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A CONCEPT OF INNER PREDERIVATIVE FOR SET-VALUED MAPPINGS

AND ITS APPLICATIONS

Michel H. Geoffroy1,∗ and Yvesner Marcelin1

Abstract. We introduce a class of positively homogeneous set-valued mappings, called inner pred-
erivatives, serving as first order approximants to set-valued mappings. We prove an inverse mapping
theorem involving such prederivatives and study their stability with respect to variational perturba-
tions. Then, taking advantage of their properties we establish necessary optimality conditions for the
existence of several kind of minimizers in set-valued optimization. As an application of these last re-
sults, we consider the problem of finding optimal allocations in welfare economics. Finally, to emphasize
the interest of our approach, we compare the notion of inner prederivative to the related concepts of
set-valued differentiation commonly used in the literature.
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1. Introduction

In [20], Ioffe introduced a class of set-valued mappings dedicated to the local approximation of nonsmooth
single-valued functions. It consisted of closed-valued positively homogeneous mappings called prederivatives.
In this paper, we present an extension of Ioffe’s concept of inner prederivatives to the set-valued framework,
i.e., when the mappings we are dealing with are no longer single-valued but set-valued. We will use such
inner prederivatives as first order approximants to set-valued mappings and show that they share a wide scope
of applications with derivatives, in particular they may lead to several results fitting into the paradigm of
differentiation. As such, we will prove an inverse set-valued mapping theorem (see Thm. 2.5) involving inner
prederivatives and we will investigate as well their stability with respect to variational perturbations; more
precisely, we will show that the limit (in some sense) of a sequence of set-valued mappings admitting inner
prederivatives admits also an inner prederivative (see Thm. 3.1). Finally, we will establish necessary optimality
conditions for set optimization problems (see Thm. 4.3) in terms of inner prederivatives and, taking inspiration
from the economic model presented in [6], we will propose an application of this result to welfare economics. As
we will discuss it at the end of this paper, our very motivation to consider such prederivatives is that they are
not only less restrictive and much easier to handle than most of the related concepts of set-valued differentiation
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commonly used in the literature but they also often lead to more accurate results of variational analysis and
set-valued optimization.

Throughout, X and Y stand for two Banach spaces. A set-valued mapping F acting from X to the subsets
of Y is indicated by F : X →→ Y , the set gphF stands for the graph of F and is defined by gphF = {(x, y) ∈
X × Y | y ∈ F (x)} while the domain of F is the set domF := {x ∈ X | F (x) 6= ∅}. The inverse of the mapping
F , denoted by F−1 : Y →→ X, is defined as x ∈ F−1(y) ⇔ y ∈ F (x). The zero element of a vector space Z
being denoted by 0Z , we recall that a set-valued mapping H : X →→ Y is said to be positively homogeneous if
H(0X) 3 0Y and H(λx) = λH(x) for all x ∈ X and λ > 0 (with the convention λ ∅ = ∅ for every real number
λ). The closure (respectively the interior) of a subset A of a normed space is denoted by cl A (respectively
int A). Finally, the closed unit ball of a metric space E is denoted by IBE and IBr(a) is the closed ball of radius
r centered at a.

The concept of inner prederivative we introduce in this paper reads as follows.

Definition 1.1 (Inner prederivatives). Consider a set-valued mapping F : X →→ Y . Let H : X →→ Y be a
positively homogeneous set-valued mapping and let (x̄, ȳ) ∈ gphF . We say that H is an inner prederivative of
F at x̄ for ȳ if, for all δ > 0, there exists a neighborhood U of x̄ such that

H(x− x̄) ⊂ F (x)− ȳ + δ‖x− x̄‖IBY , for all x ∈ U. (1.1)

Obviously, when such a prederivative H exists, it is not unique since any positively homogeneous mapping
H ′ such that H ′(x) ⊂ H(x) for all x ∈ X is also an inner prederivative of F at x̄ for ȳ. From now on, we will
denote the (possibly empty) set of all the inner prederivatives of a mapping F at x̄ for ȳ by H(F |(x̄,ȳ)).

Note that, in the case when F ≡ f is a Fréchet differentiable single-valued function, the derivative of f at x̄ is
a single-valued inner prederivative of f at x̄ for f(x̄). Now, we would like to go back to the origins of the notion
presented in Definition 1.1. A set-valued positively homogeneous mapping T : X →→ Y is an inner prederivative
of a single-valued function f : X → Y at x̄, in the sense of Ioffe [20], if

T (h) ⊂
⋃

0<t<1

t−1(f(x̄+ th)− f(x̄)) + r(h)‖h‖IBY , with lim
‖h‖→0

r(h) = 0. (1.2)

The following lemma makes clearer the link between our concept of inner prederivative and the one introduced
by Ioffe.

Lemma 1.2. Consider a set-valued mapping F : X →→ Y , a pair (x̄, ȳ) ∈ gphF and let H ∈ H(F |(x̄,ȳ)). Then,
for every x ∈ X and δ > 0, there exists t ∈ (0, 1) such that

H(x− x̄) ⊂ t−1
(
F (x̄+ t(x− x̄))− ȳ

)
+ δ‖x− x̄‖IBY . (1.3)

Proof. Let x ∈ X. For all δ > 0 there exists a > 0 such that

H(u− x̄) ⊂ F (u)− ȳ + δ‖u− x̄‖IBY , for all u ∈ IBa(x̄). (1.4)

Moreover, there exists a number t ∈ (0, 1) such that x̄+ t(x− x̄) ∈ IBa(x̄), thus, according to (1.4) we have

H(x̄+ t(x− x̄)− x̄) ⊂ F (x̄+ t(x− x̄))− ȳ + δ‖x̄+ t(x− x̄)− x̄‖IBY .

It follows that tH(x− x̄) ⊂ F (x̄+ t(x− x̄))− ȳ + tδ‖x− x̄‖IBY which gives us (1.3). �

Of course, the question when inner prederivatives in the sense of Definition 1.1 exist cannot be avoided but,
before discussing it, we need to collect some background material. Recall that a set-valued mapping T : X →→ Y
is said to be a convex process (or a sublinear mapping) if T is positively homogeneous and is, in addition,
superadditive, i.e.,

T (x) + T (x′) ⊂ T (x+ x′), for all x, x′ ∈ X;

where we make the convention that A+ ∅ = ∅ for any set A.
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Moreover, following the notation in [31], we denote by N∞ the set of all subsequences of N containing all n
beyond some given integer and given a set-valued mapping F : X →→ Y, we let

lim inf
x→x̄

F (x) = {y ∈ Y | ∀xn → x̄,∃N ∈ N∞, yn → y with yn ∈ F (xn) for all n ∈ N}.

