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A RISK-SENSITIVE MAXIMUM PRINCIPLE FOR A MARKOV

REGIME-SWITCHING JUMP-DIFFUSION SYSTEM AND APPLICATIONS

Zhongyang Sun1,a, Isabelle Kemajou−Brown2 and Olivier Menoukeu−Pamen3,4

Abstract. In this paper, we derive a general stochastic maximum principle for a risk-sensitive type
optimal control problem of Markov regime-switching jump-diffusion model. The results are obtained
via a logarithmic transformation and the relationship between adjoint variables and the value function.
We apply the results to study both a linear-quadratic optimal control problem and a risk-sensitive
benchmarked asset management problem for Markov regime-switching models. In the latter case, the
optimal control is of feedback form and is given in terms of solutions to a Markov regime-switching
Riccatti equation and an ordinary Markov regime-switching differential equation.
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1. Introduction

Applications of Markov regime-switching models in finance and stochastic optimal control have received
significant attention recently. Comparing to the traditional models based on the diffusion processes, Markov
regime-switching models perform better from the empirical point of view. The basic idea of regime-switching is
to modulate the model with a continuous time, finite-state Markov chain where each state represents a regime
of the system or level of economic indicator. For example, in the stock market, the up-trend volatility of a stock
tends to be smaller than its down-trend volatility (see [24]). Therefore, it is reasonable to describe the market
trends by a two states Markov chain. Risk-sensitive control is a generalization of classical stochastic control in
which the degree of risk aversion or risk tolerance of the optimizing agent is explicitly parameterized in the
objective criterion and influences directly the outcome of the optimization. There have been many works on
risk-sensitive control and its applications to finance; see, for example, [2, 7, 8, 17] and references therein.

There are two main approaches to solve risk-sensitive control problems: the dynamic programming principle
and the stochastic maximum principle. Although dynamic programming principle has been the tool predomi-
nantly used to study such problems, several papers have been devoted to the stochastic maximum principle, a
set of necessary and sufficient conditions that must be satisfied by any optimal control. In [23], the author uses
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a heuristic approach based on large deviation theory to derive a maximum principle. In [3], a measure-valued
decomposition and weak control variations are used to obtain a minimum principle for the partial observa-
tion problem. In the above mentioned works, the diffusion coefficients are independent of the control variable.
The work [14] generalizes the above results by including the control variable in the diffusion coefficients. The
paper [19] extends the previous results assuming that the dynamics of the controlled system is modeled by a
jump-diffusion process.

There have been a lot of works on classical stochastic optimal control for regime-switching models. The
stochastic maximum principle approach to solve this problem was introduced in [9, 10] for the diffusion case
and generalized in [25] to the jump-diffusion case. The work [13] proposes a weak maximum principle when the
Hamiltonian is non-convex whereas the works [15, 20, 21] study optimal control for Markov regime-switching
forward-backward stochastic differential equations. Let us also mention the paper [16] that deals with maximum
principle for Markov regime-switching forward-backward stochastic differential equations. Note, however, that
the maximum principle proposed in the above works are only of local form and the authors do not consider
the second order adjoint processes and adjoint equations. To our best knowledge so far, it appears that the
risk-sensitive maximum principle in global form for Markov regime-switching jump-diffusion processes has not
yet been established and this is the main goal of the paper.

In this paper, we derive a general risk-sensitive stochastic maximum principle assuming that the state is
governed by a continuous time Markov regime-switching jump-diffusion process and the cost functional is of
exponential-of-integral type. Following the idea in [14,19], we first reformulate the risk-sensitive control problem
as a risk-neutral one by adding a new variable to the state process. Combining the results in [22, 25], an
intermediate stochastic maximum principle in global form is obtained by introducing the second order adjoint
variable. This intermediate result is not satisfactory because it is more complex than its risk-neutral counterpart
(compare with [25], Thm. 3.1). Using a logarithmic transformation and relationship between adjoint variables
and the value function, we simplify the adjoint equations and derive a general risk-sensitive maximum principle.
Hence the risk-sensitive maximum principle we obtained is of global form. Note that, the adjoint equations and
the maximum condition heavily depend on the risk-sensitive parameter and two jump proportional processes
(see (3.4) and (3.5)). This shows the fundamental difference between the two cases of diffusion and the jump-
diffusion controlled processes. Contrary to any conventional maximum principle, the first order adjoint equation
is no longer a linear backward stochastic differential equation. Under additional convexity condition on the
Hamiltonian, we show that the maximum condition is also sufficient.

The other motivation of this paper is to solve a risk-sensitive benchmarked asset management problem of a
firm when the stock is modeled by both a Markov regime-switching diffusion process and an external factor. It
is also assumed that the benchmark depends on the economic factor. Such problem was considered in [6] for the
classical factor model without regime-switching and using a dynamic programming approach. In this paper, we
use the risk-sensitive maximum principle obtained to find the optimal portfolio strategy that minimizes the risk
sensitivity of an investor in such environment. This portfolio strategy is given in a feedback form and depends on
the solution to a regime-switching Riccati equation. We also apply our main results to solve a linear-quadratic
optimal control problem.

It is worth mentioning that for the risk-sensitive control problem under Markov regime-switching models,
there is an additional risk-sensitive parameter and a set of jump martingales related to the Markov chain that
appear in adjoint equations. Thus it is not straightforward to give the variational inequality and the maximum
condition. Our results generalize those in [14, 19] by including Markov regime-switching and those in [9, 10, 25]
by taking into consideration the risk-sensitive parameter. In addition, the accession of jumps in the model make
the problem more difficult to deal with, not only for the non-linearity of the first order adjoint equation, but also
for the extra jump proportional processes in the Hamiltonian. To the authors’ knowledge, this paper is the first
attempt to apply a risk-sensitive maximum principle to solve a risk-sensitive benchmarked asset management
problem under a Markov regime-switching model.

The paper is organized as follows. In Section 2, we present the optimal control problem and our assumptions.
In Section 3, we give statement of the risk-sensitive maximum principle. For the sake of readability, the proofs
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of the results are given in Section 4. In Section 5, we use the results obtained to solve a risk-sensitive linear-
quadratic problem. A risk-sensitive benchmarked asset management problem with Markov regime-switching is
also studied. Finally, Section 6 provides our conclusions and proposes some potential extensions of our work.

In the rest of our paper, we shall adopt the following notations.

M> : the transpose of any vector or matrix M ;
〈x, y〉 : the inner product of x, y ∈ RL, that is 〈x, y〉 := x>y;
|x| : the norm in the Euclidean space.

2. Formulation of the optimal control problems

Let (Ω,F ,F := {Ft}t∈[0,T ], P ) be a complete filtered probability space and T > 0 be a finite-time horizon.
The filtration F is a right-continuous, P -completed, filtration to which all of the processes defined below including
the Markov chain, the Brownian motions and the Poisson random measures are adapted.

We consider an irreducible homogeneous continuous time Markov chain {α(t), t ∈ [0, T ]} with a finite-state
space S := {e1, e2, . . . , eD}, where D ∈ N, ei ∈ RD and the jth component of ei is the Kronecker delta δij , for
each i, j = 1, 2, . . . , D. Here, we denote by R the set of real numbers and N the set of natural numbers. The
Markov chain is characterized by its Q-matrix Λ := [λij ]i,j=1,2,...,D under P . Here, for each i, j = 1, 2, . . . , D,
λij is the transition intensity of the chain from state ei to state ej at time t. Note that λij ≥ 0, for i 6= j and∑D
j=1 λij = 0, so λii ≤ 0. In what follows, for each i, j = 1, 2, . . . , D with i 6= j, we suppose that λij > 0, and

so λii < 0.
It follows from [11] that the following semimartingale representation of the Markov chain {α(t), t ∈ [0, T ]}

holds

α(t) = α(0) +

∫ t

0

Λ>α(s)ds+M(t), (2.1)

where {M(t), t ∈ [0, T ]} is a RD-valued, (F, P )-martingale.
Now, let us introduce a set of Markov jump martingales associated with the chain α, which will be used

to model the controlled state process. For each i, j = 1, 2, . . . , D, with i 6= j, and t ∈ [0, T ], let J ij(t) be the
number of jumps from state ei to state ej up to time t. One can show, using the results in [11] that

J ij(t) = λij

∫ t

0

〈α(s−), ei〉ds+mij(t), (2.2)

where mij(t) :=
∫ t

0
〈α(s−), ei〉 〈dM(s), ej〉 is a (F, P )-martingale.

For each fixed j = 1, 2, . . . , D, let Φj(t) be the number of jumps into state ej up to time t. Then

Φj(t) :=

D∑
i=1,i6=j

J ij(t) =

D∑
i=1,i6=j

λij

∫ t

0

〈α(s−), ei〉ds+ Φ̃j(t)

=λj(t) + Φ̃j(t), (2.3)

where Φ̃j(t) :=
∑D
i=1,i6=jmij(t) and λj(t) :=

∑D
i=1,i6=j λij

∫ t
0
〈α(s−), ei〉ds. Note that, for each j = 1, 2, . . . , D,

Φ̃j(t) is again a (F, P )-martingale.
In what follows, let L,M,N,K ∈ N. Suppose that N i(dt,dz), i = 1, 2, . . . ,M , are independent Poisson

random measures on (R+×R0,B(R+)⊗B(R0)), with R+ := [0,+∞) and R0 := R\{0}. Here B(R+) and B(R0)
are the Borel σ-fields generated by open subsets of R+ and R0 respectively. Assume that the Poisson random
measure N i(dt,dz) has the following compensator

niα(dt,dz) := νiα(dz)dt =
〈
α(t), νi(dz)

〉
dt, (2.4)
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where νi(dz) := (νie1(dz), νie2(dz), . . . , νieD (dz))> ∈ RD. Here we use the subscript α in niα, i = 1, 2, . . . ,M to
indicate the dependence of the probability law of the Poisson random measure on the Markov chain α(t). Indeed,
for each j = 1, 2, . . . , D, νiej (dz) is the conditional Lévy density of jump sizes of the random measure N i(dt,dz)

when α(t) = ej . Moreover, denote Ñα(dt, dz) by

Ñα(dt, dz) := (N1(dt,dz)− n1
α(dt,dz), . . . , NM (dt,dz)− nMα (dt,dz))>. (2.5)

Let U be a nonempty subset of RK and u : [0, T ]×Ω → U be a control process. We require that {u(t, ω), t ∈
[0, T ]} to be F-predictable and with right limits. In what follows, we set

λ(t) := (λ1(t), . . . , λD(t))>, να(dz) := (ν1
α(dz), . . . , νMα (dz))>.

Let p ≥ 1, denote by L2p(R0,B(R0), να;RM ) the set of integrable functions k(·) : R0 → RM such that

||k(·)||2pL2p =

M∑
j=1

∫
R0

|kj(z)|2pνjα(dz) <∞

and M2p(R+;RD) the set of functions a(·) : R+ → RD such that

||a(t)||2pM2p =

D∑
j=1

|aj(t)|2pλj(t) <∞.

Let H be a finite-dimensional vector or matrix space. We define

L2(Ω,FT ;H) :=
{
ξ : H-valued FT -measurable random variables, s.t. E[|ξ|2] <∞

}
;

L2
F ([0, T ];H) :=

{
f : H-valued Ft-adapted processes, s.t. E

[∫ T

0

|f(t)|2dt

]
<∞

}
;

L2
F,p([0, T ];H) :=

{
f : H-valued Ft-predictable processes, s.t. E

[∫ T

0

|f(t)|2dt

]
<∞

}
;

F 2
p ([0, T ];H) :=

{
f : H-valued Ft-predictable processes, s.t. E

[∫ T

0

||f(t, ·)||2L2dt

]
<∞

}
;

M2
p ([0, T ];H) :=

{
f : H-valued Ft-predictable processes, s.t. E

[∫ T

0

||f(t)||2M2dt

]
<∞

}
;

For any given initial time s ∈ [0, T ) and initial state x ∈ RL, we assume that the controlled process is given
by the following controlled Markov regime-switching system with random jumps:

dx(t) = b(t, x(t), u(t), α(t))dt+ σ(t, x(t), u(t), α(t))dW (t)

+

∫
R0

η(t, x(t−), u(t−), α(t−), z)Ñα(dt,dz)

+γ(t, x(t−), u(t−), α(t−))dΦ̃(t),

x(s) = x, t ∈ [s, T ].

