UPPER SEMICONTINUITY OF THE LAMINATION HULL*

Terence L.J. Harris ${ }^{1,2}$

Abstract

Let $K \subseteq \mathbb{R}^{2 \times 2}$ be a compact set, let $K^{r c}$ be its rank-one convex hull, and let $L(K)$ be its lamination convex hull. It is shown that the mapping $K \mapsto \overline{L(K)}$ is not upper semicontinuous on the diagonal matrices in $\mathbb{R}^{2 \times 2}$, which was a problem left by Kolář. This is followed by an example of a 5 -point set of 2×2 symmetric matrices with non-compact lamination hull. Finally, another 5-point set K is constructed, which has $L(K)$ connected, compact and strictly smaller than $K^{r c}$.

Mathematics Subject Classification. 49J45, 52A30.
Received October 12, 2016. Revised March 18, 2017. Accepted April 21, 2017.

1. Introduction

Let $\mathbb{R}^{m \times n}$ denote the space of $m \times n$ matrices with real entries. Two matrices $X, Y \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(X-Y)=1$ are called rank-one connected. A set $\mathcal{S} \subseteq \mathbb{R}^{m \times n}$ is lamination convex if

$$
\lambda X+(1-\lambda) Y \in \mathcal{S} \text { for all } \lambda \in[0,1],
$$

whenever $X, Y \in \mathcal{S}$ are rank-one connected. For a set $K \subseteq \mathbb{R}^{m \times n}$, the smallest lamination convex set containing K is denoted by $L(K)$.

This work contains a counterexample to a question posed in [5], concerning the continuity of the mapping $K \mapsto \overline{L(K)}$ on $\mathbb{R}^{2 \times 2}$. The example is similar to Example 2.2 in [1]. This is followed by a 5 -point set K of symmetric 2×2 matrices with non-compact $L(K)$, similar to Example 2.4 in [5]. Then, another 5 -point set K is constructed which has $L(K)$ connected, compact and strictly smaller than $K^{r c}$. This is contrasted with Proposition 2.5 in [8], which says that $K^{p c}=L(K)=K$ if K is connected, compact and has no rank-one connections. Finally, a weaker version of this result is given for sets with rank-one connections.

2. Main Results

Define the Hausdorff distance between two compact sets K_{1}, K_{2} in $\mathbb{R}^{m \times n}$ by

$$
\rho\left(K_{1}, K_{2}\right)=\inf \left\{\epsilon \geq 0: K_{1} \subseteq U_{\epsilon}\left(K_{2}\right) \text { and } K_{2} \subseteq U_{\epsilon}\left(K_{1}\right)\right\},
$$

[^0]

Figure 1: The set K_{0} from Theorem 2.1. The dotted lines are rank-one lines in $L(K)$, where K is a small perturbation of K_{0}.
where $U_{\epsilon}(K)$ is the open ϵ-neighbourhood of K, corresponding to the Euclidean distance. Let \mathcal{K} be the set of compact subsets of $\mathbb{R}^{m \times n}$. A function $f: \mathcal{K} \rightarrow \mathcal{K}$ is upper semicontinuous if for every $\epsilon>0$ and for every $K_{0} \in \mathcal{K}$, there exists a $\delta>0$ such that $f(K) \subseteq U_{\epsilon}\left(f\left(K_{0}\right)\right)$ whenever $\rho\left(K, K_{0}\right)<\delta$. It is known that the function $K \mapsto K^{r c}$ is upper semicontinuous on the compact subsets of $\mathbb{R}^{m \times n}$ (see for example the proof of Thm. 1 in [7], Example 4.18 in [4], or Thm. 3.2 in [9]). The following example (pictured in Fig. 1) shows that this fails on diagonal matrices in $\mathbb{R}^{2 \times 2}$, for the lamination convex hull.

Theorem 2.1. There exists a compact set K_{0} of diagonal matrices in $\mathbb{R}^{2 \times 2}$ such that the mapping $K \mapsto \overline{L(K)}$ is not upper semicontinuous at K_{0}.