The mapping F is said to be inner semicontinuous at x̄ when lim inf
x→x̄

F (x) ⊇ F (x̄). When Y is a finite dimensional

space and F is closed-valued an alternative definition of the inner semicontinuity of F at x̄ (the proof of which
can be found in [31]) is given by

∀ρ, ε > 0, ∃α > 0 such that F (x̄) ∩ ρIBY ⊂ F (x) + εIBY , for all x ∈ IBα(x̄). (1.5)

Finally, recall that a single-valued map f : X → Y is a selection of a set-valued mapping F : X →→ Y if for every
x ∈ X, f(x) ∈ F (x). In [32], it has been proved that any convex set-valued mapping (i.e., with convex graph)
F : X →→ Y which is compact-valued and such that F (0X) 3 0Y admits a linear selection. Let us mention that
the existence of linear selections has also been established in several important special cases (see, e.g., the works
of Ioffe [20] and Páles [27]).

The following fundamental lemma is known as the Radström’s cancellation law (see [30], Lem. 1).

Lemma 1.3. Let A,B and C be given sets in a real normed linear space. Suppose B closed and convex, C
bounded, and that A+ C ⊂ B + C then A ⊂ B.

Obviously, any mapping H : X →→ Y such that H(0) := {0} and H(x) = ∅ for all x ∈ X\{0} is an inner
prederivative of any mapping F at any point (x̄, ȳ) of its graph. Still, we have to provide examples of nontrivial
inner prederivatives. This is the purpose of the next proposition dealing with the existence of inner prederivatives
in the sense of Definition 1.1. It provides a reasonably large scope of examples of mappings admitting such
prederivatives.

Proposition 1.4 (Existence of inner prederivatives). Consider a set-valued mapping F : X →→ Y and a pair
(x̄, ȳ) ∈ gphF. Then F admits an explicit inner prederivative at x̄ for ȳ in each of the following cases:
(i) F is a convex process. In this case, F ∈ H(F |(x̄,ȳ)).
(ii) The space Y is finite dimensional, F is closed-valued and convex-valued in a neighborhood of x̄; in addition,

F is inner semicontinuous at x̄ and ȳ ∈ int F (x̄). In this case, κ‖ · ‖IBY ∈ H(F |(x̄,ȳ)) for some positive real
number κ.

(iii) The set A of linear selections of F is nonempty and F (x̄) = {ȳ}. In this case, the mapping H defined by

H(x) =
⋃
a∈A

a(x),∀x ∈ X is an element of H(F |(x̄,ȳ)).

Proof.

(i) Since F is a convex process, for all x ∈ X, F (x − x̄) + F (x̄) ⊂ F (x). Hence for all δ > 0, F (x − x̄) ⊂
F (x)− ȳ + δ‖x− x̄‖IBY . Consequently, the mapping H := F, which is obviously positively homogeneous,
is an inner prederivative of F at x̄ for ȳ.

(ii) Because ȳ ∈ intF (x̄) there is a positive constant κ̂ such that ȳ + κ̂IBY ⊂ F (x̄). Moreover there exists
ρ > 0 such that ȳ + κ̂IBY ⊂ ρIBY . Hence ȳ + κ̂IBY ⊂ F (x̄) ∩ ρIBY . Take 0 < ε < κ̂; according to the inner
semicontinuity of F at x̄ (see assertion (1.5)), there is a constant α > 0 such that ȳ+ κ̂IBY ⊂ F (x) + εIBY ,
for all x ∈ IBα(x̄). Hence, setting κ := κ̂− ε we get

ȳ + κIBY + εIBY ⊂ F (x) + εIBY , ∀x ∈ IBα(x̄).

According to the Radström’s cancellation law, we infer

ȳ + κIBY ⊂ F (x), ∀x ∈ IBα(x̄).
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Consequently, for all δ > 0 there is a constant 0 < a < min{α, 1} such that

κ‖x− x̄‖IBY ⊂ F (x)− ȳ + δ‖x− x̄‖IBY , ∀x ∈ IBa(x̄).

that is, the positively homogeneous mapping H(·) = κ‖ · ‖IBY is an inner prederivative of F at x̄ for ȳ.

(iii) Let H(x) =
⋃
a∈A

a(x), for all x ∈ X; a straightforward computation shows that H is a positively homoge-

neous set-valued mapping. Moreover, for all a ∈ A and x ∈ X one has a(x− x̄) = a(x)− a(x̄) ∈ F (x)− ȳ.
Hence,

H(x− x̄) =
⋃
a∈A

a(x− x̄) ⊂ F (x)− ȳ, for all x ∈ X.

It follows that H ∈ H(F |(x̄,ȳ)). �

Now, we will show that the existence of a particular inner prederivative for a given set-valued mapping can
lead to an open mapping theorem. Recall that a set-valued mapping F is said to be open at x̄ for ȳ, where
ȳ ∈ F (x̄), if x̄ ∈ int domF and for every neighborhood U of x̄ the set F (U) is a neighborhood of ȳ. Note that
F is open at x̄ for ȳ whenever it is linearly open (or, equivalently, has the covering property) at x̄ for ȳ, i.e., if
there is a constant κ ≥ 0 along with neighborhoods U of x̄ and V of ȳ such that

F (x+ κrintIBX) ⊃ (F (x) + rintIBY ) ∩ V, for all x ∈ U, r > 0. (1.6)

It is worth mentioning that a set-valued mapping is linearly open at x̄ for ȳ if and only if it is metrically regular
at x̄ for ȳ (see Def. 2.3) and that openness and linear openness agree whenever the mapping has a closed and
convex graph (see, e.g., Robinson-Ursescu’s theorem in [12]). For a comprehensive study of the concepts of linear
openness and metric regularity, the reader could refer, for instance, to [12,24].

Theorem 1.5 (Open mapping theorem). Consider a set-valued mapping F : X →→ Y, a pair (x̄, ȳ) ∈ gphF and
a positive number κ. Assume that there is a neighborhood U of x̄ such that F is closed-valued and convex-valued
on U . Let H(·) = κ‖ · ‖IBY be an inner prederivative of F at x̄ for ȳ. Then F is open at x̄ for ȳ.

Proof. We intend to show that

for every a > 0 there is b > 0 such that ȳ + bIBY ⊂ F (x̄+ aIBX). (1.7)

Let 0 < κ′ < κ and take δ > 0 such that κ′ + δ ≤ κ. There exists a constant a > 0 such that

κ′‖x− x̄‖IBY + δ‖x− x̄‖IBY ⊂ F (x)− ȳ + δ‖x− x̄‖IBY , ∀x ∈ IBa(x̄).

With no loss of generality, one may assume that IBa(x̄) ⊂ U . Now, take x0 ∈ x̄ + aIBX such that x0 6= x̄.
Then, the set F (x0) being closed and convex, from the Radström’s cancellation law (see Lem. 1.3), we get
κ′‖x0 − x̄‖IBY ⊂ F (x0)− ȳ. Consequently, for every sufficiently small positive a we get

ȳ + bIBY ⊂ F (x̄+ aIBX), (1.8)

where b := κ′‖x0 − x̄‖. Since a′ > a implies F (x̄+ aIBX) ⊂ F (x̄+ a′IBX), relation (1.8) holds for any positive
constant a and we have proved (1.7), i.e., the mapping F is open at x̄ for ȳ. �

It is well-known that if a single-valued function f : Rn → Rm (m ≤ n), is continuous around x̄ and
differentiable at x̄ then f is open whenever its jacobian at x̄ is of full rank m. One can easily note that
the inner prederivative H ∈ H(F |(x̄,ȳ)) we consider in Theorem 1.5 satisfies as well the surjectivity assumption.