(2.6)

Here b : [0, T ]×RL×U×S → RL, σ : [0, T ]×RL×U×S → RL×N , η : [0, T ]×RL×U×S×R0 → RL×M , γ : [0, T ]×
RL × U × S → RL×D are given deterministic continuous, measurable functions, W (t) := (W1(t), . . . ,WN (t))>
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is an N -dimensional standard Brownian motion, and Ñα(dt,dz) is an M -dimensional Markov regime-switching

random measures defined by (2.5), Φ̃(t) := (Φ̃1(t), . . . , Φ̃D(t))> with Φ̃j(t), j = 1, . . . , D, defined by (2.3).
The cost functional Jθ(s, x, ei;u(·)) associated with the initial condition (s, x, ei) ∈ [0, T ]×RL×S and control

process u(·) ∈ U is given by

Jθ(s, x, ei;u(·)) := E

[
eθ
[
g(x(T ),α(T ))+

∫ T
s
f(t,x(t),u(t),α(t))dt

]]
, (2.7)

where f : [0, T ]×RL×U ×S → R, g : RL×S → R are given and θ > 0, the risk-sensitive parameter, is a fixed
constant.

We say that u is an admissible control, if it belongs to L2
F,p([0, T ];RK) and the stochastic differential equa-

tion (2.6) has a unique strong solution. We denote by U [s, T ] the set of all admissible controls. Our risk-sensitive
stochastic control problem associated with (2.6)−(2.7) is defined as follows:

Minimize Jθ(s, x, ei;u(·))

subject to:

{
u(·) ∈ U [s, T ]

(x(·), u(·)) satisfies (2.6).

(2.8)

The value function V θ : [0, T ]× RL × S → R associated with (2.8) is defined by:

V θ(s, x, ei) := inf
u(·)∈U [s,T ]

Jθ(s, x, ei, u(·)). (2.9)

Since the exponential function is involved, we have that V θ(s, x, ei) ≥ 0 for ei ∈ S. We will make further
assumptions on the above functions.

(A1) b, σ, η, γ are uniformly Lipschitz in (x, u) and b, σ, ||η||L2p , ||γ||M2p , p = 1, 2 are bounded by C(1+|x|+|u|);
(A2) b, σ, η, γ, f, g are twice continuously differentiable with respect to x, they and their partial derivatives in

x are continuous in (x, u);
(A3) bx, bxx, σx, σxx, ||ηx||L2p , ||ηxx||L2 , ||γx||M2p , ||γxx||M2 , fx, fxx, p = 1, 2 and gx, gxx are bounded;
(A4) f and g are uniformly bounded;
(A5) V θ ∈ C1,3([0, T ]× RL × S);
(A6) U is a convex subset of RK .

In the above, (A1)−(A3) are usual conditions for risk-neutral maximum principles. (A4) is standard in the
risk-sensitive literature to ensure the cost functional (2.7) to be well defined. Due to the relationship between
the maximum principle and the dynamic programming is involved, our results depend on the value function
V θ(s, x.ei) being sufficiently smooth (see (A5)). For the sufficient maximum principle, we also require U to be
convex (see (A6)).

3. Statement of Risk-Sensitive maximum principle

In this section, we present a general maximum principle for the risk-sensitive control problem (2.8) and also
sufficient conditions for optimality. The proofs of these results will be given in Section 4.

In what follows, for ϕ = b, σ, γ, f , we define:

ϕ̄(t)
∆
= ϕ(t, x̄(t), ū(t), α(t)), ϕ̄x(t)

∆
= ϕx(t, x̄(t), ū(t), α(t)),

η̄(t, z)
∆
= η(t, x̄(t−), ū(t−), α(t−), z), η̄x(t, z)

∆
= ηx(t, x̄(t−), ū(t−), α(t−), z),

ϕ̄xx(t)
∆
= ϕxx(t, x̄(t), ū(t), α(t)), η̄xx(t, z)

∆
= ηxx(t, x̄(t−), ū(t−), α(t−), z),

δϕ(t, u)
∆
= ϕ(t, x̄(t−), u, α(t−))− ϕ(t, x̄(t−), ū(t), α(t−)),

δη(t, u, z)
∆
= η(t, x̄(t−), u, α(t−), z)− η(t, x̄(t−), ū(t), α(t−), z),

(3.1)
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Let (x̄(·), ū(·)) be an admissible pair for the system (2.6). Let us introduce the first order adjoint
variable (p̄(·), q̄(·), r̄(·, ·), s̄(·)) ∈ L2

F ([s, T ];RL) × L2
F,p([s, T ];RL×N ) × F 2

p ([s, T ];RL×M ) × M2
p ([s, T ];RL×D)

and the second order adjoint variable (P̄ (·), Q̄(·), R̄(·, ·), S̄(·)) ∈ L2
F ([s, T ];RL×L) ×

(
L2
F,p([s, T ];RL×L)

)N ×(
F 2
p ([s, T ];RL×L)

)M × (M2
p ([s, T ];RL×L)

)D
corresponding to the admissible pair (x̄(·), ū(·)), which are the

solutions of the following first order and second order adjoint equations respectively:

dp̄(t) = −
{
b̄x(t)>p̄(t) + f̄x(t) +

N∑
j=1

[
σ̄jx(t)>q̄j(t) + θp̄(t)>σ̄j(t)

(
σ̄jx(t)>p̄(t) + q̄j(t)

)]
+

M∑
j=1

∫
R0

[
η̄jx(t, z)>r̄j(t, z) +Θj(t, z)

(
η̄jx(t, z)>p̄(t)

+η̄jx(t, z)>r̄j(t, z) + r̄j(t, z)
)]
νjα(dz)

+
D∑
j=1

[
γ̄jx(t)>s̄j(t) + Λj(t)

(
γ̄jx(t)>p̄(t) + γ̄jx(t)>s̄j(t) + s̄j(t)

)]
λj(t)

}
dt

+
N∑
j=1

q̄j(t)dWj(t) +
M∑
j=1

∫
R0

r̄j(t, z)Ñ
j
α(dt,dz) +

D∑
j=1

s̄j(t)dΦ̃j(t),

p̄(T ) = gx(x̄(T ), α(T )),

(3.2)



dP̄ (t) = −

{
b̄x(t)>P̄ (t) + P̄ (t)b̄x(t) +

N∑
j=1

[
σ̄jx(t)>

(
P̄ (t) + θp̄(t)p̄(t)>

)
σ̄jx(t)

+σ̄jx(t)>
(
Q̄j(t) + θp̄(t)>σ̄j(t)P̄ (t) + θp̄(t)q̄j(t)

>
)

+
(
Q̄j(t) + θp̄(t)>σ̄j(t)P̄ (t) + θq̄j(t)p̄(t)

>
)
σ̄jx(t)

+θp̄(t)>σ̄j(t)Q̄j(t) + θq̄j(t)q̄j(t)
>
]

+
M∑
j=1

∫
R0

[
η̄jx(t, z)>

(
1 +Θj(t, z)

)(
P̄ (t) + R̄j(t, z)

+θ(p̄(t) + r̄j(t, z))(p̄(t) + r̄j(t, z))
>
)
η̄jx(t, z)

+η̄jx(t, z)>
[(

1 +Θj(t, z)
)(
P̄ (t) + R̄j(t, z) + θ(p̄(t) + r̄j(t, z))r̄j(t, z)

>
)
− P̄ (t)

]
+
[(

1 +Θj(t, z)
)(
P̄ (t) + R̄j(t, z) + θr̄j(t, z)(p̄(t) + r̄j(t, z))

>
)
− P̄ (t)

]
η̄jx(t, z)

+Θj(t, z)R̄j(t, z) +
(

1 +Θj(t, z)
)
θr̄j(t, z)r̄j(t, z)

>
]
νjα(dz)

+
D∑
j=1

[
γ̄jx(t)>

(
1 + Λj(t)

)(
P̄ (t) + S̄j(t) + θ(p̄(t) + s̄j(t))(p̄(t) + s̄j(t))

>
)
γ̄jx(t)

+γ̄jx(t)>
[(

1 + Λj(t)
)(
P̄ (t) + S̄j(t) + θ(p̄(t) + s̄j(t))s̄j(t)

>
)
− P̄ (t)

]
+
[(

1 + Λj(t)
)(
P̄ (t) + S̄j(t) + θs̄j(t)(p̄(t) + s̄j(t))

>
)
− P̄ (t)

]
γ̄jx(t)

+Λj(t)S̄j(t) +
(

1 + Λj(t)
)
θs̄j(t)s̄j(t)

>
]
λj(t)

+H̄θ
xx(t, x̄(t), ū(t), α(t), p̄(t), q̄(t), r̄(t, ·), s̄(t))

}
dt

+
N∑
j=1

Q̄j(t)dWj(t) +
M∑
j=1

∫
R0

R̄j(t, z)Ñ
j
α(dt,dz) +

D∑
j=1

S̄j(t)dΦ̃j(t),

P̄ (T ) = gxx(x̄(T ), α(T )),

(3.3)
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where σj , ηj and γj are the jth columns of the matrices σ, η and γ, respectively. For each t ∈ [s, T ], z ∈ R0,

Θj(t, z) =
V θ(t, x̄(t−) + η̄j(t, z), α(t−))− V θ(t, x̄(t−), α(t−))

V θ(t, x̄(t−), α(t−))
, j = 1, . . . ,M, (3.4)

Λj(t) =
V θ(t, x̄(t−) + γ̄j(t), ej)− V θ(t, x̄(t−), α(t−))

V θ(t, x̄(t−), α(t−))
, j = 1, . . . D, (3.5)

and the Hamiltonian H̄θ : [0, T ]×RL×U×S×RL+1×RL×N×L2(R0,B(R0), να;RL×M )×M2(R+;RL×D)→ R
is defined as

H̄θ(t, x, u, ei, p, q, r, s) :=〈p, b(t, x, u, ei)〉+ f(t, x, u, ei) +

N∑
j=1

σj(t, x, u, ei)
>(qj + θpp>σ̄j(t)

)
+

M∑
j=1

∫
R0

〈
rj(t, z) +Θj(t, z)

(
p+ rj(t, z)

)
, ηj(t, x, u, ei, z)

〉
νjei(dz)

+

D∑
j=1

〈
sj(t) + Λj(t)

(
p+ sj(t)

)
, γj(t, x, u, ei)

〉
λj(t). (3.6)

Note that (3.2) is a nonlinear backward stochastic differential equation (BSDE), which is different from the
risk-neutral case. In addition, its generator does not satisfy the classical Lipschitz condition for the existence
and uniqueness of solution to nonlinear BSDEs. As shown later, our assumptions are sufficient to guaranty the
existence of unique solution to (3.2) and (3.3), respectively.

Remark 3.1. A key feature of (3.2) and (3.3) is that it relies on the value function, which involves the function
Θj(·, ·) and Λj(·) defined by (3.4) and (3.5), respectively. We call Θj(·, ·) and Λj(·) the jump proportion processes
associated with the value function along with the state trajectory x̄(·).