Proof. Identify the space of 2×2 diagonal matrices with \mathbb{R}^{2} in the natural way. Let

$$
K_{0}=\{(1,0)\} \cup \bigcup_{n=0}^{\infty}\left\{\left(1-\frac{3}{2^{n+1}}, \frac{1}{2^{n+1}}\right), \quad\left(1-\frac{1}{2^{n}}, \frac{3}{2^{n+1}}\right)\right\}
$$

The set K_{0} is compact and has no rank-one connections, thus $L\left(K_{0}\right)=K_{0}$. For each integer $n \geq-1$ let

$$
P_{n}=\left(1-\frac{1}{2^{n+1}}, \frac{1}{2^{n+1}}\right)
$$

Given $\delta>0$, choose a positive integer N large enough to ensure that $\frac{1}{2^{N}}<\delta$, and let $K=K_{0} \cup\left\{P_{N}\right\}$, so that $\rho\left(K, K_{0}\right)<\delta$. Then

$$
\left(1-\frac{1}{2^{N}}, \frac{1}{2^{N+1}}\right)=\frac{1}{2}\left(1-\frac{3}{2^{N+1}}, \frac{1}{2^{N+1}}\right)+\frac{1}{2} P_{N} \in L(K)
$$

and hence

$$
P_{N-1}=\frac{1}{2}\left(1-\frac{1}{2^{N}}, \frac{1}{2^{N+1}}\right)+\frac{1}{2}\left(1-\frac{1}{2^{N}}, \frac{3}{2^{N+1}}\right) \in L(K)
$$

Figure 2: A 5-point set $K \subseteq \mathbb{R}_{\mathrm{tri}}^{2 \times 2}$ together with 5 rank-one lines in $L(K)$. The dashed lines indicate rank-one lines in $L(K)$, which spiral toward the diagonal plane and make $L(K)$ non-compact.

It follows by induction that $(0,1)=P_{-1} \in L(K)$. Since $\rho\left(P_{-1}, L\left(K_{0}\right)\right) \geq \frac{1}{2}$, this shows that the function $K \mapsto \overline{L(K)}$ is not upper semicontinuous at K_{0}.

The next result gives two examples of 5 -point subsets of $\mathbb{R}^{2 \times 2}$, each with a non-compact lamination hull. The upper-triangular example is pictured in Figure 2. It consists of 4 points in the diagonal plane arranged in a T_{4} configuration, together with a point whose projection onto the diagonal plane is a corner of the inner rectangle of the T_{4} configuration.

Throughout, the upper triangular matrix $\left(\begin{array}{ll}x & z \\ 0 & y\end{array}\right)$ will be identified with the point $(x, y, z) \in \mathbb{R}^{3}$. The symmetric example uses essentially the same idea as in Figure 2, so the matrix $\left(\begin{array}{ll}x & z \\ z & y\end{array}\right)$ will also be denoted by the point $(x, y, z) \in \mathbb{R}^{3}$. Since the cases are treated separately, the notations do not conflict. The symmetric notation also differs from the usual identification, used for example in [5]. The space of 2×2 upper triangular matrices is denoted by $\mathbb{R}_{\text {tri }}^{2 \times 2}$, and the space of 2×2 symmetric matrices by $\mathbb{R}_{\mathrm{sym}}^{2 \times 2}$. Up to linear isomorphisms preserving rank-one directions, these are the only two 3 -dimensional subspaces of $\mathbb{R}^{2 \times 2}$ (see [2], Cor. 6 or [6], Lem. 3.1)

Theorem 2.2.

(i) There exists a 5-point set $K \subseteq \mathbb{R}_{\mathrm{tri}}^{2 \times 2}$ such that $L(K)$ is not compact.
(ii) There exists a 5 -point set $K \subseteq \mathbb{R}_{\text {sym }}^{2 \times 2}$ such that $L(K)$ is not compact.