The remaining of the paper is as follows; in Section 2 we prove an inverse mapping theorem involving inner
prederivatives. Then, we investigate in Section 3 their stability with respect to variational perturbations. In
Section 4 we establish optimality conditions in terms of inner prederivatives leading to applications in welfare
economics. Finally, in Section 5, to emphasize the interest of our approach we compare the concept of inner
prederivative with other set-valued differentiation notions.
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2. Inverse mapping theorem

We start this section by recalling the classical inverse function theorem.

Theorem 2.1 (Classical inverse function theorem). Let f : Rn → Rn be continuously differentiable in a neigh-
borhood of a point x̄. If its jacobian ∇f(x̄) is nonsingular then there are a neighborhood U of x̄ and a neighborhood
V of f(x̄) such that f : U → V has a continuous inverse f−1 : V → U which is differentiable for all y ∈ V and
its jacobian satisfies ∇(f−1)(y) = [∇f

(
f−1(y)

)
]−1 for all y ∈ V .

Theorem 2.1 may be viewed as a consequence of Dini’s implicit function theorem (see [11]) published at the
end of the 19th century but was also independently proved by Goursat [18] in 1903. Since then, a tremendous
amount of research has been dedicated to this topic; some dealing with set-valued mappings and set-valued
concepts of derivatives, see for instance [2–4, 16, 25]. Our purpose here is to show that, when it comes to
establishing an inverse mapping theorem, inner prederivatives behave pretty much like derivatives.

Before stating our inverse set-valued mapping theorem we need the following definitions and results.

Definition 2.2 (Outer norm). Let H : X →→ Y be a positively homogeneous mapping. The outer norm of H is

‖H‖+ = sup
‖x‖≤1

sup
y∈H(x)

‖y‖,

with the convention that sup
y∈∅
‖y‖ = −∞.

It is easily seen that ‖H‖+ = inf{κ > 0 | H(IBX) ⊂ κIBY }. In particular, ‖H‖+ <∞ if and only if there exists
a positive constant κ such that H(x) ⊂ κ‖x‖IBY , ∀x ∈ X.

Definition 2.3. A set-valued mapping F : X →→ Y is said to be metrically regular at x̄ for ȳ when ȳ ∈ F (x̄)
and there is a constant κ ≥ 0 together with neighborhoods U of x̄ and V of ȳ such that

d(x, F−1(y)) ≤ κd(y, F (x)), for all (x, y) ∈ U × V.

The metric regularity of a mapping is closely tied to a property of its inverse called the Aubin property, also
known as pseudo-Lipschitz continuity, see [3, 12,24].

Proposition 2.4. A set-valued mapping F : X →→ Y is metrically regular at x̄ for ȳ with a constant κ if and
only if its inverse F−1 : Y →→ X has the Aubin property at ȳ for x̄ with constant κ, i.e., there exist neighborhoods
U of x̄ and V of ȳ such that

F−1(y) ∩ U ⊂ F−1(y′) + κ‖y − y′‖, for all y, y′ ∈ V.

In the following statement, under suitable assumptions, we prove that the inverse F−1 of a metrically regular
set-valued mapping F inherits the same differential properties as F in terms of inner prederivatives. Moreover,
we show that an inner prederivative of F−1 at a reference point (ȳ, x̄) ∈ gphF−1 is the inverse of an inner
prederivative of F at (x̄, ȳ). These properties are the very essence of the classical inverse mapping theorem.

Theorem 2.5 (Inverse mapping theorem). Consider a set-valued mapping F : X →→ Y and a pair (x̄, ȳ) ∈ gphF
such that F is metrically regular at x̄ for ȳ. Let H : X →→ Y be an inner prederivative of F at x̄ for ȳ such that
‖H−1‖+ <∞. Then the mapping H−1 is an inner prederivative of F−1 at ȳ for x̄.

Proof. Since ‖H−1‖+ <∞ there exists a positive number κ > 0 such that ‖H−1‖+ < κ, i.e.,H−1(y) ⊂ κ‖y‖IBX ,
for all y ∈ Y . Moreover, the mapping F being metrically regular at x̄ for ȳ, its inverse F−1 has the Aubin property
at ȳ for x̄, i.e., there are positive constants L, α and γ such that

F−1(y) ∩ IBα(x̄) ⊂ F−1(y′) + L‖y − y′‖IBX , for all y, y′ ∈ IBγ(ȳ). (2.1)



1064 M.H. GEOFFROY AND Y. MARCELIN

Fix δ > 0; because H ∈ H(F |(x̄,ȳ)) there exists a positive number a such that

H(x− x̄) ⊂ F (x)− ȳ +
δ

Lκ
‖x− x̄‖IBY , ∀x ∈ IBa(x̄). (2.2)

With no loss of generality we may assume that a < min{α, (Lκγ)/δ}. Take b > 0 such that b < min

{
a

κ
, γ − δa

Lκ

}
and fix y ∈ IBb(ȳ); we are going to prove that

H−1(y − ȳ) ⊂ F−1(y)− x̄+ δ‖y − ȳ‖IBX . (2.3)

If H−1(y− ȳ) = ∅ then there is nothing to prove. Otherwise, take x̃ ∈ H−1(y− ȳ) and set x := x̃+ x̄. It follows
that

x− x̄ ∈ H−1(y − ȳ) ⊂ κ‖y − ȳ‖IBX . (2.4)

Therefore, ‖x− x̄‖ ≤ κb < a and x ∈ IBa(x̄). Hence, using (2.2), we have

y − ȳ ∈ F (x)− ȳ +
δ

Lκ
‖x− x̄‖IBY .

Thus, there is v ∈ IBY such that y +
δ

Lκ
‖x− x̄‖v ∈ F (x). Consequently,

x ∈ F−1

(
y +

δ

Lκ
‖x− x̄‖v

)
∩ IBα(x̄).

Since a <
Lκγ

δ
and b < γ − δa

Lκ
it follows that y +

δ

Lκ
‖x− x̄‖v ∈ IBγ(ȳ).

Hence, from (2.1), we infer that x ∈ F−1(y) +
δ

κ
‖x− x̄‖IBX . Therefore, thanks to (2.4), it comes

x̃ = x− x̄ ∈ F−1(y)− x̄+ δ‖y − ȳ‖IBX .

As a consequence, for all δ > 0 there is a positive constant b such that

H−1(y − ȳ) ⊂ F−1(y)− x̄+ δ‖y − ȳ‖IBX , for all y ∈ IBb(ȳ),

which completes the proof. �

3. Stability of inner prederivatives

In the very simple case of a sequence of real differentiable functions fn : R→ R, n = 1, 2, . . . , it is well known
that if fn converges pointwise to f and f ′n (the sequence of derivatives of the functions fn) converges uniformly
to a function g then f is differentiable and f ′ = g. In this section we prove a similar result for a sequence of
set-valued mappings admitting inner prederivatives. Before stating our result we need to recall a few definitions.