Define H̄θ : [0, T ]× RL × U × S → R, associated with the pair (x̄(·), ū(·)), as:

H̄θ(t, x, u, ei) := 〈p̄(t−), b(t, x, u, ei)〉+ f(t, x, u, ei) +

N∑
j=1

[
σj(t, x, u, ei)

>(q̄j(t)− P̄ (t−)σ̄j(t)
)

+
1

2
σj(t, x, u, ei)

>(P̄ (t−) + θp̄(t−)p̄(t−)>
)
σj(t, x, u, ei)

]

+

M∑
j=1

∫
R0

ηj(t, x, u, ei, z)
>

[
r̄j(t, z) +Θj(t, z)

(
p̄(t−) + r̄j(t, z)

)
+

1

2

(
1 +Θj(t, z)

)(
P̄ (t−) + R̄j(t, z) + θ(p̄(t−) + r̄j(t, z))(p̄(t−) + r̄j(t, z))

>)
×
(
ηj(t, x, u, ei, z)− 2η̄j(t, z)

)]
νjα(dz)

+

D∑
j=1

γj(t, x, u, ei)
>

[
s̄j(t) + Λj(t)

(
p̄(t−) + s̄j(t)

)
+

1

2

(
1 + Λj(t)

)(
P̄ (t−) + S̄j(t) + θ(p̄(t−) + s̄j(t))(p̄(t−) + s̄j(t))

>)
×
(
γj(t, x, u, ei)− 2γ̄j(t)

)]
λj(t). (3.7)
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The risk-sensitive maximum principle can be stated as follows:

Theorem 3.2 (Risk-sensitive maximum principle). Suppose that assumptions (A1)−(A5) hold. Let (x̄(·), ū(·))
be an optimal pair for the risk-sensitive control problem (2.8). Then there exist processes (p̄(·), q̄(·), r̄(·, ·), s̄(·))
and (P̄ (·), Q̄(·), R̄(·, ·), S̄(·)) satisfying the first and second order adjoint equations (3.2) and (3.3), respectively,
such that the following variational inequality holds,

H̄θ(t, x̄(t−), u, α(t−), p̄(t−), q̄(t), r̄(t, ·), s̄(t))− H̄θ(t, x̄(t−), ū(t), α(t−), p̄(t−), q̄(t), r̄(t, ·), s̄(t))

+
1

2

N∑
j=1

δσj(t, u)>
(
P̄ (t−) + θp̄(t−)p̄(t−)>

)
δσj(t, u)

+
1

2

M∑
j=1

∫
R0

[
δηj(t, u, z)>

(
1 +Θj(t, z)

)(
P̄ (t−) + R̄j(t, z)

+ θ(p̄(t−) + r̄j(t, z))(p̄(t−) + r̄j(t, z))
>
)
δηj(t, u, z)

]
νjα(dz)

+
1

2

D∑
j=1

[
δγj(t, u)>

(
1 + Λj(t)

)(
P̄ (t−) + S̄j(t)

+ θ(p̄(t−) + s̄j(t))(p̄(t−) + s̄j(t))
>
)
δγj(t, u)

]
λj(t) ≥ 0 ∀u ∈ U, a.e. t ∈ [s, T ], P -a.s., (3.8)

or equivalently

H̄θ(t, x̄(t−), ū(t), α(t−)) = inf
u∈U
H̄θ(t, x̄(t−), u, α(t−)), a.e. t ∈ [s, T ], P -a.s. (3.9)

Remark 3.3. The above equation (3.9) expressed by the minimum over U is still called the maximum condition
for the control problem just as in the classical optimal control problem.

Sufficient conditions for the optimality of the pair (x̄(·), ū(·)) are given as follows:

Theorem 3.4 (Sufficient conditions for optimality). Suppose that assumptions (A1)−(A6) hold. Let (x̄(·), ū(·))
be an admissible pair, and (p̄(·), q̄(·), r̄(·, ·), s̄(·)), (P̄ (·), Q̄(·), R̄(·, ·), S̄(·)) be the associated first and second
order adjoint variables, respectively. Suppose that for each ei ∈ S, x 7→ g(x, ei) is convex, (x, u) 7→
H̄θ(t, x, u, ei, p̄(t−), q̄(t), r̄(t, ·), s̄(t)) is convex for all t ∈ [0, T ], P -a.s., and (3.9) holds. Then (x̄(·), ū(·)) is
an optimal pair for the problem (2.8).

Remark 3.5.

(1) Let us mention that since the jump proportion processes Θ(·, ·) and Λ(·) given by (3.4) and (3.5) respectively
do not depend on the control variable u, they will not bring any difficulty when applying the maximum
condition (3.9) to look for the optimal control.

(2) Assuming that D = 1 and letting η = γ ≡ 0 in (2.6), Theorems 3.2 and 3.4 are reduced to ([14], Thms. 3.1
and 3.2) and in this case, the first and second order adjoint equation together with the H̄θ-function and
H̄θ-function (3.2), (3.3), (3.6), (3.7) coincide with (5), (6), (7) and (8) in[14], respectively.

Proofs of the preceding two theorems are deferred to Section 4.
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4. Proofs of the main results

This section is devoted to proofs of the two main theorems of the paper (Thms. 3.2 and 3.4). The proofs will
be done in several steps. In the first step, we reformulate the risk-sensitive problem (2.8) as a risk-neutral one.
Then the existing risk-neutral maximum principle can be used directly. In Step 2, we transform the first order
adjoint equation to a relative simple form. The transformation of the second order adjoint equation is done in
Step 3. In Step 4, we complete the proofs by transforming the variational inequality and maximum condition
into the one stated in the previous section.

Step 1. Applying risk-neutral maximum principle

The classical risk-neutral maximum principle for regime-switching jump-diffusion systems (see [25]) cannot
directly be applied to problem (2.8). In this step, we first reformulate problem (2.8) as a risk-neutral one
(see (4.1)). Then we define the Hamiltonian and the first order adjoint equation from which we obtain a
maximum principle in local form (compare with [25]). In order to obtain a risk-sensitive maximum principle of
the risk-neutral problem in global form, we define the Hamiltonian and associated second order adjoint equation.
Combining the first and second order adjoint equations, a general stochastic maximum principle is obtained in
terms of the variational inequality.

Let us consider the following risk-neutral control problem:

Minimize Jθ(s, x, y, ei;u(·)) = E
[
eθ[g(x(T ),α(T ))+y(T )]

]

subject to:



dx(t) = b(t, x(t), u(t), α(t))dt+ σ(t, x(t), u(t), α(t))dW (t)

+
∫
R0
η(t, x(t−), u(t−), α(t−), z)Ñα(dt, dz)

+γ(t, x(t−), u(t−), α(t−))dΦ̃(t),

dy(t) = f(t, x(t), u(t), α(t))dt, t ∈ [s, T ],

x(s) = x, y(s) = y, u(·) ∈ U [s, T ].

(4.1)

Problem (2.8) corresponds to the case when y = 0 in (4.1). The value function V θ : [0, T ]×RL ×R× S → R
associated with (4.1) is:

V θ(s, x, y, ei) := inf
u(·)∈U [s,T ]

Jθ(s, x, y, ei;u(·)). (4.2)

Note that V θ(s, x, y, ei) = eθyV θ(s, x, ei). In particular, assumption (A5) implies that V θ(s, x, y, ei) ∈
C1,3,∞([0, T ]× RL × R× S).

Assume that (A1)−(A4) hold, and let (x̄(·), ȳ(·), ū(·)) be an optimal triple for the risk-neutral problem (4.1).
We introduce the following first and second order adjoint equations:



dp(t) = −

{(
b̄x(t) 0
f̄x(t) 0

)>
p(t) +

N∑
j=1

(
σ̄jx(t) 0

0 0

)>
qj(t)

+
M∑
j=1

∫
R0

(
η̄jx(t, z) 0

0 0

)>
rj(t, z)ν

j
α(dz) +

D∑
j=1

(
γ̄jx(t) 0

0 0

)>
sj(t)λj(t)

dt

+
N∑
j=1

qj(t)dWj(t) +
M∑
j=1

∫
R0

rj(t, z)Ñ
j
α(dt, dz) +

D∑
j=1

sj(t)dΦ̃j(t),

p(T ) = θeθ[g(x̄(T ),α(T ))+ȳ(T )]

(
gx(x̄(T ), α(T ))

1

)
,

(4.3)
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dP (t) = −

{(
b̄x(t) 0
f̄x(t) 0

)>
P (t) + P (t)

(
b̄x(t) 0
f̄x(t) 0

)
+

N∑
j=1

[(
σ̄jx(t) 0

0 0

)>
Qj(t)

+Qj(t)

(
σ̄jx(t) 0

0 0

)
+

(
σ̄jx(t) 0

0 0

)>
P (t)

(
σ̄jx(t) 0

0 0

)]
+

M∑
j=1

∫
R0

[(
η̄jx(t, z) 0

0 0

)>
P (t)

(
η̄jx(t, z) 0

0 0

)
+

(
η̄jx(t, z) 0

0 0

)>
Rj(t, z)

+Rj(t, z)

(
η̄jx(t, z) 0

0 0

)
+

(
η̄jx(t, z) 0

0 0

)>
Rj(t, z)

(
η̄jx(t, z) 0

0 0

)]
νjα(dz)

+
D∑
j=1

[(
γ̄jx(t) 0

0 0

)>
P (t)

(
γ̄jx(t) 0

0 0

)
+

(
γ̄jx(t) 0

0 0

)>
Sj(t)

+Sj(t)

(
γ̄jx(t) 0

0 0

)
+

(
γ̄jx(t) 0

0 0

)>
Sj(t)

(
γ̄jx(t) 0

0 0

)]
λj(t)

+

(
Hθ
xx(t, x̄(t), ū(t), α(t), p(t), q(t), r(t, ·), s(t)) 0

0 0

)}
dt

+
N∑
j=1

Qj(t)dWj(t) +
M∑
j=1

∫
R0

Rj(t, z)Ñ
j
α(dt,dz) +

D∑
j=1

Sj(t)dΦ̃j(t),

P (T ) =

(
θgx(x̄(T ), α(T ))gx(x̄(T ), α(T ))> + gxx(x̄(T ), α(T )) θgx(x̄(T ), α(T ))

θgx(x̄(T ), α(T ))> θ

)
× θeθ[g(x̄(T ),α(T ))+ȳ(T )],

(4.4)

Here the Hamiltonian function Hθ : [0, T ]×RL × U × S ×RL+1 ×R(L+1)×N ×L2(R0,B(R0), να;R(L+1)×M )×
M2(R+;R(L+1)×D)→ R is given by

Hθ(t, x, u, ei, p, q, r, s) :=

〈
p,

(
b(t, x, u, ei)
f(t, x, u, ei)

)〉
+

N∑
j=1

〈
qj ,

(
σj(t, x, u, ei)

0

)〉

+

M∑
j=1

∫
R0

〈
rj(t, z),

(
ηj(t, x, u, ei, z)

0

)〉
νjei(dz) (4.5)

+

D∑
j=1

〈
sj(t),

(
γj(t, x, u, ei)

0

)〉
λj(t).

The adjoint equations (4.3)−(4.4) are linear BSDEs with jumps. Assumptions (A1)−(A3) guaranty the existence
and uniqueness of solution to the BSDEs (4.3) and (4.4), respectively. For the existence and uniqueness of
solution to BSDEs driven by Poisson jumps and Markov chains; see, for example, [5].

Combining ([22], Thm. 2.1) with ([25], Thm. 3.1), the following stochastic maximum principle for the risk-
neutral problem (4.1) can be proved.

