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ON A DECOMPOSITION OF REGULAR DOMAINS INTO JOHN DOMAINS

WITH UNIFORM CONSTANTS

Manuel Friedrich

Abstract. We derive a decomposition result for regular, two-dimensional domains into John domains
with uniform constants. We prove that for every simply connected domain Ω ⊂ R2 with C1-boundary
there is a corresponding partition Ω = Ω1 ∪ . . . ∪ ΩN with

∑N
j=1H

1(∂Ωj \ ∂Ω) ≤ θ such that each
component is a John domain with a John constant only depending on θ. The result implies that many
inequalities in Sobolev spaces such as Poincaré’s or Korn’s inequality hold on the partition of Ω for
uniform constants, which are independent of Ω.
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1. Introduction

It is a fundamental question to identify classes of domains for which the existence of solutions for partial
differential equations or the validity of inequalities in Sobolev spaces can be guaranteed. The last decades have
witnessed a tremendous process in establishing results for different assumptions on the domains.

For instance, one of the first proofs of Korn’s inequality, being a widely studied inequality due to its importance
in the analysis of elasticity equations, was given by Friedrichs [21] for domains allowing for a finite number of
corners or edges on the boundary. Subsequently, generalizations appeared including versions for star-shaped
sets [27], general Lipschitz domains [35], and more recently results [17] were obtained for the broader class of
uniform domains using a modification of the extension operator by Jones [26].

On the other hand, it has been known for a long time that many inequalities are false on domains with external
cusps. Several arguments have been provided for this fact (see [22,40]), but the oldest is due to Friedrichs [20],
who studied an inequality for analytic complex functions (cf. also [1]).

Recently Acosta, Durán, and Muschietti [1] investigated the existence of solutions of the divergence operator
on John domains (see [25, 31, 33]). Apart from its application to the study of the Stokes equation the result is
of interest due to its connection to Poincaré’s and Korn’s inequality, which may be deduced herefrom. Roughly
speaking, a domain is a John domain if it satisfies a twisted cone condition such that each two points can be
connected by a curve not getting too close to the boundary of the domain in terms of a corresponding John
constant (we refer to Sect. 2.1 below for an exact definition).
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John domains represent a very general class allowing for sets with fractal boundary (e.g. Koch’s snowflake),
but at the same time excluding the formation of external cusps. They may be regarded as a very natural and
in some sense most general notion of sets for the investigation of problems alluded to above since in [1,6] it has
been shown that for domains satisfying the separation property (e.g. for simply connected planar domains) the
validity of Poincaré’s or Korn’s inequality implies that the set is a John domain. Moreover, as already observed
by Bojarski [5], the constant involved in the estimates essentially only depends on the John constant.

Difficulties concerning the properties and regularity of domains become even more challenging in models
dealing with varying domains, e.g. free boundary or shape optimization problems, where the best shape of a set
in dependence of a cost functional is identified as the solution of a variational problem (we refer to [7] for an
introduction). Another important class is given by free discontinuity problems in the language of Ambrosio and
De Giorgi [14] with various applications in fields of fracture mechanics or digital image segmentation, where the
set of discontinuities of the function of interest is not preassigned, but determined from an energy minimization
principle (cf. [3]).

Obviously without additional conditions there is no hope to derive uniform estimates being independent of
the set shape as can be seen, e.g., by considering a sequence of smooth sets converging to a domain with external
cusp. Moreover, one may think of Neumann sieve type phenomena (see [32]) where the set is only connected by
a small periodically distributed contact zone.

Therefore, many works appeared analyzing the behavior of constants in terms of the domain (cf. [24] and the
references therein) or investigating special structures as convex, star-shaped or thin domains (see e.g. [16,23,30]).
Another approach particularly used in the study of free discontinuity problems is based on the idea to establish
results for a certain class of admissible (discontinuity) sets for which uniform estimates can be shown (we refer
e.g. to [29,34,37]).

Also the present article is devoted to the derivation of uniform estimates being independent of the particular
set shape. However, we will not restrict ourselves to a specific class of sets with certain properties, but rather
show that for a generic domain one may construct a partition of the set such that the shape of each component
can be controlled. The main result of this contribution is the following.

Theorem 1.1. Let θ > 0. Then there is % = %(θ) > 0 such that the following holds: for all open, bounded and
simply connected sets Ω ⊂ R2 with C1-boundary there is a partition Ω = Ω1 ∪ . . .∪ΩN (up to a set of negligible
measure) such that the sets Ω1, . . . , ΩN are %-John domains with Lipschitz boundary and

N∑

j=1

H1(∂Ωj) ≤ (1 + θ)H1(∂Ω). (1.1)

Loosely speaking, the result states that in spite of the fact that there is no uniform control of the John
constant for generic domains, it is at least possible to establish uniform estimates locally in certain regions
of the set. Here it is essential that the fineness of the partition can be bounded in terms of the length of the
boundary of Ω. The original motivation for the derivation of Theorem 1.1 is a piecewise Korn inequality [18] for
special functions of bounded deformation (see [2,4]). We hope, however, that the result may be also applied in
various other situations due to the fact that John domains are a very general class and indeed many estimates
only depend on the John constant (cf. [15]).

It is a natural question if it is possible to derive a partition of the form (1.1) into sets satisfying more specific
properties, e.g. convexity. By constructing an example related to Koch’s snowflake we see, however, that in
general this is not the case and similarly as in the results for the validity of Poincaré’s and Korn’s inequality
(again see [1, 6]) also in the present context John domains appear to be an appropriate notion.

Let us remark the the regularity assumption in Theorem 1.1 is no real restriction as in many applications
domains can be approximated by smooth sets (see [3], Thm. 3.42) or discontinuities can be regularized by
density arguments (see [10,12]). Moreover, the result may be generalized to sets with Lipschitz boundary whose
complements have a uniformly bounded number of connected components (see Thm. 6.4), which is a frequently
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used condition for various models in fracture mechanics or shape optimization (cf. [8, 9, 13, 38]). However, the
limitation to sets with a specific topology is crucial as without a requirement of this type the problem is
essentially, again up to a density argument, equivalent to the derivation of a version of Theorem 1.1 in the
space of functions of bounded variation. This is an even more challenging issue and we refer to [18] for a deeper
analysis.

The essential step in the proof of Theorem 1.1 is the derivation of a version for polygons and the general case
then follows by approximation of regular sets. Although the methods we apply are rather elementary, the proof
is comparably long and technical. Therefore, we restrict our decomposition scheme and analysis to a planar
setting as in higher dimensions an analogous treatment of polyhedra leads to further technical difficulties. Let
us remark, however, that based on Theorem 1.1 in [18] various estimates of Korn and Korn−Poincaré type are
derived, which hold in arbitrary space dimension.

Our strategy is twofold. We introduce two special subclasses of polygons, which we call semiconvex polygons
and rotund polygons. We then show that (1) each polygon can be partitioned into semiconvex and rotund
polygons and (2) the specific characteristics of these subclasses of polygons are essentially equivalent to the
property of John domains.

Loosely speaking, in semiconvex polygons concave vertices are not ‘too close to opposite segments of the
boundary’ (see Def. 3.2) and rotund polygons contain a ball whose diameter is comparable to the diameter
of the polygon (see Def. 4.1). The decomposition scheme presented below is based on the idea to separate
the domain by segments and in this context it is crucial that (1) by an iterative partition we do not violate
properties which have already been established in a previous step and (2) the overall length of added segments
is controllable in terms of H1(∂Ω).

The proof that semiconvex, rotund polygons are John domains for a John constant only depending on θ is
constructive by defining appropriate piecewise affine curves between generic points of the domain. Hereby we
crucially exploit the fact that concave vertices are not ‘too close to opposite parts of the boundary’ and that
polygons are not “too thin”. Despite the specific properties of the subclasses of polygons we still have to face
additional difficulties concerning the geometry of the curves, which may, e.g., partially have the form of a helix.

The paper is organized as follows. In Section 2.1 we first recall the definition of John domains and state
fundamental properties. In Section 2.2 we present a version of Theorem 1.1 for polygons and give a more
thorough overview of the proof. Here we also discuss an example giving some intuition why John domains
appear to be the appropriate notion for the formulation of the problem. In Section 2.3 we introduce basic
notation.

The subsequent sections are then devoted to the derivation of the result for polygons. In Section 3 we
introduce the notion of semiconvex polygons, prove basic properties and present a decomposition scheme.
Afterwards, in Section 4 we provide a fine analysis on the position of concave vertices and see that semiconvex
polygons essentially coincide with convex polygons up to at most two small regions. In spite of their special
structure, convex polygons are not necessarily rotund and we therefore discuss a further method to partition
convex polygons. Finally, in Section 5 we prove that semiconvex and rotund polygons are John domains with
controllable John constant.

In Section 6.1 we extend our findings to sets with C1-boundary and in Section 6.2 we discuss a variant of
Theorem 1.1 for sets with Lipschitz boundary allowing for a bounded number of components of the complement.
Here we also present a piecewise Korn inequality as an application of our main result.

2. Preliminaries

2.1. John domains

We first introduce the notion of John domains and state some basic properties. Consider rectifiable curves
γ : [0, l(γ)] → Rd with length l(γ) and assume that they are parameterized by arc length. For 0 < η < 1 we
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define the η-cigar by

cig(γ, η) :=
⋃

t∈[0,l(γ)]

B(γ(t), ηmin{t, l(γ)− t}), (2.1)

where B(x, r) ⊂ Rd denotes the open ball with radius r ≥ 0 and midpoint x ∈ Rd. Likewise, we define the
η-carrot by

car(γ, η) :=
⋃

t∈[0,l(γ)]

B(γ(t), ηt). (2.2)

Definition 2.1. Let % > 0. We say a bounded domain Ω ⊂ Rd is a %-John domain if there is a point p ∈ Ω
such that for all x ∈ Ω \ {p} there is a rectifiable curve γ : [0, l(γ)] → Ω with γ(0) = x and γ(l(γ)) = p such
that car(γ, %) ⊂ Ω.

The point p will be called the John center and % is the John constant. Domains of this form were introduced
by John [25] to study problems in elasticity theory. The term was first used by Martio and Sarvas [31]. Roughly
speaking, a domain is a John domain if it is possible to connect two arbitrary points without getting too close
to the boundary of the domain.

Remark 2.2. A lot of different equivalent definitions can be found in [33]. We will also use the following
characterization: a bounded domain Ω is a %-John domain if for each pair of distinct points x1, x2 ∈ Ω there is
a curve γ : [0, l(γ)] → Ω with γ(0) = x1 and γ(l(γ)) = x2 such that cig(γ, %) ⊂ Ω. Such a curve will be called
John curve between x1 and x2.

The class of John domains is much larger than Lipschitz domains and contains sets with fractal boundaries or
internal cusps, while the formation of external cusps is excluded. For instance the interior of Koch’s snowflake
is a John domain. We state a simple property (see e.g. [39]).

Lemma 2.3. Let Ω be a %-John domain. Then for each x ∈ Ω and r > 0 with Ω \ B(x, r) 6= ∅, there is
z ∈ B(x, r) with B(z, 1

2%r) ⊂ Ω.

Our main result will be first established for polygons. To prove Theorem 1.1, we then need to combine
different John domains so that the unions are still John domains. In [39] we find the following lemma.

Lemma 2.4. Let %, c0 > 0. There is %′ = %′(%, c0) such that the following holds:

(i) If D1, D2 ⊂ Rd are %-John domains with min{|D1|, |D2|} ≤ c0|D1∩D2|, then D1∪D2 is a %′-John domain.
(ii) If D0, D1, . . . , is a sequence of %-John domains in Rd with |Dj | ≤ c0|D0 ∩Dj | for all j ≥ 1, then

⋃
j≥0Dj

is a %′-John domain.

2.2. Formulation of the main result for polygons

The general strategy in this article is to derive the partition result first for polygons, which is easier due
to the specific geometry of the boundary. In this section we present the main result for polygons and give an
overview of the proof.

Our partition technique for polygons will differ from widely used algorithms as triangulation, trapezoidaliza-
tion or the Hertel and Mehlhorn Algorithm (see [36]) in the sense that we do not provide an optimal partition
(concerning number of pieces or runtime), but one where the length of the boundary of all polygons is comparable
to the length of the boundary of the original polygon.

We consider sets P ⊂ R2 being the region enclosed by a simple polygon. For convenience sets of this form
will be called polygons in the following although the notion typically refers only to the boundary of such sets.
We always assume that polygons are closed. We notice that, according to our definition, every polygon P is
simply connected and coincides with the closure of its interior, which is nonempty. In particular the Lebesgue
measure |P | of P is strictly positive.

We intent to prove the following theorem.
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Theorem 2.5. Let ε, θ > 0. Then it exists % = %(θ) > 0 such that for all polygons P there is a partition
P = P0 ∪ . . . ∪ PN with H1(∂P0) ≤ ε and the polygons P1, . . . , PN are %-John domains satisfying

N∑

j=1

H1(∂Pj) ≤ (1 + θ)H1(∂P ). (2.3)

We start with a short outline of the proof. In particular, we indicate how an arbitrary polygon may be
partitioned to satisfy the condition in Definition 2.1 for a John constant %.

First of all, the property of %-John domains may be violated if the polygon has a ‘star shape’, i.e. there are
concave vertices for which the distance to other concave vertices or opposite segments of the boundary is small.
We see that if this distance is too small, we can partition the polygon by introducing a short segment between
a concave vertex and another point of the boundary. By this procedure we construct what we call semiconvex
polygons (see Sect. 3, in particular Def. 3.2). Intuitively, such sets have the property that, separating the set by
a short segment between a concave vertex and another point of the boundary, the “bulk part” of the polygon
lies on one side.

Clearly, for convex sets it is much easier to satisfy the condition in Definition 2.1. It turns out, however,
that even a convex polygon is possibly not a %-John domains if the set is long and thin or has small interior
angles. The presence of the latter phenomenon cannot be avoided and therefore the introduction of the set P0

in Theorem 2.5 is possibly necessary. To tackle the first problem, we introduce so called rotund polygons (see
Sect. 4) which are sets containing a ball whose size is comparable to the diameter of the set. We then show
that convex polygons can be partitioned into rotund polygons up to a small exceptional set (see Lem. 4.6).
Finally, this kind of partition can also be performed for semiconvex polygons, which is related to the fact that
a semiconvex polygon, which is not already rotund, coincides with a convex polygon up to at most two small
regions (see Thm. 4.5).

After combining the above described partitions we show in Section 5 that semiconvex and rotund polygons are
indeed %-John domains for a constant % = %(θ), which essentially only depends on the length of the additional
boundary induced by the partition (cf. (2.3)). The basic idea is to take a shortest path between two points
(which will ‘touch’ the boundary of the polygon in concave vertices) and to modify this path in such a way that
the condition in Definition 2.1 is satisfied. To do this, it is essential that (1) the polygons contain a ball whose
size is comparable to the diameter of the set and (2) concave vertices are ‘not too close to opposite parts of the
boundary’.

We remark that the definitions and terms of the subclasses of polygons introduced in the following sections
(see Sects. 3, and 4) are not taken from the literature but tailored for the present exposition in order to avoid
the ongoing repetition of technical assumptions. Let us also remark that, once the basic definition of semiconvex
and rotund polygons have been internalized, Sections 3 and 5 can be read rather independently from each other.

Before we start to prove Theorem 2.5, let us note that it does not appear to be possible to provide a partition
for which the sets satisfy a stronger property than the one given in Definition 2.1. To give some intuition, we
consider the following example being a modification of Koch’s snowflake.

Example 2.6. Let 0 < η < 1. Let S0 be an equilateral triangle. As in the construction of Koch’s snowflake we
replace the middle third of each segment by two segments of equal length which enclose an angle π

3 with the
original segment. Hereby, we obtain S1. Then S2 is obtained by replacing the middle third of each segment of
S1 by two segments which enclose an angle π

3 η with the original one. We continue with this construction where
in the definition of Si the new segments enclose an angle π

3 η
i−1 with the original ones.

Although the construction is very similar to the one of Koch’s snowflake, we find H1(∂Si) ≤ C for all i ∈ N
for some C = C(η). Moreover, one can show that all Si are %-John domains for some % > 0. Let us assume that
the polygon Si for i large could be partitioned into sets with ‘better properties’ (e.g. convexity). Due to the
geometry of Si we note that after separating Si into two sets by a segment there is one set which essentially
has the same shape as Si. Consequently, to derive a partition into sets with more specific properties, it appears
to be necessary to introduce all boundaries

⋃
j≤i−1 ∂Sj . This, however, violates (2.3).
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2.3. Notation

Let us fix the main notations for polygons which will be used in the following proof of Theorem 2.5. Recall
that polygons P are always assumed to be closed subsets of R2. We denote the vertices of P by VP and for
v ∈ VP we let ^(v, P ) be the corresponding interior angle. A vertex v ∈ VP with ^(v, P ) > π is called concave,
otherwise convex. Denote the subset of concave vertices by V ′P .

Sometimes we will understand vertices v as complex numbers and let arg(v) ∈ [0, 2π) be the phase of the
complex number so that v = |v|ei arg(v). For ϕ ∈ [0, 2π) we denote by v + R+eiϕ open half lines with initial
point v, where R+ = (0,∞). The line segment between two given points p1, p2 ∈ R2 is denoted by [p1; p2] and
|[p1; p2]| is its length. For a segment |[p1; p2]| we also introduce the notation (recall (2.1))

cig([p1; p2], η) := cig(γ, η),

where γ : [0, l(γ)]→ [p1; p2] is the (affine) curve, parametrized by arc length, with γ(0) = p1, γ(l(γ)) = p2 and
length l(γ) = |[p1; p2]|. Moreover, we define the visible region of [v;w] by

cigP ([v;w], η) =
{
x ∈ cig([v;w], η) : ∃ p ∈ [v;w] s.t. [p;x] ⊂ P

}

(see Fig. 1 below). We define an intrinsic metric on P by

dP (p, p′) = min{l(γ) : γ : [0, l(γ)]→ P Lipschitz curve with γ(0) = p, γ(l(γ)) = p′}

for p, p′ ∈ P , where the curves are always assumed to be parameterized by arc length. We notice that the
minimum exists as P is closed and that it is attained by a piecewise affine curve, where the endpoints of each
segment lie in V ′P ∪{p, p′}. Likewise, for p ∈ P and S ⊂ P we let distP (p, S) = infp′∈S dP (p, p′). Let the intrinsic
diameter of a polygon be given by

d(P ) = max
p,p′∈P

dP (p, p′).

We find d(P ) ≤ 1
2H1(∂P ) by considering a pair p, p′ maximizing dP (p, p′) and the corresponding piecewise affine

curve. The following definition will be used frequently.

Definition 2.7. Let P be a polygon. We say a segment [p; q] ⊂ P with p, q ∈ ∂P induces a partition of P if
there are two polygons Q1, Q2 with P = Q1 ∪Q2 and [p; q] = Q1 ∩Q2.

Note that, according to our definition of polygon, we have |Q1|, |Q2| > 0. Moreover, [p; q] = ∂Q1 ∩ ∂Q2 and
every continuous path connecting a point of Q1 with a point of Q2 must meet the segment [p; q].

3. Semiconvex polygons

We first refine Definition 2.7.

Definition 3.1. Let η > 0 and P be a polygon. We say a segment [v;w] between a concave vertex v ∈ V ′P and
some w ∈ ∂P which induces a partition of P = Q1 ∪ Q2 according to Definition 2.7 satisfies the segmentation
property (SP) if

V ′P ∩ cigP ([v;w], η) ⊂ {v, w} (3.1)

and for i = 1, 2

Qi is a triangle ⇒ ^(v,Qi) >
1

2
arcsin η. (3.2)

These technical conditions are necessary to avoid the formation of geometrical artefacts in the partition
process in Section 3.2 such as degenerated triangles and polygons where a concave vertex is very close to an
opposite side. We now introduce the notion of semiconvexity.
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Figure 1. In dark gray we depicted cigP ([v;w], η) and cigP ([v̄; w̄], η). Observe that u /∈
cigP ([v;w], η) although u ∈ cig([v;w], η). Consequently, [v;w] satisfies (3.1) but not (SP) due
to the small interior angle at v in the triangle formed by v, w, p. The segment [v;w′] satis-
fies (SP). The segment [v̄, w̄] is a typical example of a segment which satisfies (SP) such that
condition (3.3) is violated. Note that [p̄; q̄] does not induce a partition into two simple polygons.