The lower limit, in the sense of Painlevé-Kuratowski, of a sequence An of subsets of a normed space E is
defined by:

lim inf
n→∞

An :=
⋂
ε>0

⋃
N>0

⋂
n≥N

(An + εIBE).

We will say that the sequence An is lower PK-convergent to A if A ⊂ lim inf
n→∞

An. Recall that N∞ denotes the

set of all subsequences of N containing all n beyond some given integer; an alternative formulation of the lower
limit is then given by:

lim inf
n→∞

An = {x ∈ E | ∃N ∈ N∞,∀n ∈ N, ∃xn ∈ An with xn → x}.
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If A and B are two subsets of a normed space E, the excess of A over B is defined by the formula

e(A,B) = sup
a∈A

inf
b∈B
‖a− b‖,

where we make the convention that e(∅, B) = 0 when B 6= ∅ and e(∅, B) =∞ if B = ∅. Note that a straighfor-
ward computation shows that e(A,B) = inf{ε > 0 | A ⊂ B + εIBE}.

Theorem 3.1. Consider a sequence of set-valued mappings Fn : X →→ Y, n = 1, 2, . . . and a mapping F : X →→ Y .
Let Hn : X →→ Y, n = 1, 2, . . . and H : X →→ Y be positively homogeneous set-valued mappings. Take x̄ ∈ X and
let ȳn be a sequence in Y converging to some element ȳ ∈ Y. We make the following assumptions:

(1) For any δ > 0, there is a > 0 such that, for all positive integer n

Hn(x− x̄) ⊂ Fn(x)− ȳn + δ‖x− x̄‖IBY , ∀x ∈ IBa(x̄).

(2) There is a positive number α such that

(2.1) lim
n→∞

sup
x∈IBα(x̄)

e(Fn(x), F (x)) = 0.

(2.2) Hn(x) lower PK-converges to H(x) for all x ∈ αIBX .
(2.3) F (x) is compact for all x ∈ IBα(x̄).

Then, (x̄, ȳ) ∈ gphF and the mapping H is an inner prederivative of F at x̄ for ȳ.

Proof. Fix δ > 0, according to the first assumption, there is a constant a > 0 such that

Hn(x− x̄) ⊂ Fn(x)− ȳn + δ‖x− x̄‖IBY , for all x ∈ IBa(x̄), n ∈ N\{0}. (3.1)

Take an arbitrary positive number ε, thanks to assumption (2.1):

∃Nε ∈ N, ∀n ≥ Nε, sup
x∈IBα(x̄)

e(Fn(x), F (x)) < ε. (3.2)

Morevover, from relation (3.1), we get Hn(0X) ⊂ Fn(x̄)− ȳn for all positive n and since 0Y ∈ Hn(0X) it follows
that ȳn ∈ Fn(x̄) for all n ∈ N\{0}.
Therefore assertion (3.2) yields ȳn ∈ F (x̄) + εIBY for all n ≥ Nε, thus, ȳ ∈ cl(F (x̄) + εIBY ). We infer, from the
compactness of the set F (x̄), that ȳ ∈ F (x̄) + εIBY . Furthermore, ε being an arbitrary positive number, one has

ȳ ∈
⋂
ε>0

(F (x̄) + εIBY ) = clF (x̄), i.e., ȳ ∈ F (x̄).

Now let ε′ > 0; using relation (3.1) together with assumption (2.1) and making a smaller if necessary so that
a < α, there is a positive integer Nε′ such that

Hn(x− x̄) + ȳn ⊂ F (x) + (ε′ + δ‖x− x̄‖)IBY , for all x ∈ IBa(x̄) and all n ≥ Nε′ .

Therefore,
lim inf
n→∞

(Hn(x− x̄) + ȳn) ⊂ cl
(
F (x) + (ε′ + δ‖x− x̄‖)IBY

)
, ∀x ∈ IBa(x̄). (3.3)

Because F (x) is compact, the set F (x)+(ε′+δ‖x−x̄‖)IBY is closed. Thus, taking into account assumption (2.2),
we obtain

H(x− x̄) + ȳ ⊂ F (x) + δ‖x− x̄‖IBY + ε′IBY , ∀x ∈ IBa(x̄).

The latter holding true for any positive ε′ we get

H(x− x̄) ⊂
⋂
ε′>0

(
F (x)− ȳ + δ‖x− x̄‖IBY + ε′IBY

)
, ∀x ∈ IBa(x̄).
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Hence, for all x ∈ IBa(x̄),

H(x− x̄) ⊂ cl
(
F (x)− ȳ + δ‖x− x̄‖IBY

)
= F (x)− ȳ + δ‖x− x̄‖IBY .

In other terms, H is an inner prederivative of F at x̄ for ȳ. �

Remark 3.2. Assumption (1) in Theorem 3.1 asserts that each element of the sequence Fn admits an inner
prederivative Hn at x̄ for some point ȳn with a certain uniformity reflected by the fact that the neighborhood of
x̄ in which the assertion holds does not depend on n. Assertion (2.1) shares some similarities with the concept
of Fisher convergence of sets (see, e.g., [14]). Indeed, if a sequence of subsets An of a normed space is Fisher
convergent to a subset A then it must satisfy lim

n
e(An, A) = 0. Finally, it is easily seen that when dimY < ∞

we do not need F to be compact-valued in a neighborhood of x̄ (but only closed-valued in such a neighborhood)
to prove Theorem 3.1.

4. Optimality conditions in set-valued optimization

In this section, we first derive necessary optimality conditions for several classes of minimizers of an uncon-
strained set-valued optimization problem by means of inner prederivatives. Subsequently, taking advantage of
these results, we study the problem of finding optimal allocations in an economy involving a finite number of
firms and customers as it has been modeled in [6].

For starters, the optimization problem we are interested in is the following:

(P ) :

{
minF (x)
s.t. x ∈ X,

where the mapping F : X →→ Y is the set-valued objective function of the problem (P ). From now on, the space
Y is ordered by a nonempty, closed and convex cone C ⊂ Y through a binary relation ≤ defined by y1 ≤ y2 if
and only if y2 − y1 ∈ C.

Recall that a pair (x̄, ȳ) ∈ gphF is a Pareto minimizer of the problem (P ) whenever (ȳ−C)∩F (X) ⊂ ȳ+C;
if the cone C is pointed, i.e., if C ∩ (−C) = {0Y }, this condition becomes (ȳ − C) ∩ F (X) = {ȳ}. Moreover,
(x̄, ȳ) ∈ gphF is said to be a strong minimizer of the problem (P ) whenever F (X) ⊂ ȳ + C while it is called a
weak minimizer of (P ) if (ȳ− int(C))∩F (X) = ∅. Obviously, the nonempty interior requirement of the ordering
cone C could be a serious limitation to the use of the latter concept even in the finite dimensional setting.
Hence, it seems natural to consider less restrictive relaxed minimizers by using other notions of interiors. In this
section, we will utilize the relative interior (see [26,29]), the pseudo relative interior (see, e.g., [7]) and the quasi
relative interior introduced by Borwein and Lewis in [8] of the closed and convex cone C denoted, respectively,
by ri(C),pri(C) and qri(C).