Proof. For part (i) let $x_{1}<x_{2}, y_{2}<y_{1}, z_{0}>0$ and $\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}>0$. Let

$$
P_{0}=\left(x_{1}, y_{2}, 0\right), \quad P_{1}=\left(x_{1}, y_{1}, 0\right), \quad P_{2}=\left(x_{2}, y_{1}, 0\right), \quad P_{3}=\left(x_{2}, y_{2}, 0\right)
$$

and set

$$
\begin{array}{ll}
A_{0}=\left(x_{1}, y_{1}+\alpha_{0}, 0\right), & A_{1}=\left(x_{2}+\alpha_{1}, y_{1}, 0\right) \\
A_{2}=\left(x_{2}, y_{2}-\alpha_{2}, 0\right), & A_{3}=\left(x_{1}-\alpha_{3}, y_{2}, 0\right)
\end{array}
$$

For $i \in\{0,1,2,3\}$ let $A_{4}=A_{0}$ and

$$
\lambda_{i}=\frac{\operatorname{det}\left(A_{i}-A_{i+1}\right)}{\operatorname{det}\left(A_{i}-A_{i+1}\right)-\operatorname{det}\left(P_{i}-A_{i+1}\right)} \in(0,1)
$$

let $X_{0}=P_{0}+\left(0,0, z_{0}\right)$ and $K=\left\{A_{0}, A_{1}, A_{2}, A_{3}, X_{0}\right\}$. For $i \geq 0$ let

$$
X_{i+1}=\left(1-\lambda_{i \bmod 4}\right) A_{i \bmod 4}+\lambda_{i \bmod 4} X_{i}
$$

so that for $i \geq 0$ and $k \in\{0,1,2,3\}$, induction gives

$$
X_{4 i+k}=P_{k}+\left(\lambda_{0} \lambda_{1} \lambda_{2} \lambda_{3}\right)^{i}\left(\prod_{j=0}^{k-1} \lambda_{j}\right)\left(0,0, z_{0}\right), \quad \operatorname{det}\left(X_{i}-A_{i \bmod 4}\right)=0
$$

which implies that $X_{i} \in L(K)$ for every $i \geq 0$. Hence $P_{0} \in \overline{L(K)}$, and it remains to show that $P_{0} \notin L(K)$. This follows from the fact that

$$
\left\{(x, y, z) \in \mathbb{R}_{\mathrm{tri}}^{2 \times 2}: z>0\right\} \cup\left\{A_{0}, A_{1}, A_{2}, A_{3}\right\}
$$

is a lamination convex set containing K, which does not contain P_{0}.
For part (ii), let all the scalars and diagonal points be the same as in part (i). Using the symmetric notation let $Y_{0}=P_{0}+\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ where $\xi_{3}>0$ and

$$
\xi_{1}=\frac{1}{2}\left(-\alpha_{3}+\sqrt{\alpha_{3}^{2}-\frac{4 \alpha_{3} \xi_{3}^{2}}{y_{1}+\alpha_{0}-y_{2}}}\right), \quad \xi_{2}=\frac{-\xi_{1}\left(y_{1}+\alpha_{0}-y_{2}\right)}{\alpha_{3}}
$$

so that $\operatorname{det}\left(Y_{0}-A_{0}\right)=\operatorname{det}\left(Y_{0}-A_{3}\right)=0$, and $Y_{0} \rightarrow P_{0}$ as $\xi_{3} \rightarrow 0$. The fact that $\operatorname{det}\left(P_{0}-A_{1}\right)>0>\operatorname{det}\left(A_{0}-A_{1}\right)$ means that

$$
\operatorname{det}\left(Y_{0}-A_{1}\right)>0>\operatorname{det}\left(A_{0}-A_{1}\right)
$$

whenever $\xi_{3} \in\left(0, \epsilon_{1}\right)$, for some $\epsilon_{1}>0$. Set $B_{0}=Y_{0}$. For $i \in\{0,1,2,3\}$ and B_{i} with