Proposition 4.1. Assume that assumptions (A1)−(A4) hold and let (x̄(·), ȳ(·), ū(·)) be an optimal triple for
risk-neutral problem (4.1). Then there exists a unique solution (p(·), q(·), r(·, ·), s(·)) and (P (·), Q(·), R(·, ·), S(·))
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of (4.3) and (4.4), respectively, such that

Hθ(t, x̄(t−), u, α(t−), p(t−), q(t), r(t, ·), s(t))−Hθ(t, x̄(t−), ū(t), α(t−), p(t−), q(t), r(t, ·), s(t))

+
1

2

N∑
j=1

(
δσj(t, u)

0

)>
P (t−)

(
δσj(t, u)

0

)

+
1

2

M∑
j=1

∫
R0

[(
δηj(t, u, z)

0

)> (
P (t−) +Rj(t, z)

)(
δηj(t, u, z)

0

)]
νjα(dz) (4.6)

+
1

2

D∑
j=1

[(
δγj(t, u)

0

)> (
P (t−) + Sj(t)

)(
δγj(t, u)

0

)]
λj(t) ≥ 0, ∀u ∈ U, a.e. t ∈ [s, T ], P -a.s.,

or equivalently,

Hθ(t, x̄(t−), ū(t), α(t−)) = inf
u∈U
Hθ(t, x̄(t−), u, α(t−)), a.e. t ∈ [s, T ], P -a.s., (4.7)

where the Hθ-function for problem (4.1) associated with (x̄(·), ȳ(·), ū(·)) is defined by:

Hθ(t, x, u, ei) =Hθ(t, x, u, ei, p(t−), q(t), r(t, ·), s(t))

− 1

2

N∑
j=1

(
σ̄j(t)

0

)>
P (t−)

(
σ̄j(t)

0

)
+

1

2

N∑
j=1

(
δσj(t, u)

0

)>
P (t−)

(
δσj(t, u)

0

)

− 1

2

M∑
j=1

∫
R0

[(
η̄j(t, z)

0

)> (
P (t−) +Rj(t, z)

)(
η̄j(t, z)

0

)]
νjei(dz)

+
1

2

M∑
j=1

∫
R0

[(
δηj(t, u, z)

0

)> (
P (t−) +Rj(t, z)

)(
δηj(t, u, z)

0

)]
νjei(dz)

− 1

2

D∑
j=1

[(
γ̄j(t)

0

)> (
P (t−) + Sj(t)

)(
γ̄j(t)

0

)]
λj(t)

+
1

2

D∑
j=1

[(
δγj(t, u)

0

)> (
P (t−) + Sj(t)

)(
δγj(t, u)

0

)]
λj(t). (4.8)

Proof. The proof easily follows by combining ([22], Thm. 2.1) and ([25], Thm. 3.1). We omit the details. �

The following sufficient conditions for the optimality of (x̄(·), ȳ(·), ū(·)) can also be derived.

Proposition 4.2. Suppose that assumptions (A1)−(A4) and (A6) hold. Let (x̄(·), ȳ(·), ū(·)) be an admissible
triple, (p(·), q(·), r(·, ·), s(·)) and (P (·), Q(·), R(·, ·), S(·)) satisfy (4.3) and (4.4), respectively. Suppose that for
each ei ∈ S, x 7→ g(x, ei) is a convex function, (x, u) 7→ Hθ(t, x, u, ei, p(t), q(t), r(t, ·), s(t)) is convex for all
t ∈ [0, T ], P -a.s., and (4.7) holds. Then (x̄(·), ȳ(·), ū(·)) is an optimal triple for problem (4.1).

Proof. The proof follows in a similar way as in ([25], Thm. 3.1); we omit the details. �

Remark 4.3. Note that Propositions 4.1 and 4.2 do not depend on assumption (A5).

Next, we will transform the first order adjoint equation (4.3) to a more familiar form.
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Step 2. Transformation of first order adjoint equation

Proposition 4.1 can be regarded as a maximum principle for the underlying risk-sensitive control prob-
lem (2.8). However, it is not a desirable one since the adjoint equations involve additional and “unnecessary”
components. To overcome this problem, we need to transform the adjoint variables (p(·), q(·), r(·, ·), s(·)) and
(P (·), Q(·), R(·, ·), S(·)). These changes are inspired by both logarithmic transformations (see, for example, [14])
which are used to derive a partial differential equation for the value function and the relationship between the
maximum principle and the dynamic programming principle (see, for example, [25]). We extend the result in [14]
to a continuous time Markov regime-switching jump-diffusion model (Lem. 4.4).

Lemma 4.4. Under assumptions (A1)−(A5), the first order adjoint equation (4.3) reduces to (3.2).

Proof. Let (x̄(·), ȳ(·), ū(·)) be an optimal triple for problem (4.1) and(
p(·), q(·), r(·, ·), s(·)

)
≡
([

p1(·)
p2(·)

]
,

[
q1(·)
q2(·)

]
,

[
r1(·, ·)
r2(·, ·)

]
,

[
s1(·)
s2(·)

])
∈ L2

F ([s, T ];RL+1)× L2
F,p([s, T ];R(L+1)×N )× F 2

p ([s, T ];R(L+1)×M )×M2
p ([s, T ];R(L+1)×D),

be the first order adjoint variables satisfying equation (4.3), here (p1(·), q1(·), r1(·, ·), s1(·)) ∈
L2
F ([s, T ];RL) × L2

F,p([s, T ];RL×N ) × F 2
p ([s, T ];RL×M ) × M2

p ([s, T ];RL×D) and (p2(·), q2(·), r2(·, ·), s2(·)) ∈
L2
F ([s, T ];R)×L2

F,p([s, T ];R1×N )×F 2
p ([s, T ];R1×M )×M2

p ([s, T ];R1×D). By the relationship between the max-
imum principle and the dynamic programming principle (see, for example, [25], Thm. 4.2), we have

p(t) = V θ(x,y)(t, x̄(t), ȳ(t), α(t)), (4.9)

where V θ(x,y) denotes the gradient of V θ in (x, y). Let us introduce the following logarithmic transformation of
the value function

vθ(t, x, y, ei) =
1

θ
lnV θ(t, x, y, ei), (4.10)

Taking gradient on the right hand side of (4.10) and noting (4.9), we have the following transformation of the
first order adjoint variable:

p̃(t) =
1

θ

p(t)

V (t)
, (4.11)

where V (t) := V θ(t, x̄(t), ȳ(t), α(t)) > 0.

Next, we derive the equation for p̃(·) ≡
(
p̄(·)
p̃∗(·)

)
, where p̄(·) is RL-valued. First notice that V θ(s, x, y, ei) is

the value function of the risk-neutral problem (4.1). Then it follows from ([25], Eqs. (4.1) and (4.2)) that V
must satisfy 

dV (t) =
N∑
j=1

p1(t)>σ̄j(t)dWj(t) +
M∑
j=1

∫
R0

[V θ(t, x̄(t−) + η̄j(t, z), ȳ(t), α(t−), z)

−V θ(t, x̄(t−), ȳ(t), α(t−), z)]Ñ j
α(dt, dz)

+
D∑
j=1

[V θ(t, x̄(t−) + γ̄j(t), ȳ(t), ej)− V θ(t, x̄(t−), ȳ(t), α(t−))]dΦ̃j(t),

V (T ) = eθ(g(x̄(T ),α(T ))+ȳ(T )).

(4.12)
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Assume that p̃(t) satisfies an equation of the following form:

dp̃(t) = α(t)dt+

N∑
j=1

q̃j(t)dWj(t) +

M∑
j=1

∫
R0

r̃j(t, z)Ñ
j
α(dt,dz) +

D∑
j=1

s̃j(t)dΦ̃j(t). (4.13)

Using Itô’s formula for Markov regime switching jump-diffusion process (see, for example, [25], Thm. 4.1), we
obtain:

dp(t) = d(θV (t)p̃(t))

= θV (t−)dp̃(t) +

N∑
j=1

θp1(t)>σ̄j(t)q̃j(t)dt+

N∑
j=1

θp̃(t)p1(t)>σ̄j(t)dWj(t)

+

M∑
j=1

∫
R0

θ
[
V θ(t, x̄(t−) + η̄j(t, z), ȳ(t), α(t−))− V θ(t, x̄(t−), ȳ(t), α(t−))

]
r̃j(t, z)ν

j
α(dz)dt

+

D∑
j=1

θ
[
V θ(t, x̄(t−) + γ̄j(t), ȳ(t), ej)− V θ(t, x̄(t−), ȳ(t), α(t−))

]
s̃j(t)λj(t)dt

+

M∑
j=1

∫
R0

θ
[
V θ(t, x̄(t−) + η̄j(t, z), ȳ(t), α(t−))− V θ(t, x̄(t−), ȳ(t), α(t−))

](
p̃(t−) + r̃j(t, z)

)
Ñ j
α(dt, dz)

+

D∑
j=1

θ
[
V θ(t, x̄(t−) + γ̄j(t), ȳ(t), ej)− V θ(t, x̄(t−), ȳ(t), α(t−))

](
p̃(t−) + s̃j(t)

)
dΦ̃j(t). (4.14)

Dividing both sides of (4.14) by θV (t−) and nothing that p1(t−) = θV (t−)p̄(t−), we obtain:

dp̃(t) =
1

θV (t−)
dp(t)−

N∑
j=1

θp̄(t)>σ̄j(t)q̃j(t)dt−
N∑
j=1

θp̃(t)p̄(t)>σ̄j(t)dWj(t)

−
M∑
j=1

∫
R0

Θ̃j(t, z)r̃j(t, z)ν
j
α(t−)(dz)dt−

D∑
j=1

Λ̃j(t)s̃j(t)λj(t)dt

−
M∑
j=1

∫
R0

Θ̃j(t, z)
(
p̃(t−) + r̃j(t, z)

)
Ñ j
α(dt, dz)−

D∑
j=1

Λ̃j(t)
(
p̃(t−) + s̃j(t)

)
dΦ̃j(t), (4.15)

where (for each t ∈ [s, T ], z ∈ R0)

Θ̃j(t, z) =
V θ(t, x̄(t−) + η̄j(t, z), ȳ(t), α(t−))− V θ(t, x̄(t−), ȳ(t), α(t−))

V θ(t, x̄(t−), ȳ(t), α(t−))
, j = 1, . . . ,M,

Λ̃j(t) =
V θ(t, x̄(t−) + γ̄j(t), ȳ(t), ej)− V θ(t, x̄(t−), ȳ(t), α(t−))

V θ(t, x̄(t−), ȳ(t), α(t−))
, j = 1, . . . D.

Substituting (4.3) into (4.15) leads to

q̃j(t) ≡
(
q̄j(t)
q̃∗j (t)

)
=

qj(t)

θV (t−)
− θp̃(t)p̄(t)>σ̄j(t), j = 1, . . . , N,

r̃j(t, ·) ≡
(
r̄j(t, ·)
r̃∗j (t, ·)

)
=

rj(t, ·)
θV (t−)

− Θ̃j(t, z)
(
p̃(t−) + r̃j(t, z)

)
, j = 1, . . . ,M,

s̃j(t) ≡
(
s̄j(t)
s̃∗j (t)

)
=

sj(t)

θV (t−)
− Λ̃j(t)

(
p̃(t−) + s̃j(t)

)
, j = 1, . . . , D, (4.16)
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where q̄(·) = (q̄1(·), . . . , q̄N (·)) is RL×N -valued, r̄(·, ·) = (r̄1(·, ·), . . . , r̄M (·, ·)) is RL×M -valued, and s̄(·) =
(s̄1(·), . . . , s̄D(·)) is RL×D-valued. Substituting (4.16) into (4.15) and by virtue of (4.3), it follows that the
transformed first order adjoint variable p̃(·) satisfies the following equation:

dp̃(t) = −

{(
b̄x(t) 0
f̄x(t) 0

)>
p̃(t) +

N∑
j=1

(
σ̄jx(t) 0

0 0

)> (
q̃j(t) + θp̃(t)p̄(t)>σ̄j(t)

)
+

M∑
j=1

∫
R0

(
η̄jx(t, z) 0

0 0

)> (
r̃j(t, z) + Θ̃j(t, z)

(
p̃(t−) + r̃j(t, z)

))
νjα(dz)

+
D∑
j=1

(
γ̄jx(t) 0

0 0

)> (
s̃j(t) + Λ̃j(t)

(
p̃(t−) + s̃j(t)

))
λj(t)

+
N∑
j=1

θp̄(t)>σ̄j(t)q̃j(t)dt+
M∑
j=1

∫
R0

Θ̃j(t, z)r̃j(t, z)
)
νjα(dz) +

D∑
j=1

Λ̃j(t)s̃j(t)λj(t)

dt

+
N∑
j=1

q̃j(t)dWj(t) +
M∑
j=1

∫
R0

r̃j(t, z)Ñ
j
α(dt, dz) +

D∑
j=1

s̃j(t)dΦ̃j(t),

p̃(T ) =

(
gx(x̄(T ), α(T ))

1

)
,

(4.17)

where p̃(T ) is easily determined from (4.11) and p(T ).