Definition 3.2. Let 0 < ϑ, η < 1.

(i) We say a polygon P is ϑ-semiconvex if for each segment [v;w] between a concave vertex v ∈ V ′P and some
w ∈ ∂P which induces a partition P = Q1 ∪Q2 one has

|[v;w]| ≥ ϑ min
k=1,2

d(Qk). (3.3)

(ii) We say a polygon P is (SP)-ϑ-semiconvex if for each segment [v;w] between a concave vertex v ∈ V ′P and
some w ∈ ∂P which induces a partition P = Q1 ∪Q2 and satisfies (SP) one has (3.3).

For simplicity we will often drop the parameters and will call a polygon semiconvex and (SP)-semiconvex if no
confusion arises.

Remark 3.3. Intuitively, the definition states that, separating the set by a short segment between a concave
vertex and another point of the boundary, the “bulk part” of the polygon lies on one side. The semiconvexity of
a polygon together with rotundness considered in Section 4 is the essential property to control the John constant
of polygons. We note that in (3.3) the intrinsic diameter is the suitable notion and cannot be replaced by the
length of the boundary although it seems to be another natural choice. To see this, consider Koch’s snowflake
which is a John domain with finite intrinsic diameter but whose boundary is of infinite H1-measure.

In Section 3.1 we study the relation between semiconvex and (SP)-semiconvex polygons deriving that the
notions are very similar. In Sections 4–6 we will only need the concept of semiconvex polygons. However, for
the partition of polygons into semiconvex polygons performed in Section 3.2 it is convenient to consider also
the more technical notion in Definition 3.2(ii).

3.1. Properties of semiconvex polygons

By definition we clearly have that each semiconvex polygon is also (SP)-semiconvex. We now investigate the
reverse direction.

Theorem 3.4. Let 0 < ϑ, η < 1 with ϑ ≤ 1
2η. Then for η > 0 small enough there is some ϑ̄ = ϑ̄(ϑ) ≤ ϑ such

that each (SP)-ϑ-semiconvex polygon is ϑ̄-semiconvex.



1548 M. FRIEDRICH

Proof. Let P be a (SP)-ϑ-semiconvex polygon. Let v ∈ V ′P and some w ∈ ∂P be given inducing a partition
of P . The goal is to confirm (3.3) for [v;w]. To this end, we will construct a chain of segments consisting of
concave vertices and combining v with w such that each segment satisfies (SP) and therefore (3.3) is applicable
by assumption.

Step 1. Cigar condition.

We first assume that [v;w] induces a partition P = Q1 ∪Q2 and that

V ′P ∩ cigP ([v;w], 2η) ⊂ {v, w}. (3.4)

(Compare with (3.1) and note that in contrast to Definition 3.1 we do not require (3.2)). We show that

|[v;w]| ≥ ϑ

2
min
k=1,2

d(Qk). (3.5)

We distinguish the following cases:

(a) If each Qk is either not a triangle or a triangle where the interior angle at v exceeds αη := 1
2 arcsin η, we

find that (3.1)−(3.2) hold and thus |[v;w]| ≥ ϑmink=1,2 d(Qk) by Definition 3.2(ii).

(b) Otherwise, we can suppose without restriction that Q1 is a triangle consisting of the vertices v, w, p with
^(v,Q1) ≤ αη (cf. Fig. 1). Thus, if η small enough, we get d(Q1) = max{|[v; p]|, |[v;w]|} and may assume

|[v; p]| ≥ |[v;w]| as otherwise (3.5) follows directly. If ^(w,Q1) ≤ π−2αη, we apply the sine rule |[v;p]|
sin^(w,Q1) =

|[v;w]|
sin^(p,Q1) and the fact that ^(p,Q1) ≥ αη to see

d(Q1) = |[v; p]| = sin^(w,Q1)

sin^(p,Q1)
|[v;w]| ≤ |[v, w]|

sinαη
≤ 4

η
|[v, w]| ≤ 2

ϑ
|[v, w]|

for η small, where we used sinαη ≥ 1
4η by a Taylor expansion and ϑ ≤ 1

2η.

(c) Otherwise, we have ^(w,Q1) > π − 2αη. First suppose w ∈ V ′P , which means that we can change the roles
of v and w. We see that (3.1) holds by assumption. Moreover, we have ^(w,Q1) > π−2αη > αη for η small
and that Q2 is not a triangle since P has at least five vertices due to {v, w} ⊂ V ′P . Consequently, also (3.2)
holds and we can proceed as in (a) to find |[v;w]| ≥ ϑmink=1,2 d(Qk).

Observe that in (b) we used a purely geometrical argument and in (a), (c) we only showed that (3.2) holds,
whereby Definition 3.2(ii) was applicable. In the following last case, however, we will explicitly use (3.4).

(d) Finally, we suppose that ^(w,Q1) > π − 2αη and that w is not a concave vertex. Understanding the
vertices as complex numbers we define the phase ϕ0 = arg(w− v). Let f : D → R2 so that f(ϕ) denotes the
closest point to v on (v + R+ei(ϕ0+ϕ))∩ ∂P , where D ⊂ [−π, π) contains a neighborhood of 0 and satisfies
|D| = ^(v, P ). (Recall R+ = (0,∞)). For ϕ > 0 small let 4ϕ the triangle formed by v, p, f(ϕ) and up to
changing the sign of ϕ we may assume that ^(v,4ϕ) > ^(v,Q1) for ϕ > 0 small. Observe that due to the
fact that w is not a concave vertex and ^(w,Q1) > π − 2αη = π − arcsin η we have

f(ϕ) ∈ cigP ([v;w], 2η)

for ϕ small. This then implies f(ϕ) /∈ V ′P for ϕ ∈ [0, 2αη] since otherwise (3.4) would be violated. Con-
sequently, letting w′ = f(2αη) we find that [v;w′] induces a partition P = Q′1 ∪ Q′2, where the sets are
labeled such that p ∈ Q′1. Moreover, [v;w′] satisfies (SP). In fact, the angle condition (3.2) follows directly
by construction. Moreover, we get cigP ([v;w′], η) ⊂ cigP ([v;w], 2η) and thus (3.1) follows from (3.4) and
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the fact that w /∈ V ′P . Consequently, as P is (SP)-ϑ-semiconvex, we obtain by (3.3)

|[v;w′]| ≥ ϑ min
k=1,2

d(Q′k).

Consider the convex polygon P̂ := Q′1 ∩Q2 and note that for η small d(P̂ ) = |[v;w]| (see Fig. 1) as well as
|[v;w′]| ≤ |[v;w]|. Moreover, mink=1,2 d(Qk) ≤ mink=1,2 d(Q′k) + d(P̂ ) and therefore we obtain since ϑ < 1

|[v;w]| ≥ 1

2
|[v;w′]|+ 1

2
|[v;w]| ≥ ϑ

2
min
k=1,2

d(Qk)− ϑ

2
|[v;w]|+ 1

2
|[v;w]| ≥ ϑ

2
min
k=1,2

d(Qk).

Step 2. Chains of vertices.

Now we only assume that [v;w], v ∈ V ′P , w ∈ ∂P , induces a partition of P . We construct a chain (y1, . . . , yn)
between v and w with y1 = v, yn = w and yi ∈ V ′P for i = 2, . . . , n− 1 such that

|[yi; yi+1]| ≤ 3|[v;w]|, dP (v, yi) ≤
3

2
|[v;w]|, i = 1, . . . , n− 1 (3.6)

and the segments [yi; yi+1] ⊂ P induce a partition satisfying (3.4) with yi, yi+1 in place of v, w (cf. Fig. 3). (See
Sect. 2.3 for the definition of dP (v, yi)).

The strategy is to define the chain between v and w inductively. Let C0 = (y0
1 , y

0
2) = (v, w) and assume

Ck = (yk1 , . . . , y
k
2+k) with yk1 = v, yk2+k = w and [ykj ; ykj+1] ⊂ P for j = 1, . . . , k + 1 has been constructed. If

V ′P ∩ cigP ([ykj ; ykj+1], 2η) ⊂ {ykj , ykj+1} for all j = 1, . . . , k + 1, (3.7)

we stop. Otherwise, we find some J ∈ {1, . . . , k+1} and v̂k ∈ V ′P \{ykJ , ykJ+1} such that v̂k ∈ cigP ([ykJ ; ykJ+1], 2η)
and [ykJ ; v̂k] ∪ [v̂k; ykJ+1] ⊂ P . (Choose v̂k as the concave vertex in cigP ([ykJ ; ykJ+1], 2η) with minimal distance to
[ykJ ; ykJ+1]). We define

Ck+1 = (yk1 , . . . , y
k
J , v̂k, y

k
J+1, . . . , y

k
k+2).

Note that the triangle formed by [ykJ ; ykJ+1] and v̂k is contained in P since P is simply connected. As in each
step we choose a different v̂k and #V ′P < ∞, after a finite number of steps we find a chain (y1, . . . , yn) such
that (3.7) is satisfied.

We now show that (3.6) holds. To this end, we fix yi, i = 2, . . . , n−1, and identify the iteration steps that ‘led
to the definition of yi’. Let k0 be the index such that v̂k0 := yi ∈ Ck0+1. Choose J0 such that yi ∈ cigP (S0, 2η)
with S0 = [yk0J0 ; yk0J0+1].

Assume steps k0 > k1 > . . . > kn and (Ji)
n
i=0 have been found with corresponding v̂ki such that v̂ki ∈

cigP (Si, 2η) with Si := [ykiJi ; y
ki
Ji+1].

We then choose the largest value kn+1 < kn such that one of the points yknJn , y
kn
Jn+1 is not contained in Ckn+1

,

e.g. yknJn =: v̂kn+1 . We then find Jn+1 such that v̂kn+1 ∈ cigP (Sn+1, 2η) with Sn+1 = [y
kn+1

Jn+1
; y
kn+1

Jn+1+1], where

one of the endpoints of Sn+1 coincides with yknJn+1. For later purpose we note that Sn, Sn+1 have a common
endpoint and v̂kn+1 is an endpoint of Sn. Finally, after a finite number of steps, denoted by N , we arrive at
SN = [v;w].

Recalling the geometry of cig(Sn, 2η) an elementary computation yields that the angles at the endpoints of
Sn in the triangle formed by Sn and v̂kn are larger than (cf. Fig. 2)

ϕn := arctan(gn) with gn :=
dist(Sn, v̂kn)

H1(Sn)− (tan(4αη))−1 dist(Sn, v̂kn)
·

We note dist(Sn, v̂kn) ≤ 1
2 tan(4αη)H1(Sn) and thus gn ≤ tan(4αη). Recalling that the segments

Sn−1, Sn have one common endpoint (either yknJn or yknJn+1) and v̂kn is an endpoint of Sn−1, we find
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v̂kn

ykn

Jn
ykn

Jn+1

}
︸ ︷︷ ︸

︸ ︷︷ ︸

a

c

b

4αη

Figure 2. We set a = dist(Sn, v̂kn) and b = H1(Sn). Elementary trigonometry yields c ≥
(tan(4αη))−1a. Note that Sn−1 is the segment between v̂kn and the left or right endpoint of Sn.

H1(Sn−1) ≤ (sinϕn)−1 dist(Sn, v̂kn) for all n = 1, . . . , N . Then we obtain by a Taylor expansion for η small and
some large C > 0 independent of η (observe that for small x one has arctan(x), sin(x) ≈ x)

H1(Sn−1) ≤ 1

gn − Cg2
n

dist(Sn, v̂kn) ≤ (1 + Cgn)

(
H1(Sn)− dist(Sn, v̂kn)

tan(4αη)

)

= H1(Sn)− (tan(4αη))−1 dist(Sn, v̂kn) + C dist(Sn, v̂kn).

Note that dist(x, Sn) ≤ dist(v̂kn , Sn) for all x ∈ Sn−1. Then using the previous estimate and summing over all
n we find for η small (such that 0 < tan(4αη)(1− C tan(4αη))−1 ≤ 1

2 )

dP (yi, [v;w]) = dP (yi, SN ) ≤ dist(v̂k0 , S0) +

N∑

n=1

max
x∈Sn−1

dist(x, Sn) ≤
N∑

n=0

dist(v̂kn , Sn)

≤ tan(4αη)

1− C tan(4αη)

N∑

n=1

(H1(Sn)−H1(Sn−1)) + dist(v̂k0 , S0)

≤ tan(4αη)

1− C tan(4αη)
(|[v;w]| − H1(S0)) +

1

2
tan(4αη)H1(S0) ≤ 1

2
|[v;w]|,

where we used dist(S0, v̂k0) ≤ 1
2 tan(4αη)H1(S0). This together with the triangle inequality yields (3.6).

Step 3. Semiconvexity.

We now show that P is semiconvex by confirming (3.3) for the segment [v;w] with ϑ̄ = (3 + 12ϑ−1)−1. As each
of the segments [yi; yi+1] satisfies (3.4) (with yi, yi+1 in place of v, w), we obtain by (3.5)

|[yi; yi+1]| ≥ ϑ

2
min
k=1,2

d(Q
(i)
k ) (3.8)

for i = 1, . . . , n−1, where P = Q
(i)
1 ∪Q

(i)
2 is the corresponding partition. Let P = Q1∪Q2 be the partition induced

by [v;w]. It suffices to consider the case |[v;w]| ≤ 1
8 minj=1,2 d(Qj) as otherwise the assertion is clear provided we

choose ϑ̄ ≤ 1
8 . We choose p1

j , p
2
j ∈ Qj with distP (p1

j , p
2
j ) = d(Qj) and as distP (p1

j , p
2
j ) ≤ distP (p1

j , v)+distP (p2
j , v),

we obtain possibly after relabeling distP (p1
j , v) ≥ 1

2d(Qj) for j = 1, 2.
Let B = {x ∈ P : distP (x, v) < 4|[v;w]|}. We now show that two arbitrary points q1 ∈ Q1 \ B, q2 ∈ Q2 \ B

do not lie in the same connected component of P \⋃n−1
i=1 [yi; yi+1].

Indeed, let T be a connected component of P \ ⋃n−1
i=1 [yi; yi+1]. It suffices to show that (T \ B) ∩ Qj = ∅

for some j = 1, 2. If T ⊂ Qj for some j = 1, 2, this is clear. Otherwise, we find some j = 1, 2 such that

T ′ := T ∩ Qj satisfies ∂T ′ ⊂ [v;w] ∪ ⋃n−1
i=1 [yi; yi+1] (see also Fig. 3). Now combining the two inequalities
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y1 = yv 5 = w

y2

Q
(2)
1

Q
(2)
2y4

y3

p11

p12

Figure 3. The segments [yi; yi+1] inducing partitions of P are depicted in red. In light and

dark gray the partition Q
(2)
1 ∪Q

(2)
2 is sketched, where p1

j ∈ Q
(2)
j for j = 1, 2. (Color online)

in (3.6), we get dP (v, x) ≤ 3|[v;w]| for all x ∈ ∂T ′. Then also dP (v, x) ≤ 3|[v;w]| for all x ∈ T ′ and this shows
(T \B) ∩Qj = T ′ \B = ∅.

Therefore, recalling |[v;w]| ≤ 1
8 minj d(Qj) ≤ 1

4 minj distP (p1
j , v), we find that p1

1 ∈ Q1 \ B and p1
2 ∈ Q2 \ B

lie in different connected components of P \⋃n−1
i=1 [yi; yi+1]. Thus, there is at least one i = 1, . . . , i− 1 such that

possibly after relabeling we have p1
1 ∈ Q(i)

1 and p1
2 ∈ Q(i)

2 . Using (3.6) we find

minj d(Q
(i)
j ) ≥ minj distP (yi, p

1
j )

≥ minj
(

distP (v, p1
j )− distP (yi, v)

)
≥ 1

2
minj d(Qj)−

3

2
|[v;w]|.

By (3.6) and (3.8) we conclude with ϑ̄ = (3 + 12ϑ−1)−1

minj d(Qj) ≤ 3|[v;w]|+ 4ϑ−1|[yi; yi+1]| ≤ (3 + 12ϑ−1)|[v;w]| = ϑ̄−1|[v;w]|.

This shows (3.3) and concludes the proof. �

We now show that a similar property may derived if the condition in Definition 3.2(ii) only holds on a part
of ∂P . To this end, we need to introduce a further notion. Suppose [v;w] induces a partition of P = Q1 ∪ Q2

according to Definition 2.7. We define N ′(Qj) = #{u ∈ V ′P \ {v, w} : u ∈ ∂Qj} for j = 1, 2 and the auxiliary set

Qv,w =





Q1 if N ′(Q1) < N ′(Q2) or N ′(Q1) = N ′(Q2), |Q1| < |Q2|,
Q1 ∪Q2 if N ′(Q1) = N ′(Q2), |Q1| = |Q2|,
Q2 else.

(3.9)

Definition 3.5. We say a segment [v;w] satisfies the weak segmentation property (WSP) if in Definition 3.1
condition (3.1) is replaced by

V ′P ∩ cigP ([v;w], η) ∩Qv,w ⊂ {v, w}. (3.10)

We note that for (WSP) we still require (3.2). Loosely speaking, condition (3.10) only concerns the part of
the polygon containing less concave vertices and is thus in general weaker than (3.1).
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Corollary 3.6. Let 0 < ϑ, η < 1 with ϑ ≤ 1
2η. Consider a polygon P and suppose [v;w] induces a partition

P = Q1 ∪Q2 satisfying (WSP) and

either N ′(Q1) < N ′(Q2) or N ′(Q1) = N ′(Q2), |Q1| < |Q2|. (3.11)

Assume that for each pair v′, w′ ∈ V ′Q1
∪ {v, w} such that [v′;w′] 6= [v;w] and [v′;w′] induces a partition

P = Q′1 ∪Q′2 satisfying (WSP) one has

|[v′;w′]| ≥ ϑ min
k=1,2

d(Q′k). (3.12)

Then for η > 0 small enough there is ϑ̄ = ϑ̄(ϑ) ≤ ϑ independent of P such that each pair v̄, w̄ ∈ V ′Q1
∪ {v, w}

inducing a partition of P = R1 ∪R2 with

(i) [v̄; w̄] 6= [v;w],

(ii) w ∈ {v̄, w̄} ⇒ [v̄; w̄] ∩ cig([v;w], η) = ∅ (3.13)

fulfills

|[v̄; w̄]| ≥ ϑ̄ min
k=1,2

d(Rk). (3.14)

For partitions of polygons into semiconvex polygons described in Section 3.2 below we will use this corollary
to show that Q1 is semiconvex. The essential point is that for a segment [v̄; w̄] as in (3.13) we do not assume the
validity of (SP) and that (3.12) is only required for the vertices contained in Q1. For an illustration of (3.13)(ii)
we refer to Figure 4.

Proof. We follow the proof of Theorem 3.4 and only indicate the necessary changes. Fix v̄, w̄ ∈ V ′Q1
∪ {v, w}

such that [v̄; w̄] induces a partition P = R1 ∪ R2 fulfilling (3.13). Note that one of the sets, say R1, satisfied
R1 ⊂ Q1 and thus N ′(R1) ≤ N ′(Q1), |R1| ≤ |Q1|. This yields Qv̄,w̄ = R1 ⊂ Q1 (see (3.9) and (3.11)). We first
suppose

V ′P ∩ cigP ([v̄; w̄], 2η) ∩R1 ⊂ {v̄, w̄} (3.15)

(compare to (3.4)) and show that under this assumption we have

|[v̄; w̄]| ≥ ϑ

2
min
k=1,2

d(Rk). (3.16)

The idea is to proceed as in Step 1 of the previous proof using (3.12) in place of (3.3). To this end, we notice that
conditions (3.12) and (3.15) are sufficient to treat the cases (a)−(c). Indeed, as remarked below case (c), case
(b) was a purely geometrical argument and in (a), (c) we have only shown (3.2). As by (3.16) and Qv̄,w̄ = R1

also condition (3.10) holds (with v̄, w̄ in place of v, w), we derive that in case (a), (c) [v̄; w̄] satisfies (WSP).
This then implies (3.16) by (3.12). In cases (a)−(c) we therefore obtain (3.16). We now show that case (d) never
occurs, which concludes the proof of (3.16).