$$
\operatorname{det}\left(B_{i}-A_{i+1}\right) \neq 0 \text { and } \operatorname{sgn} \operatorname{det}\left(B_{i}-A_{i+1}\right) \neq \operatorname{sgn} \operatorname{det}\left(A_{i}-A_{i+1}\right)
$$

let

$$
B_{i+1}=\left(1-t_{i}\right) A_{i}+t_{i} B_{i}, \text { where } t_{i}=\frac{\operatorname{det}\left(A_{i}-A_{i+1}\right)}{\operatorname{det}\left(A_{i}-A_{i+1}\right)-\operatorname{det}\left(B_{i}-A_{i+1}\right)} \in(0,1)
$$

so that $\operatorname{det}\left(B_{i+1}-A_{i+1}\right)=0$. By induction $t_{i} \rightarrow \lambda_{i}$ as $\xi_{3} \rightarrow 0$ for $i \in\{0,1,2,3\}, B_{i} \rightarrow P_{i \bmod 4}$ as $\xi_{3} \rightarrow 0$ for each $i \in\{0,1,2,3,4\}$, and $B_{1}, B_{2}, B_{3}, B_{4}$ all exist if ξ_{3} is sufficiently small. Hence there exists $\epsilon_{2}>0$ such that $\left(t_{0} t_{1} t_{2} t_{3}\right)<\frac{1}{2}\left(1+\lambda_{0} \lambda_{1} \lambda_{2} \lambda_{3}\right)$ and $B_{1}, B_{2}, B_{3}, B_{4}$ all exist whenever $\xi_{3} \in\left(0, \epsilon_{2}\right)$. Put $\left(\eta_{1}, \eta_{2}, \eta_{3}\right)=B_{4}-P_{0}$. Then since $\operatorname{det}\left(B_{4}-A_{0}\right)=\operatorname{det}\left(B_{4}-A_{3}\right)=0$,

$$
\begin{equation*}
\eta_{1}=\frac{1}{2}\left(-\alpha_{3} \pm \sqrt{\alpha_{3}^{2}-\frac{4 \alpha_{3} \eta_{3}^{2}}{y_{1}+\alpha_{0}-y_{2}}}\right), \quad \eta_{2}=\frac{-\eta_{1}\left(y_{1}+\alpha_{0}-y_{2}\right)}{\alpha_{3}} \tag{2.1}
\end{equation*}
$$

But since $B_{4} \rightarrow P_{0}$ as $\xi_{3} \rightarrow 0$, there exists $\epsilon_{3}>0$ such that the sign in (2.1) is positive whenever $\xi_{3} \in\left(0, \epsilon_{3}\right)$. Let $\epsilon=\min \left\{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right\}$. If $\xi_{3} \in(0, \epsilon)$. then

$$
\begin{equation*}
\eta_{3}=\left(t_{0} t_{1} t_{2} t_{3}\right) \xi_{3}<\frac{1}{2}\left(1+\lambda_{0} \lambda_{1} \lambda_{2} \lambda_{3}\right) \xi_{3} \tag{2.2}
\end{equation*}
$$

Therefore let $K=\left\{A_{0}, A_{1}, A_{2}, A_{3}, Y_{0}\right\}$, and set $Y_{1}=B_{4}$. Then $Y_{1} \in \underline{L(K)}$ by the preceding working. By (2.2), iterating this process gives a sequence $Y_{n} \in L(K)$ with $Y_{n} \rightarrow P_{0} \in \overline{L(K)}$. Again the point P_{0} is not in $L(K)$ since

$$
\left\{(x, y, z) \in \mathbb{R}_{\mathrm{sym}}^{2 \times 2}: z>0\right\} \cup\left\{A_{0}, A_{1}, A_{2}, A_{3}\right\}
$$

is a lamination convex set separating P_{0} from K. Hence $L(K)$ is not compact.