Letting y = 0 in(4.1) and expanding (4.17), it can be seen that

p̃∗(t) = 1, q̃∗j (t) = r̃∗j (t, ·) = s̃∗j (t) = 0, ∀t ∈ [s, T ], (4.18)

and (p̄(·), q̄(·), r̄(·, ·), s̄(·)) is a solution of (3.2). This explains how equation (3.2) is derived. Also, since our
derivation can be reversed, it follows from the uniqueness of solution to (4.3) that this solution is unique. �

In the next step, we will transform the second order adjoint equation (4.4) to a relative simple form.

Step 3. Transformation of second order adjoint equation

The transformation of second order adjoint equation is given in the following lemma.

Lemma 4.5. Assume that assumptions (A1)−(A5) hold. Then the second order adjoint equation (4.4) reduces
to (3.3).

Proof. Let (P (·), Q(·), R(·, ·), S(·)) be the second order adjoint variable satisfying (4.4) and consider the following
transformation:

P̃ (t) =
1

θ

P (t)

V (t)
− θp̃(t)p̃(t)> ∆

= Γ (t)− θp̃(t)p̃(t)>, (4.19)

Assume that

dΓ (t) = X(t)dt+

N∑
j=1

Yj(t)dWj(t) +

M∑
j=1

∫
R0

Zj(t, z)Ñ
j
α(dt,dz) +

D∑
j=1

Aj(t)dΦ̃j(t), (4.20)
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Using Itô’s formula, (4.12) and (4.19), we get

dP (t) = d(θV (t)Γ (t))

= θV (t−)dΓ (t) +

N∑
j=1

θp1(t)>σ̄j(t)Yj(t)dt+

N∑
j=1

θΓ (t)p1(t)>σ̄j(t)dWj(t)

+

M∑
j=1

∫
R0

θ
[
V θ(t, x̄(t−) + η̄j(t, z), ȳ(t), α(t−))− V θ(t, x̄(t−), ȳ(t), α(t−))

]
Zj(t, z)ν

j
α(dz)dt

+

D∑
j=1

θ
[
V θ(t, x̄(t−) + γ̄j(t), ȳ(t), ej)− V θ(t, x̄(t−), ȳ(t), α(t−))

]
Aj(t)λj(t)dt

+

M∑
j=1

∫
R0

θ
[
V θ(t, x̄(t−) + η̄j(t, z), ȳ(t), α(t−))− V θ(t, x̄(t−), ȳ(t), α(t−))

](
Γ (t−) + Zj(t, z)

)
Ñ j
α(dt,dz)

+

D∑
j=1

θ
[
V θ(t, x̄(t−) + γ̄j(t), ȳ(t), ej)− V θ(t, x̄(t−), ȳ(t), α(t−))

](
Γ (t−) +Aj(t)

)
dΦ̃j(t). (4.21)

Dividing once more θV (t−) and noting that p1(t−) = θV (t−)p̄(t−), we get:

dΓ (t) =
1

θV (t−)
dP (t)−

N∑
j=1

θp̄(t)>σ̄j(t)Yj(t)dt−
N∑
j=1

θΓ (t)p̄(t)>σ̄j(t)dWj(t)

−
M∑
j=1

∫
R0

Θ̃j(t, z)Zj(t, z)ν
j
α(dz)dt−

D∑
j=1

Λ̃j(t)Aj(t)λj(t)dt

−
M∑
j=1

∫
R0

Θ̃j(t, z)
(
Γ (t−) + Zj(t, z)

)
Ñ j
α(dt, dz)

−
D∑
j=1

Λ̃j(t)
(
Γ (t−) +Aj(t)

)
dΦ̃j(t). (4.22)

Substituting the expression (4.4) into (4.22), we have

Yj(t) ≡
Qj(t)

θV (t−)
− θp̄(t)>σ̄j(t)

(
P̃ (t) + θp̃(t)p̃(t)>

)
, j = 1, . . . , N,

Zj(t, ·) ≡
Rj(t, ·)
θV (t−)

− Θ̃j(t, z)
(
P̃ (t−) + θp̃(t−)p̃(t−)> + Zj(t, z)

)
, j = 1, . . . ,M,

Aj(t) ≡
Sj(t)

θV (t−)
− Λ̃j(t)

(
P̃ (t−) + θp̃(t−)p̃(t−)> +Aj(t)

)
, j = 1, . . . , D. (4.23)

Combining (4.5) with (3.6), we can easily obtain:

1

θV (t−)

(
Hθ
xx(t, x̄(t−), ū(t), α(t−), p(t−), q(t), r(t, ·), s(t)) 0

0 0

)
=

(
H̄θ
xx(t, x̄(t−), ū(t), α(t−), p̄(t−), q̄(t), r̄(t, ·), s̄(t)) 0

0 0

)
. (4.24)
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Applying Itô’s formula to (4.19) and using (4.17) and (4.22), we have

dP̃ (t) =−

{(
b̄x(t) 0
f̄x(t) 0

)>
P̃ (t) + P̃ (t)

(
b̄x(t) 0
f̄x(t) 0

)

+

N∑
j=1

(
σ̄jx(t) 0

0 0

)> (
P̃ (t) + θp̃(t)p̄(t)>

)(
σ̄jx(t) 0

0 0

)

+

N∑
j=1

(
σ̄jx(t) 0

0 0

)> (
Q̃j(t) + θp̄(t)>σ̄j(t)P̃ (t) + θp̃(t)q̃j(t)

>
)

+

N∑
j=1

(
Q̃j(t) + θp̄(t)>σ̄j(t)P̃ (t) + θq̃j(t)p̃(t)

>
)(

σ̄jx(t) 0
0 0

)

+

N∑
j=1

[
θp̄(t)>σ̄j(t)Q̃j(t) + θq̄j(t)q̄j(t)

>
]

+

M∑
j=1

∫
R0

(
η̄jx(t, z) 0

0 0

)> (
1 + Θ̃j(t, z)

)(
P̃ (t) + R̃j(t, z)

+θ(p̃(t) + r̃j(t, z))(p̃(t) + r̃j(t, z))
>
)(

η̄jx(t, z) 0
0 0

)
νjα(dz)

+

M∑
j=1

∫
R0

(
η̄jx(t, z) 0

0 0

)> [(
1 + Θ̃j(t, z)

)(
P̃ (t) + R̃j(t, z) + θ(p̃(t) + r̃j(t, z))r̃j(t, z)

>
)
− P̃ (t)

]
νjα(dz)

+

M∑
j=1

∫
R0

[(
1 + Θ̃j(t, z)

)(
P̃ (t) + R̃j(t, z) + θr̃j(t, z)(p̃(t) + r̃j(t, z))

>
)
− P̃ (t)

](
η̄jx(t, z) 0

0 0

)
νjα(dz)

+

M∑
j=1

∫
R0

[
Θ̃j(t, z)R̃j(t, z) +

(
1 + Θ̃j(t, z)

)
θr̃j(t, z)r̃j(t, z)

>
]
νjα(dz)

+

D∑
j=1

(
γ̄jx(t, z) 0

0 0

)> (
1 + Λ̃j(t)

)(
P̃ (t) + S̃j(t) + θ(p̃(t) + s̃j(t))(p̃(t) + s̃j(t))

>
)(

γ̄jx(t, z) 0
0 0

)
λj(t)

+

D∑
j=1

(
γ̄jx(t, z) 0

0 0

)> [(
1 + Λ̃j(t)

)(
P̃ (t) + S̃j(t) + θ(p̃(t) + s̃j(t))s̃j(t)

>
)
− P̃ (t)

]
λj(t)

+

D∑
j=1

[(
1 + Λ̃j(t)

)(
P̃ (t) + S̃j(t) + θs̃j(t)(p̃(t) + s̃j(t))

>
)
− P̃ (t)

](
γ̄jx(t, z) 0

0 0

)
λj(t)

+

D∑
j=1

[
Λ̃j(t)S̃j(t) +

(
1 + Λ̃j(t)

)
θs̃j(t)s̃j(t)

>
]
λj(t)

+

(
H̄θ
xx(t, x̄(t), ū(t), α(t), p̄(t), q̄(t), r̄(t, ·), s̄(t)) 0

0 0

)}
dt

+

N∑
j=1

Q̃j(t)dWj(t) +

M∑
j=1

∫
R0

R̃j(t, z)Ñ
j
α(dt,dz) +

D∑
j=1

S̃j(t)dΦ̃j(t),
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with terminal condition

P̃ (T ) =

(
gxx(x̄(T ), α(T )) 0

0 0

)
,

and

Q̃j(t) =
Qj(t)

θV (t−)
− θp̄(t)>σ̄j(t)

(
P̃ (t) + θp̃(t)p̃(t)>

)
− θp̃(t)q̃j(t)> − θq̃j(t)p̃(t)>, j = 1, . . . , N,

R̃j(t, ·) =
Rj(t, ·)
θV (t−)

− Θ̃j(t, z)
(
P̃ (t−) + θp̃(t−)p̃(t−)> + Zj(t, z)

)
− θp̃(t−)r̃j(t, z)

> − θr̃j(t, z)p̃(t−)> − θr̃j(t, z)r̃j(t, z)>, j = 1, . . . ,M,

S̃j(t) =
Sj(t)

θV (t−)
− Λ̃j(t)

(
P̃ (t−) + θp̃(t−)p̃(t−)> +Aj(t)

)
− θp̃(t−)s̃j(t)

> − θs̃j(t)p̃(t−)> − θs̃j(t)s̃j(t)>, j = 1, . . . , D. (4.25)

Therefore, it follows that

P̃ (t) =

(
P̄ (t) 0

0 0

)
,

Q̃j(t) =

(
Q̄j(t) 0

0 0

)
, j = 1, . . . , N,

R̃j(t, ·) =

(
R̄j(t, ·) 0

0 0

)
, j = 1, · · · ,M,

S̃j(t) =

(
S̄(t) 0

0 0

)
, j = 1, . . . , D, (4.26)

where (P̄ (·), Q̄(·), R̄(·, ·), S̄(·)) is the solution of (3.3). As in the first order case, this solution is unique. �

In the next step, we will transform the variational inequality (4.6) and the maximum condition (4.7) to a
more familiar form as stated in Theorem 3.2.

Step 4. Maximum condition

The transformation of the variational inequality and the maximum condition are given in the following lemma.

Lemma 4.6. Under ssumptions (A1)−(A5), the variational inequality (4.6) and the maximum condition (4.7)
reduce to (3.8) and (3.9), respectively.