Suppose case (d) occurs. Then we have that, e.g., R1 is a triangle with vertices v̄, w̄, p such that ^(v̄, R1) ≤
αη = 1

2 arcsin η, ^(w̄, R1) > π−2αη and w̄ /∈ V ′P . The latter immediately implies w̄ = w since w̄ ∈ V ′Q1
∪{v, w} ⊂

V ′P ∪ {w}. Then v̄ 6= w and v̄ 6= v by (3.13)(i) and (3.13)(ii) yields that the angle enclosed by the segments
[v;w] and [w; v̄] is at least 2αη (cf. Fig. 4). This, however, contradicts the assumptions ^(w̄, R1) > π− 2αη and
w̄ /∈ V ′P . Consequently, case (d) never occurs.

Now we consider an arbitrary segment [v̄; w̄] with v̄, w̄ ∈ V ′Q1
∪ {v, w} which satisfies (3.13) and induces a

partition P = R1 ∪R2 with R1 ⊂ Q1. Note that (3.13) implies

w ∈ ∂R1 ⇒ v /∈ ∂R1 and R1 ∩ cig([v;w], η) = ∅. (3.17)
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v̄

v

Q1

Q2

w = w̄
ȳ

z

Figure 4. A situation with N ′(Q1) < N ′(Q2) is depicted, where [v̄; w̄] does not intersect
the (open) set cig([v;w], η). For the proof of Lemma 3.8 below we note that |[w; z]| < |[v; z]|.
Therefore, ȳ is ‘nearer to w than to v’ and thus ȳ /∈ cig([v;w], η) implies [w; ȳ]∩cig([v;w], η) = ∅.

As in Step 2 of the proof of Theorem 3.4 we find a chain (y1, . . . , yn) between v̄ and w̄ with y1 = v̄, yn = w̄ and
yi ∈ V ′R1

\ {v̄, w̄} for i = 2, . . . , n− 1 such that

|[yi; yi+1]| ≤ 3|[v̄; w̄]|, dP (v̄, yi) ≤
3

2
|[v̄; w̄]|, i = 1, . . . , n− 1 (3.18)

and the segments [yi; yi+1] ⊂ P induce a partition satisfying (3.15) (with yi, yi+1 in place of v̄, w̄). Note that in
repeating the argument in (3.7) we only select concave vertices contained in R1, i.e. the essential difference to
the previous proof is given by the fact that due to the replacement of (3.4) by (3.15) we can ensure that each
yi, i = 2, . . . , n− 1, is contained in ∂R1 ∩ ∂P , more precisely in V ′R1

\ {v̄, w̄}.
Note that yi ∈ V ′Q1

∪ {v, w} for all i = 1, . . . , n. Each segment [yi; yi+1], i = 1, . . . , n− 1, induces a partition

P = R
(i)
1 ∪R

(i)
2 such that after relabeling R

(i)
1 ⊂ R1. By (3.17) we have that each [yi; yi+1] satisfies (3.13) (with

yi, yi+1 in place of v̄, w̄). Consequently, as also

V ′P ∩ cigP ([yi; yi+1], 2η) ∩R(i)
1 ⊂ {yi, yi+1}

holds by (3.15) and R
(i)
1 ⊂ R1, for each [yi; yi+1] we may proceed as above and get |[yi; yi+1]| ≥ ϑ

2 mink=1,2 d(R
(i)
k )

by (3.16). This together with (3.18) allows us to proceed exactly as in Step 3 in the proof of Theorem 3.4 and
we get (3.14) for ϑ̄ = (3 + 12ϑ−1)−1. �

3.2. Partition of semiconvex polygons

We now show that each polygon can be partitioned into semiconvex polygons.

Theorem 3.7. Let 0 < θ < 1. Then for η > 0 small there exists ϑ = ϑ(θ, η) such that for every polygon P
there is a partition P = P1 ∪ . . . ∪ PN into (SP)-ϑ-semiconvex polygons P1, . . . , PN such that

N∑

j=1

H1(∂Pj) ≤
(

1 +
2θ

1− θ

)
H1(∂P ). (3.19)

Clearly, by Theorem 3.4 the sets P1, . . . , PN are then also ϑ̄-semiconvex for some ϑ̄ small enough. As a
preparation we derive a partition P = Q1 ∪ Q2 into two polygons such that Q1 is (SP)-semiconvex. Then
Theorem 3.7 follows by iterative application. For the proof of Theorem 3.7 it is essential that (1) the added
boundary is small compared to H1(∂Q1) (see (3.20)) and (2) Q1 does not need to be further modified in
subsequent iteration steps since hereby the overall added boundary can be controlled (see (3.31) below).
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Lemma 3.8. Let 0 < θ < 1. Then for η > 0 sufficiently small there is ϑ̃ = ϑ̃(θ, η) such that for every polygon
P , which is not an (SP)-ϑ̃-semiconvex polygon, the following holds: We find a segment [v;w] between a concave
vertex v ∈ V ′P and some w ∈ ∂P which satisfies (WSP) and induces a partition P = Q1 ∪ Q2 such that Q1 is
(SP)-ϑ̃-semiconvex and

|[v;w]| ≤ θH1(∂Q1 \ [v;w]). (3.20)

Moreover, if Q1 is a triangle we have ^(v,Q2) < ^(v, P )− 1
2 arcsin η.

Proof. Let 0 < θ < 1 be given and define ϑ = θ
2 . Let ϑ̄ ≤ ϑ and η > 0 small as in Corollary 3.6. Define

ϑ̃ = ϑ̄η(4η + 2)−1. Let P be a non (SP)-ϑ̃-semiconvex polygon.

Step 1. Choice of [v;w].

As P is not (SP)-ϑ̃-semiconvex, there is at least one segment [v;w], between a concave vertex v ∈ V ′P and
some w ∈ ∂P which satisfies (SP) (and thus also (WSP)) and induces a partition P = Q1 ∪Q2 with |[v;w]| <
ϑ̃d(Qk) ≤ ϑd(Qk) for k = 1, 2. In the following we label the sets such that we always have N ′(Q1) ≤ N ′(Q2)
(recall (3.9)). Choose (possibly not uniquely) a pair v, w satisfying (WSP) and

|[v;w]| < ϑ min
k=1,2

d(Qk) =
θ

2
min
k=1,2

d(Qk) (3.21)

in such a way that N ′(Q1) is minimized among all pairs satisfying (WSP) and (3.21). If N ′(Q1) = N ′(Q2), we
may suppose |Q1| ≤ |Q2| after possible relabeling. After a small perturbation of the point w we may assume
that |Q1| < |Q2| and (WSP), (3.21) are still satisfied. (Recall here that cigP ([v;w], η) is closed). Moreover, we
note that v, w can be selected such that

[w∗;w] ⊂ ∂P and |[w∗;w]| ≤ 1

2
|[v;w]| (3.22)

for all w∗ ∈ ∂Q1 with the property that [v;w∗] induces P = Q∗1 ∪Q∗2 satisfying

(WSP), N ′(Q∗1) = N ′(Q1), and |[v;w∗]| < ϑ min
k=1,2

d(Q∗k). (3.23)

In fact, if (3.22) is violated for some w∗ which satisfies (3.23), we can replace the pair v, w by the pair v, w∗
in the above choice (accordingly, we replace Q1 by the smaller set Q∗1). Possibly repeating this procedure at

most VP + b 2H1(∂P )
dv

c times, where dv := inf{|[v;w′]| : [v;w′] induces a partition of P} > 0, we obtain a (not
relabeled) pair v, w such that (3.22) holds for all w∗ satisfying (3.23).

Choose p, p′ ∈ ∂Q1 with d(Q1) = distQ1
(p, p′). Since d(Q1) ≤ distQ1

(p, v) + distQ1
(v, p′), we can without

restriction assume that distQ1
(p, v) ≥ 1

2d(Q1) and thus by (3.21) we get

distQ1
(p, v) ≥ θ−1|[v;w]| and distQ1

(p, w) ≥
(
θ−1 − 1

)
|[v;w]|.

Consequently, H1(∂Q1\[v;w]) ≥ distQ1
(p, v)+distQ1

(p, w) and in view of θ < 1 a short calculation yields (3.20).
The additional assertion after (3.20) follows directly from the fact that [v;w] satisfies (WSP), particularly (3.2),
where we use ^(v,Q2) = ^(v, P )− ^(v,Q1). It remains to show that Q1 is (SP)-ϑ̃-semiconvex.

Step 2. Semiconvexity of Q1.

As a preparation we show that the assumptions of Corollary 3.6 are satisfied. Consider a pair v′, w′ ∈ V ′Q1
∪{v, w}

such that the segment [v′;w′] 6= [v;w] induces a partition P = Q′1 ∪ Q′2 satisfying (WSP) with Q′1 ⊂ Q1. As
either (i) v′ 6= v and w′ 6= v or (ii) up to relabeling v′ = v, w′ 6= w with w′ ∈ V ′P , we get #{u ∈ V ′P \{v′, w′} : u ∈
∂Q′1} < #{u ∈ V ′P \ {v, w} : u ∈ ∂Q1}. Thus, N ′(Q′1) < N ′(Q1) (see before (3.9)). As (again up to relabeling
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v = y1

w

w̄z
v̄ = y3

y2
Q

(2)
1

Q
(1)
1

R2

v = v̄

ww̄

R2R1 = T1 Q2

Figure 5. On the left case (a) is depicted, where R2 = Q1 ∩ T2 and Q1 = T1 ∪ R2. On the
right case (b) with |[v; z]| < |[w; z]| is illustrated.

of the points) v′ ∈ V ′P and w′ ∈ ∂P , we observe that N ′(Q′1) < N ′(Q1) together with the choice of N ′(Q1)
and (3.21) implies

|[v′;w′]| ≥ ϑ min
k=1,2

d(Q′k) (3.24)

and thus (3.12) holds. Moreover, we recall that (3.11) is satisfied by the choice of Q1 (see before (3.22)).
We now show that Q1 is (SP)-ϑ̃-semiconvex. To this end, consider a pair v̄ ∈ V ′Q1

and w̄ ∈ ∂Q1 such that
[v̄; w̄] induces a partition Q1 = R1 ∪ R2 satisfying (SP). In particular, V ′Q1

∩ cigQ1
([v̄; w̄], η) ⊂ {v̄, w̄} by (3.1).

We distinguish the cases (a) w̄ /∈ [v;w] \ {v, w} and (b) w̄ ∈ [v;w] \ {v, w}.
(a) Assume w̄ /∈ [v;w] \ {v, w}. Clearly, [v̄; w̄] induces also a partition P = T1 ∪T2, where we label the sets such
that R1 = T1 ⊂ Q1. Since (3.11) holds, we have Qv̄,w̄ = T1 and therefore

V ′P ∩ cigP ([v̄; w̄], η) ∩Qv̄,w̄ ⊂ V ′Q1
∩ cigQ1

([v̄; w̄], η) ⊂ {v̄, w̄}.

Consequently, [v̄; w̄] satisfies (WSP) with respect to the partition P = T1 ∪ T2.

(a1) Assume w̄ /∈ [v;w] \ {v, w} and N ′(T1) < N ′(Q1). Since w̄ ∈ ∂P and v̄ ∈ V ′P , we may proceed as in (3.24),
particularly using (3.21), to find

|[v̄; w̄]| ≥ ϑ min
k=1,2

d(Tk) ≥ ϑ min
k=1,2

d(Rk).

(a2) Now suppose w̄ /∈ [v;w] \ {v, w} and N ′(T1) = N ′(Q1). Since T1 ⊂ Q1, this is only possible if v̄ = v. If
|[v̄; w̄]| ≥ ϑmink=1,2 d(Tk), we proceed as in (a). Otherwise, by (3.22) we obtain [w; w̄] ⊂ ∂P and |[w; w̄]| ≤
1
2 |[v;w]|. Consequently, we get |[v̄; w̄]| ≥ 1

2 |[v;w]|. As R2 = T2 ∩Q1 is a triangle with vertices v, w, w̄ (cf. (3.22)
and Fig. 5), we deduce

min
k=1,2

d(Rk) ≤ d(R2) = d(T2 ∩Q1) ≤ |[v;w]|+ |[w; w̄]| ≤ 3

2
|[v;w]| ≤ 3|[v̄; w̄]|.

Thus, in both cases (a1), (a2) condition (3.3) holds since ϑ̃ ≤ min{ϑ, 1
3} for η small.

(b) It now remains to treat the case w̄ ∈ [v;w]\{v, w}. We label the sets such that v ∈ R1 and w ∈ R2. As [v;w]
satisfies (WSP) and Qv,w = Q1 by (3.11), v̄ /∈ cigP ([v;w], η) holds. Thus, v̄ /∈ cig([v;w], η) since [v̄; w̄] ⊂ P .
Let z be the intersection point of ∂cig([v;w], η) with [v̄; w̄] (see Fig. 5). We first treat the case |[v; z]| ≤ |[w; z]|
and present the necessary adaptions for the other case at the end of the proof. Recall that the goal is to show
ϑ̃mink=1,2 d(Rk) ≤ |[v̄; w̄]|. Now v̄ /∈ cig([v;w], η) and |[v; z]| ≤ |[w; z]| imply (cf. Fig. 5)

|[v̄; w̄]| ≥ |[w̄; z]| ≥ η|[v; z]|. (3.25)
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Choose the (unique) chain (y1 = v, y2, . . . , yn = v̄) with yi ∈ V ′P ∩ VR1 for i = 2, . . . , n− 1 such that dP (v, v̄) =∑n−1
i=1 |[yi; yi+1]| and [yi; yi+1] induces a partition P = Q

(i)
1 ∪Q

(i)
2 , where the sets are labeled such that w ∈ Q(i)

2 .

Observe that Q
(i)
1 ⊂ R1 as [v̄; w̄] induces a partition of Q1 = R1 ∪R2. Then by (3.25) and [v; w̄] ∪ [v̄; w̄] ⊂ P

dP (v, v̄) ≤ |[v; w̄]|+ |[v̄; w̄]| ≤ |[v; z]|+ |[z; w̄]|+ |[v̄; w̄]| ≤ (2 + η−1)|[v̄; w̄]|. (3.26)

Note that each [yi; yi+1] satisfies (3.13) as w /∈ ∂R1. Then using Corollary 3.6, in particular (3.14), we find for
all i = 1, . . . , n− 1

|[yi; yi+1]| ≥ ϑ̄ min
k=1,2

d(Q
(i)
k ). (3.27)

First assume there was some i such that d(Q
(i)
2 ) ≤ d(Q

(i)
1 ). Then we calculate using Q

(i)
2 ⊃ R2 and (3.26)

d(R2) ≤ d(Q
(i)
2 ) ≤ ϑ̄−1|[yi; yi+1]| ≤ ϑ̄−1dP (v, v̄) ≤ ϑ̄−1(2 + η−1)|[v̄; w̄]|.

Otherwise, we find by (3.26), (3.27) and dP (v, v̄) =
∑n−1
i=1 |[yi; yi+1]| (cf. Fig. 5)

d(R1) ≤ 2 max
p∈R1

dP (v, p) ≤ 2 max{|[v; w̄]|+ |[w̄; v̄]|, max
i=1,...,n−1

(dP (v, yi) + d(Q
(i)
1 ))}

≤ 2 max{|[v; w̄]|+ |[w̄; v̄]|, ϑ̄−1dP (v, v̄)} ≤ 2ϑ̄−1(2 + η−1)|[v̄; w̄]|.

Collecting the last two estimates and recalling ϑ̃ = ϑ̄η(4η + 2)−1 we get ϑ̃mink=1,2 d(Rk) ≤ |[v̄; w̄]|, as desired.
It remains to treat the case |[v; z]| > |[w; z]|. We may proceed as before with w in place of v with the only

difference that, due to the fact that the chain (y1 = w, . . . , yn = v̄) ⊂ VR2
contains w, for the application

of (3.14) we have to check that (3.13)(ii) holds for [y1; y2]. Indeed, since [v;w] satisfies (WSP), the fact that
Q1 = Qv,w implies y2 /∈ cigP ([v;w], η) and then y2 /∈ cig([v;w], η) since [y1; y2] ⊂ P . Then |[v; z]| > |[w; z]|
together with y2 ∈ R2 yield [y1; y2] ∩ cig([v;w], η) = ∅ (cf. illustration of ȳ in Fig. 4). �

Now we can give the proof of Theorem 3.7.

Proof of Theorem 3.7. We construct the partition inductively. Assume P1, . . . , Pn have been constructed and
set Rn = P \⋃nj=1 Pj . (For n = 0 we set R0 = P ). Moreover, suppose that

H1

(
∂Pj \

⋃j−1

i=0
∂Pi

)
≤ θH1

(
∂Pj ∩

⋃j−1

i=0
∂Pi

)
(3.28)

for j = 1, . . . , n, where P0 := P . If Rn is (SP)-semiconvex, we set Pn+1 = Rn and stop. Otherwise, by Lemma 3.8

we find a partition Rn = Pn+1∪Rn+1 such that Pn+1 is (SP)-semiconvex and Rn+1 = Rn \ Pn+1 = P \⋃n+1
j=1 Pj .

Furthermore, we obtain by (3.20)

H1
(
∂Pn+1 \

⋃n

i=0
∂Pi

)
= H1(Pn+1 ∩Rn+1) ≤ θH1(∂Pn+1 \ (Pn+1 ∩Rn+1))

= θH1
(
∂Pn+1 ∩

⋃n

i=0
∂Pi

)
,

which gives (3.28) for j = n+ 1.
Recall that in each step the number of vertices of the remaining polygon decreases (namely if Pn+1 is not a

triangle) or the angle of a concave vertex in the remaining polygon decreases by at least 1
2 arcsin η (if Pn+1 is

a triangle). Thus, there is some N ∈ N such that the polygon PN := RN−1 is (SP)-semiconvex since for large
n ∈ N the polygon Rn−1 is eventually convex and thus also (SP)-semiconvex. It remains to show (3.19). First,
we note

H1(∂Pn ∩ ∂Pi) = H1(∂Rn−1 ∩ ∂Pi)−H1(∂Rn ∩ ∂Pi) (3.29)
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for 1 ≤ n ≤ N and 0 ≤ i ≤ n− 1, where we set RN := ∅ and R0 = P . Moreover, by (3.28) we get for 2 ≤ n ≤ N

H1(∂Rn−1 ∩ ∂Pn−1) = H1

(
∂Pn−1 \

⋃n−2

i=0
∂Pi

)
≤ θH1

(
∂Pn−1 ∩

⋃n−2

i=0
∂Pi

)
. (3.30)

Then by (3.29)−(3.30) we obtain H1(∂P1 ∩ ∂P ) = H1(∂P )−H1(∂R1 ∩ ∂P ) and for 2 ≤ n ≤ N

H1

(
∂Pn ∩

⋃n−1

i=0
∂Pi

)
=

n−1∑

i=0

H1 (∂Pn ∩ ∂Pi) ≤ θH1

(
∂Pn−1 ∩

⋃n−2

i=0
∂Pi

)

+

n−2∑

i=0

H1(∂Rn−1 ∩ ∂Pi)−
n−1∑

i=0

H1(∂Rn ∩ ∂Pi).

By summation and an index shift we derive

N∑

n=1

H1

(
∂Pn ∩

⋃n−1

i=0
∂Pi

)
≤ H1(∂P1 ∩ ∂P ) + θ

N−1∑

n=1

H1

(
∂Pn ∩

⋃n−1

i=0
∂Pi

)

+

N−1∑

n=1

n−1∑

i=0

H1(∂Rn ∩ ∂Pi)−
N∑

n=2

n−1∑

i=0

H1(∂Rn ∩ ∂Pi)

≤ H1(∂P ) + θ

N∑

n=1

H1

(
∂Pn ∩

⋃n−1

i=0
∂Pi

)
,

where we used that ∂RN = ∅ and H1(∂R1 ∩ ∂P ) + H1(∂P1 ∩ ∂P ) = H1(∂P ). This yields
∑N
n=1H1(∂Pn ∩⋃n−1

i=0 ∂Pi) ≤ (1− θ)−1H1(∂P ). Together with (3.28) and the fact that every x ∈ ⋃Nn=1 ∂Pn \ ∂P is contained
in the boundary of exactly two sets, we conclude

N∑

n=1

H1(∂Pn) = H1(∂P ) + 2H1

(⋃N

n=1
∂Pn \ ∂P

)

= H1(∂P ) + 2

N∑

n=1

H1

(
∂Pn \

⋃n−1

i=0
∂Pi

)

≤ H1(∂P ) + 2θ

N∑

n=1

H1

(
∂Pn ∩

⋃n−1

i=0
∂Pi

)
≤
(

1 +
2θ

1− θ

)
H1(∂P ). (3.31)

�

Later in Section 6.1 for the proof of Theorem 1.1 we will need the following observations.