For every nonempty closed and convex subset K of a Banach space, the inclusion ri(K) ⊂ pri(K) ⊂ qri(K)
holds always true (see, for instance, [7]). In particular, let us recall that when working in finite dimensions,
ri(K) 6= ∅ and ri(K) = pri(K) = qri(K). One can also note that, while several natural ordering cones have empty
relative interior in the infinite-dimensional framework, it is proved in [8] that qri(K) 6= ∅ in separable Banach
spaces. For more details on these concepts the reader could refer to [7, 8, 19, 26, 29] and the references therein.
Throughout, we will use the symbol ρ to denote, in an abstract way, the notions of interior we consider here and
we will write ρ ∈ {int, ri,pri, qri} to indicate that the set ρ(C) can be indistinctly equal to int(C), ri(C),pri(C)
or qri(C). This notation allows us to define a general notion of relaxed minimizers of the problem (P ).

Definition 4.1 (Relaxed minimizers). Let ρ ∈ {int, ri,pri, qri} be such that ρ(C) 6= ∅. We say that a pair
(x̄, ȳ) ∈ gphF is a ρ-minimizer of the problem (P ) if (ȳ − ρ(C)) ∩ F (X) = ∅.

Of course, when ρ(C) = int(C), Definition 4.1 agrees with the usual definition of weak minimizers. Note also
that the idea of considering such relaxed minimizers (also known as relative minimizers) is by no means new;
indeed, using generalized differentiation techniques, Bao and Mordukhovich studied their existence a few years
ago in [5].
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Let H : X →→ Y be a positively homogeneous mapping and let (x̄, ȳ) be an element of the graph of our objective
set-valued mapping F . To establish our optimality conditions we will need the following condition to be fulfilled:

∃α > 0, ȳ +H(x− x̄) ⊂ F (X), ∀x ∈ IBα(x̄). (4.1)

The next lemma provides us with some sufficient conditions for an inner prederivative H ∈ H(F |(x̄,ȳ)) to sat-
isfy (4.1).

Lemma 4.2. Let H : X →→ Y be an inner prederivative of the set-valued objective mapping F at x̄ for ȳ. Then
H satisfies condition (4.1) whenever one of the following assertions holds:

(i) The mapping F is a convex process and H ≡ F .
(ii) The mapping F is linearly open at x̄ for ȳ and ‖H‖+ <∞.

Proof. (i). From Proposition 1.4 we know that F ∈ H(F |(x̄,ȳ)). Let x ∈ X, because F is a convex process
F (x − x̄) + F (x̄) ⊂ F (x) ⊂ F (X). Consequently, since H = F and ȳ ∈ F (x̄), we get ȳ + H(x − x̄) ⊂ F (X).
Thus, relation (4.1) holds.

(ii). Since ‖H‖+ < ∞ there exists θ ≥ 0 such that H(x) ⊂ θ‖x‖IBY , for all x ∈ X. Moreover, because the
mapping F is linearly open there are positive constants κ, α and β such that

F (x+ κrintIBX) ⊃ (F (x) + rintIBY ) ∩ IBβ(ȳ), for all x ∈ IBα(x̄), r > 0. (4.2)

Now, fix δ > 0. The mapping H being an inner prederivative of F at x̄ for ȳ there is a positive constant a < α
such that

ȳ +H(x− x̄) ⊂ F (x) + δ‖x− x̄‖IBY , for all x ∈ IBa(x̄). (4.3)

Making a smaller if necessary, one may assume that θa ≤ β. Take any y ∈ H(x − x̄) (if there is not such an
element y then there is nothing to prove). We get

‖ȳ + y − ȳ‖ = ‖y‖ ≤ θ‖x− x̄‖ ≤ θa ≤ β,

hence ȳ + y ∈ IBβ(ȳ). It follows that ȳ +H(x− x̄) ⊂ IBβ(ȳ), thus, taking (4.3) into account,

ȳ +H(x− x̄) ⊂
(
F (x) + δ‖x− x̄‖IBY

)
∩ IBβ(ȳ).

From (4.2) we infer that ȳ +H(x− x̄) ⊂ F (X),∀x ∈ IBa(x̄) and the proof is complete. �

The following theorem establishes necessary optimality conditions in terms of inner prederivatives. From now
on, we assume that ρ ∈ {int, ri,pri, qri} is such that ρ(C) 6= ∅.

Theorem 4.3 (Optimality conditions). Let the pair (x̄, ȳ) be in the graph of the set-valued objective function
F. Let H ∈ H(F |(x̄,ȳ)) satisfy property (4.1).

(i) If (x̄, ȳ) is a ρ-minimizer of the problem (P ) then,

∃ a > 0, ∀x ∈ IBa(x̄), H(x− x̄) ∩ −ρ(C) = ∅. (4.4)

(ii) If (x̄, ȳ) is a Pareto minimizer of the problem (P ) then,

∃ a > 0, ∀x ∈ IBa(x̄), H(x− x̄) ∩ (−C) ⊂ C. (4.5)

If the cone C is pointed the necessary condition (4.5) becomes

∃ a > 0, ∀x ∈ IBa(x̄), H(x− x̄) ∩ (−C) ⊂ {0Y }. (4.6)
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(iii) If (x̄, ȳ) is a strong minimizer of the problem (P ) then,

∃ a > 0, ∀x ∈ IBa(x̄), H(x− x̄) ⊂ C. (4.7)

Proof.

(i) Let (x̄, ȳ) be a relaxed minimizer of the problem (P ). Assume that assertion (4.4) does not hold, i.e.,

∀a > 0, ∃x ∈ IBa(x̄), H(x− x̄) ∩ −ρ(C) 6= ∅. (4.8)

According to assumption (4.1) there exists a positive constant α such that

H(x− x̄) ⊂ F (X)− ȳ, ∀x ∈ IBα(x̄). (4.9)

Moreover, from (4.8), there are x ∈ IBα(x̄) and y ∈ H(x− x̄) such that y ∈ −ρ(C). Using (4.9), it follows
that y ∈ F (X)− ȳ. Consequently, y ∈ (F (X)− ȳ)∩−ρ(C), a contradiction since (x̄, ȳ) is a ρ-minimizer of
the problem (P ). We conclude that (4.4) holds and the proof of assertion (i) is complete.

(ii) Let (x̄, ȳ) be a Pareto minimizer of the problem (P ); first we prove assertion (4.5). Thanks to (4.1) there
exists a > 0 such that H(x− x̄) ⊂ F (X)− ȳ for all x ∈ IBa(x̄). Fix x ∈ IBa(x̄) and take y ∈ H(x− x̄)∩(−C)
(if there is no such y then we are done), it follows that y ∈ (F (X)− ȳ)∩(−C) and, because (x̄, ȳ) is a Pareto
minimizer of (P ), y ∈ C. which proves assertion (4.5). In the case when C is a pointed cone, assertion (4.5)
yields H(x− x̄) ∩ (−C) ⊂ C ∩ (−C) = {0Y } and the proof is complete.

