, e.g. by left-multiplying the state equation
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Figure 2. Error estimation results.
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with E−1, the bound yields sharp values, but important system properties like sparsity or symmetry are usually
destroyed.

Finally, we examine the error bound in Proposition 4.4. For this purpose, we calculate the true maximum
error, and the maximum error bound along with the maximum value of the validity criterion over the same
parameter test set Ptest as for the examples for γ. In order to get rigorous values for the bound, we use the
true values for γ. However, when using one of the approximation techniques mentioned earlier, the values of
the non-rigorous error estimator only marginally deviate from the rigorous results. The results are depicted in
Figure 2. We see, that the error bound from Proposition 4.4 is valid for a basis size N ≥ 31, which is reflected
by the decay of the validity criterion. Note that the error estimation is valid whenever the validity criterion is
below one. All reduced solutions in our examples result in stable matrix pairs (E, Y (P̂ (μ)) and Proposition 4.7
can be applied, to guarantee that the reduced solution approximates the desired unique stabilizing solution.
Furthermore, the error bound nicely reflects the behaviour of the true error. This can be seen in Figure 3,
where the true absolute error and the corresponding error bound for all test parameters in Ptest is shown for
the maximum basis size N = 59.

Finally we want to comment on the calculation time for this example. One high dimensional solve takes about
1.5 s in average. The reduced simulation, including the calculation of the residual norm and the calculation of
the error bound, based on the projection approach, takes about 0.2 s. Thus we have an overall speed-up of
approximately factor seven. A much larger runtime benefit can be achieved for examples with larger system
dimension n, see also the next example.

Optimal Cooling of Rail Profiles

The second example stems from the optimal cooling of rail profiles. We refer to [6] for a detailed description
of the model. The semi-discretization of the linearized heat-transfer results in a LTI system with dimension
n = 20.209:

E
d
dt

x(t; μ) = Ax(t; μ) + Bu(t), y(t; μ) = Cx(t; μ).

The system can be controlled through m = 7 inputs that model water which is sprayed on the rod, and p = 6
outputs are available for the calculation of the control signal and are measured in the cost functional. We
parametrize the cost functional associated with this problem by introducing two weights Q(μ) := I6μQ and
R(μ) := I7μR with μ := (μQ, μR) ⊂ [10−3, 10] × [10−3, 1]. For the basis construction, we choose 961 logarith-
mically equidistant points in the parameter domain. One solution of the high dimensional ARE associated with
this control problem takes about 105 s.
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In order to speed up the calculation, we first run the LRFG-algorithm for this problem and obtain a reduced
basis of size N = 112 after approximately 4 min. The solution of the reduced ARE takes only 0.17 s in average,
including the calculation of the residual norm, which is an enormous speed-up of about 500. We test the
quality of the approximation by calculating the reduced and true solutions of the AREs on a fine grid in the
parameter domain. In Figure 4 we see the relative error ‖P (µ)−P̂ (µ)‖F

‖P (µ)‖F
on the complete parameter domain, which

is always below 10−7. We can conclude, that the RB-ARE approach yields very accurate approximations for
this example. We want to emphasize that this enormous speed-up only required two (expensive) offline solves
for the construction of the basis.

7. Conclusion

In this paper we have studied the application of the RB approach for the approximation of large scale
AREs in a parametric scenario. As it turned out, the state-space approximation with classical model reduction
techniques for parametric problems does not capture the feedback information in the system, see [51]. This
is the main motivation for the RB-ARE approach, which is developed in this paper. After defining a suitable
reduced surrogate equation, the RB-ARE, a new algorithm called low-rank factor greedy was proposed for
the basis construction. As the name suggests, the typical low rank structure of the solutions to the ARE has
been used for the construction of the reduced basis. The quality of the approximation is certified by a rigorous
a posteriori error estimation for the solution to the ARE. Splitting the procedure in an online/offline phase
allows an online complexity completely independent of the dimension of the original problem. Experiments with
LQ feedback control problems for heat conductions show the benefit of applying the RB-ARE technique in
multi-query scenarios.