Remark 3.9.

(i) Recall that by construction the partition in Theorem 3.7 arises from P by introducing a finite number
of segments. As by this procedure no additional concave vertices are introduced, we find v ∈ ∂P for all
v ∈ ⋃Nj=1 V ′Pj .

(ii) By a slight modification of the segments [v;w] introduced in Lemma 3.8 (cf. Remark below (3.21)) we can
always ensure that the segments [vi;wi] = Pi ∩ Pi+1 have the property that the points wi are not vertices
of P and are pairwise distinct.
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(iii) The partition can be chosen with the following additional property: if two convex polygons P 1, P 2 ⊂ (Pj)
N
j=1

share some v ∈ V ′P with ^(v, P i) ≤ π
4 for i = 1, 2, then H1(∂P 1 ∩ ∂P 2) = 0. Indeed, otherwise we find

w ∈ VP 1 ∩ VP 2 such that ∂P 1 ∩ ∂P 2 = [v;w]. Then with P∗ = P 1 ∪ P 2 we have ^(v, P∗) ≤ π
2 and

^(w,P∗) = π by (ii). Consequently, P∗ is a convex polygon and we can replace in the partition P 1, P 2

by P∗.

We close this section with a further criterion for the partition of a semiconvex polygon.

Lemma 3.10. Let 0 < α, ϑ < 1. Then there is ϑ̄ = ϑ̄(α, ϑ) > 0 such that for all ϑ-semiconvex polygons P the
following holds: If there is a segment [u1;u2] inducing a partition P = P1 ∪P2 such that for each concave vertex
v ∈ V ′P1

one has that
max
k=1,2

^(uk,4v) ≥ α,

where 4v is the triangle with vertices v, u1, u2, then P1 is ϑ̄-semiconvex.

Proof. Let P and the partition P = P1 ∪P2 with the above properties be given. To see that P1 is ϑ̄-semiconvex
for some ϑ̄ ≤ ϑ to be specified below, it suffices to show that for each segment [v;w] between a concave vertex
v ∈ V ′P1

and some w ∈ [u1;u2], which induces a partition P1 = Q1 ∪Q2, one has

|[v;w]| ≥ ϑ̄ min
k=1,2

d(Qk). (3.32)

Indeed, for w ∈ ∂P1 \ [u1;u2] the property follows directly from the fact that P is ϑ-semiconvex. Without
restriction we assume ^(u1,4v) ≥ ^(u2,4v) and label the sets such that u1 ∈ Q1. Similarly as in the proof of
Lemma 3.8 we choose the unique chain (y1 = v, y2, . . . , yn = u1) with yi ∈ V ′P for i = 2, . . . , n − 1 such that

dP (v, u1) =
∑n−1
i=1 |[yi; yi+1]| and [yi; yi+1] induces a partition P = Q

(i)
1 ∪Q

(i)
2 , where the sets are labeled such

that u2 ∈ Q(i)
2 . Since P is ϑ-semiconvex, we get by (3.3)

|[yi; yi+1]| ≥ ϑ min
k=1,2

d(Q
(i)
k ) (3.33)

for i = 1, . . . , n − 1. Observe that Q
(i)
1 ⊂ Q1 as [v;w] induces a partition of P1. Using ^(u1,4v) ≥ α and the

cosine formula we find by an elementary computation

|[v;w]| ≥
√
|[v;u1]|2 + |[u1;w]|2 − 2|[v;u1]||[u1, w]| cosα ≥ Cα(|[v;u1]|+ |[u1;w]|)

for Cα > 0 small depending only on α. Using that [v;w] ∪ [w;u1] ⊂ P we then derive

dP (v, u1) ≤ |[v;w]|+ |[w;u1]| ≤ |[v;w]|+ C−1
α |[v;w]| = (1 + C−1

α )|[v;w]|. (3.34)

We now proceed as in the proof of Lemma 3.8. First assume there is some i such that d(Q
(i)
2 ) ≤ d(Q

(i)
1 ). Then

we calculate using Q
(i)
2 ⊃ Q2, (3.33) and (3.34)

d(Q2) ≤ d(Q
(i)
2 ) ≤ ϑ−1|[yi; yi+1]| ≤ ϑ−1dP (v, u1) ≤ (1 + C−1

α )ϑ−1|[v;w]|.

Otherwise, we find again by (3.33) and (3.34)

d(Q1) ≤ 2 max
p∈Q1

dP (v, p) ≤ 2 max{|[v;w]|+ |[w;u1]|, max
i=1,...,n−1

(dP (v, yi) + d(Q
(i)
1 ))}

≤ 2 max{|[v;w]|+ |[w;u1]|, ϑ−1dP (v, u1)} ≤ 2ϑ−1(1 + C−1
α )|[v;w]|.

Consequently, (3.32) holds for ϑ̄ = ϑCα(2 + 2Cα)−1 and thus P1 is ϑ̄-semiconvex. �
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4. Semiconvex and rotund polygons

In the section we introduce a further subclass of polygons.

Definition 4.1. Let ω > 0. We say a polygon P is ω-rotund if there is a ball B(x, r) ⊂ P with x ∈ P and
r ≥ ωd(P ).

Similarly as before, we drop the parameter ω if no confusion arises. This property together with the semicon-
vexity will be the main ingredient to show that polygons may be partitioned into John domains with controllable
John constant. In Section 4.1 we study the relation between the notions introduced in Definitions 3.2 and 4.1.
In Section 4.2 we then show that semiconvex polygons can be partitioned into semiconvex and rotund polygons.

4.1. Properties of semiconvex and rotund polygons

To avoid confusion with further subscripts we will from now on denote by xej the jth component of points
x ∈ R2. For sets A ⊂ R2 and R ∈ SO(2) we let |A|Π,R = supx,y∈A |(x − y)Re1|. We will also use the notation
|A|Π,j = supx,y∈A |(x − y)ej | for j = 1, 2. By int(A) we denote the interior of a set. Recall also the notions
introduced in Section 2.3. We begin with a simple property of convex polygons.

Lemma 4.2. Every convex polygon P contains a ball with radius

1

4
min

R∈SO(2)
|P |Π,R.

Proof. By [28] we find that for each convex polygon P there is a rectangle S and a homothetic copy S′ of S
such that S ⊂ P ⊂ S′ and the positive homothety ratio is at most 2. As P ⊂ S′, both rectangle sides of S′ are
larger than minR∈SO(2) |P |Π,R and thus each rectangle side of S is larger than 1

2 minR∈SO(2) |P |Π,R. �

We now show that the intrinsic diameter of semiconvex polygons P can be controlled in terms of |P |Π,R.

Lemma 4.3. Let 0 < ϑ < 1 and let P be a ϑ-semiconvex polygon. Then

ϑd(P ) ≤ 2 max
R∈SO(2)

|P |Π,R.

Proof. If P is convex, the assertion is clear. Otherwise, choose p1, p2 ∈ P with dP (p1, p2) = d(P ) and let
γ : [0, l(γ)]→ P be a piecewise affine curve between p1, p2, parametrized by arc length, with l(γ) = d(P ).

Since P is not convex, there is some v ∈ V ′P such that [v; γ( l(γ)
2 )] ⊂ P . (Possibly we have to take v = γ( l(γ)

2 )).

Then we can choose w ∈ ∂P such that γ( l(γ)
2 ) ∈ [v;w] and [v;w] induces a partition P = Q1 ∪ Q2 according

to Definition 2.7. The choice of γ implies mink=1,2 d(Qk) ≥ 1
2d(P ) and thus we conclude, using that P is

ϑ-semiconvex
ϑ

2
d(P ) ≤ ϑ min

k=1,2
d(Qk) ≤ |[v;w]| ≤ max

R∈SO(2)
|P |Π,R. �

We now formulate the first main result of this section stating that semiconvex polygons are rotund if the
lengths of shortest and longest extend are comparable.

Theorem 4.4. Let 0 < ϑ, λ < 1. Then there is an ω = ω(ϑ, λ) > 0 such that all ϑ-semiconvex polygons P with

min
R∈SO(2)

|P |Π,R ≥ λ max
R∈SO(2)

|P |Π,R

are ω-rotund.
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Whereas the statement is straightforward for convex polygons by Lemma 4.2, the argument for nonconvex
polygons relies on the observation that concave vertices are ‘not too close to opposite parts of the boundary’
due to condition (3.3).

Proof. Choose p1, p2 ∈ P with dP (p1, p2) = d(P ) and let γ : [0, l(γ)] → P be a piecewise affine curve between
p1, p2, parametrized by arc length, with l(γ) = d(P ). As noticed in Section 2.3, recall that the endpoints of each
segment of γ are contained in V ′P ∪{p1, p2}. Define δ = 1

14ϑλ and set for shorthand q1 = γ(δ) and q2 = γ(1− δ).
We distinguish two cases:

(a) First assume γ([δ, 1− δ]) = [q1; q2] is a segment with q1, q2 /∈ ∂P and suppose that after translation and
rotation we have q1 = (t1, 0), q2 = (t2, 0) with t1 < t2. For k = 1, 2 denote by Sk the connected component of
({tk}×R)∩int(P ) containing qk. The segments S1, S2 induce a partition P = P1∪P ′∪P2 of P with Pk∩P ′ = Sk
for k = 1, 2 (cf. Fig. 6). First, by the fact that l(γ) = d(P ) and 2δ ≤ 1

2 we get

d(P ′) ≥ |P ′|Π,1 = |[q1; q2]| ≥ (1− 2δ)d(P ) ≥ 1

2
d(P ). (4.1)

Moreover, we obtain for k = 1, 2 by the choice of γ and q1, q2

distP (x, Sk) ≤ 3δd(P ) for all x ∈ Pk. (4.2)

Indeed, e.g. for k = 1, we observe distP (y, q2) ≥ (1 − 2δ)d(P ) for all y ∈ S1 and distP (q2, p2) = δd(P ). This
implies distP (y, p2) ≥ (1− 3δ)d(P ) for all y ∈ S1, from which (4.2) follows. Consequently, by (4.2), Lemma 4.3
and δ = 1

14ϑλ we obtain

min
R∈SO(2)

|P ′|Π,R ≥ min
R∈SO(2)

|P |Π,R − 6δd(P ) ≥ λ max
R∈SO(2)

|P |Π,R − 6δd(P ) ≥ δd(P ). (4.3)

(a1) If P ′ is a convex polygon, we find by (4.3) and Lemma 4.2 that P ′ contains a ball B(x, r) with r = δ
4d(P )

and thus, since P ⊃ P ′, P is δ
4 -rotund.

⊃

p2

S2

q2
γ

v

p1

S1

q1

Figure 6. We sketched case (a2), where T is contained in the dark gray set.

(a2) Otherwise, we choose a concave vertex v ∈ V ′P ′ which minimizes the distance to [q1; q2]. This implies
that the triangle with vertices v, q1, q2 is contained in P ′ (see Fig. 6). Understanding the vertices as complex
numbers we define the phases ϕ1 = arg(q1 − v) ∈ [0, 2π) and ϕ2 = arg(q2 − v) ∈ [0, 2π), where possible after
reflection of P ′ along R × {0} and a rotation we can suppose that 0 ≤ ϕ2 < ϕ1 < 2π with ϕ1 − ϕ2 < π (cf.
Fig. 6).
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We define the function f : [ϕ2, ϕ1] → P so that f(ϕ) denotes the closest point to v on (v + R+eiϕ) ∩ ∂P .
Observe that for ϕ ∈ [ϕ2, ϕ1] each [v; f(ϕ)] induces a partition P = Qϕ1 ∪Qϕ2 according to Definition 2.7 with
pk, qk ∈ Qϕk for k = 1, 2. Consequently, by definition of γ and qk, k = 1, 2, we get mink=1,2 d(Qϕk ) ≥ δd(P ) for
all ϕ ∈ [ϕ1, ϕ2] and then we obtain

|[v; f(ϕ)]| ≥ ϑ min
k=1,2

d(Qϕk ) ≥ ϑδd(P ) (4.4)

since P is ϑ-semiconvex. Consequently, we derive that the circular sector

T := {x ∈ R2 : arg(x− v) ∈ [ϕ2, ϕ1], |[x; v]| ≤ ϑδd(P )}

is contained in P . Clearly, we have dist(v, [q1; q2]) ≤ d(P ), which in view of |[q1; q2]| ≥ 1
2d(P ) (see (4.1)) implies

ϕ1−ϕ2 ≥ arctan(1/2) by elementary trigonometry. Then it is not hard to see that there is a ball B(x, r) ⊂ T ⊂ P
with r ≥ cϑδd(P ) for a universal c > 0 small enough. This yields that P is ω-rotund for some ω only depending
on ϑ, λ.

(b) We now suppose that γ([δ, 1 − δ]) is not a segment or qk ∈ ∂P for some k = 1, 2, i.e. we find v ∈ V ′P
with v ∈ γ([δ, 1− δ]). Choose v−, v+ ∈ γ such that [v−; v] and [v; v+] are contained in γ. Let ϕ− = arg(v− − v),
ϕ+ = arg(v+−v) and without restriction, possibly after a rotation and reflection, we can assume that 0 ≤ ϕ+ <
ϕ− < 2π with ϕ− − ϕ+ > π. We now proceed as in (a):

We see that [v; f(ϕ)] induces a partition P = Qϕ1 ∪ Qϕ2 for all ϕ ∈ (ϕ+, ϕ−) with pk ∈ Qϕk , k = 1, 2, and
|[v; f(ϕ)]| ≥ ϑmink=1,2 d(Qϕk ) ≥ ϑmink=1,2 dP (v, pk) ≥ ϑδd(P ) (cf. (4.4)). Then as before the set {x ∈ R2 :
arg(x− v) ∈ (ϕ+, ϕ−), |[x; v]| ≤ ϑδd(P )} is contained in P . Since ϕ− −ϕ+ > π, we conclude that P contains a
ball with radius larger than cϑδd(P ). �

The result shows that if maxR∈SO(2) |P |Π,R and minR∈SO(2) |P |Π,R are comparable, the polygon P already
has the desired properties. Otherwise, we will perform a partition of semiconvex polygons into semiconvex and
rotund polygons as described in Section 4.2 below. To this end, it is crucial to characterize the position of
concave vertices in a semiconvex polygon. The following result shows that for a semiconvex polygon, which is
not already rotund, one can identify (at most) two regions which contain the concave vertices.

Theorem 4.5. Let 0 < ϑ < 1. Then there is a constant C = C(ϑ) > 0 such that the following holds for
all ϑ-semiconvex polygons P : There are two segments S1, S2 inducing a partition of P = P1 ∪ P ′ ∪ P2 with
Pi ∩ P ′ = Si for i = 1, 2 such that P ′ is a convex polygon and the polygons Pi satisfy

(i) H1(Si) ≤ ϑH1(∂P ),

(ii) max
R∈SO(2)

|Pi|Π,R ≤ C min
R∈SO(2)

|Pi|Π,R,

(iii) max
R∈SO(2)

|Pi|Π,R ≤ C dist(v, Si) for all v ∈ V ′Pi . (4.5)

We remark that the choice Pi = ∅, i = 1, 2, is admissible. (In this case also the corresponding segment is
empty). Moreover, also the choice P1 = P , P ′ = P2 = ∅ is possible, where Theorem 4.4 and (4.5)(ii) then imply
that P is rotund. Later, condition (4.5)(iii) will be crucial to show that Pi are semiconvex using Lemma 3.10.
Theorem 4.4 together with (4.5)(ii) will then yield that the polygons Pi are rotund.

Proof. Possibly after rotation we have minR∈SO(2) |P |Π,R = |P |Π,2. Without restriction we can assume that
ϑ2|P |Π,1 > 12|P |Π,2 as otherwise the claim holds for P1 = P , P ′ = P2 = ∅ and S1 = S2 = ∅ with C = 12/ϑ2 +1,
where (4.5)(ii) for P1 follows from maxR∈SO(2) |P |Π,R ≤ |P |Π,1 + |P |Π,2 and (4.5)(i), (iii) are trivial. Moreover,
possibly after another infinitesimal rotation we can suppose ϑ2|P |Π,1 > 12|P |Π,2 and

v1e1 6= v2e1 for all v1, v2 ∈ VP , v1 6= v2. (4.6)
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Choose p1, p2 ∈ ∂P with (p2 − p1)e1 = |P |Π,1 and let γ : [0, l(γ)] → P be the piecewise affine curve between
p1, p2, parametrized by arc length, with dP (p1, p2) = l(γ). Define U1 = {v ∈ V ′P : dP (v, p1) ≤ dP (v, p2)} and
U2 = V ′P \ U1. We first cut off two small pieces near p1, p2 to obtain an auxiliary convex polygon. Afterwards,
we define P ′ and show (4.5).

Step 1. Definition of an auxiliary polygon.

Let V∗ ⊂ V ′P be the vertices v for which there is some w ∈ ∂P such that [v;w] is parallel to the e2-axis,
γ ∩ [v;w] 6= ∅ and [v;w] induces a partition of P according to Definition 2.7 (see Fig. 7). Note particularly that
v ∈ V∗ for each v ∈ V ′P with v ∈ γ. Let I = {i = 1, 2 : Ui ∩ V∗ 6= ∅}. For i ∈ I we choose vi ∈ Ui ∩ V∗ with

|(pi − vi)e1| = max
v∈Ui∩V∗

|(pi − v)e1|.

For vi we find a corresponding w1
i such that [vi;w

1
i ] is parallel to the e2-axis, intersects γ and induces a partition

P = Q
(i,1)
1 ∪ Q(i,1)

2 , where the sets are labeled such that pk ∈ Q(i,1)
k for k = 1, 2. Note that there may exist a

second segment [vi;w
2
i ] parallel to the the e2-axis inducing a partition P = Q

(i,2)
1 ∪Q(i,2)

2 with p1, p2 /∈ Q(i,2)
i , cf.

Figure 7. (If such a segment does not exist, we set Q
(i,2)
i = ∅ and [vi;w

2
i ] = ∅). Note that w1

i , w
2
i /∈ VP by (4.6).

Since P is ϑ-semiconvex, we derive using ϑ2|P |Π,1 ≥ 12|P |Π,2

min
k=1,2

d(Q
(i,j)
k ) ≤ ϑ−1|[vi;wji ]| ≤ ϑ−1|P |Π,2 ≤

1

12
ϑ|P |Π,1.

As for l = 1, 2, l 6= i, we have dist(vi, pl) ≥ 1
2dP (p1, p2) ≥ 1

2 |P |Π,1 by definition of Ui, we get d(Q
(i,j)
l ) ≥ 1

2 |P |Π,1
and thus obtain

ri,j := d(Q
(i,j)
i ) ≤ ϑ−1|[vi;wji ]| ≤

1

12
ϑ|P |Π,1. (4.7)

If i /∈ I, we set ri,j = 0 for j = 1, 2, vi = pi and introduce the trivial partitions P = Q
(i,j)
1 ∪ Q(i,j)

2 with

Q
(i,j)
i = {pi} and Q

(i,j)
k = P for k 6= i. For shorthand we define r̄i = maxj=1,2 ri,j for i = 1, 2.

By the fact that dP (pi, vi) ≤ d(Q
(i,1)
i ) ≤ r̄i and (4.7) we have that the sets

T := [v1e1, v2e1]× R, T ′ := [p1e1 + 2r̄1, p2e1 − 2r̄2]× R (4.8)

satisfy ∅ ( T ′ ⊂ T . Consider the polygon P̂ := Q
(1,1)
2 ∩Q(1,2)

2 ∩Q(2,1)
1 ∩Q(2,2)

1 , which is confined, if existent, by
the segments [vji ;w

j
i ], i, j = 1, 2. Moreover, let P ∗1 be the connected component of P ∩ T contained in P̂ . (See

Fig. 7. Below we will see that P ∗1 = P̂ ).
As P ∗1 is connected, it is a polygon. We now show that P ∗1 is convex. Note that v ∈ int(T ) for all v ∈ V ′P∗1

since P ∗1 ⊂ T . Moreover, v /∈ int(T ) for all V ′P ∩V∗ by definition of v1, v2. Consequently, γ∩P ∗1 does not contain
a concave vertex of P and is thus a segment. Assume V ′P∗1 6= ∅ and choose a vertex v ∈ V ′P∗1 ⊂ V

′
P minimizing

dist(v, γ ∩ P ∗1 ). Then there is p ∈ γ such that [v; p] ⊂ P and [v; p] parallel to the e2-axis. This then implies
v ∈ V∗, which gives a contradiction and shows that P ∗1 is convex.