(iii) Let (x̄, ȳ) be a strong minimizer of the problem (P ). Using (4.1), there exists a positive constant a such
that H(x− x̄) ⊂ F (X)− ȳ ⊂ C, for all x ∈ IBa(x̄). �

Now, we would like to highlight the fact that our necessary conditions fit into the paradigm of optimality
criterions for both single-valued and set-valued optimization problems. First, let us consider the special case
when the mapping F is a Fréchet differentiable single-valued function f : Rn → R, C = R+ and ρ = int. Then,
the derivative ∇f(x̄) of the function f at x̄ is obviously a bounded inner prederivative of f at x̄ for f(x̄).
Hence, relations (4.4), (4.6) and (4.7) reduce to the following standard necessary optimality condition for the
minimization problem of the function f over Rn : if the point x̄ ∈ Rn is optimal then

∃a > 0, ∀x ∈ IBa(x̄), ∇f(x̄)(x− x̄) ≥ 0, i.e.,∇f(x̄) ≡ 0.

Closer to our framework are the works of Luc [22,23] who derived a first order necessary condition for a pair in
the graph of a set-valued mapping F to be a weak minimizer. More precisely, Luc proved that if (x, y) ∈ gphF
is a local weak minimizer of the problem (P ) then DF (x, y)(u) ∩ −int(C) = ∅, for all u ∈ X; where DF (x, y)
denotes the well-known (set-valued) contingent derivative of F at (x, y) (see the monograph of Aubin and
Frankowska [3]). More recently, Jahn and Rauh [21] established necessary optimality conditions in terms of
contingent epiderivatives; a concept of single-valued derivative for set-valued mappings they introduced in the
same paper. They proved that if an element (x̄, ȳ) in the graph of the mapping F : D ⊂ X →→ Y is a weak
minimizer of the problem (P ) (where D is the feasible set) then ∆F (x̄, ȳ)(x − x̄) 6∈ −int(C) for all x ∈ D,
where ∆F (x̄, ȳ) stands for the contingent epiderivative of F at (x̄, ȳ). Jahn and Rauh also proved the following
necessary optimality condition for a pair (x̄, ȳ) ∈ gphF to be a strong minimizer: ∆F (x̄, ȳ)(x− x̄) ∈ C, ∀x ∈ D.
The similarities between the conditions established by Luc and the ones by Jahn and Rauh with our necessary
conditions in Theorem 4.3 are obvious. In addition, let us mention that the same kind of necessary optimality
conditions for set maximization problems were established by Corley [9] in terms of contingent derivatives. As
a conclusion, in our opinion, Theorem 4.3 fits well into the theory of optimality conditions.

Taking advantage of our previous results, we consider the special case when the set-valued mapping F is a
convex process and establish a necessary optimality condition for a constrained set-valued optimization problem.
This particular case is worth mentioning since it leads to applications in welfare economics as shown later on
in this very section.
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Proposition 4.4. Let T : D ⊂ X →→ Y be a convex process where D ⊂ domT and let (x̄, ȳ) ∈ gphT ∩ (D× Y ).
Consider the following set optimization problem:{

min T (x)
s.t. x ∈ D. (4.10)

If (x̄, ȳ) is a ρ-minimizer of (4.10) then

∀x ∈ D, T (x− x̄) ∩ −ρ(C) = ∅. (4.11)

Proof. Let (x̄, ȳ) ∈ gphT ∩ (D×Y ) be a ρ-minimizer of (4.10). First, we claim that for every x ∈ D, T (x− x̄) ⊂
T (D)− ȳ. Indeed let x ∈ D; if T (x− x̄) = ∅ there is nothing to prove. Otherwise, take y ∈ T (x− x̄) then because
T is a convex process, T (x− x̄) + T (x̄) ⊂ T (x) thus, y + ȳ ∈ T (D) and we have proved our claim. The rest of
the proof is as in Theorem 4.3. Assuming that (4.11) does not hold there are x0 ∈ D and y0 ∈ T (x0 − x̄) such
that y0 ∈ −ρ(C). Thanks to the above claim y0 ∈ T (D)− ȳ hence, (ȳ− ρ(C))∩T (D) 6= ∅, a contradiction. �

In [17], Gaydu et al. established optimality conditions for set-valued optimization problems using pseudo strict
prederivatives, a concept introduced by Pang in [28] (see [17], Thm. 4.6 and [17], Lem. 4.7). It turns out that the
optimality conditions proved in this paper (Thm. 4.3 and Prop. 4.4) are much easier to use in practice that the
ones provided in [17]. This is due to the very structure of inner prederivatives which allows us to significantly
improve many results as we will discuss it in Section 5.

From now on E is a Banach space, called the commodity space, ordered by a nonempty and convex cone
K ⊂ E which we assume is solid, i.e., int(K) 6= ∅.

We consider an economy
E = (P1, . . . , Pp, C1, . . . , Cn,W ),

involving p firms and n customers. We associate to each firm i = 1, . . . , p a production set Pi ⊂ E while
each consumer j = 1, . . . , n possesses a consumption set Cj ⊂ E. The so-called net demand set W ⊂ E
describes natural situations that may happen when the initial endowment is not exactly known. A vector
x = (x1, . . . , xp) ∈ P1×. . .×Pp corresponds to a production strategy and a vector y = (y1, . . . , yn) ∈ C1×. . .×Cn
is a consumption plan. A pair (x, y) ∈ P1× . . .×Pp×C1× . . .×Cn is called an admissible state of the economy E .

We make the assumption that, for every i = 1, . . . , p, the production sets are closed and convex. The closedness
of Pi (i = 1, . . . , p) guarantees the stability of the production sets in the sense that if the firm i is able to produce
a sequence of commodities x1

i , x
2
i , . . . , x

k
i , . . . then it should be able to produce xi = lim

k→∞
xki if there exists such

an element xi. The convexity of the production sets reflects the divisibility of the commodities. Because a firm
may stop producing, for every i = 1, . . . , p, one has Pi 3 0E . Finally, we assume that the consumption sets
Cj , j = 1, . . . , n, are closed and convex cones.

Definition 4.5 (Feasible allocation). Let (x, y) be an admissible state of the economy E . We say that the pair
(x, y) is a feasible allocation of E whenever

n∑
j=1

yj −
p∑
i=1

xi ∈W.

From now on, we endow the space En with the strict order <Kn defined by y <Kn y′ if and only if y′ − y ∈
int(Kn). If y and y′ are two consumption plans in C1× . . .×Cn the relation y <Kn y′ means that each customer
j = 1, . . . , n strictly prefers yj over y′j . This notation allows us to introduce the concept of weak Pareto optimal
allocations.