Proof. To start, consider the variational inequality (4.6). It can be shown that, in view of (4.11), (4.16)
and (4.18), for each ei ∈ S,

Hθ(t, x, u, ei, p(t−), q(t), r(t, ·), s(t)) = θV (t−)H̄θ(t, x, u, ei, p̄(t−), q̄(t), r̄(t, ·), s̄(t)), (4.27)
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where Hθ and H̄θ are defined by (4.5) and (3.6), respectively. By (4.19), (4.25) and (4.26), we can easily obtain:

1

2

(
δσj(t, u)

0

)>
P (t−)

(
δσj(t, u)

0

)
=
θV (t−)

2
δσj(t, u)>

(
P̄ (t−) + θp̄(t−)p̄(t−)>

)
δσj(t, u), (4.28)

1

2

(
δηj(t, u, z)

0

)> (
P (t−) +Rj(t, z)

)(
δηj(t, u, z)

0

)
(4.29)

=
θV (t−)

2
δηj(t, u, z)>

(
1 +Θj(t, z)

)(
P̄ (t−) + R̄j(t, z) + θ(p̄(t−) + r̄j(t, z))(p̄(t−) + r̄j(t, z))

>
)
δηj(t, u, z)

1

2

(
δγj(t, u)

0

)> (
P (t−) + Sj(t)

)(
δγj(t, u)

0

)
=
θV (t−)

2
δγj(t, u)>

(
1 + Λj(t)

)(
P̄ (t−) + S̄j(t) + θ(p̄(t−) + s̄j(t))(p̄(t−) + s̄j(t))

>
)
δγj(t, u). (4.30)

Since V (t−) > 0, it follows that the variational inequality (4.6) is equivalent to

H̄θ(t, x̄(t−), u, α(t−), p̄(t−), q̄(t), r̄(t, ·), s̄(t))− H̄θ(t, x̄(t−), ū(t), α(t−), p̄(t−), q̄(t), r̄(t, ·), s̄(t))

+
1

2

N∑
j=1

δσj(t, u)>
(
P̄ (t−) + θp̄(t−)p̄(t−)>

)
δσj(t, u)

+
1

2

M∑
j=1

∫
R0

[
δηj(t, u, z)>

(
1 +Θj(t, z)

)(
P̄ (t−) + R̄j(t, z)

+ θ(p̄(t−) + r̄j(t, z))(p̄(t−) + r̄j(t, z))
>
)
δηj(t, u, z)

]
νjα(dz)

+
1

2

D∑
j=1

[
δγj(t, u)>

(
1 + Λj(t)

)(
P̄ (t−) + S̄j(t)

+ θ(p̄(t−) + s̄j(t))(p̄(t−) + s̄j(t))
>
)
δγj(t, u)

]
λj(t) ≥ 0 ∀u ∈ U, a.e. t ∈ [s, T ], P -a.s. (4.31)

which gives (3.8). The equivalent condition (3.9) is obtained via direct manipulation. �

This completes proofs for both Theorems 3.2 and 3.4.

5. Applications

In this section, we apply our results to solve first a linear-quadratic (LQ) optimal control problem and second,
a risk-sensitive benchmarked asset management for Markov regime-switching models. For simplicity, we suppose
that all the controled processes are 1-dimensional.

5.1. Application to LQ risk-sensitive control under regime-switching

Consider the following LQ risk-sensitive control problem:

Minimize Jθ(x, ei;u(·)) = E

[
eθ
[ ∫ T

0

(
M(t,α(t))x(t)+ 1

2N(t,α(t))u(t)2
)

dt+Gx(T )
]]
,

subject to:


dx(t) = [A(t, α(t))x(t) +B(t, α(t))u(t) + b(t, α(t))]dt

+[C(t, α(t))u(t) + σ(t, α(t))]dW (t)

+

∫
R0

η(t, α(t−), z)Ñα(dt,dz) + γ(t, α(t−))dΦ̃(t),

x(0) = x, t ∈ [0, T ].

(5.1)
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We assume that U = R and for each ei ∈ S, A(·, ei), B(·, ei), b(·, ei), C(·, ei), σ(·, ei), N(·, ei) > 0,M(·, ei) ∈
L∞F ([0, T ];R), η(·, ei, ·) ∈ L2(R0,B(R0), να;R), γ(·, ei) ∈ M2(R+;RD), G, x ∈ R and θ > 0 is given. Here
L∞F ([0, T ];R) denotes the set of R-valued Ft-adapted essentially bounded processes. We also need the following
assumption: for any admissible pair (x(·), u(·)),

E
[
eθ[

∫ T
0
|M(t,α(t))x(t)+ 1

2N(t,α(t))u(t)2|dt+|Gx(T )|]
]
<∞. (5.2)

This is a special case of our risk-sensitive control problem (2.6)−(2.8) with the initial time equals 0 and x(t)
satisfies a linear SDE. Obviously, the solution of x(t) is given in the following:

x(T ) =xe
∫ T
o
A(s,α(s))ds +

∫ T

0

e
∫ T
t
A(s,α(s))ds

[
B(t, α(t))u(t) + b(t, α(t))

]
dt

+

∫ T

0

e
∫ T
t
A(s,α(s))ds

[
C(t, α(t))u(t) + σ(t, α(t))

]
dW (t)

+

∫ T

0

∫
R0

e
∫ T
t
A(s,α(s))dsη(t, α(t−), z)Ñα(dt,dz)

+

∫ T

0

e
∫ T
t
A(s,α(s))dsγ(t, α(t−))dΦ̃(t)

∆
=xΓ (T ) +Σ(T ),

where

Γ (T ) = e
∫ T
o
A(s,α(s))ds,

Σ(T ) =

∫ T

0

e
∫ T
t
A(s,α(s))ds

[
B(t, α(t))u(t) + b(t, α(t))

]
dt

+

∫ T

0

e
∫ T
t
A(s,α(s))ds

[
C(t, α(t))u(t) + σ(t, α(t))

]
dW (t)

+

∫ T

0

∫
R0

e
∫ T
t
A(s,α(s))dsη(t, α(t−), z)Ñα(dt,dz)

+

∫ T

0

e
∫ T
t
A(s,α(s))dsγ(t, α(t−))dΦ̃(t).

Substituting the solution for x(t) into Jθ(x, ei;u(·)), we have

Jθ(x, ei;u(·)) =E

[
exp

(
θx

[ ∫ T

0

M(t, α(t))Γ (t)dt+GΓ (T )

])
× exp

(
θ

∫ T

0

[
M(t, α(t))Σ(t) +

1

2
N(t, α(t))u(t)2

]
dt+ θGΣ(T )

)]
.

Under the above assumptions on the coefficients, it is easy to see that Jθ(x, ei;u(·)) is infinitely differentiable
with respect to x. So assumptions (A1)−(A6) made in Section 2 hold, we can use our maximum principle
(Thms. 3.2 and 3.4) to solve the above risk-sensitive optimal control problem. First of all, associated with an
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admissible pair (x̄(·), ū(·)), the adjoint equations (3.2) and (3.3) become

dp̄(t) = −
{
A(t, α(t))p̄(t) +M(t, α(t)) + θp̄(t)

(
C(t, α(t))ū(t) + σ(t, α(t))

)
q̄(t)

+

∫
R0

Θ(t, z)r̄(t, z)να(dz) +

D∑
j=1

Λj(t)s̄j(t)λj(t)
}

dt

+q̄(t)dW (t)+

∫
R0

r̄(t, z)Ñα(dt,dz) +

D∑
j=1

s̄j(t)dΦ̃j(t),

p̄(T ) = G,

(5.3)



dP̄ (t) = −
{

2A(t, α(t))P̄ (t) + θp̄(t)(C(t, α(t))ū(t) + σ(t, α(t)))Q̄(t)

+ θq̄(t)2 +

∫
R0

[
(1 +Θ(t, z))θr̄(t, z)2 +Θ(t, z)R̄(t, z)

]
να(dz)

+
D∑
j=1

[
(1 + Λj(t))θs̄j(t)

2 + Λj(t)S̄j(t)
]
λj(t)

}
dt

+ Q̄(t)dW (t) +

∫
R0

R̄(t, z)Ñα(dt, dz) +

D∑
j=1

S̄j(t)dΦ̃j(t),

P̄ (T ) = 0,

(5.4)

It follows from its terminal condition that the BSDE (5.3) is deterministic, that is q̄(t) = r̄(t, ·) = s̄(t) = 0.
Then p̄(·) is the solution of the following equation:{

dp̄(t) = −[A(t, α(t))p̄(t) +M(t, α(t))]dt,

p̄(T ) = G.
(5.5)

The unique solution of (5.5) is given by

p̄(t) = e
∫ T
t
A(s,α(s))ds

(∫ T

t

M(s, α(s))e−
∫ T
s
A(r,α(r))drds+G

)
.

Similarly, (P̄ (t), Q̄(t), R̄(t, ·), S̄(t)) = (0, 0, 0, 0) is the unique solution of (5.4). The associated Hθ-function is

H̄θ(t, x, u, ei) := p̄(t−)[A(t, ei)x+B(t, ei)u+ b(t, ei)] +M(t, ei)x

+
1

2
N(t, ei)u

2 +
1

2
θp̄(t−)2

(
C(t, ei)u+ σ(t, ei)

)2
+

∫
R0

η(t, ei, z)
[
Θ(t, z)p̄(t−)− 1

2

(
1 +Θ(t, z)

)
θp̄(t−)2η(t, ei, z)

]
να(dz)

+

D∑
j=1

γj(t, ei)
[
Λj(t)p̄(t−)− 1

2

(
1 + Λj(t)

)
θp̄(t−)2γj(t, ei)

]
λj(t).

By the maximum condition (3.9), we obtain a candidate optimal control

ū(t) = −B(t, α(t−))p̄(t−) + θC(t, α(t−))σ(t, α(t−))p̄(t−)2

N(t, α(t−)) + θC(t, α(t−))2p̄(t−)2
, (5.6)

where p̄(·) is determined by (5.5). By (5.1), (5.5) and (5.6), we can easily check assumption (5.2) holds for the
candidate optimal pair (x̄(·), u(·)).
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Finally, we verify that, in the present case, the necessary conditions of optimality (Thm. 3.2) are also sufficient.
In view of the sufficient conditions given in Theorem 3.4, it suffices to show the convexity of g(x, ei) = Gx and
the joint convexity of the Hamiltonian H̄θ(t, x, u, ei) = H̄θ(t, x, u, ei, p̄(t−), q̄(t), r̄(t, ·), s̄(t)) in (x, u). Since g is
linear in x, it is obviously convex. On the other hand,

H̄θ(t, x, u, ei) = p̄(t−)[A(t, ei)x+B(t, ei)u+ b(t, ei)] +M(t, ei)x

+
1

2
N(t, ei)u

2 +
1

2
θp̄(t−)2

(
C(t, ei)u+ σ(t, ei)

)2
+

∫
R0

Θ(t, z)p̄(t−)η(t, ei, z)νei(dz) +

D∑
j=1

Λj(t)p̄(t−)γj(t, ei)λj(t) (5.7)

is quadratic in u and linear in x. Since N(t, ei) is positive, H̄θ(t, x, u, ei) is convex with respect to (x, u). The
above analysis yields the following theorem:

Theorem 5.1. The optimal control for the risk-sensitive control problem (5.1) is given by

ū(t) = −B(t, α(t−))p̄(t−) + θC(t, α(t−))σ(t, α(t−))p̄(t−)2

N(t, α(t−)) + θC(t, α(t−))2p̄(t−)2
, (5.8)

with

p̄(t) = e
∫ T
t
A(s,α(s))ds

(∫ T

t

M(s, α(s))e−
∫ T
s
A(r,α(r))drds+G

)
.

5.2. Application to risk-sensitive benchmarked and asset management under
regime-switching

In this section, we apply our stochastic maximum principle to solve a risk-sensitive benchmarked asset
management problem in a Markov regime-switching financial market. We assume that γ = η = 0, that is we
consider a Markov regime-switching diffusion factor model. Our model is inspired by that of [2] (see also [6]).
More specifically, we assume that there is one economic factor x that determines the performance of the market
and which evolves according to:

dx(t) =
(
b(t, α(t)) + C(t, α(t))x(t)

)
dt+ σ(t, α(t))dW (t), x(0) = x ∈ R. (5.9)

The dynamics of the risky asset S is governed by:

dS(t)

S(t)
=
(
a(t, α(t)) +A(t, α(t))x(t)

)
dt+ ξ(t, α(t))dZ(t), S(0) = s ∈ R, (5.10)

where Z is a one-dimensional standard Brownian motion, correlated with W : Cov
(
Z(t),W (t)

)
= ρ0t in which

ρ0 is a constant valued in [−1, 1]. In addition, by standard Gaussian linear regression, W (t) can be rewritten as
dW (t) = ρ0dZ(t) + ρdB(t), where ρ =

√
1− ρ2

0 and B(t) is a standard Brownian motion which is independent
of Z(t).

The dynamics of the riskless asset S0 is given by:

dS0(t)

S0(t)
=
(
a0(t, α(t)) +A0(t, α(t))x(t)

)
dt, S0(0) = s0 ∈ R. (5.11)

Here we assume that all the functions b(t, ei), C(t, ei), σ(t, ei) > 0, a(t, ei), A(t, ei), ξ(t, ei) > 0, a0(t, ei),
A0(t, ei) are deterministic continuous functions and uniformly bounded in t.