The convexity of P ∗1 together with the fact that wji /∈ VP (see (4.6)) also implies P ∗1 ∩ ∂T =
⋃
i,j=1,2[vji ;w

j
i ]

and this yields P̂ = P ∗1 . Moreover, we derive

P ∗2 := P ∩ T ′ = P ∗1 ∩ T ′.

Indeed, as P ∗1 = P̂ , we obtain P \ P ∗1 ⊂
⋃2
j=1(Q

(1,j)
1 ∪ Q(2,j)

2 ). Then the definition of ri,j (see (4.7)) together

with ri,j ≤ r̄i, (4.8) and Q
(i,j)
i ∩ ∂T 6= ∅, i, j = 1, 2, yields Q

(i,j)
i ∩ T ′ = ∅ for i, j = 1, 2. This implies the claim.

Since P ∗1 is convex, also P ∗2 is convex.
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q1

q2
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γA BQ
(1,2)
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Q
(1,1)
1
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w2
1

P ′

p1

p2 = v2

v′

v′′

v′′′

Figure 7. We illustrate a case with I = {1}. In red the vertices V∗ are depicted, where

v′, v′′, v′′′ /∈ V∗. Moreover, we have P ∗2 = P ′ ∪ A = P ∩ T ′ and P ∗1 = P̂ = P ∗2 ∪ B. Note that
R ⊂ T ∩ P , but R ∩ P ∗1 = ∅.

Step 2. Definition of P ′.
We are now in a position to define P ′. As 3r̄i ≤ 1

4 |P |Π,1 by (4.7), we can choose t1 < t2 with

p1e1 + 3r̄1 ≤ t1 ≤ p1e1 +
1

4
|P |Π,1, p2e1 −

1

4
|P |Π,1 ≤ t2 ≤ p2e1 − 3r̄2 (4.9)

such that Si := P ∩ ({ti} × R) satisfy

H1(Si) ≤ |ti − pie1| ≤ max{H1(Si), 3r̄i}. (4.10)

This follows from a continuity argument taking |P |Π,1 ≥ 12|P |Π,2 into account. Clearly, P ′ := P ∩ ([t1, t2]×R)
is a convex polygon (cf. again Fig. 7). Denote the closures of the at most two connected components of P \P ′ by
P1, P2, where Pi = ∅ if and only if i /∈ I and note that indeed Si = P ′ ∩Pi for i ∈ I. It remains to confirm (4.5).
As a preparation, we show that there is a universal C > 0 such that for i ∈ I

d(Pi) ≤ Cϑ−1(|ti − pie1|+H1(Si)). (4.11)

We confirm the claim e.g. for i = 1. Let q1, q2 be the endpoints of the segment S1. As P ∗1 is convex, we have that
the closed triangle 4 with vertices q1, q2 and v1 is contained in P ∗1 ⊂ P . If [qj ; v1] is not completely contained

in ∂P ∗1 for j = 1, 2, it induces a partition P = R
(j)
1 ∪ R

(j)
2 , where the sets are labeled such that R

(j)
1 ⊂ P1. If

[qj ; v1] ⊂ ∂P ∗1 , we set R
(j)
1 = ∅. We obtain P1 = R

(1)
1 ∪ R(2)

1 ∪ 4. Note that d(4) ≤ |t1 − p1e1| +H1(S1) and
due to the fact that P is ϑ-semiconvex, we get

min
k=1,2

d(R
(j)
k ) ≤ ϑ−1|[qj ; v1]| ≤ ϑ−1(|t1 − p1e1|+H1(S1)) ≤ 1

3
|P |Π,1,

where in the last step we used (4.7), (4.10) and that by assumption H1(S1) ≤ |P |Π,2 ≤ 1
12ϑ

2|P |Π,1. Since

d(R
(j)
2 ) ≥ 3

4 |P |Π,1 by (4.9), we derive d(R
(j)
1 ) ≤ d(R

(j)
2 ) and then (4.11) follows.

We now show (4.5). First, (i) follows fromH1(Si) ≤ |P |Π,2 and 12|P |Π,2 ≤ ϑ2|P |Π,1 ≤ ϑ2H1(∂P ). If Re1, R ∈
SO(2), encloses an angle smaller than π

4 with the e2-axis, we find |Pi|Π,R ≥ 1√
2

max{|[vi;w1
i ]|+|[vi;w2

i ]|,H1(Si)}.
Likewise, if Re1 encloses an angle smaller than π

4 with the e1-axis, we get in view of (4.9)

|Pi|Π,R ≥ |γ ∩ (Pi ∩ T )|Π,R ≥ c|ti − vie1| ≥ c(|ti − pie1| − r̄i) ≥ c|ti − pie1|

for a universal c small enough, where we used that γ ∩ (Pi ∩ T ) is a segment enclosing a small angle with e1

since ϑ2|P |Π,1 ≥ 12|P |Π,2 (cf. Fig. 7). By (4.7) and (4.10) this implies

min
R∈SO(2)

|Pi|Π,R ≥ cmin{max{ϑr̄i,H1(Si)}, |ti − pie1|} ≥ cϑ|ti − pie1|.
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Consequently, (4.10) and (4.11) yield

max
R∈SO(2)

|Pi|Π,R ≤ d(Pi) ≤ Cϑ−12|ti − pie1| ≤ Cϑ−2 min
R∈SO(2)

|Pi|P,R.

This gives (ii). Finally, to see (iii), we recall that P ∗2 = P ∩T ′ is a convex polygon and thus in view of (4.8), (4.9),
we get dist(v, Si) ≥ |ti − pie1| − 2r̄i ≥ 1

3 |ti − pie1| = 1
3 |Pi|Π,1 for all v ∈ V ′Pi . The claim now follows

from (4.5)(ii). �

4.2. Partitions into semiconvex and rotund polygons

We now show that semiconvex polygons can be partitioned into semiconvex and rotund polygons. We start
with the partition of convex polygons into rotund polygons by introducing segments parallel to the direction of
shortest extend.

Lemma 4.6. Let θ > 0. Then there is ω = ω(θ) > 0 such that for all convex polygons P , satisfying ^(v, P ) ≥ π
4

for all vertices v ∈ VP , there is a partition P = P1 ∪ . . . ∪ PN with

H1

(⋃N

j=1
∂Pj \ ∂P

)
≤ θH1(∂P ) (4.12)

and the polygons (Pj)
N
j=1 are ω-rotund.

Proof. After rotation we may assume that minR∈SO(2) |P |Π,R = |P |Π,2. Clearly, it is not restrictive to suppose
that θ ≤ θ0 for some θ0 ≤ 1 to be specified below. If |P |Π,1 < 7θ−1|P |Π,2, we obtain maxR∈SO(2) |P |Π,R ≤
|P |Π,1 + |P |Π,2 ≤ (1 + 7θ−1)|P |Π,2 and P is ω-rotund by Theorem 4.4 for ω only depending on θ.

Now assume |P |Π,1 ≥ 7θ−1|P |Π,2. For t ∈ R we denote by St the segments St = ({t} × R) ∩ P which induce
partitions P = Qt1 ∪ Qt2, where Qt2 ⊂ {x1 ≥ t}. For shorthand we write ϕθ = arctan θ. Choose the smallest s1

and the largest s2 such that the polygon P ′ := P \ (Qs11 ∪Qs22 ) with VP ′ = (u1, . . . , un) satisfies

[ui;ui+1] 6= Ss1 , Ss2 ⇒ arg(ui+1 − ui) ∈
(
{0, π}+ [−ϕθ, ϕθ]

)
mod2π, (4.13)

i.e. ui+1 − ui and e1 enclose an angle smaller than ϕθ. We show that for j = 1, 2 one has

(i) |Qs11 |Π,1 + |Qs22 |Π,1 ≤
1

2
|P |Π,1,

(ii) |Qsjj |Π,1 ≤ 3θ−1H1(Ssj ),

(iii) 0 < |Qsjj |Π,2 ≤ 4H1(Ssj ). (4.14)

By convexity of P and the choice in (4.13) we find curves γj in ∂Q
sj
j with |γj |Π,1 = |Qsjj |Π,1 such that the angle

enclosed by e1 and the tangent vector γ′j of γj is larger than ϕθ (see Fig. 8). By |P |Π,1 ≥ 7θ−1|P |Π,2 a short
calculation then yields

∑
j
θ|Qsjj |Π,1 =

∑
j

tan(ϕθ)|Qsjj ∩ γj |Π,1 ≤
∑

j
|Qsjj |Π,2 ≤ 2|P |Π,2 ≤

2θ

7
|P |Π,1,

which gives (i). The first inequality in (iii) follows from the fact that Q
sj
j cannot be degenerated to a single

vertex as for θ0 small in view of (4.13) this would contradict the lower bound π
4 on the interior angles of P .

Note, however, that |Qsjj |Π,1 = 0 is possible, where in this case we have Q
sj
j = Ssj .

We now show (ii)−(iii), e.g. for Ss1 . Recalling the previous observation we see that the claim is clear if
|Qs11 |Π,1 = 0 and we therefore assume |Qs11 |Π,1 > 0. For convenience define [u; v] := Ss1 . We now get

(a) min{^(u,Qs11 ),^(v,Qs11 )} ≤ π

2
− ϕθ, (b) max{^(u,Qs11 ),^(v,Qs11 )} ≤ π

2
+
ϕθ
2
·
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Ss1

u

v

Ss2

γ
γ1

Qs1
1

Qs2
2

Figure 8. We depicted the curves γ1 and γ considered above in the proof of (4.14). Note that
similar arguments involving the angle between tangent vectors and e1 are also used in (4.15)
and (4.19).

If (b) was false, as above using the convexity of P we would find a curve γ in ∂P ′ with |γ|Π,1 = |P ′|Π,1 such
that the angle enclosed by e1 and γ′ is larger than ϕθ

2 (see Fig. 8). But then similarly as in the proof of (4.14)(i)
we would find, by a Taylor expansion for θ0 small, and |P ′|Π,1 ≥ 1

2 |P |Π,1 (see (4.14)(i))

|P |Π,2 ≥ |P ′|Π,2 ≥ tan
(ϕθ

2

)
|P ′ ∩ γ|Π,1 ≥

2θ

5
|P ′|Π,1 ≥

θ

5
|P |Π,1,

which contradicts the assumption. To see (a), we observe that the construction of P ′ implies that, up to changing
the roles of u and v, |^(u,Qs11 )− π

2 | ≥ ϕθ. As in the proof of (b), we derive that it is not possible that the angle
is obtuse. This gives (a).

Combining (a) and (b) and recalling the convexity of P we derive

H1(Ss1) + tan(ϕθ/2)|Qs11 |Π,1 − tan(ϕθ)|Qs11 |Π,1 ≥ 0

and then for θ0 small by a Taylor expansion H1(Ss1) ≥ θ
3 |Q

s1
1 |Π,1, i.e. (ii) holds.

To see the second inequality in (iii), we again use (a), (b) and (ii) to obtain for θ small

|Qs11 |Π,2 ≤ H1(Ss1) + tan(ϕθ/2)|Qs11 |Π,1 ≤ H1(Ss1) + θ|Qs11 |Π,1 ≤ 4H1(Ss1). (4.15)

For later purpose note that (4.14)(ii) and the assumption |P |Π,1 ≥ 7θ−1|P |Π,2 also imply

|P ′|Π,1 ≥ |P |Π,1 − 3θ−1(H1(Ss1) +H1(Ss2)) ≥ |P |Π,1 − 6θ−1|P |Π,2 ≥ θ−1|P |Π,2. (4.16)

We are now in a position to partition P ′ with vertical segments: we assume segments St1 , St2 , . . . , Stn with

s1 = t1 < t2 < . . . < tn and P ′j = Q
tj
2 \Q

tj+1

2 for j = 1, . . . , n− 1, n ∈ N, have been constructed with

0 < |P ′j |Π,1 = θ−1H1(Stj+1
), j = 1, . . . , n− 1, |Qtn2 ∩ P ′|Π,1 ≥ θ−1H1(Ss2). (4.17)

We observe that the latter condition in (4.17) holds in the case n = 1, where no set has been constructed yet.
In fact, we have Qt12 ∩ P ′ = P ′ and then |Qt12 ∩ P ′|Π,1 ≥ θ−1|P |Π,2 ≥ θ−1H1(Ss2) by (4.16). Moreover, recall
H1(St1) > 0 by (4.14)(iii).

If |Qtn2 ∩ P ′|Π,1 ≤ 4θ−1H1(Ss2), we set P ′n = Qtn2 ∩ P ′, tn+1 = s2, Stn+1
= Ss2 and stop. For later reference

we note that in this case

θ−1H1(Ss2) ≤ |P ′n|Π,1 ≤ 4θ−1H1(Ss2). (4.18)
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Otherwise, we have |Qtn2 ∩ P ′|Π,1 > 4θ−1H1(Ss2). As H1(St) is continuous in t and H1(Stn) > 0 by (4.17),

we apply the intermediate value theorem and find some tn+1 ∈ [tn, s2] such that P ′n := Qtn2 \Q
tn+1

2 satisfies
|P ′n|Π,1 = θ−1H1(Stn+1

). This gives

|Qtn+1

2 ∩ P ′|Π,1 = |Qtn2 ∩ P ′|Π,1 − |P ′n|Π,1 ≥ θ−1(4H1(Ss2)−H1(Stn+1)).

Then using H1(Stn+1
) ≤ H1(Ss2) + 2θ|Qtn+1

2 ∩ P ′|Π,1 by (4.13) (see (4.15) for a similar argument), we get

3|Qtn+1

2 ∩ P ′|Π,1 ≥ θ−1(4H1(Ss2)−H1(Stn+1
)) + 2|Qtn+1

2 ∩ P ′|Π,1 ≥ 3θ−1H1(Ss2),

which gives the second part of (4.17). We now proceed with the next iteration step and observe that the
construction stops after a finite number of steps with a partition P ′ = P ′1 ∪ . . . P ′N since by convexity of P we
have H1(St) ≥ mini=1,2H1(Ssi) > 0 for all t ∈ [s1, s2].

Note that by (4.17), (4.18) each P ′n contains a triangle with a base of length H1(Stn+1
) and a height with

length in the intervall [θ−1H1(Stn+1), 4θ−1H1(Stn+1)]. By (4.13) it is not hard to see that each of these triangles
contains a ball with radius larger than CH1(Stn+1

) for a universal C > 0 small enough. Likewise, again arguing
as in (4.15), by (4.13), (4.17), (4.18) we also find

|P ′n|Π,2 ≤ H1(Stn+1
) + 2θ|P ′n|Π,1 ≤ 9H1(Stn+1

). (4.19)

Consequently, again by (4.17), (4.18) we derive d(P ′n) ≤ (4θ−1 +9)H1(Stn+1
) and thus we conclude that (P ′n)Nn=1

are ω-rotund for some ω = ω(θ) small enough.
Define P1 = P ′1∪Qs11 , PN = P ′N ∪Qs22 and Pn = P ′n for n = 2, . . . , N −1. Clearly, P2, . . . , PN−1 are ω-rotund.

Applying (4.14)(ii), (iii) and (4.17) we get

d(P1) ≤ d(P ′1) + Cθ−1H1(Ss1) ≤ d(P ′1) + Cθ−1(H1(St2) + 2θ|P ′1|Π,1) ≤ Cd(P ′1),

where in the penultimate step we once again exploited (4.13). A similar expression holds for PN . Consequently,
possibly passing to a smaller ω also P1, PN are ω-rotund. Finally, to see (4.12), we compute by (4.17)

H1

(⋃N

j=1
∂Pj \ ∂P

)
=

N∑

j=2

H1(Stj ) ≤ θ
N∑

j=1

|P ′j |Π,1 ≤ θ|P |Π,1 ≤ θH1(∂P ). �

We now finally show that semiconvex polygons can be partitioned into semiconvex and rotund polygons up
to an arbitrary small set.

Theorem 4.7. Let θ, ϑ, ε > 0. Then there are ω = ω(ϑ, θ), ϑ̄ = ϑ̄(ϑ, θ) and a universal constant C > 0 such
that the following holds: For all ϑ-semiconvex polygons P there is a partition P = P0∪. . .∪PN with H1(∂P0) ≤ ε
and

N∑

i=1

H1(∂Pi) ≤ (1 + Cθ)H1(∂P ) (4.20)

such that the polygons (Pi)
N
i=1 are ϑ̄-semiconvex and ω-rotund.

Proof. Possibly by passing to a smaller ϑ, we can assume that ϑ ≤ θ in the following since (3.3) still holds for
a smaller value of ϑ. We apply Theorem 4.5 to obtain a partition P = P1 ∪ P ′ ∪ P2 such that P ′ is a convex
polygon and Pi satisfy (4.5) with Si := Pi ∩ P ′ for i = 1, 2. (Recall that some of the polygons may be empty).

We now first concern ourselves with P ′. By V^ we denote the vertices v ∈ VP ′ with ^(v, P ′) < π
4 . For each

v ∈ V^ we choose a (closed) isosceles triangle 4v ⊂ P ′ with v ∈ 4v such that ^(v,4v) = ^(v, P ′) is the only
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angle smaller than π
4 and we obtain H1(∂P0) ≤ ε as well as ^(u, P ′′) ≥ π

4 for all u ∈ VP ′′ , where P0 =
⋃
v∈V^ 4v

and P ′′ = P ′ \ P0. We notice that by the triangle inequality

H1(∂P ′′) ≤ H1(∂P ′) = H1(∂P ) +

2∑

i=1

(H1(Si)−H1(∂Pi \ Si)) ≤ H1(∂P ). (4.21)

We apply Lemma 4.6 on P ′′ to obtain a partition P ′′ = P3 ∪ . . . ∪ PN with

H1
(⋃N

j=3
∂Pj \ ∂P ′′

)
≤ θH1(∂P ′′) ≤ θH1(∂P )

such that the polygons (Pj)
N
j=3 are convex and ω-rotund for some ω only depending on θ. Since each x ∈⋃N

j=3 ∂Pj \ ∂P ′′ is contained in exactly two components, we compute by (4.5)(i), (4.21) and ϑ ≤ θ
∑N

j=1
H1(∂Pj) ≤

∑2

i=1
H1(∂Pi) +H1(∂P ′′) + 2θH1(∂P )

≤ H1(∂P ) +
∑2

i=1
(H1(∂Pi) +H1(Si)−H1(∂Pi \ Si)) + 2θH1(∂P )

= H1(∂P ) + 2θH1(∂P ) + 2
∑2

i=1
H1(Si) ≤ H1(∂P ) + 6θH1(∂P ).

This gives (4.20). It remains to show that P1 and P2, if existent, are semiconvex and rotund. We denote the
endpoints of the segments Si by ui1, u

i
2, i = 1, 2. First, by (4.5)(iii) each v ∈ V ′Pi satisfies H1(Si) ≤ C dist(v, Si)

for C = C(ϑ) and therefore an elementary geometric argument implies that there is an angle α = α(ϑ) > 0
such that maxk=1,2^(4v, uik) ≥ α for all v ∈ V ′Pi , where 4v denotes the triangle formed by ui1, ui2 and v. Thus,
recalling that P is ϑ-semiconvex, we get that Pi are ϑ̄-semiconvex by Lemma 3.10 for ϑ̄ only depending on ϑ.

Finally, the fact that Pi is ϑ̄-semiconvex together with (4.5)(ii) yields that Pi is ω-rotund by Theorem 4.4 for
ω only depending on ϑ. �

Remark 4.8. As in Remark 3.9 we note that by the partition no additional concave vertices are introduced.

5. Equivalence of John domains and semiconvex, rotund polygons

In this section we study the relation of semiconvex, rotund polygons and John domains. This together with
the partitions introduced in the last sections will allow us to give the proof of Theorem 2.5. In the following
for convenience we will say that a polygon P is a %-John domain if int(P ) is a %-John domain. We first observe
that polygons, which are %-John domains, are semiconvex and rotund.