Definition 4.6 (Weak Pareto optimal allocation). Let (x̄, ȳ) be a feasible allocation of the economy E . The
pair (x̄, ȳ) is said to be a weak Pareto optimal allocation of E if there is no feasible allocation (x, y) such that
y <Kn ȳ.
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In other terms, a weak Pareto optimal allocation is a feasible allocation that cannot be strictly improved upon.
In the remaining of this section, it is our purpose to show that the study of weak Pareto optimal allocations
of the economy E reduces to the solving of a set optimization problem. To this end, we consider the set-valued
mapping G : Ep+1 →→ En defined by

G(x,w) :=

{
y ∈ C1 × . . .× Cn | w =

n∑
j=1

yj −
p∑
i=1

xi

}
. (4.12)

We associate to the economy E the following set optimization problem
minG(x,w)

s.t. (x,w) ∈ Ω := P1 × . . .× Pp ×W.
(4.13)

The following proposition specifies the relationship between the weak Pareto optimal allocations of the econ-
omy E and the weak minimizers of the set optimization problem (4.13).

Proposition 4.7. Let (x̄, ȳ) be a feasible allocation of the economy E and let w̄ ∈W be such that w̄ =

n∑
j=1

ȳj −

p∑
i=1

x̄i. The following assertions are equivalent:

(i) The pair (x̄, ȳ) is a weak Pareto optimal allocation of E .
(ii) The triplet (x̄, w̄, ȳ) is a weak minimizer of the problem (4.13).

Proof.

(i) ⇒ (ii). Let (x̄, ȳ) be a weak Pareto optimal allocation of E ; obviously, (x̄, w̄, ȳ) ∈ gphG ∩ (Ω × En). Let us
assume that (x̄, w̄, ȳ) is not a weak minimizer of (4.13) then, there are (x,w) ∈ Ω and y ∈ G(x,w)
such that y ∈ ȳ − int(Kn). It follows that the pair (x, y) is a feasible allocation of the economy E
(due to the fact that y ∈ G(x,w)) such that y <Kn ȳ, a contradiction. Consequently, (x̄, w̄, ȳ) is a
weak minimizer of (4.13).

(ii) ⇒ (i). Let (x̄, w̄, ȳ) be a weak minimizer of the problem (4.13). We assume that (x̄, ȳ) is not a weak
Pareto optimal allocation of the economy E . Hence, there exists a feasible allocation (x, y) of E

such that y <Kn ȳ, i.e., y ∈ ȳ − int(Kn). Moreover, there is w ∈ W such that w =
n∑
j=1

yj −

p∑
i=1

xi, thus, y ∈ G(x,w). It follows that y ∈ (ȳ − int(Kn)) ∩ G(Ω); a contradiction since

(ȳ − int(Kn)) ∩G(Ω) = ∅. �

To be able to use the results we proved at the beginning of the present section we need the following proposition.

Proposition 4.8. The mapping G, as defined in (4.12), is a convex process.

Proof. Obviously, 0En ∈ G(0Ep+1). Let (x,w) ∈ Ep+1 and take λ > 0. If (x,w) 6∈ domG then G(x,w) = ∅
and a straightforward computation shows that G(λx, λw) = ∅; it follows that λG(x,w) = G(λx, λw). Whenever

(x,w) ∈ domG for all y ∈ G(x,w) we have, λw =

n∑
j=1

λyj−
p∑
i=1

λxi, i.e., λy ∈ G(λx, λw). Therefore, λG(x,w) ⊂

G(λx, λw).
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Conversely, since (x,w) ∈ domG, (λx, λw) ∈ domG. Then for all y ∈ G(λx, λw) one has w =

n∑
j=1

1

λ
yj−

p∑
i=1

xi;

which yields y ∈ λG(x,w). Consequently, G(λx, λw) ⊂ λG(x,w) and the mapping G is positively homogeneous.
Now, take two pairs (x,w) and (x′, w′) in Ep+1. We claim that

G(x,w) +G(x′, w′) ⊂ G(x+ x′, w + w′). (4.14)

If (x,w) 6∈ domG or (x′, w′) 6∈ domG then we are done. Otherwise, take y ∈ G(x,w) and y′ ∈ G(x′, w′) we get

w + w′ =

n∑
j=1

(yj + y′j)−
p∑
i=1

(xi + x′i),

i.e., y + y′ ∈ G(x+ x′, w + w′) and the proof is complete. �

Next is our last result providing a necessary condition for a feasible allocation of the economy E to be a
weak Pareto optimal allocation. It relies on the optimality conditions obtained when the objective mapping is
a convex process; in that case, an inner prederivative (at any point of its graph) is given by the mapping itself.

Proposition 4.9. Let (x̄, ȳ) be a feasible allocation of the economy E and let w̄ :=

n∑
j=1

ȳj −
p∑
i=1

x̄i. If (x̄, ȳ) is

a weak Pareto optimal allocation of E then for every (x,w) ∈ Ω,

G(x− x̄, w − w̄) ∩ −int(Kn) = ∅. (4.15)

Proof. Let (x̄, ȳ) be a weak Pareto optimal allocation of E . According to Proposition 4.7, the triplet (x̄, w̄, ȳ)

is a weak minimizer of the problem (4.13), where w̄ :=

n∑
j=1

ȳj −
p∑
i=1

x̄i. Because G is a convex process we can

apply Proposition 4.4 with ρ = int and we obtain (4.15). �

5. Comparison with other concepts of differentiation

In order to emphasize the interest of introducing such a new concept of inner prederivative we will compare it
with some well-known existing notions of derivatives for set-valued mappings. For the sake of consistency, we will
focus on set-valued differentiation concepts involving a nonunique positively homogeneous set-valued mapping.
Therefore, we will not consider in this section the graphical derivatives relying on cones as the contingent
derivative [1, 3, 13], the adjacent derivative [15] or the coderivative (see, e.g., [24]). For each of the concepts we
will mention here, we will endeavor to point out the benefits brought by the notion of prederivative we introduce
in this paper.

First of all, it makes sense to recall the definition of inner T -differentiability [10,28] since it is one of the closest
notions to our concept of inner prederivative. In [28], Pang extended several kinds of prederivatives introduced
by Ioffe in [20] to the set-valued framework. Among them, was the following notion of inner T -differentiability.

Definition 5.1 (Inner T -differentiability). Let T : X →→ Y be a positively homogeneous set-valued map. We
say that S : X →→ Y is inner T -differentiable at x̄ if for any δ > 0 there is a neighborhood V of x̄ such that

S(x̄) ⊂ S(x)− T (x− x̄) + δ‖x− x̄‖IB for all x ∈ V. (5.1)

Obviously, when T is a single-valued function, the inner T -differentiability in the sense of Pang forces (but is
not equivalent to) the existence of an inner prederivative in the sense of Definition 1.1. In the general case (i.e.,
when T is a set-valued mapping), we are not aware of the existence of any “classical differentiation” results
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involving the inner T -differentiability in the sense of Definition 5.1. It is our belief that this is due to the very
definition of this concept and in particular to inclusion (5.1). Indeed, the prederivative T in (5.1) lies in the
right-hand side of the inclusion which leads to very few information on the structure of T whereas inclusion (1.1)
gives us a quite good description of the inner prederivative H. In our opinion, this lack of knowledge makes the
inner T -differentiability a difficult notion to handle, moreover as stated by Pang himself in ([28], Ex. 4.9) it does
not enjoy as many properties as the other concepts of derivative and, as such, is not taken into consideration
to establish classical theorems in variational analysis.