A function $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is called rank-one convex if

$$
f(\lambda X+(1-\lambda) Y) \leq \lambda f(X)+(1-\lambda) f(Y) \text { for all } \lambda \in[0,1]
$$

whenever $\operatorname{rank}(X-Y) \leq 1$. The rank-one convex hull of a compact set $K \subseteq \mathbb{R}^{m \times n}$ is defined by

$$
K^{r c}=\left\{X \in \mathbb{R}^{m \times n}: f(X) \leq 0 \quad \forall \text { rank-one convex } f \text { with }\left.f\right|_{K} \leq 0\right\}
$$

The polyconvex hull is defined similarly via polyconvex functions; a function $f: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ is polyconvex if there exists a convex function $g: \mathbb{R}^{2 \times 2} \times \mathbb{R} \rightarrow \mathbb{R}$ such that $f(X)=g(X, \operatorname{det} X)$ for all $X \in \mathbb{R}^{2 \times 2}$. For compact K, the following characterisation of $K^{p c}$ will be used (see Theorem 1.9 in [4]):

$$
\begin{equation*}
K^{p c}=\left\{\bar{\mu}: \mu \in \mathscr{M}_{p c}(K)\right\} \tag{2.3}
\end{equation*}
$$

where $\mathscr{M}_{p c}(K)$ is the class of probability measures supported in K which satisfy Jensen's inequality for all polyconvex f;

$$
f(\bar{\mu}) \leq \int_{\mathbb{R}^{2 \times 2}} f(X) \mathrm{d} \mu(X) \quad \text { where } \quad \bar{\mu}=\int_{\mathbb{R}^{2 \times 2}} X \mathrm{~d} \mu(X)
$$

Definition 2.3. An ordered set $\left\{X_{i}\right\}_{i=1}^{4} \subseteq \mathbb{R}^{m \times n}$ without rank-one connections is called a T_{4} configuration if there exist matrices $P, C_{1}, C_{2}, C_{3}, C_{4} \in \mathbb{R}^{m \times n}$ and real numbers $\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}>1$ satisfying

$$
\operatorname{rank} C_{i}=1 \text { for } 1 \leq i \leq 4, \quad \sum_{i=1}^{4} C_{i}=0
$$

and

$$
\begin{align*}
& X_{1}=P+\mu_{1} C_{1} \\
& X_{2}=P+C_{1}+\mu_{2} C_{2} \\
& X_{3}=P+C_{1}+C_{2}+\mu_{3} C_{3} \\
& X_{4}=P+C_{1}+C_{2}+C_{3}+\mu_{4} C_{4} \tag{2.4}
\end{align*}
$$

An unordered set $\left\{X_{i}\right\}_{i=1}^{4}$ is a T_{4} configuration if it has at least one ordering which is a T_{4} configuration.
The following result is a slight generalisation of Theorem 1 in [7] (see also Cor. 3 in [3]). The proof is similar to the one in [7], with minor technical changes.

Theorem 2.4. If $K \subseteq \mathbb{R}^{2 \times 2}$ is compact, and does not have a T_{4} configuration $\left\{X_{i}\right\}_{i=1}^{4}$ with at least two X_{i}, X_{j} in distinct connected components of $L(K)$, then

$$
K^{r c}=\bigcup_{i}\left(U_{i} \cap K\right)^{r c} \quad \text { and } \quad K^{q c}=\bigcup_{i}\left(U_{i} \cap K\right)^{q c}
$$

where the U_{i} are the connected components of $L(K)$.
On diagonal matrices the conclusion reduces to $K^{r c}=L(K)$. The following proposition shows that this fails in the full space $\mathbb{R}^{2 \times 2}$.

Proposition 2.5. There exists a 5-point set $K \subseteq \mathbb{R}^{2 \times 2}$ with $L(K)$ connected, compact and strictly smaller than $K^{r c}$.