Lemma 5.1. Let 0 < % ≤ 1. Each polygon P which is a %-John domain is ϑ-semiconvex and ω-rotund for ϑ, ω
only depending on %.

Proof. Since there is x ∈ P with P \ B(x, d(P )/2) 6= ∅, Lemma 2.3 implies that P is 1
4%-rotund. If P was not

ϑ-semiconvex for ϑ = %
4 , there would be u1, u2 ∈ ∂P , u1 ∈ V ′P , inducing a partition P = Q1 ∪Q2 such that

|[u1;u2]| < ϑ min
k=1,2

d(Qk) ≤ 1

4
min
k=1,2

d(Qk).

We can choose vk ∈ Qk such that dP (vk, w) ≥ 1
4d(Qk) ≥ 1

4ϑ
−1|[u1;u2]| for all w ∈ [u1;u2]. Let γ be a John

curve between v1, v2 (see Rem. 2.2) and let w∗ be an intersection point of γ with [u1;u2]. As cig(γ, %) ⊂ P , we
derive B(w∗,

%
4ϑ |[u1;u2]|) ⊂ P . In view of ϑ = %

4 , this gives a a contradiction. �

We now show that semiconvex and rotund polygons are John domains with controllable John constant. Recall
the notation xej for the jth component of points x ∈ R2 and that sometimes points are understood as complex
numbers (see Sect. 2.3).
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Theorem 5.2. Let ϑ, ω > 0. Then there is % = %(ϑ, ω) such that each ϑ-semiconvex and ω-rotund polygon P
is a %-John domain.

Proof. By 0 < c < 1, C ≥ 1 we denote generic constants which are always independent of ϑ, ω. Possibly by
passing to smaller ϑ, ω we can assume that ϑ, ω are sufficiently small with respect to C and ϑ is small with
respect to ω in the following proof since the properties in Definition 3.2(i) and Definition 4.1 still hold for smaller
values of ϑ, ω. As P is ω-rotund, we find some p ∈ P and r ≥ ωd(P ) such that B(p, r) ⊂ P . Let x ∈ int(P )
arbitrary. The goal is to construct a curve γ between x and p such that for ϑ small enough

car(γ, ϑ3) ⊂ P, (5.1)

where car(γ, ϑ3) as in (2.2). This then shows that int(P ) is a ϑ3-John domain. The construction will involve
several steps.

Step 1. Preparations.

Choose the (unique) curve γ0 : [0, l(γ0)] → P with γ0(0) = x and γ0(l(γ0)) = p such that dP (x, p) = l(γ0) (see
Fig. 9). As observed in Section 2.3 there are 0 = t0 < t1 < . . . < tn = l(γ0) such that γ0 is piecewise affine on
[ti, ti+1] and vi := γ0(ti) ∈ V ′P are concave vertices for i = 1, . . . , n− 1. Moreover, define v0 = x and vn = p. We

consider a concave vertex v ∈ V ′P and q ∈ ∂P such that [v; q] induces a partition P = Q
(v,q)
1 ∪Q(v,q)

2 according to

Definition 2.7 with x ∈ Q(v,q)
1 and p ∈ Q(v,q)

2 . For convenience we will call such a segment [v; q] in the following
a segment which separates x and p (cf. Fig. 9). Since P is semiconvex, we have

|[v; q]| ≥ ϑ min
k=1,2

d(Q
(v,q)
k ) ≥ ϑmin{max{dP (v, x), dP (q, x)}, ωd(P )}, (5.2)

where we used that d(Q
(v,q)
2 ) ≥ r ≥ ωd(P ). In particular, if v = vi we note that dP (v, x) = ti and thus for ϑ

small with respect to ω

|[vi; q]| ≥ ωϑti ≥ 4ϑ2ti. (5.3)

Likewise, if v = vi, q = vi+1 and [vi; vi+1] separates x and p, we find

|[vi; vi+1]| ≥ 4ϑ2ti+1. (5.4)

Consider the subset

{0 = i0, 1 = i1, i2, . . . , im = n− 1} ⊂ {0, . . . , n− 1}
with corresponding vertices v̂j := γ0(tij ), v̂

′
j := γ0(tij+1), j = 0, . . . ,m such that for j = 1, . . . ,m − 1 the

segments [v̂j ; v̂
′
j ] separate x and p or satisfy

|[v̂j ; v̂′j ]| = tij+1 − tij ≥ 4ϑ2tij+1. (5.5)

(Observe that the first and the last segment [v̂0; v̂′0] and [v̂m; v̂′m] do not induce a partition). Note that ij+1 = ij+1

is possible, namely if a pair of directly consecutive segments separate x and p or satisfy (5.5). We then obtain

|[v̂j ; v̂′j ]| = tij+1 − tij ≥ 4ϑ2tij+1 (5.6)

for all j = 0, . . . ,m. If (5.5) holds, this follows directly. For j ∈ {0,m} we observe t0 = 0 and tn − tn−1 ≥ r ≥
ωd(P ) ≥ 4ϑ2d(P ) for ϑ small with respect to ω. Otherwise, [v̂j ; v̂

′
j ] separates x and p and the assertion follows

from (5.4) with i = ij , i.e. vi = v̂j and vi+1 = v̂′j . This property will essentially be important to estimate the
length of the curve γ defined in Step 6 (cf. (5.34) below).
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v̂0 = x

ΓI1
2

ΓIII
1

ΓII
1 v̂1

w−
1w+

1
�

v̂2

y

vq

S′

v̂3

v̂4 = p

Figure 9. The path γ0 is depicted in black and the curve γ in red, which ‘changes the side of
the boundary’ on Γ II

1 and has a signed curvature on Γ III
1 . The segments [v; q], [v̂2; y] separate

x and p. The segment [v̂2; v̂3] does not separate x and p, but satisfies (5.5). We have also

illustrated a circular sector S′ contained in the cone S and the part of the circle Γ I1
2 defined in

Step 2.

For each 1 ≤ i ≤ n − 1 choose the unique ν−i , ν
+
i ∈ S1 = {x ∈ R2 : |x| = 1} such that ν−i ⊥vi − vi−1,

ν+
i ⊥vi+1 − vi and vi + εν±i ∈ P for ε > 0 small. Define

w−i = vi + 2ϑ2tiν
−
i , w+

i = vi + 2ϑ2tiν
+
i . (5.7)

Moreover, we set w−0 = w+
0 = x and w−n = p + 2ϑ2tnν

+
n−1. The goal is to construct a curve γ : [0, l(γ)] → P

with γ(0) = x, γ(l(γ)) = p with car(γ, ϑ3) ⊂ P , where we essentially connect the points w±i defined above. We
have to construct curves between

(I) w−ij and w+
ij
, w−ij+1 and w+

ij+1, (II) w+
ij

and w−ij+1, (III) w+
ij+1 and w−ij+1

(5.8)

for j = 0, . . . ,m− 1 and at the end of the curve a path between w−n−1 and p.
The most delicate cases are (II) and (III), where in (II) γ0 typically ‘changes the side of the boundary’ and

in (III) the part of γ0 has signed curvature, possibly the form of a ‘helix’ (cf. Fig. 9, Fig. 11). In Step 2–Step 5
we construct the various parts of the curve, where one has to ensure that (1) the length of γ is comparable to
the length of γ0 (see (5.9)(i), (5.17), (5.30), (5.33)(i)) and (2) the distance of γ from the boundary is sufficiently
large (see (5.9)(ii), (5.19), (5.31), (5.33)(ii)). In Step 6 we finally show that the constructed curve satisfies the
property stated in Definition 2.1.

Step 2. Construction of curves (I).
Let j ∈ {0, . . . ,m − 1} and recall (5.7)−(5.8). Let Γ I1

j and Γ I2
j be the parts of the two circles with midpoints

vij = v̂j , vij+1 = v̂′j and radii 2ϑ2tij , 2ϑ2tij+1 connecting w−ij , w
+
ij

and w−ij+1, w
+
ij+1 respectively. (Note that

Γ I1
0 = ∅). We have

(i) l(Γ I1
j ) ≤ 4πϑ2tij ≤ π(tij+1 − tij ), l(Γ I2

j ) ≤ 4πϑ2tij+1 ≤ π(tij+1 − tij ),
(ii) dist(∂P, Γ I1

j ) ≥ ϑ2tij , dist(∂P, Γ I2
j ) ≥ ϑ2tij+1. (5.9)

Indeed, the first inequality in (i) is clear and the second follows from (5.6). We show (ii) for i = ij , the
proof for ij + 1 is similar. Let ϕ− = arg(vi−1 − vi), ϕ+ = arg(vi+1 − vi) and suppose that possibly after
rotation and reflection we have 0 ≤ ϕ+ < ϕ− < 2π and ϕ− − ϕ+ < π. We define the (infinite) cone
S = {x ∈ R2 : arg(x− v) ∈ [ϕ+, ϕ−]} and note that dist(Γ I1

j , S) ≥ 2ϑ2tij by (5.7). If (ii) was wrong, we would
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find some y ∈ ∂P \ S such that [y; v̂j ] ⊂ P and |[y; v̂j ]| < 3ϑ2tij . As y /∈ S and γ0 is the shortest path between
x and p, we get that [y; v̂j ] separates x and p (cf. Fig. 9). This contradicts (5.3).

Step 3. Construction of curves (II).

Let j ∈ {0, . . . ,m} and recall (5.7)−(5.8). (Because of Step 5 below we also consider j = m). To simplify
the notation we assume vij = v̂j = 0, vij+1 = v̂′j = (0, d), where d := tij+1 − tij , and define the rectangle

R = [−2ϑ2tij+1, 2ϑ
2tij+1] × [0, d]. Observe that w+

ij
, w−ij+1 ∈ ∂R. For notational convenience we will write

w = w+
ij

and w′ = w−ij+1 in the following. Recall that v̂j , v̂
′
j ∈ V ′P for j ∈ {1, . . . ,m− 1}. In the other cases we

have (recall t0 = 0, vn = p)

B(v0, t0) = B(v̂0, t0) = ∅ ⊂ P, v1 = v̂′0 ∈ V ′P ,
vn−1 = v̂m ∈ V ′P , B(vn, ωd(P )) = B(v̂′m, ωd(P )) ⊂ P. (5.10)

Define the set of vertices UR := {v ∈ V ′P : v ∈ R} ∪ {v̂j , v̂′j}. For convenience we now first treat the case
j ∈ {1, . . . ,m − 1} and indicate the minor adaptions for j ∈ {0,m}, necessary due to v̂0, v̂

′
m /∈ V ′P , at the end

of Step 3.

Note that xe1 6= 0 for all x ∈ (∂P ∩R) \ {v̂j , v̂′j} as [v̂j ; v̂
′
j ] induces a partition of P . Let sgn(y) = 1 for y > 0

and sgn(y) = −1 for y < 0. By convention we set sgn(v̂je1) = −sgn(we1) and sgn(v̂′je1) = −sgn(w′e1). We let

V± = {v ∈ UR : ±sgn(ve1) > 0, [v; (0, ve2)] ⊂ P} (5.11)

and show that

|[v;u]| ≥ 8ϑ2(tij + ve2) for all v ∈ V− ∪ V+, u ∈ ∂P with sgn(ve1) 6= sgn(ue1). (5.12)

To see this, assume e.g. that v ∈ V+ and suppose first ue2 < ve2. Clearly, [v;u] does not necessarily induce a
partition of P as possibly [v;u] 6⊂ P . However, due to the fact that {0} × [0, d], [v; (0, ve2)] ⊂ P , we see that
there have to exist v′ ∈ V+ and u′ ∈ ∂P with

0 ≤ v′e1 ≤ ve1,
v′e2 − ue2

ve2 − ue2
≥ |[v

′;u]|
|[v;u]| , v′e2 ≤ ve2, u′e1 < 0, |[v′;u′]| ≤ |[v′;u]| (5.13)

such that [v′;u′] induces a partition of P (see Fig. 10). In fact, choose v′ as a concave vertex in [0, ve1]×[ue2, ve2]
lying on or above the segment [v;u] with minimal distance to {0} × [0, d] (note that possibly v′ = v) and let
u′ be the point on ∂P ∩ [v′;u] closest to v′. The second property in (5.13) follows from the fact that v′ lies on
or above the segment [v;u]. Since sgn(v′e1) 6= sgn(u′e1), [v′;u′] separates x and p. Now suppose the statement
was wrong. We then obtain using ve2 > ue2 ≥ 0, v′e2 ≤ ve2 as well as (5.13)

|[v′;u′]| ≤ |[v′;u]| ≤ |[v;u]|v
′e2 − ue2

ve2 − ue2
< 8ϑ2(tij + ve2)

v′e2

ve2
≤ 8ϑ2(tij + v′e2).

Consequently, we have |[v′;u′]| < ϑωd(P ) for ϑ small with respect to ω. Moreover, for ϑ small we get 2ϑ−1 ≤
(8ϑ2)−1 and thus by |v′e1| ≤ |[v′;u′]|

max{dP (v′, x), dP (u′, x)} ≥ tij + v′e2 − |v′e1| >
(
2ϑ−1 − 1

)
|[v′;u′]| ≥ ϑ−1|[v′;u′]|.

The last two estimates contradict (5.2). This shows (5.12) in the case ue2 < ve1. For ue2 ≥ ve1 we proceed
similarly, where the second and third property in (5.13) are replaced by v′e2 ≥ ve2 and |[v′;u]| ≤ |[v;u]|.
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v̂j
w

v̂′j
w′

ΓII
j

β

v1

v2

v
v′

u

u′

{x1 = 0}

Figure 10. On the left we have depicted β in dotted lines and Γ II
j in red. Note sgn(v̂je1) = −1,

sgn(v̂′je1) = 1, C− = C(v̂j)∪C(v1) and v2 /∈ V−. The main idea in the construction is that Γ II
j

is ‘not too close to concave vertices’. On the right the situation of (5.13) is illustrated.

Recalling (5.11) we let C(v) be the closed square with midpoint v ∈ V− ∪V+ and diagonal 4ϑ2l(v) with faces
parallel to e1 + e2 and e1 − e2, where

l(v) = tij + ve2 ∈ [tij , tij+1]. (5.14)

Moreover, define C± =
⋃
v∈V± C(v) and let H+, H− be the closed half space right and left of {0}×R, respectively.

We show

(i) C+ ∩ C− = ∅, (ii) (C+ ∩H−) ∪ (C− ∩H+) ⊂ P,
(iii) w,w′ ∈ (∂C+ ∩H−) ∪ (∂C− ∩H+). (5.15)

To see (i), note that (5.12) implies |[v1; v2]| ≥ 8ϑ2 max{l(v1), l(v2)} for v1 ∈ V+, v2 ∈ V− and thus C(v1)∩C(v2) =
∅. Likewise, if (ii) was wrong, there would be, e.g., v ∈ V+ and u ∈ ∂P with sgn(ue1) < 0 such that |[v;u]| ≤
2ϑ2l(v), which contradicts (5.12). Finally, we always have C(v̂j)∩C(v̂′j) = ∅ by (5.6). Consequently, (5.7), (5.14),
and the convention sgn(v̂je1) = −sgn(we1), sgn(v̂′je1) = −sgn(w′e1) show that each of the points w,w′ is
contained in ∂C+ ∩H− or ∂C− ∩H+.

We define PR = (P ∩R) \ (C+ ∪ C−). Then w,w′ ∈ PR by (5.15)(iii). Moreover, by (5.15) we find a contin-
uous, piecewise affine path β between w, w′ in the set

(
{0} × [0, d] ∪ (∂C+ ∩H−) ∪ (∂C− ∩H+)

)
∩ PR

such that the tangent vector of β is a.e. contained in { 1√
2
(−1, 1), (0, 1), 1√

2
(1, 1)} (see Fig. 10). In particular,

w, w′ are in the same connected component of PR, which will be denoted by P con
R in the following. Let Γ II

j :

[0, l(Γ II
j )] → P con

R be the shortest curve between w and w′ parametrized by arc length. The goal will be to

establish (5.17) and (5.19) below. Since P con
R is a polygon, we find that Γ II

j is piecewise affine and changes its

direction only in concave vertices of P con
R . We show that for all 0 ≤ s < s′ ≤ l(Γ II

j ) one has

(i) [Γ II
j (s); (0, Γ II

j (s)e2)] ⊂ P, (ii) arg(Γ II
j (s′)− Γ II

j (s)) ∈
[
π

4
,

3π

4

]
· (5.16)
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First, (5.16)(i) holds for β in place of Γ II
j by (5.15). Since P con

R is simply connected, the bounded connected

components of R2 \ (β ∪ Γ II
j ) are contained in P con

R . Then the fact that Γ II
j is the shortest path between w, w′

in P con
R together with (5.16)(i) for β implies (5.16)(i) for Γ II

j .

From (5.16)(i) we deduce that arg(Γ II
j (s′)−Γ II

j (s)) ∈ [0, π] for all s < s′ since Γ II
j is the shortest path between

w, w′. Select s1 < s2 and t1 < t2 such that β(tk) = Γ II
j (sk) for k = 1, 2 and Γ II

j ((s1, s2)) ∩ β((t1, t2)) = ∅.
Let P∗ be the polygon with boundary Γ II

j ([s1, s2]) ∪ β([t1, t2]). Since P∗ ⊂ P con
R and Γ II

j is the shortest path

between w,w′ in P con
R , P∗ only has concave vertices on Γ II

j ((s1, s2)). Recalling that the tangent vector of β is

a.e. contained in { 1√
2
(−1, 1), (0, 1), 1√

2
(1, 1)} and that the paths Γ II

j ([s1, s2]), β([t1, t2]) have a common start

and endpoint, we derive (5.16)(ii) for s1 ≤ s < s′ ≤ s2. Herefrom we also deduce

l(Γ II
j ) ≤

√
2(tij+1 − tij ). (5.17)

Additionally, we obtain that if Γ II
j changes its direction in s, then

Γ II
j (s) = v + 2ϑ2l(v)e1 for v ∈ V− or Γ II

j (s) = v − 2ϑ2l(v)e1 for v ∈ V+. (5.18)

In fact, Γ II
j changes its direction only in concave vertices of P con

R . First, if Γ II
j (s) ∈ UR (recall definition

below (5.10)), then Γ II
j (s) ∈ V− ∪ V+ by (5.16)(i) and thus Γ II

j (s) /∈ PR since C(Γ II
j (s)) ∩ PR = ∅. This gives

a contradiction. Consequently, Γ II
j (s) is a corner of C(v) for some v ∈ V− ∪ V+. Then (5.16) together with the

geometry of C(v) and the fact that Γ II
j is a shortest path implies that Γ II

j (s) has to be the left or right corner
of C(v), respectively. This yields (5.18). We now finally show

dist(∂P, Γ II
j (s)) ≥ cϑ2(tij + s) for s ∈ [0, l(Γ II

j )] (5.19)

for some universal c > 0 small. First, in view of (5.9) we observe that (5.19) holds for s = 0, l(Γ II
j ) since

v̂j = Γ II
j (0) ∈ Γ I1

j and v̂′j = Γ II
j (l(Γ II

j )) ∈ Γ I2
j . For each s ∈ [0, l(Γ II

j )] we denote by q±(s) the nearest point

to Γ II
j (s) on ∂P ∩

(
Γ II
j (s) ± R+e1

)
. Moreover, we set f±(s) = |q±(s) − Γ II

j (s)|. For later note that f± is a
lower semicontinuous function and it is possibly discontinuous at s only if q±(s) is a concave vertex. The fact
that (5.19) holds for s = 0, l(Γ II

j ) and (5.16)(ii) show that it suffices to prove

f±(s) > ϑ2(tij + s) (5.20)

for s ∈ [0, l(Γ II
j )] as herefrom (5.19) follows for c > 0 sufficiently small. Consider, e.g., f+. First, we show

that (5.20) holds for s with

(a) q+(s) ∈ UR or (b) Γ II
j changes its direction in s.