Next is a notion of strict differentiability for set-valued maps introduced by Azé [4] in Banach spaces.

Definition 5.2. We say that a multifunction F : X →→ Y is strictly differentiable at x̄ ∈ domF if there exists
a closed convex process L : X →→ Y such that, for each ε > 0, there exist r > 0, α > 0 such that

∀x ∈ IBr(x̄),∀u ∈ αIBX , e(L(u) ∩ IBY + F (x), F (x+ u)) < ε‖u‖. (5.2)

First, we claim that Definition 5.2 forces Definition 1.1. Indeed, if a set-valued mapping F is strictly differentiable
at x̄ ∈ domF then according to Definition 5.2 for all ε > 0 there exists α ∈ (0, 1) such that

L(x− x̄) ∩ IBY + F (x̄) ⊂ F (x) + ε‖x− x̄‖IBY , ∀x ∈ IBα(x̄).

Consequently, for any ȳ ∈ F (x̄) we get

L(x− x̄) ∩ ‖x− x̄‖IBY ⊂ F (x)− ȳ + ε‖x− x̄‖IBY , ∀x ∈ IBα(x̄).

The set-valued mapping H : x 7→ L(x) ∩ ‖x‖IBY being obviously positively homogeneous it is an inner pred-
erivative of F at x̄ for ȳ in the sense of Definition 1.1. Hence if a set-valued mapping F is strictly differentiable
at x̄ it admits an inner prederivative at x̄ for ȳ, where ȳ is any point in F (x̄). It is also interesting to compare the
inversion theorem proved by Azé using his concept of strict differentiability with Theorem 2.5. Azé’s theorem
reads as follows:

Theorem 5.3 (Azé [4]). Assume that the multifunction F is closed and strictly differentiable at x̄ ∈ domF
and that L is onto, then there exist r > 0, η > 0 such that

F (x̄) + ηIBY ⊂ F (x̄+ rIBX).

Moreover, F−1 is pseudo-Lipschitz near (x̄, ȳ) for each ȳ ∈ F (x̄) that is there exist η0, r0, l0 > 0 such that
∀y1, y2 ∈ y0 + η0IBY

e(F−1(y1) ∩ (x̄+ r0IBX), F−1(y2) ∩ (x̄+ 2r0IBX)) ≤ l0‖y1 − y2‖.

One can immediately note that contrary to our inverse mapping theorem (Thm. 2.5) and to most results
fitting into the pattern of the inverse function theorem paradigm Azé’s inversion theorem does not provide any
differentiability property that should be satisfied by the inverse mapping F−1. In this regard, Theorem 2.5 seems
more comprehensive since it establishes that the inverse mapping F−1 inherits the differentiability properties
of F and provides an explicit definition of the inner prederivative of F−1.

The last notions of differentiability for set-valued maps we would like to mention are the pseudo-
differentiability and the quasi-peridifferentiability due to Nachi and Penot (see [25], Defs. 3.1 and 3.4). For
the convenience of the reader we recall their definitions below.

Definition 5.4 (Pseudo-differentiability). Let X and Y be normed vector spaces, a multivalued function F :
X →→ Y is said to be pseudo-differentiable at (x̄, ȳ) ∈ gphF if it is lower semicontinuous at (x̄, ȳ) and if there
exist some neighborhood V of ȳ and a continuous linear map a : X → Y called a derivative of F at (x̄, ȳ) such
that for any ε > 0 there exists β > 0 such that

F (x) ∩ V ⊂ F (x̄) + a(x− x̄) + ε‖x− x̄‖IBY , ∀x ∈ IBδ(x̄). (5.3)
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Definition 5.5 (Quasi-peridifferentiability). Let X and Y be normed vector spaces, a multivalued function
F : X →→ Y is said to be quasi-peridifferentiable at (x̄, ȳ) ∈ gphF if there exists some continuous linear map
a : X → Y such that for any ε > 0 there exist β, δ > 0 for which

F (x) ∩ IBβ(ȳ)− a(x− x′) ⊂ F (x′) + ε‖x− x′‖IBY , ∀x, x′ ∈ IBδ(x̄). (5.4)

Obviously, any set-valued mapping F that is quasi-peridifferentiable at (x̄, ȳ) ∈ gphF admits an inner pred-
ervative at x̄ for ȳ. Indeed, such a set-valued mapping F satisfies F (x̄) ∩ IBβ(ȳ) − a(x̄ − x′) ⊂ F (x′) + ε‖x̄ −
x′‖IBY , ∀x′ ∈ IBδ(x̄); therefore,

a(x− x̄) ⊂ F (x)− ȳ + ε‖x− x̄‖IBY , ∀x ∈ IBδ(x̄).

Consequently, the linear map a is a single-valued inner prederivative of F at x̄ for ȳ.
Using these differentiation concepts for set-valued maps Nachi and Penot established the following inversion

theorem.

Theorem 5.6 (Nachi, Penot [25]). Let X and Y be Banach spaces and let F : X0 →→ Y be a set-valued mapping
defined on some open subset X0 of X with closed nonempty values. Suppose F is quasi-peridifferentiable at
(x̄, ȳ) ∈ gphF and such that some derivative a ∈ L(X,Y ) of F at (x̄, ȳ) is invertible. In addition, suppose F is
pseudo-differentiable at (x̄, ȳ) with F (x̄) = {ȳ}. Then F−1 is pseudo-differentiable at (ȳ, x̄) with derivative a−1.

In Theorem 5.6, the authors need the mapping F to satisfy two different differentiability properties; in addition
F must be single-valued at x̄. Moreover, the inverse mapping F−1 does not inherit the differentiability properties
of F . For all these reasons, together with the fact that our concept of inner prederivative is weaker than the
ones used in Theorem 5.6, we believe that Theorem 2.5 expands the scope of applications of Nachi and Penot’s
theorem.

As a conclusion, we can say that the concept of inner prederivative is less restrictive and easier to handle than
many existing notions of differentiation for set-valued mappings and it is powerful enough to lead to important
results of variational analysis and set-valued optimization. There is no doubt that its range of applications has
not been fully explored yet and it is our belief that inner prederivatives can be of interest, for instance, to
establish an implicit mapping theorem for set-valued mappings but also to approximate set-valued maps and
set iterative methods for solving inclusions.
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I Math. 297 (1983) 461–464.

[16] M. Gaydu, M.H. Geoffroy and C. Jean-Alexis, An inverse mapping theorem for H-differentiable set-valued maps. J. Math.
Anal. Appl. 421 (2015) 298–313.

[17] M. Gaydu, M.H. Geoffroy and Y. Marcelin, Prederivatives of convex set-valued maps and applications to set optimization
problems. J. Global Optim. 64 (2016) 141–158.
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