Let Gt = σ((S(s), L(s), x(s)), 0 ≤ s ≤ t) be the σ-field generated by the security, benchmark (defined below)
and factor process up to time t. The proportion of wealth invested in the risky asset is defined by an R-valued
stochastic process u(t).
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Definition 5.2. An investment process u(·) is said to be admissible if the following conditions are satisfied:

(1) u(·) is progressively measurable with respect to {B([0, t])⊗ Gt}t≥0;

(2) P (
∫ T

0
|u(t)|2dt < +∞) = 1;

(3) EχuT = 1, with χuT given by (5.20).

The set of all admissible strategies on [0, T ] is denoted by U [0, T ].

Let Xu(t) be the investor’s wealth at time t corresponding to the portfolio strategy u. Then, by the self
financing condition, Xu(t) evolves according to:

dXu(t)

Xu(t)
=u(t)

dS(t)

S(t)
+ (1− u(t))

dS0(t)

S0(t)

=
[
a0(t, α(t)) +A0(t, α(t))x(t) +

(
ã(t, α(t)) + Ã(t, α(t))x(t)

)
u(t)

]
dt

+ ξ(t, α(t))u(t)dZ(t), (5.12)

with Xu(0) = x0, ã(t, α(t)) = a(t, α(t))− a0(t, α(t)) and Ã(t, α(t)) = A(t, α(t))−A0(t, α(t)).
Here, we are also interested in portfolio management relative to the performance of a benchmark. The

benchmark also depends on the economic factor x. It can for example represent the wealth process of some
investors or the value process of a non-traded asset. We assume that the dynamics of L(t) satisfies the following
SDE

dL(t)

L(t)
=
(
a1(t, α(t)) +A1(t, α(t))x(t)

)
dt+ β(t, α(t))dZ(t), L(0) = l ∈ R, (5.13)

where a1(t, ei), A1(t, ei), β(t, ei) > 0 are deterministic continuous functions and uniformly bounded in t.
In risk-sensitive control, the investor’s objective is to select a control strategy u(t) to maximize the criterion

J(x0, u, ei; θ) := −2

θ
lnE

[
e−

θ
2F (T,u)

]
, (5.14)

where F is a given reward function, and the risk-sensitive parameter θ > 0 is an exogenous parameter repre-
senting the investor’s degree of risk aversion. A Taylor expansion of (5.14) around θ = 0 evidences the vital role
played by the risk-sensitive parameter:

J(x0, u, ei; θ) := E[F (T, u)]− θ

4
V ar[F (T, u)] + o(θ2). (5.15)

This criterion amounts to maximizing E[F (T, u)] subject to a penalty for variance; for a general overview; see,
for example, [23].

Similar to [6], since we look at the performance of the portfolio relative to the benchmark, we consider the
log of excess return of the asset portfolio over its benchmark, that is, F (T, u) is defined as

F (T, u) := ln
Xu(T )

L(T )
= lnXu(T )− lnL(T ). (5.16)

By Itô’s formula, the log of excess return in response to a strategy u is

F (T, u) = ln
x0

l
+

∫ T

0

[
a0(t, α(t)) +A0(t, α(t))x(t) +

(
ã(t, α(t)) + Ã(t, α(t))x(t)

)
u(t)

− 1

2
ξ(t, α(t))2u(t)2 − a1(t, α(t))−A1(t, α(t))x(t) +

1

2
β(t, α(t))2

]
dt

+

∫ T

0

(
ξ(t, α(t))u(t)− β(t, α(t))

)
dZ(t). (5.17)
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Hence

e−
θ
2F (T,u) =

(x0

l

)− θ2
exp

{
θ

∫ T

0

f(t, x(t), u(t), α(t))dt

}
χuT , (5.18)

where

f(t, x, u, ei) =
1

4

(
θ

2
+ 1

)
ξ(t, ei)

2u2 − 1

2
a0(t, ei)−

1

2
A0(t, ei)x−

1

2

(
ã(t, ei) + Ã(t, ei)x

)
u

+
1

2
a1(t, ei) +

1

2
A1(t, ei)x−

θ

4
ξ(t, ei)β(t, ei)u+

1

4

(
θ

2
− 1

)
β(t, ei)

2, (5.19)

and

χuT = exp

{
− θ

2

∫ T

0

(
ξ(t, α(t))u(t)− β(t, α(t))

)
dZ(t)

− 1

2

(
θ

2

)2 ∫ T

0

(
ξ(t, α(t))u(t)− β(t, α(t))

)2

dt

}
. (5.20)

For each u(·) ∈ U [0, T ], define a new probability measure Pu on GT via

dPu

dP
:= χuT . (5.21)

From Girsanov’s theorem, it follows that

Zu(t) = Z(t) +
θ

2

∫ t

0

(
ξ(s, α(s))u(s)− β(s, α(s))

)
ds (5.22)

is a standard Brownian motion under the measure Pu. Thus, the dynamics of x(t) under Pu is

dx(t) =

(
b(t, α(t)) + C(t, α(t))x(t)− θ

2
ρ0σ(t, α(t))

(
ξ(t, α(t))u(t)− β(t, α(t))

))
dt

+ ρ0σ(t, α(t))dZu(t) + ρσ(t, α(t))dB(t). (5.23)

We can now introduce the auxiliary criterion functional under the measure Pu:

J̃(x0, x, u, ei; θ) = Eu

[
exp

{
θ

∫ T

0

f(t, x(t), u(t), α(t))dt

}]
, (5.24)

where Eu[·] denotes the expectation taken with respect to the measure Pu. Clearly, our original problem has
the same optimal strategy as minimizing (5.24) subject to (5.23).

Similar to the previous subsection, it is not hard to check that assumptions (A1)−(A6) made in Section 2
are satisfied. Hence, we can apply Theorem 3.2 and 3.4 to solve problem (5.23)−(5.24). Let (x̄(·), ū(·)) be an
optimal pair. First of all, the first order adjoint equation (3.2) reduces to

dp̄(t) = −
[
C(t, α(t))p̄(t) + θσ(t, α(t))p̄(t)(ρ0q̄1(t) + ρq̄2(t))

+
1

2
A1(t, α(t))− 1

2
A0(t, α(t))− 1

2
Ã(t, α(t))ū(t)

]
dt

+q̄1(t)dZu(t) + q̄2(t)dB(t) +
D∑
j=1

s̄j(t)dΦ̃j(t),

p̄(T ) = 0.

(5.25)
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Since the diffusion coefficients in the dynamics of the factor (5.23) is control independent, the second order
adjoint variables disappear automatically and the Hamiltonian function (3.7) takes the form

H̄θ(t, x, u, ei) =

(
b(t, ei) + C(t, ei)x−

θ

2
ρ0σ(t, ei)

(
ξ(t, ei)u− β(t, ei)

))
p̄(t)

+
1

4

(
θ

2
+ 1

)
ξ(t, ei)

2u2 − 1

2
a0(t, ei)−

1

2
A0(t, ei)x−

1

2

(
ã(t, ei) + Ã(t, ei)x

)
u

+
1

2
a1(t, ei) +

1

2
A1(t, ei)x−

θ

4
ξ(t, ei)β(t, ei)u+

1

4

(
θ

2
− 1

)
β(t, ei)

2

+ σ(t, ei)(ρ0q̄1(t) + ρq̄2(t)) +
1

2
θσ(t, ei)

2p̄(t)2. (5.26)

By the maximum condition (3.9), we obtain

ū(t) =
2θρ0σ(t, α(t))

(θ + 2)ξ(t, α(t))
p̄(t) +

2Ã(t, α(t))

(θ + 2)ξ(t, α(t))2
x̄(t) +

2ã(t, α(t)) + θξ(t, α(t))β(t, α(t))

(θ + 2)ξ(t, α(t))2
. (5.27)

Substituting (5.27) into the SDE (5.23) and BSDE (5.25) yield



dx̄(t) =
(
b(t, α(t)) + C(t, α(t))x̄(t)− ρ2

0θ
2σ(t, α(t))2

θ + 2
p̄(t)− ρ0θσ(t, α(t))Ã(t, α(t))

(θ + 2)ξ(t, α(t))
x̄(t)

−ρ0θσ(t, α(t))ã(t, α(t))

(θ + 2)ξ(t, α(t))
+
ρ2

0θσ(t, α(t))β(t, α(t))

θ + 2

)
dt

+ρ0σ(t, α(t))dZu(t) + ρσ(t, α(t))dB(t),

dp̄(t) = −
(
C(t, α(t))p̄(t) + θσ(t, α(t))p̄(t)(ρ0q̄1(t) + ρq̄2(t)) +

1

2
A1(t, α(t))− 1

2
A0(t, α(t))

−ρ0θσ(t, α(t))Ã(t, α(t))

(θ + 2)ξ(t, α(t))
p̄(t)− Ã(t, α(t))2

(θ + 2)ξ(t, α(t))2
x̄(t)− ã(t, α(t))Ã(t, α(t))

(θ + 2)ξ(t, α(t))2

−θβ(t, α(t))Ã(t, α(t))

2(θ + 2)ξ(t, α(t))

)
dt+ q̄1(t)dZu(t) + q̄2(t)dB(t) +

D∑
j=1

s̄j(t)dΦ̃j(t),

x̄(0) = x, p̄(T ) = 0.

(5.28)

Therefore, an optimal pair (x̄(·), ū(·)) can be obtained by solving the above FBSDE (forward-backward stochastic
differential equation). We conjecture the solution of (5.28) to be in the following form:

p̄(t) = φ(t, α(t))x̄(t) + ϕ(t, α(t)), (5.29)

where φ(t, ei), ϕ(t, ei), i = 1, . . . , D, are deterministic and differentiable functions which are to be determined.
From (5.28), φ, ϕ must satisfy the following terminal boundary condition:

φ(T, ei) = 0 and ϕ(T, ei) = 0, i = 1, . . . , D.
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Applying Itô’s formula to the right-hand side of (5.29) yields

dp̄(t) =

{
φ′(t, α(t))x̄(t) + ϕ′(t, α(t)) + φ(t, α(t))

[
b(t, α(t)) + C(t, α(t))x̄(t)

− ρ2
0θ

2σ(t, α(t))2

θ + 2
p̄(t)− ρ0θσ(t, α(t))Ã(t, α(t))

(θ + 2)ξ(t, α(t))
x̄(t)− ρ0θσ(t, α(t))ã(t, α(t))

(θ + 2)ξ(t, α(t))

+
ρ2

0θσ(t, α(t))β(t, α(t))

θ + 2

]
+

D∑
j=1

[(
φ(t, ej)− φ(t, α(t))

)
x̄(t) + ϕ(t, ej)− ϕ(t, α(t))

]
λj(t)

}
dt

+ ρ0φ(t, α(t))σ(t, α(t))dZu(t) + ρφ(t, α(t))σ(t, α(t))dB(t)

+

D∑
j=1

[(
φ(t, ej)− φ(t, α(t))

)
x̄(t) + ϕ(t, ej)− ϕ(t, α(t))

]
dΦ̃j(t). (5.30)

Comparing the coefficients with (5.28), we get

q̄1(t) = ρ0φ(t, α(t))σ(t, α(t)), (5.31)

q̄2(t) = ρφ(t, α(t))σ(t, α(t)), (5.32)

s̄j(t) =
(
φ(t, ej)− φ(t, α(t))

)
x̄(t) + ϕ(t, ej)− ϕ(t, α(t)). (5.33)

and 
φ′(t, ei) +

ρ2θ2 + 2θ

θ + 2
σ(t, ei)

2φ(t, ei)
2 + 2

(
C(t, ei)−

ρ0θσ(t, ei)Ã(t, ei)

(θ + 2)ξ(t, ei)

)
φ(t, ei)

− Ã(t, ei)
2

(θ + 2)ξ(t, ei)2
+

D∑
j=1

λij
(
φ(t, ej)− φ(t, ei)

)
= 0,

φ(T, ei) = 0,

(5.34)



ϕ′(t, ei) +

(
C(t, ei)−

ρ0θσ(t, ei)Ã(t, ei)

(θ + 2)ξ(t, ei)
+
ρ2θ2 + 2θ

θ + 2
σ(t, ei)

2φ(t, ei)

)
ϕ(t, ei)

+

(
b(t, ei)−

ρ0θσ(t, ei)ã(t, ei)

(θ + 2)ξ(t, ei)
+
ρ2

0θσ(t, ei)β(t, ei)

θ + 2

)
φ(t, ei)

+
1

2
A1(t, ei)−

1

2
A0(t, ei)−

ã(t, ei)Ã(t, ei)

(θ + 2)ξ(t, ei)2

−θβ(t, ei)Ã(t, ei)

2(θ + 2)ξ(t, ei)
+

D∑
j=1

λij
(
ϕ(t, ej)− ϕ(t, ei)

)
= 0,

ϕ(T, ei) = 0.