Proof. Fix $\epsilon \in(0,1)$, let

$$
X_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad X_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \quad X_{3}=\left(\begin{array}{cc}
-\epsilon & -1 \\
-\epsilon^{2} & -\epsilon
\end{array}\right), \quad X_{4}=\left(\begin{array}{cc}
-\epsilon & \epsilon^{2} \\
1 & -\epsilon
\end{array}\right)
$$

and let

$$
\begin{equation*}
\mu_{1}=\frac{1+2 \epsilon}{\epsilon\left(1-\epsilon^{2}\right)}, \quad \mu_{2}=1+\epsilon^{2} \mu_{1}, \quad \mu_{3}=1+\left(\frac{1+\epsilon^{2}}{\epsilon}\right) \mu_{2}, \quad \mu_{4}=1+\epsilon^{2} \mu_{3} \tag{2.5}
\end{equation*}
$$

so that

$$
\begin{equation*}
\mu_{1}=1+\frac{\mu_{4}}{\epsilon\left(1+\epsilon^{2}\right)} \tag{2.6}
\end{equation*}
$$

Set

$$
\begin{aligned}
& P_{1}=\frac{1}{\epsilon\left(\mu_{1}-1\right)}\left(\begin{array}{rr}
-\epsilon & 0 \\
1 & 0
\end{array}\right), \quad P_{2}=\frac{1}{\mu_{1} \epsilon}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \\
& P_{3}=\frac{1}{\mu_{2}}\left(\begin{array}{ll}
0 & 0 \\
\epsilon & 1
\end{array}\right), \quad P_{4}=\frac{1}{\mu_{3} \epsilon}\left(\begin{array}{cc}
-\epsilon^{2} & -\epsilon \\
\epsilon & 1
\end{array}\right)
\end{aligned}
$$

and let $C_{i}=P_{i+1}-P_{i}$, where $P_{5}:=P_{1}$. Then clearly rank $C_{i}=1$ for all i, whilst (2.5) and (2.6) imply that this is a solution of (2.4). Let

$$
K=\left\{0, X_{1}, X_{2}, X_{3}, X_{4}\right\}, \quad \text { so that } \quad L(K)=\bigcup_{i=1}^{4}\left[0, X_{i}\right]
$$

To prove the second formula for $L(K)$, it suffices to show that the set $\mathcal{S}=\bigcup_{i=1}^{4}\left[0, X_{i}\right]$ is lamination convex. For $i \neq j$, the fact that $\operatorname{det} X_{i}=\operatorname{det} X_{j}=0$ and $\operatorname{det}\left(X_{i}-X_{j}\right) \neq 0 \operatorname{implies}$ that $\operatorname{det}\left(X_{i}-t X_{j}\right) \neq 0$ whenever $t \in(0,1]$, since the determinant is linear along rank-one lines. It follows similarly that $\operatorname{det}\left(s X_{i}-t X_{j}\right) \neq 0$ for $s, t \in(0,1]$, and so the only rank-one connected pairs in \mathcal{S} are 0 and $t X_{i}$ for any i. Hence \mathcal{S} is lamination convex. By Lemma 2 in [7], the point P_{1} is in $K^{r c} \backslash L(K)$, so this proves the proposition.

The preceding example contrasts with Lemma 3 in [8], which states (in a weakened form) that $K^{p c}=K$ if K is a connected compact subset of $\mathbb{R}^{2 \times 2}$ without rank-one connections. The example shows that the assumption that K has no rank-one connections cannot be weakened to $L(K)=K$. The reason is that $\operatorname{det}(X-Y)$ cannot change sign on connected subsets of $\mathbb{R}^{2 \times 2}$ without rank-one connections, whilst it can on lamination convex sets. If the assumption that $\operatorname{det}(X-Y)$ does not change sign is added, $K^{p c}$ is equal to the lamination hull of order 2: given a set $K \subseteq \mathbb{R}^{m \times n}$, let $L^{(0)}(K)=K$ and define $L^{(k)}(K)$ inductively by

$$
L^{(k+1)}(K)=\bigcup_{\substack{X, Y \in L^{(k)}(K) \\ \operatorname{rank}(X-Y) \leq 1}}[X, Y]
$$

Proposition 2.6. If $K \subseteq \mathbb{R}^{2 \times 2}$ is a compact set such that $\operatorname{det}(X-Y) \geq 0$ for every $X, Y \in K$, then $K^{p c}=L^{(2)}(K)$.