In fact, in case (a), (5.11), (5.16)(i) imply q+(s) ∈ V+ and thus by (5.14) and Γ II
j ⊂ PR we have f+(s) ≥

2ϑ2(tij +Γ II
j (s)e2). If (a) does not hold, we consider case (b) and recall (5.18). If we had Γ II

j (s) = v− 2ϑ2l(v)e1

for some v ∈ V+, (a) would be satisfied since then q+(s) = v ∈ UR. Consequently, we have Γ II
j (s) = v+2ϑ2l(v)e1

for some v ∈ V− and then f+(s) ≥ 6ϑ2(tij + Γ II
j (s)e2) by (5.12) as sgn(ve1) 6= sgn(q+(s)e1). In all cases (5.20)

follows from the fact that Γ II
j (s)e2 ≥ s√

2
by (5.16)(ii).

We now show (5.20) by contradiction. Choose the largest value 0 < s < l(Γ II
j ) such that (5.20) is violated.

Then neither (a) nor (b) hold. Since (a) does not hold, f+ is continuous in a neighborhood of s and thus

f+(s) = ϑ2(tij + s) (5.21)

by the choice of s. Choose the largest value s′ < s such that for s′ one of the conditions (a), (b) holds. (If this
is not possible, set s′ = 0). We now show that (5.21) implies f+(s′) ≤ ϑ2(tij + s′) which contradicts the fact
that (5.20) holds for s′. This will conclude the proof of (5.20) and then (5.19) is proved.
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Let t′ = Γ II
j (s′)e2, t = Γ II

j (s)e2 and T : [0, d]→ [0, l(Γ II
j )] be the (increasing) function with τ = Γ II

j (T (τ))e2

for τ ∈ [0, d]. Due to the fact that Γ II
j does not change its direction on (s′, s] we observe that τ 7→ T (τ)

and τ 7→ Γ II
j (T (τ))e1 are affine on (t′, t + ε) for ε small enough. Moreover, as (a) does not hold, we get that

τ 7→ q+(T (τ))e1 is concave in (t′, t+ ε) (cf. upper part in Fig. 10). Define g : [0, d]→ [0,∞) by

g(τ) = q+(T (τ))e1 − Γ II
j (T (τ))e1

and observe that g is concave in (t′, t+ ε). More precisely, g is differentiable up to a finite number of points. To
avoid further notation involving the superdifferential of concave functions, we will for simplicity assume that
g is smooth. In fact, this can be always obtained by a slight modification of g on (t′, t) without affecting the
following arguments.

Since g is concave and T is affine on (t′, t+ ε), we get T̄ > 0 such that

g(τ) ≤ g(t) + g′(t)(τ − t), T (τ) = T (t) + T̄ (τ − t) (5.22)

for τ ∈ (t′, t]. The function h : [0, d]→ [0,∞) defined by h(τ) = g(τ)(tij + T (τ))−1 satisfies h(t) = ϑ2 by (5.21)
and T (t) = s. Note also that h′(t) ≥ 0 due to the maximal choice of s. Consequently, (tij +T (t))g′(t)− T̄ g(t) ≥ 0
and this together with (5.22) and T̄ > 0 yields for τ ∈ (t′, t]

g(τ) ≤ g(t) + g′(t)(τ − t) ≤ g′(t)T̄−1(tij + T (t)) + g′(t)(τ − t) = g′(t)T̄−1(tij + T (τ)).

Using that g′ is non-increasing and T̄ > 0 we then find for τ ∈ (t′, t]

h′(τ) = (tij + T (τ))−2
(
(tij + T (τ))g′(τ)− T̄ g(τ)

)

≥ (tij + T (τ))−1(g′(τ)− g′(t)) ≥ 0

and thus h(τ) ≤ ϑ2 on (t′, t). This yields f+(σ) ≤ ϑ2(tij + σ) for all σ ∈ (s′, s]. As f+ is lower semicontinuous,
we get the desired contradiction f+(s′) ≤ ϑ2(tij + s′).

To conclude Step 3, it remains to treat the cases announced in (5.10). First, for j = 0, (5.12) trivially holds
for v = v0 = 0 and t0 = 0 and (5.19) is true for s = 0 since t0 = 0. For j = m, (5.12) follows from v = vn = p
and (5.10) with ϑ small with respect to ω. Finally, (5.19) is satisfied for s = l(Γ II

m) again by B(p, ωd(P )) ⊂ P .
The rest remains unchanged.

Step 4. Construction of curves (III).

Let j ∈ {0, . . . ,m − 1} and recall (5.7)−(5.8). Let us first observe that if ij + 1 = ij+1, then w−ij+1 and w−ij+1

coincide. Therefore, in this particular case we set Γ I2
j = Γ III

j = ∅. Now suppose ij + 1 < ij+1. First, as [vi; vi+1]
do not separate x and p for ij + 1 ≤ i ≤ ij+1 − 1 (recall definition before (5.5)), we see that γ0([tij+1, tij+1

])
has the form of a helix, i.e. γ0 has in [tij+1, tij+1 ] a signed curvature. (Clearly, a ‘degenerated helix’ with less
than a full winding is possible). More precisely, γ0 may consist of an outward helix and an inward helix in the
following sense: define

ϕk = arg(vk+1 − vk) for ij + 1 ≤ k ≤ ij+1 − 1

and let Sk = vk + R+eiϕk with R+ = (0,∞). Let k∗ be the smallest index such that

Sk∗ ∩ γ0([tij+1, tk∗ ]) 6= ∅

and let γ0([tij+1, tk∗ ]), γ0([tk∗ , tij+1)) be the outward and inward part of the helix, respectively. Indeed, beyond
vk∗ the helix can not further growth outwardly as this would inavoidably imply self-intersection of the polygon
(see Fig. 11).
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γ0(c0)

= vij+1 γ0(c1) γ0(c2)

S

γ0(tk∗)

vi

w′

vi−1 u

wiwi−1 v

vij+1

Figure 11. The part of γ0 between tij+1 and tij+1 has been depicted in black (for illustration
purposes with m = 2) and we sketched a segment [u; v] as considered below (5.23). Note that
the outward helix ends in γ0(tk∗).

Recalling (5.7) we let Γ III
j : [0, l(Γ III

j )]→ R2 be the arc length parametrized curve with Γ III
j (s±i ) = w±ij+i for

suitable 0 = s+
1 < s−2 < s+

2 < . . . < s+
N−1 < s−N = l(Γ III

j ), N = ij+1 − ij , which is affine on [s+
i−1, s

−
i ] and on

[s−i , s
+
i ] a part of a circle with midpoint vij+i and radius 2ϑ2tij+i (see also Step 2 and Fig. 9). The crucial point

is to show that the length of Γ III
j is comparable to tij+1

− tij (cf. (5.30) below). To this end, we have to ensure
that up to a finite number of ‘windings’ of the helix, the ‘radius of a winding’ can be suitably bounded from
below.

We first concentrate on the part γ0([tij+1, tk∗ ]). Possibly after a translation, rotation and reflection we can
assume Sij+1 = {0} × (0,∞) (i.e. vij+1 = 0 and vij+2 ∈ {0} × (0,∞)) and arg(vij+3 − vij+2) ∈ (π2 ,

3π
2 ). Let

S = [0,∞)×{0}. Let ck ∈ [tij+1, tk∗ ], tij+1 = c0 < c1 < c2 < . . . < cm be the points for which γ0(ck) ∈ S. Note
that the number of points #(ck)k can be interpreted as the winding number of the outward helix. We now show
for 3 ≤ k ≤ m− 1

γ0([ck−1, ck]) ∩B(0, rk) = ∅, (5.23)

where B(0, rk) denotes the open ball with radius rk = ϑ2ck−3. If m ≤ 3, there is nothing to show. Therefore, we
suppose m ≥ 4. Choose an arbitrary v ∈ γ0([ck−1, ck]) for 3 ≤ k ≤ m−1. Let u ∈ γ0([ck−2, ck−1]) be the (unique)
point on [0; v]. In particular, we have |[v;u]| ≤ |v|. Select the index i such that u ∈ [vi−1; vi] ⊂ γ0([ck−3, ck]).

Denote the intersection points on (vi−1 + R+(v − u)) ∩ γ0 and (vi + R+(v − u)) ∩ γ0 nearest to vi−1 and
vi, respectively, by wi−1 and wi. Due to the geometry of γ0([tij+1, tk∗ ]) we have wi−1, wi ∈ γ0([ck−3, ck+1])
and minl=i−1,i |[vl;wl]| ≤ |[u; v]|. Suppose, e.g., |[wi; vi]| ≤ |[u; v]| ≤ |v|. Then we find some w′ ∈ ∂P with
w′ ∈ [vi;wi] such that [vi;w

′] ⊂ P and [vi;w
′] separates x and p. Now in view of |[w′; vi]| ≤ |v| and ti ≥ ck−3

(recall vi ∈ γ0([ck−3, ck])), (5.3) implies

|v| ≥ |[vi;w′]| ≥ 4ϑ2ti ≥ ϑ2ck−3 = rk, (5.24)

which gives (5.23). For the part γ0([tk∗ , tij+1 ]) we proceed analogously. Let Ŝ = vij+1 + [0,∞)eiϕ for ϕ ∈ [0, 2π)

such that γ0(cm) ∈ Ŝ. Let ĉk ∈ [cm, tij+1
], cm = ĉ0 < ĉ1 < ĉ2 < . . . < ĉm̂ = tij+1

be the points for which

γ0(ĉk) ∈ Ŝ. Similarly as before we can show that for 1 ≤ k ≤ m̂− 2 one has

γ0([ĉk−1, ĉk]) ∩B(vij+1 , r̂k) = ∅, (5.25)
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where r̂k = ϑ2ĉk−1. In fact, select some v ∈ γ0([ĉk−1, ĉk]) with m̂ − k ≥ 2. Let u ∈ γ0([ĉk, ĉk+1]) be the
(unique) point on [vij+1

; v]. In particular, we have |[v;u]| ≤ |[v; vij+1
]|. Assume u ∈ [vi−1; vi], where vi−1, vi ∈

γ0([ĉk−1, ĉk+2]). Arguing exactly as before we find some w′ ∈ ∂P such that [vi;w
′] ⊂ P , |[w′; vi]| ≤ |[v; vij+1

]|
and [vi;w

′] separates x and p. (Note that as before we possibly have to replace vi by vi−1). Then as in (5.24)
using vi ∈ γ0([ĉk−1, ĉk+2]) we have |[vi;w′]| ≥ 4ϑ2ti ≥ ϑ2ĉk−1. Consequently, we obtain |[v; vij+1

]| ≥ r̂k.
By (5.23), (5.25) and the fact that γ0 is parametrized by arc length we deduce

ck − ck−1 ≥ 2πϑ2ck−3, 3 ≤ k ≤ m− 1,

ĉl − ĉl−1 ≥ 2πϑ2ĉl−1, 1 ≤ l ≤ m̂− 2. (5.26)

For 1 ≤ k ≤ m let Nk = {n ∈ N : vij+n ∈ γ0([ck−1, ck])}. By construction of Γ III
j and (5.7) we obtain for ϑ

small

s−n − s+
n−1 =

√
(tij+n − tij+n−1)2 + (2ϑ2(tij+n − tij+n−1))2 ≤ 2(tij+n − tij+n−1),

s+
n − s−n = 2ϑ2tij+nϕ̃n, (5.27)

where ϕ̃n denotes the angle enclosed by ν−ij+n, ν+
ij+n

smaller than π (recall (5.7)). Let 1 ≤ k ≤ m and consider

n ∈ Nk. If 5 ≤ k ≤ m, let nk be the largest index in Nk−4. Otherwise, set nk = 0. Using (5.26) we first observe

nk∑

l=1

tij+l ϕ̃ij+l =

k−4∑

t=1

∑

l∈Nt
tij+l ϕ̃ij+l ≤

k−4∑

t=1

∑

l∈Nt
ct ϕ̃ij+l ≤ 3π

k−4∑

t=1

ct

≤ 3

2ϑ2

k−4∑

t=1

(ct+3 − ct+2) ≤ 3

2ϑ2
(ck−1 − c3) ≤ 3

2ϑ2
(ck−1 − c0),

where in the third step a calculation yields
∑
l∈Nt ϕ̃ij+l ≤ 2π + 2π2 = 3π for all t. Similarly, we one can show∑n

l=nk+1 ϕ̃ij+l ≤ 8π + 2π2 and thus by (5.27) we derive

s+
n = s+

n − s+
1 =

n∑

l=2

s+
l − s+

l−1 ≤ 2(tij+n − tij+1) + 2ϑ2
n∑

l=2

tij+l ϕ̃ij+l

≤ 2(tij+n − tij+1) + 3(ck−1 − c0) + 18πϑ2tij+n.

Recalling c0 = tij+1 and ck−1 ≤ tij+n since n ∈ Nk, we then find

s+
n ≤ 5(tij+n − tij+1) + 18πϑ2tij+n ≤ C(tij+n − tij+1) + Cϑ2tij+1. (5.28)

Now letting N̂k = {n ∈ N : vij+n ∈ γ0([ĉk−m−1, ĉk−m])} for m + 1 ≤ k ≤ m̂ + m and repeating the above

arguments we find for n ∈ N̂k

s+
n ≤ C(tij+n − tij+1) + Cϑ2tij+1, (5.29)

where we set s+
N := s−N = l(Γ III

j ). Thus, in particular for n = N = ij+1 − ij we have by (5.6)

l(Γ III
j ) ≤ C(tij+1 − tij+1) + Cϑ2tij+1 ≤ C(tij+1 − tij+1) + C(tij+1 − tij ). (5.30)

We finally show that for s ∈ [0, l(Γ III
j )] one has

dist(Γ III
j (s), ∂P ) ≥ cϑ2(tij+1 + s) (5.31)
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for some c > 0 sufficiently small. Let s ∈ [s+
n−1, s

+
n ] and P = Q1∪Q2 be the partition induced by [vij+n−1; vij+n]

with x, p ∈ Q1 since the segment does not separate x and p. (Observe that Q2 = ∅ is possible). As (5.5) does
not hold, we have tij+n− tij+n−1 < 4ϑ2tij+n = 4ϑ2tij+n−1 + 4ϑ2(tij+n− tij+n−1) and then with ϑ small we get

tij+n − tij+n−1 ≤ 5ϑ2tij+n−1 = 5ϑ2(tij+n−1 − tij+1) + 5ϑ2tij+1.

Consequently, we find by (5.28), (5.29) for C ≥ 2 and ϑ small (such that Cϑ2 ≤ 1)

s+ tij+1 ≤ s+
n + tij+1 ≤ C(tij+n − tij+1) + Cϑ2tij+1 + tij+1

≤ C(tij+n−1 − tij+1) + Cϑ2tij+1 + tij+1 ≤ C(tij+n−1 − tij+1) + 2tij+1

≤ Ctij+n−1. (5.32)

Fix u ∈ ∂P . If u ∈ Q2, we get by construction of Γ III
j that dist(u, Γ III

j ) ≥ 2ϑ2tij+n−1 (cf. Step 2 for a similar
argument) and therefore by (5.32)

dist(u, Γ III
j ) ≥ cϑ2(s+ tij+1)

for c > 0 small enough. In this case (5.31) holds. On the other hand, if u ∈ Q1, we find u′ ∈ |[u; vij+n]| ∩ ∂P
such that |[u′; vij+n]| separates x and p. If we had dist(Γ III

j (s), u) < ϑ2(tij+1 + s), we would get by (5.27)

|[u′; vij+n]| ≤ dist(u, Γ III
j (s)) + s+

n − s+
n−1 < ϑ2(tij+1 + s) + s+

n − s−n + s−n − s+
n−1

≤ ϑ2(tij+1 + s+
n ) + 2πϑ2tij+n + 2(tij+n − tij+n−1).

Then the fact that (5.5) does not hold and (5.32) yield for ϑ small with respect to ω and C

|[u; vij+n]| ≤ ϑ2(tij+1 + s+
n ) + (2π + 8)ϑ2tij+n ≤ Cϑ2tij+n < min{ϑtij+n, ϑωd(P )}.

This contradicts (5.2) and concludes the proof of (5.31).

Step 5. A curve between w−n−1 and p.

It remains to define a path between w−n−1 and p (cf. below (5.8)). Define a path Γ I1
m between w−n−1, w+

n−1 as in
Step 2 satisfying (5.9). Moreover, take a path Γ II

m between w+
n−1, w−n as in Step 3 such that (5.17) and (5.19)

hold. Let Γ I2
m = Γ III

m = ∅ and let Γ IV be the segment between w−n = p + 2ϑ2tnν
+
n−1 and p. Clearly, since

B(p, ωd(P )) ⊂ P , we have for ϑ small with respect to ω

(i) l(Γ IV) = 2ϑ2tn, (ii) dist(Γ IV(s), ∂P ) ≥ ϑ2d(P ) ≥ ϑ2tn = ϑ2l(γ0). (5.33)

Step 6. The curve γ and the carrot condition.

Now define γ : [0, l(γ)]→ P such that γ is parametrized by arc length and

γ([0, l(γ)]) =

m⋃

j=0

(
Γ I1
j ∪ Γ II

j ∪ Γ I2
j ∪ Γ III

j

)
∪ Γ IV

with γ(0) = x and γ(l(γ)) = p. We now show that (5.1) holds for ϑ sufficiently small. We have to derive that
B(γ(τ), ϑ3τ) ⊂ P for all τ ∈ [0, l(γ)]. Let γ(τ) ∈ Γ̂ , where Γ̂ ∈ {Γ IV} ∪ {ΓX

j ,X = I1, I2, II, III, j = 0, . . . ,m}.
Choose τ0 ≤ τ such that γ(τ0) = Γ̂ (0) and i ∈ {0, . . . , n} such that γ(τ0) ∈ {w−i , w+

i }. (Note that i = ij or
i = ij + 1 for some j = 0, . . . ,m, cf. (5.8)). Combining (5.9)(i), (5.17), (5.30) and (5.33)(i) we derive by a
telescope sum argument

τ0 ≤ Ĉti (5.34)
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for some universal Ĉ ≥ 1 large enough, i.e. γ is at most Ĉ times longer than the original curve γ0. Letting
s = τ − τ0 and using

dist(Γ̂ (s), ∂P ) ≥ cϑ2(ti + s)

by (5.9)(ii), (5.19), (5.31), (5.33)(ii), respectively, we conclude by (5.34) for ϑ small

dist(γ(τ), ∂P ) = dist(Γ̂ (s), ∂P ) ≥ cϑ2(ti + s) ≥ cϑ2(ti + Ĉ−1s)

= cĈ−1ϑ2τ + cϑ2
(
ti − Ĉ−1τ0

)
≥ cĈ−1ϑ2τ ≥ ϑ3τ. �

6. Proof of the main result and application

This section is devoted to the proof of Theorem 1.1 and an application. First, we prove the main partition
result for polygons, which with the preparations in the last sections is now straightforward.

Proof of Theorem 2.5. Let θ, ε > 0. By Theorem 3.7 and Theorem 3.4 we first partition P = P ′1∪ . . . P ′m into ϑ̄-
semiconvex polygons with ϑ̄ = ϑ̄(θ) such that

∑m
j=1H1(∂P ′j) ≤ (1 +Cθ)H1(∂P ) for C > 0 universal. Applying

Theorem 4.7 on each P ′j with ε = 1
mε and ϑ = ϑ̄ we find ϑ̃ = ϑ̃(θ), ω = ω(θ) and for each P ′j a partition

P ′j = P j0 ∪Pij+1 ∪ . . .∪Pij+1
with i1 = 0, im+1 = N such that

∑m
j=1H1(∂P j0 ) ≤ ε and the polygons (Pi)

N
i=1 are

ϑ̃-semiconvex and ω-rotund with

N∑

i=1

H1(∂Pi) =

m∑

j=1

ij+1∑

k=ij+1

H1(∂Pk) ≤
m∑

j=1

(1 + Cθ)H1(∂P ′j) ≤ (1 + Cθ)H1(∂P ).

Define P0 =
⋃m
j=1 P

j
0 . Starting the proof with θC−1 instead of θ, we obtain (2.3). The fact that the polygons

(Pi)
N
i=1 are %-John domains for % = %(θ) follows from Theorem 5.2. �

The reader more interested in applications of our main result may now skip Section 6.1 and continue with
Section 6.2.

6.1. Proof of the main result

To derive the result for sets with C1-boundary we will have to combine different John domains. We start
with an adaption of Lemma 2.4. In the following diam(D) denotes the diameter of a set D ⊂ R2.