(5.35)

Equation (5.34) is a Markov regime-switching Riccati ordinary differential equation (ODE) and is difficult
to solve in general. However, we can obtain a representation of the solution of (5.34) using Radon’s lemma
(see Lem. A.1), which provides a general relation between linear systems of differential equations and Riccati
differential equations. Radon’s lemma has been used in the literature (see [4,18]) to turn a matrix-valued Riccati
ODE into a solvable linear system of ODEs.



1010 Z. SUN ET AL.

Using the same argument as in ([12], Eq. 4.13) to deal with a system of coupled ODEs, we define for each
i = 1, 2, . . . , D,

∆(t, ei) =C(t, ei)−
ρ0θσ(t, ei)Ã(t, ei)

(θ + 2)ξ(t, ei)
+

1

2
λii,

Υ (t, ei) =
ρ2θ2 + 2θ

θ + 2
σ(t, ei)

2,

Π(t, ei) =− Ã(t, ei)
2

(θ + 2)ξ(t, ei)2
+

D∑
j=1,j 6=i

λijφ(t, ej).

It follows from equation (5.34) that φ(t, ei) satisfies the following Riccati ODE:{
φ′(t, ei) + Υ (t, ei)φ(t, ei)

2 + 2∆(t, ei)φ(t, ei) +Π(t, ei) = 0,

φ(T, ei) = 0.
(5.36)

Then by Lemma A.1, we obtain (set τ := T − t)

φ(t, ei) =
R̃2(τ, ei)

R̃1(τ, ei)
, (5.37)

where R̃1(0, ei) = 1, R̃2(0, ei) = 0 and R̃(τ, ei) = (R̃1(τ, ei), R̃2(τ, ei))
> satisfies the following linear system of

ODEs:

dR̃(τ, ei)

dτ
=

(
−∆(T − τ, ei) −Υ (T − τ, ei)
Π(T − τ, ei) ∆(T − τ, ei)

)
R̃(τ, ei). (5.38)

Once the solution of φ(t, ei) is derived, we obtain by Itô’s formula that

e
∫ T
t
Γ (s,α(s))dsϕ(T, α(T )) = ϕ(t, α(t)) +

∫ T

t

e
∫ s
t
Γ (r,α(r))drM(s, α(s))ds+N(t), (5.39)

where

M(t, ei) = ϕ′(t, ei) + Γ (t, ei)ϕ(s, ei) +

D∑
j=1

λij
(
ϕ(t, ej)− ϕ(t, ei)

)
,

N(t) =

D∑
j=1

∫ T

t

e
∫ s
t
Γ (r,α(r))dr

(
ϕ(s, ej)− ϕ(s, α(s−))

)
dΦ̃j(s),

Γ (t, ei) = C(t, ei)−
ρ0θσ(t, ei)Ã(t, ei)

(θ + 2)ξ(t, ei)
+
ρ2θ2 + 2θ

θ + 2
σ(t, ei)

2φ(t, ei),

Σ(t, ei) =

(
b(t, ei)−

ρ0θσ(t, ei)ã(t, ei)

(θ + 2)ξ(t, ei)
+
ρ2

0θσ(t, ei)β(t, ei)

θ + 2

)
φ(t, ei)

+
1

2
A1(t, ei)−

1

2
A0(t, ei)−

ã(t, ei)Ã(t, ei)

(θ + 2)ξ(t, ei)2
− θβ(t, ei)Ã(t, ei)

2(θ + 2)ξ(t, ei)
·

It is easy to check that N(t) is a martingale under our assumptions. From (5.35), we know that M(t, ei) =
−Σ(t, ei) and ϕ(T, α(T )) = 0. Then by taking expectation on both sides of (5.39), ϕ(t, ei) admits the following
Feynman-Kac representation:

ϕ(t, ei) = E

[∫ T

t

e
∫ s
t
Γ (r,α(r))drΣ(s, α(s))ds

∣∣∣α(t) = ei

]
. (5.40)
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With the above choice of φ(t, ei) and ϕ(t, ei) (defined by (5.37) and (5.40), respectively), a candidate for the
optimal control is

ū(t) =
2

(θ + 2)ξ(t, α(t))2

[
ã(t, α(t)) +

(
Ã(t, α(t)) + θξ(t, α(t))σ(t, α(t))φ(t, α(t))

)
x̄(t)

+
θ

2
ξ(t, α(t))β(t, α(t)) + θξ(t, α(t))σ(t, α(t))ϕ(t, α(t))

]
. (5.41)

Thus, from Theorem 3.4, to ensure that (5.41) is indeed optimal, we only need to check that
H̄θ(t, x, u, ei, p̄(t), q̄1(t), q̄2(t), s̄(t)) is convex in (x, u). Obviously,

H̄θ(t, x, u, ei, p̄(t), q̄1(t), q̄2(t), s̄(t)) =

(
b(t, ei) + C(t, ei)x−

θ

2
ρ0σ(t, ei)

(
ξ(t, ei)u− β(t, ei)

))
p̄(t)

+
1

4

(
θ

2
+ 1

)
ξ(t, ei)

2u2 − 1

2
a0(t, ei)−

1

2
A0(t, ei)x−

1

2

(
ã(t, ei) + Ã(t, ei)x

)
u

+
1

2
a1(t, ei) +

1

2
A1(t, ei)x−

θ

4
ξ(t, ei)β(t, ei)u+

1

4

(
θ

2
− 1

)
β(t, ei)

2

+σ(t, ei)(ρ0q̄1(t) + ρq̄2(t)) + θσ(t, ei)
2p̄(t)2 (5.42)

is quadratic in u and linear in x. Therefore, it is convex with respect to (x, u). The above analysis yields the
following theorem:

Theorem 5.3. The optimal portfolio strategy for the risk-sensitive benchmarked asset management prob-
lem (5.14) subject to (5.9), (5.12) and (5.13) is given in a feedback form by (5.41), where φ(t, α(t)) and ϕ(t, α(t))
in (5.41) are defined by (5.37) and (5.40), respectively.

From Theorem 5.3, we get easily the following corollary which corresponds to ([6], Thm. 1).

Corollary 5.4. Assume that ρ0 = D = 1, b(t, α(t)) = b(t), C(t, α(t)) = C(t), a1(t, α(t)) = a1(t), A1(t, α(t)) =
A1(t), ξ(t, α(t)) = ξ(t), ã(t, α(t)) = ã(t), Ã(t, α(t)) = Ã(t), σ(t, α(t)) = σ(t) and β(t, α(t)) = β(t). Then the
optimal portfolio strategy ū(·) reduces to

ū(t) =
2

(θ + 2)ξ(t)2

[
ã(t) +

(
Ã(t) + θξ(t)σ(t)ψ(t)

)
x̄(t) +

θ

2
ξ(t)β(t) + θξ(t)σ(t)κ(t)

]
, (5.43)

where ψ(t) and κ(t) are solutions of the following ordinary differential equations:ψ′(t) +
2θ

θ + 2
σ(t)2ψ(t)2 + 2

(
C(t)− θσ(t)Ã(t)

(θ + 2)ξ(t)

)
ψ(t)− Ã(t)2

(θ + 2)ξ(t)2
= 0,

ψ(T ) = 0,

(5.44)


κ′(t) +

(
C(t)− θσ(t)Ã(t)

(θ + 2)ξ(t)
+

2θ

θ + 2
σ(t)2ψ(t)

)
κ(t) +

(
b(t)− θσ(t)ã(t)

(θ + 2)ξ(t)
+
θσ(t)β(t)

θ + 2

)
ψ(t)

+
1

2
A1(t)− 1

2
A0(t)− ã(t)Ã(t)

(θ + 2)ξ(t)2
− θβ(t)Ã(t)

2(θ + 2)ξ(t)
= 0,

κ(T ) = 0.

(5.45)

Remark 5.5. The solution to equation (5.44) can also be obtained by Lemma A.1 and hence the solution
to (5.45) will follow. Our result can be seen as an extension of ([6], Thm. 1) to the Markov regime-switching
case. Note that the authors in [6] use the dynamic programming approach, which differs from ours.
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6. Conclusion

In this paper, we have proved a sufficient and necessary risk-sensitive maximum principle in a general Markov
regime-switching jump-diffusion setting by using a logarithmic transformation approach. As applications of
the obtained results, we have discussed both a linear-quadratic optimal control problem and a risk-sensitive
benchmarked asset management problem in a Markov regime-switching financial market. Note that in this work,
the terminal condition and the Hamiltonian are all assumed to be convex. The latter is not always satisfied
in some interesting applications (see [13, 15] for the classical maximum principle) and hence the risk-sensitive
maximum principle for Markov regime-switching model with non-convex Hamiltonian is needed. It will also be
interesting to solve the infinite horizon risk-sensitive maximum principle for Markov regime-switching system.
We hope to address these problems in the future research.

Appendix A. Radon’s lemma

The proposed solution to the Markov regime-switching Riccati equation (5.34) is based on the following
Radon’s lemma from ([1], Thm. 3.1.1).

Lemma A.1. If K(·) is a differentiable function and satisfies the following Riccati ODE:
dK(t)

dt
+ µ(t)K(t)2 + 2β(t)K(t) + ω(t) = 0,

K(T ) = 0.

(A.1)

Here µ(t), β(t), ω(t) are deterministic continuous functions, then the explicit solution of K(·) is given by K(t) =
R2(τ)
R1(τ) , where τ := T − t, R1(τ), R2(τ) are differentiable and R(τ) = (R1(τ), R2(τ))> is the fundamental matrix
solution of the following linear system of ODEs:

dR(τ)

dτ
=

(
−β(T − τ) −µ(T − τ)
ω(T − τ) β(T − τ)

)
R(τ), (A.2)

with initial conditions R1(0) = 1 and R2(0) = 0. Particularly, if all the coefficients µ(t), β(t), ω(t) are constants,
i.e. µ(t) = µ, β(t) = β and ω(t) = ω, the solution of R(τ) is given by

R(τ) = exp

[(
−β −µ
ω β

)
τ

](
1
0

)
. (A.3)

Remark A.2. Since the matrix exponential in (A.2) is easy to compute given modern computing power, the
Radon’s lemma greatly simplifies the procedure of calculation.

Proof. From (A.2), we have
R′1(τ) =

dR1(τ)

dτ
= −β(T − τ)R1(τ)− µ(T − τ)R2(τ),

R′2(τ) =
dR2(τ)

dτ
= ω(T − τ)R1(τ) + β(T − τ)R2(τ).

(A.4)

Then, by the above definition of K(t), we get

dK(t)

dt
=

d

dτ

(
R2(τ)

R1(τ)

)
· dτ

dt
= −

(
R2(τ)

R1(τ)

)′
= −R

′
2(τ)R1(τ)−R′1(τ)R2(τ)

R1(τ)2

=− ω(T − τ)− 2β(T − τ)
R2(τ)

R1(τ)
− µ(T − τ)

(
R2(τ)

R1(τ)

)2

=− ω(t)− 2β(t)K(t)− µ(t)K(t)2. (A.5)

Hence, K(t) = R2(τ)
R1(τ) is a solution of the Riccati ODE (A.1). �
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