Interesting further potential applications of the RB-ARE technique can be found in many different fields
of systems theory, for instance H2 or H∞ optimal control. The numerical study [52] for the application of
the RB-ARE approach for parametric H2 control problems shows that this indeed can yield accurate and fast
approximations. This will be part of our future research.
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[34] M. Kärcher and M.A. Grepl, A certified reduced basis method for parametrized elliptic optimal control problems. ESAIM:
COCV 20 (2014) 416–441.

[35] C. Kenney and G. Hewer, The sensitivity of the algebraic and differential Riccati equations. SIAM J. Control Optimiz. 28
(1990) 50–69.

[36] C. Kenney, A.J. Laub and M. Wette, Error bounds for Newton refinement of solutions to algebraic Riccati equations. Math.
Control, Signals Systems 3 (1990) 211–224.

[37] H. Kwakernaak and R. Sivan, Linear optimal control systems, Vol. 1. Wiley-interscience New York (1972).



REDUCED BASIS APPROXIMATION OF LARGE SCALE PARAMETRIC ALGEBRAIC RICCATI EQUATIONS 151

[38] P. Lancaster, Explicit solutions of linear matrix equations. SIAM Rev. 12 (1970) 544–566.

[39] P. Lancaster and L. Rodman, Algebr. Riccati Equ. Oxford University Press (1995).

[40] J.-R. Li and J. White, Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl. 46 (2004) 693–713.

[41] A. Manzoni and F. Negri, Heuristic strategies for the approximation of stability factors in quadratically nonlinear parametrized
PDEs. Special Issue on Model Reduction of Parametrized Systems. Advances in Computational Mathematics (2015).

[42] D. Mustafa and K. Glover, Controller reduction by H∞ balanced truncation. IEEE Trans. Autom. Control 36 (1991) 668–682.

[43] F. Negri, G. Rozza, A. Manzoni and A. Quarteroni, Reduced basis method for parametrized elliptic optimal control problems.
SIAM J. Scientific Comput. 35 (2013) A2316–A2340.

[44] H. Panzer, T. Wolf and B. Lohmann, A strictly dissipative state space representation of second order systems. at – Automa-
tisierungstechnik 60 (2012) 392–397.

[45] A.T. Patera and G. Rozza, Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differ-
ential Equations. To appear in (tentative) MIT Pappalardo Graduate Monographs in Mechanical Engineering. MIT (2007).

[46] T. Penzl, Numerical solution of generalized Lyapunov equations. Adv. Comput. Math. 8 (1998) 33–48.

[47] T. Penzl, Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case. Syst. Control Lett. 40 (2000)
139–144.

[48] G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely
parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput.
Meth. Eng. 15 (2008) 229–275.

[49] Y. Saad and X.V. Gv, Numerical solution of large Lyapunov equations. In Proc. of MTNS-89 Signal Processing, Scattering
and Operator Theory, and Numerical Methods. Birkhauser (1990) 503–511.

[50] J. Saak, Efficient numerical solution of large scale algebraic matrix equations in PDE control and model order reduction.
Ph.D. thesis, Chemnitz University of Technology (2009).

[51] A. Schmidt, M. Dihlmann and B. Haasdonk, Basis generation approaches for a reduced basis linear quadratic regulator. In
Proc. MATHMOD 2015 – 8th Vienna International Conference on Mathematical Modelling (2015) 713–718.

[52] A. Schmidt and B. Haasdonk, Reduced basis method for H2 optimal feedback control problems. IFAC-PapersOnLine 49 (2016)
327–332, 2nd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE (2016).

[53] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29 (2007)
1268–1288.

[54] V. Simoncini, Analysis of the rational krylov subspace projection method for large-scale algebraic Riccati equations. SIAM J.
Matrix Anal. Appl. 37 (2016) 1655–1674.
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