Lemma 6.1. Let 0 < %, c′ < 1. Then for some %′ = (c′, %) > 0 the following holds:

(i) Let D1, D2 ⊂ R2 be simply connected %-John domains with Lipschitz boundary and D1 ∩D2 = ∅ such that
∂D1 ∩ ∂D2 contains a segment S with

H1(S) ≥ c′min{diam(D1),diam(D2)}.

Then D = int(D1 ∪D2) is a %′-John domain.
(ii) Let P be a polygon and 4 a closed triangle with int(P ) ∩ int(4) = ∅ such that int(P ) is a %-John domain

and ∂P ∩ ∂4 contains the longest edge of 4. Then D = int(4∪ P ) is a %′-John domain with %′|D| ≤ |P |.

Proof. (i) After rotation and translation we suppose S = [(−2d, 0); (2d, 0)] with d2 ≥ cmin{|D1|, |D2|} for
c = c(c′), where the inequality follows from the assumption and the isodiametric inequality. For η > 0 let
Qη = (−ηd, ηd)2, Q1

η = (−ηd, ηd) × (0, ηd) and Q2
η = (−ηd, ηd) × (−ηd, 0). We now show that there is η > 0

only depending on % such that possibly after changing the roles of D1 and D2 we have

Qiη ⊂ Di for i = 1, 2.
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We show the claim for i = 1. As ∂D1 is Lipschitz, we get that [−d, d]× (0, ε] ⊂ D1 for ε small enough. Let γ be
a John curve in D1 connecting (−d, ε) and (d, ε) (cf. Rem. 2.2). Since D1 is a %-John domain, we find 0 < η < 1
only depending on % such that γ ∩Q1

η = ∅. As [−d, d]× (0, ε] ⊂ D1 and D1 is simply connected, we then derive
Q1
η ⊂ D1 as desired.

Define D′i = Di ∪ Qη and D′ = D′1 ∪ D′2. Each D′i is a %̄-John domain for %̄ = %̄(%) by Lemma 2.4(i) since
|Qη| = 2|Qiη| = 2|Qiη ∩Di|. Moreover, we find %′ = %′(c′, %) such that D′ is a %′-John domain by Lemma 2.4(i)
as

min{|D′1|, |D′2|} ≤ 2 min{|D1|, |D2|} ≤ 2c−1d2 ≤ C|Qη|

for C only depending on c, η and thus only depending on %, c′. Finally, possibly passing to a smaller %′ also D
is a %′-John domain since D \D′ ⊂ ∂D1 ∩ ∂D2.

(ii) Note that (i) is not directly applicable as int(4) is possibly not a %-John domain. Suppose S =
[(−d, 0); (d, 0)] is the longest edge of 4 and 4 ⊂ [−d, d] × [0,∞). Arguing as in (i), we find η only depending
on % such that the closed triangle 4′ with vertices (−d, 0), (d, 0) and (0,−dη) is completely contained in P . As
H1(S) = diam(4), it is not hard to see that B := int(4∪4′) is a %′-John domain with %′ only depending on
%. Moreover, we find

|4| ≤ C|4′| (6.1)

for C = C(%). Then by Lemma 2.4(i) and (6.1) also D = int(P ∪ B) = int(P ∪ 4) is a John domain for a
possibly smaller %′ only depending on %. Finally, %′|D| ≤ |P | follows from (6.1) for %′ small enough. �

Before we concern ourselves with sets with C1-boundary we state the following corollary of Theorem 2.5.

Corollary 6.2. Let be given the situation of Theorem 2.5. If ^(v, P ) ≥ π
4 for all v ∈ VP , one can set P0 = ∅.

Proof. First, we apply Theorem 2.5 to get a partition of P =
⋃N
j=0 Pj . Recall that by the construction in the

proof of Theorems 4.7 and 2.5 the component P0 is the finite union of closed, isosceles triangles with exactly
one interior angle smaller than π

4 (see before (4.21)). We first see that each two triangles 41, 42 do not share
a segment. Indeed, otherwise the corresponding convex polygons, denoted by P ′1, P ′2, from which the triangles
are cut out, share a segment and contain v ∈ VP ′1 ∩ VP ′2 with v ∈ 41 ∩42 and ^(v, P ′i ) ≤ π

4 for i = 1, 2. As the
partition can be constructed such that endpoints of introduced segments never coincide unless there are concave
vertices of P (see Rem. 3.9(ii)), we derive v ∈ V ′P . Then, however, Remark 3.9(iii) implies H1(∂P ′1 ∩ ∂P ′2) = 0,
which gives a contradiction.

Moreover, it is not restrictive to assume that each edge of a triangle 4 is completely contained in ∂P or some
∂Pj since otherwise we choose an isosceles 4′ ⊂ 4 with the desired property. We then note that the 4 \ 4′
is a convex polygon with interior angles larger than π

4 and thus we can apply Lemma 4.6 to obtain a refined
partition of 4 \4′ consisting of %-John domains such that (2.3) still holds.

The assumption ^(v, P ) ≥ π
4 for all v ∈ VP implies that for each 4 at least one of the two longer edges is

contained in some ∂Pi. Then int(Pi∪4) is a John domain by Lemma 6.1(ii) for a John constant only depending
on θ and |int(Pi ∪ 4)| ≤ C|Pi| for C = C(θ). Hereby we can define a partition (P ′i )i of Ω satisfying (2.3)
such that each component P ′i is the union of Pi with some triangles adjacent to Pi. Now Lemma 2.4(ii) (with
D0 = Pi, Dj = int(Pi ∪4) for j ≥ 1) yields that all P ′j are John domains for a John constant only depending
on θ. �

We now extend the result to sets with smooth boundary, where we first derive a version without the sharp
estimate (1.1).

Theorem 6.3. Theorem 1.1 holds with
∑N
j=1H1(∂Ωj) ≤ CH1(∂Ω) in place of (1.1) for a universal C > 1.
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Proof. As Ω has C1-boundary and ∂Ω is connected due to the fact that Ω is simply connected, we can find
p0, . . . , pn−1 ∈ ∂Ω such that the closed squares Qi with diagonal [pi; pi+1] for i = 0, 1, . . . , n − 1 (set pn = p0

and Qn = Q0) satisfy

(i) d := min
i=0,...,n−1

|[pi; pi+1]| ≥ 1

2
max

i=0,...,n−1
|[pi; pi+1]|, (6.2)

(ii) Qi ∩Qi+1 = {pi+1}, dist(Qi, Q(i+k) modn) ≥ d

2
for i = 0, . . . , n− 1, |k| ≥ 2

and ∂Ω ∩ Qi is the graph of a C1 function, where the angle enclosed by pi+1 − pi and the tangent vector of
∂Ω in ∂Ω ∩Qi is smaller than π

8 . Moreover, this can be done in the way that all interior angles of the interior

polygon Pint := Ω \⋃n−1
i=0 Qi are larger than π

4 . Define also the sets

P out
i = Ω ∩ int(Qi) (6.3)

for i = 0, . . . , n− 1. The geometry of P out
i implies that P out

i has Lipschitz boundary and is a c-John domain for
a universal constant c > 0. Moreover, we observe that H1(∂Pint) +

∑n−1
i=0 H1(∂P out

i ) ≤ CH1(∂Ω). The claim
follows from Corollary 6.2 applied on Pint. �

This together with Lemma 6.1 allows to give the proof of Theorem 1.1.

Proof of Theorem 1.1. By Corollary 6.2 we find a partition Pint = P1∪ . . .∪PN of the polygon Pint constructed
in the proof of Theorem 6.3, where by (2.3) for C > 0 universal

N∑

j=1

H1(∂Pj \ ∂Pint) ≤ θH1(∂Pint) ≤ CθH1(∂Ω). (6.4)

The goal is now to combine each Pj with certain (P out
i )n−1

i=0 defined in (6.3) such that the resulting sets are still
John domains and (1.1) holds. Let J be the set of indices such that j ∈ J if and only if diam(Pj) <

d
4 with d

as in (6.2). By (6.2) we see that each Pj , j ∈ J , intersects at most two sets P out
i , i = 0, . . . , n − 1. Recalling

the geometry of (P out
i )i and the fact that the interior angles of the polygon Pint are larger than π

4 , we find
H1(∂Pj) ≤ CH1(∂Pj \ ∂Pint) for j ∈ J for a universal constant C > 0 and thus by (6.4)

∑

j∈J
H1(∂Pj) ≤ C

∑

j∈J
H1(∂Pj \ ∂Pint) ≤ θH1(∂Pint) ≤ CθH1(∂Ω). (6.5)

Recall the definition of Qi in (6.2) and denote by Q′i the enlarged square with the same center and orientation,
but with diagonal length 5

4 |[pi; pi+1]|. Note that all sets Pint ∩Q′i are Lipschitz and are all related to a square of
sidelength d through Lipschitz homeomorphism with Lipschitz constants of both the homeomorhism itself and
its inverse uniformly bounded independently of i. Let c̄ > 0 to be specified below in (6.8)−(6.10). We observe
that there is C̄ = C̄(c̄) > 0 such that

#I ≤ C̄θd−1H1(∂Ω), where I :=

{
i : H1

(
int(Pint ∩Q′i) ∩

⋃N

j=1
∂Pj

)
≥ c̄d

}
. (6.6)

Indeed, this follows from (6.4) and (6.2).
Consider i /∈ I. For j = 1, . . . , N define the components Aj,i := Pj ∩ Q′i of Pint ∩ Q′i and denote by (Akj,i)k

the connected components of Aj,i. Then the result in ([19], Lem. 4.6), which essentially relies on the relative
isoperimetric inequality, shows that for c̄ sufficiently small there is exactly one component Bi := Pji ∩ Q′i ⊂
(Aj,i)

N
j=1 with |Bi| > 1

2 |Pint ∩Q′i| and the other components Aj,i 6= Bi satisfy

diam(Akj,i) ≤ CH1(∂Akj,i ∩ int(Pint ∩Q′i)) ≤ Cc̄d for all Akj,i (6.7)
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for a universal C > 0, particularly independent of i and Akj,i. Then using the fact that H1(∂(Pint∩Q′i)∩∂Akj,i) ≤
Cdiam(Akj,i) by the geometry of Pint ∩Q′i, we get by (6.6)−(6.7)

∑

Aj,i 6=Bi
H1(∂Aj,i) ≤ C

∑

Aj,i 6=Bi
H1(∂Aj,i ∩ int(Pint ∩Q′i)) + C

∑

Aj,i 6=Bi

∑

k

diam(Akj,i) ≤ Cc̄d. (6.8)

Moreover, as dist(∂Q′i, ∂Qi) ≥ 1
8
√

2
d, for c̄ small enough we derive by (6.7)

Aj,i = (Pj ∩Q′i) 6= Bi and ∂Aj,i ∩ ∂P out
i 6= ∅ ⇒ Pj ⊂ Q′i and j ∈ J. (6.9)

Moreover, we find

(i) H1(∂Bi ∩ ∂P out
i ) ≥ d

2
, (ii) ∂Bi ∩ ∂P out

i connected. (6.10)

First, (i) follows for c̄ small from (6.8) and the fact that H1(∂P out
i ∩ ∂Pint) ≥ d. If (ii) was false, we would find

that the polygon Bi = Pij ∩ Q′i has at least one concave vertex not lying on ∂Pint. This, however, contradicts
the construction of the partition, cf. Remark 3.9(i) and Remark 4.8. Note that (6.10)(i) implies ji /∈ J . By
Lemma 6.1(i), (6.2) and (6.10) we find

Di := int(Pji ∪ P out
i ) (6.11)

is a %′-John domain with Lipschitz boundary for %′ = %′(θ).
We are now in the position to define the partition of Ω. For all j /∈ J , let Ij ⊂ {0, . . . , n − 1} \ I be the

index set such that Pj ∩ Q′i = Bi if and only if i ∈ Ij , where Bi = Pji ∩ Q′i as above. Note that the above
arguments in (6.9) show that the sets (Ij)j are pairwise disjoint and also observe that Ij may be empty. Define
P ′j =

⋃
i∈Ij Di for j /∈ J with Di as in (6.11) and consider the partition (Ωj)j consisting of the sets

(P ′j)j /∈J ∪ (int(Pj))j∈J ∪ (P out
i )i∈I .

Note that the sets cover Ω up to a set of negligible measure since each P out
i , i /∈ I, is contained in some P ′j , j /∈ J .

Note that by (6.9) we derive

⋃
j
(∂Ωj \ ∂Ω) ⊂

⋃
i∈I

(∂P out
i ∩ ∂Pint) ∪

⋃N

j=1
(∂Pj \ ∂Pint) ∪

⋃
j∈J

(∂Pj ∩ ∂Pint).

This together with (6.4), (6.5) and
∑
i∈I H1(∂P out

i ∩∂Pint) ≤ Cd#I ≤ CθH1(∂Ω) (see (6.6)) yields
∑
j H1(∂Ωj\

∂Ω) ≤ CθH1(∂Ω) and herefrom we indeed derive (1.1) since we can replace θ by C−1θ in the above proof.
Finally, observe that all components are John domains with Lipschitz boundary for a John constant only
depending on θ, where for the sets (P ′j)j /∈J we use (6.11) and Lemma 2.4(ii). �

6.2. A generalization and application

We now present a generalized version of Theorem 1.1 for Lipschitz sets which are not necessarily simply
connected. This version will be one of the main ingredients of [18]. For a bounded set D ⊂ R2 we introduce
the saturation of D defined by sat(D) = int(R2 \ E0), where E0 denotes the unique unbounded connected
component of R2 \D.

Theorem 6.4. Let ε > 0 and M ∈ N. Then there is a universal constant % > 0 and C = C(M) > 0 such that
for all bounded domains Ω ⊂ R2 with Lipschitz boundary and the property that sat(Ω) \ Ω consists of at most
M components the following holds: There is a partition Ω = Ω0 ∪ . . . ∪ ΩN such that |Ω0| ≤ ε and the sets
Ω1, . . . , ΩN are %-John domains with Lipschitz boundary with

∑N

j=0
H1(∂Ωj) ≤ CH1(∂Ω).
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Proof. Let ε > 0 be given and let U1, . . . , Um be the connected components of sat(Ω) \ Ω with m ≤ M . For
each Uj we can choose a segment Sj with H1(Sj) ≤ diam(Ω) ≤ H1(∂Ω) such that Θj := ∂Uj ∪Sj ∪∂(sat(Ω)) is
connected. Consequently, we get that each connected component of Ω \⋃mj=1Θj is simply connected. For s > 0

we cover R2 with squares of the form Q(p) = p+ [−s, s]2, p ∈ 2sZ2. Let

Qs :=
{
Q(p) : Q(p) ∩Ω 6= ∅, Q(p) ∩

(
∂Ω ∪

⋃m

j=1
Sj

)
6= ∅
}
.

Since Ω has Lipschitz boundary, we find that for s sufficiently small

s#Qs ≤ CH1
(
∂Ω ∪

⋃m

j=1
Sj

)
≤ CH1(∂Ω) + CMdiam(Ω) ≤ CH1(∂Ω) (6.12)

with C = C(M). By (Pi)i we denote the connected components of R2 \ ⋃Q(p)∈Qs Q(p) having nonempty

intersection with Ω. Since each Pi is the union of squares and the connected components of Ω \ ⋃j Θj are

simply connected, also Pi is simply connected and thus Pi is a polygon with interior angles not smaller than π
2 .

Moreover, we find by (6.12) ∑
i
H1(∂Pi) ≤ 8s#Qs ≤ CH1(∂Ω).

Likewise, if we choose s small enough, we get that Ω0 := Ω \⋃i Pi satisfies

|Ω0| ≤ 4s2#Qs ≤ Cs2H1(∂Ω) ≤ ε, H1(∂Ω0) ≤ CH1(∂Ω).

The result now follows from Corollary 6.2 applied on each Pi for θ = 1. (Note that alternatively one may also
apply Theorem 2.5 on each Pi choosing the occurring exceptional sets P i0 small enough in terms of ε). �

Finally, we derive a piecewise Korn inequality for a certain subclass of SBD (we refer to [2,4] for more details
on this function space). Although this problem will be thoroughly discussed in [18], we include a simplified
analysis in the present exposition to give a first application of the main results of this article.

Let 1 < p < ∞ and M ∈ N. For an open, bounded set Ω ⊂ R2 with Lipschitz boundary we let Wp
M (Ω) be

the set of functions in SBDp(Ω) whose jump set Jy =
⋃m
j=1 Γ

y
j is the finite union of closed connected pieces

of Lipschitz curves with at most M components (i.e. m ≤ M) and y|Ω\Jy ∈ W 1,p(Ω \ Jy). Note that similar
assumptions have been used, e.g., in [9, 13,29,34].

Theorem 6.5. Let p ∈ (1,∞) and M ∈ N. Then there is c = c(p) > 0 and C = C(M) > 0 such that for
all Ω ⊂ R2 open, bounded with Lipschitz boundary with the property that sat(Ω) \ Ω consists of at most M
components the following holds: For each y ∈ Wp

M (Ω) there is a partition (Ωj)
N
j=0 of Ω with

∑N

j=0
H1(∂Ωj) ≤ C(H1(Jy) +H1(∂Ω)) (6.13)

and corresponding Aj ∈ R2×2
skew, bj ∈ R2 such that u := y −∑N

j=0(Aj ·+bj)χΩj satisfies

(diam(Ω))−1‖u‖Lp(Ω) + ‖∇u‖Lp(Ω) ≤ c‖e(y)‖Lp(Ω),

where e(y) = 1
2 (∇yT +∇y).

Note that one essential point is that the constant c does not depend on Ω and C depends on Ω only in
terms of the number of components of sat(Ω) \Ω. Therefore, the result is also interesting in the case of varying
domains Ω and functions y ∈W 1,p(Ω).
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Proof. A classical result states that y is piecewise rigid if ‖e(y)‖Lp(Ω) = 0 (see also [11]), so we can concentrate
on the case ‖e(y)‖Lp(Ω) > 0. Applying the following results on each connected component of Ω separately, it is
not restrictive to assume that Ω is connected. Moreover, we may suppose that Ω is simply connected as otherwise
we consider sat(Ω) and define an extension ȳ with ȳ = 0 on sat(Ω) \Ω, where we obtain ȳ ∈ Wp

2M (sat(Ω)).
We now repeat the arguments in the proof of Theorem 6.4 on (Γ yj )j instead of (Uj)j : we introduce segments to

obtain simply connected components of sat(Ω) and covering the boundary with squares we obtain an estimate
of the form (6.12), where the right hand side now also depends on H1(Jy). As before this yields a partition
(Ωj)

N
j=0 of Ω such that |Ω0| ≤ ε for an arbitrarily small ε > 0 and Ω1, . . . , ΩN are %-John domains for a universal

constant %. Then (6.13) follows as in Theorem 6.4.
As Korn’s inequality holds on John domains with a constant only depending on the John constant (see

e.g. [1]), we get by an elementary scaling argument

∑N

j=1

(
(diam(Ωj))

−p‖y − (Aj ·+bj)‖pLp(Ωj)
+ ‖∇y −Aj‖pLp(Ωj)

)
≤ c‖e(y)‖pLp(Ω)

for suitable Aj ∈ R2×2
skew, bj ∈ R2 and c = c(p). Finally, as y ∈ Lp(Ω), ∇y ∈ Lp(Ω) and |Ω0| ≤ ε, we

find (diam(Ω))−1‖y‖Lp(Ω0) + ‖∇y‖Lp(Ω0) ≤ ‖e(y)‖Lp(Ω) for ε small enough so that the assertion holds for

u = y −∑N
j=1(Aj ·+bj)χΩj . �
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[39] J. Väisälä, Unions of John domains. Proc. Amer. Math. Soc. 128 (2000) 1135–1140.

[40] N. Weck, Local compactness for linear elasticity in irregular domains. Math. Methods Appl. Sci. 17 (1994) 107–113.

https://arxiv.org/abs/1604.08416

	Introduction
	Preliminaries
	John domains
	Formulation of the main result for polygons
	Notation

	Semiconvex polygons
	Properties of semiconvex polygons
	Partition of semiconvex polygons

	Semiconvex and rotund polygons
	Properties of semiconvex and rotund polygons
	Partitions into semiconvex and rotund polygons

	Equivalence of John domains and semiconvex, rotund polygons
	Proof of the main result and application
	Proof of the main result
	A generalization and application

	References