Proof. If μ is a probability measure supported in K with $\operatorname{det} \bar{\mu}=\int_{\mathbb{R}^{2 \times 2}} \operatorname{det} X d \mu$, then as in [8],

$$
\int_{\mathbb{R}^{2 \times 2}} \int_{\mathbb{R}^{2 \times 2}} \operatorname{det}(X-Y) \mathrm{d} \mu(X) \mathrm{d} \mu(Y)=0
$$

and therefore $\operatorname{det}(X-Y)=0$ whenever X and Y are in the support of μ. This implies (see the following Lem. 2.7) that the support of μ is contained in a 2 -dimensional affine plane P consisting only of rank-one
directions. Therefore $\bar{\mu} \in(K \cap P)^{c o}$, and so Carathéodory's Theorem gives 3 points $X_{i} \in K \cap P$ such that $\bar{\mu}$ is a convex combination $\bar{\mu}=\lambda_{1} X_{1}+\lambda_{2} X_{2}+\lambda_{3} X_{3}$, and without loss of generality $\lambda_{1} \neq 0$. Then $\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} \cdot X_{1}+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} \cdot X_{2} \in$ $P \cap L^{(1)}(K)$ since P is a plane consisting of rank-one directions, and similarly

$$
\bar{\mu}=\left(\lambda_{1}+\lambda_{2}\right)\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} \cdot X_{1}+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} \cdot X_{2}\right)+\lambda_{3} X_{3} \in L^{(2)}(K)
$$

It follows from (2.3) that $K^{p c}=L^{(2)}(K)$.
Lemma 2.7. Let $X_{0}, Y_{0} \in \mathbb{R}^{m \times n}$ satisfy $\operatorname{rank}\left(X_{0}-Y_{0}\right)=1$, and let

$$
\mathcal{S}=\left\{X \in \mathbb{R}^{m \times n}: \operatorname{rank}\left(X-X_{0}\right) \leq 1 \text { and } \operatorname{rank}\left(X-Y_{0}\right) \leq 1\right\}
$$

Then:
(i) $\mathcal{S}=P_{1} \cup P_{2}$, where P_{1} is an m-dimensional affine plane and P_{2} is an n-dimensional affine plane, and for each fixed $i, \operatorname{rank}(X-Y) \leq 1$ for $X, Y \in P_{i}$.
(ii) The planes P_{1} and P_{2} satisfy

$$
\operatorname{rank}(X-Y)>1 \quad \text { for } \quad X \in P_{1} \backslash P_{2} \quad \text { and } \quad Y \in P_{2} \backslash P_{1}
$$

Proof. By translation invariance it may be assumed that $Y_{0}=0$, so that rank $X_{0}=1$ and $X_{0}=v_{0} w_{0}^{T}$ for some nonzero $v_{0} \in \mathbb{R}^{m}, w_{0} \in \mathbb{R}^{n}$. Let

$$
P_{1}=\left\{x w_{0}^{T}: x \in \mathbb{R}^{m}\right\}, \quad P_{2}=\left\{v_{0} y^{T}: y \in \mathbb{R}^{n}\right\}
$$

If $X \in \mathcal{S}$ then $X=v w^{T}$ for some $v \in \mathbb{R}^{m}$ and $w \in \mathbb{R}^{n}$, and

$$
\begin{equation*}
X-X_{0}=v w^{T}-v_{0} w_{0}^{T}=a b^{T} \tag{2.7}
\end{equation*}
$$

for some $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$. Suppose for a contradiction that $X \notin P_{1} \cup P_{2}$. Then since $X \notin P_{1}$ there exists a vector w_{0}^{\perp} such that $\left\langle w_{0}, w_{0}^{\perp}\right\rangle=0$ and $\left\langle w, w_{0}^{\perp}\right\rangle \neq 0$. Right multiplying both sides of (2.7) with w_{0}^{\perp} gives

$$
v=\frac{\left\langle b, w_{0}^{\perp}\right\rangle a}{\left\langle w, w_{0}^{\perp}\right\rangle}, \quad \text { and similarly } \quad w=\frac{\left\langle a, v_{0}^{\perp}\right\rangle b}{\left\langle v, v_{0}^{\perp}\right\rangle}
$$

Let $\lambda=\frac{\left\langle a, v_{0}^{\perp}\right\rangle\left\langle b, w_{0}^{\perp}\right\rangle}{\left\langle v, v_{0}^{\perp}\right\rangle\left\langle w, w_{0}^{\perp}\right\rangle}$. Then $\lambda \neq 1$ by (2.7) since $v_{0} w_{0}^{T} \neq 0$, and therefore

$$
X=v w^{T}=\left(\frac{\lambda}{\lambda-1}\right) v_{0} w_{0}^{T} \in P_{1} \cap P_{2}
$$

which is a contradiction. This proves part (i).
For part (ii), let $X=x w_{0}^{T} \in P_{1} \backslash P_{2}$, let $Y=v_{0} y^{T} \in P_{2} \backslash P_{1}$ and suppose for a contradiction that $\operatorname{rank}(X-Y)=1$. Then by part (i), $Y=x z^{T}$ for some nonzero $z \in \mathbb{R}^{n}$, and therefore $x=\frac{v_{0}\langle y, z\rangle}{\|z\|^{2}}$, which contradicts the fact that $X \notin P_{2}$.

Acknowledgements. I would like to thank Michael Cowling and Alessandro Ottazzi for advice on this topic, and for comments on the draft.

References

[1] R.J. Aumann and S. Hart, Bi-convexity and bi-martingales. Israel J. Math. 54 (1986) 159-180.
[2] S.Conti, D. Faraco, F. Maggi and S. Müller, Rank-one convex functions on 2×2 symmetric matrices and laminates on rank-three lines. Calc. Var. Partial Differ. Eq. 24 (2005) 479-493.
[3] D. Faraco and L. Székelyhidi Jr., Tartar's conjecture and localization of the quasiconvex hull in $\mathbb{R}^{2 \times 2}$. Acta Math. 200 (2008) 279-305.
[4] B. Kirchheim, Rigidity and geometry of microstructures. Habilitation thesis, University of Leipzig (2003).
[5] J. Kolář, Non-compact lamination convex hulls. Ann. Inst. Henri Poincaré Anal. Non Linéaire 20 (2003) 391-403.
[6] C.F. Kreiner and J. Zimmer, Topology and geometry of nontrivial rank-one convex hulls for two-by-two matrices. ESAIM COCV 12 (2006) 253-270.
[7] L. Székelyhidi Jr., Rank-one convex hulls in $\mathbb{R}^{2 \times 2}$. Calc. Var. Partial Differ. Eq. 22 (2005) 253-281.
[8] V. Šverák, On Tartar's conjecture. Ann. Inst. Henri Poincaré Anal. Non Linéaire 10 (1993) 405-412.
[9] K. Zhang, On the stability of quasiconvex hulls. Preprint, Max-Plank Inst. for Mathematics in the Sciences, Leipzig (1998), Vol. 33.

[^0]: Keywords and phrases. Lamination convexity, rank-one convexity.

 * This research was supported by the Australian Research Council's Discovery Projects funding scheme (project DP140100531).

 1 School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
 2 Department of Mathematics, University of Illinois, Urbana, IL 61801, USA.
 Corresponding author: terence2@illinois.edu

