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A NOTE ON THE BOUNDARY REGULARITY OF SOLUTIONS

TO QUASILINEAR ELLIPTIC EQUATIONS

Giuseppe Riey1 and Berardino Sciunzi1,a

Abstract. We study the summability up to the boundary of the second derivatives of solutions to a
class of Dirichlet boundary value problems involving the p-Laplace operator. Our results are meaningful
for the cases when the Hopf’s Lemma cannot be applied to ensure that there are no critical points of
the solution on the boundary of the domain.
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1. Introduction

Let Ω be a bounded smooth domain of Rn, let p > 1 be fixed and let f : Ω̄ × R → R be such that f is
Lipshitz continuous on each compact subset of Ω̄ × R. Let u ∈W 1,p

0 (Ω) be a weak solution to the problem:−∆pu = f(x, u) in Ω

u = 0 on ∂Ω ,
(1.1)

namely ∫
Ω

|∇u|p−2〈∇u,∇ϕ〉dx =

∫
Ω

f(x, u)ϕdx, for all ϕ ∈ C∞c (Ω). (1.2)

Having in mind [3, 7, 19] it is natural to assume that u ∈ C1,α(Ω), for some α < 1. In fact such a regularity
results holds under very general assumptions. Results regarding the study of the optimal C1,α regularity, namely
estimates on the value of α, can be found in [20], that is based on previous results in [6].

Here we address once again the study of the summability of the second derivatives. From [1,17,18] it is known
that under the above assumptions u ∈W 2,2

loc (Ω) if 1 < p < 3, and that, if p ≥ 3 and the source term f is strictly

positive, then u ∈W 2,q
loc (Ω) for q < p−1

p−2 . We remark that, if p ≥ 3, such a regularity is optimal (see e.g. [18]).
When Hopf’s boundary Lemma applies there is nothing to be proved up to the boundary since the solutions

have no critical points there and therefore the equation is no more degenerate. We therefore refer to cases when
Hopf’s Lemma cannot be applied.

Our main result is the following.
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Theorem 1.1. Let u ∈ C1,α(Ω) be a weak solution to (1.1). We have that:

(i) if p ≤ 2, then u ∈W 2,2(Ω),
(ii) if p > 2, then |∇u|p−1 ∈W 1,2(Ω).

This kind of results are somehow close to the Calderón-Zygmund theory. In the case of quasilinear elliptic
equation such theory in completely not trivial and has been developed by Mingione and his collaborators. We
only refer here to [6, 14,15] and the references therein.

Our proofs are based on weighted estimates for the second derivatives of the solution, achieved by means of
the linearized operator of a transformed (by a flattening) equation. To get these estimates, we use the techniques
developed in [1, 2, 10,17,18].

Regularity results in our setting, in cases when the assumptions to apply Hopf’s Lemma are not satisfied,
can be found also in [10], where the study of the summability of the second derivatives of the solutions on the
whole Ω is performed for p close to two. An example of application of the above techniques to cases where the
Hopf’s Lemma fails, can be found also in [8, 12].

2. Preliminary results

2.1. The flattening

Given a matrix A, we denote by AT the transposed of A. For x ∈ Rn, |x| denotes the euclidian norm of

x and, given a n × n matrix A, |A| is the euclidian norm: |A| =

√√√√ n∑
i,j=1

|aij |2. For r > 0 and x ∈ Rn we set

Br(x) = {x ∈ Rn : |x − x| < r}. For x ∈ ∂Ω and r > 0 small enough, consider B+ := Br(x) ∩ Ω and a
flattening operator, that means a diffeomorphism Φ : Rn → Rn such that Φ−1(Br(x) ∩ ∂Ω) ⊂ {yn = 0}. We
set: B+ = Φ−1(B+) and we denote by B− the reflection of B+ with respect to the hyperplane {yn = 0}. We set
B = B+ ∪ B− ∪ Φ−1 (∂Ω ∩Br(x)).

We set Ψ = Φ−1 and we use the change of variable:

x = Φ(y), y = Ψ(x) ,

so that we have:
w(y) = u(Φ(y)) in B+.

Denoting by JΦ(y) the Jacobian matrix of Φ, equation (1.2) becomes:∫
B+

|∇xu(Φ(y))|p−2〈∇xu(Φ(y)),∇xϕ(Φ(y))〉|detJΦ(y)|dy =

∫
B+

g(y, w(y))ψ(y)|detJΦ(y)|dy (2.1)

where detJΦ(y) denotes the determinant of JΦ(y) and we have set:

g(y, w) = f(Φ(y), w), ψ(y) = ϕ(Φ(y)).

Hence we have:
∇yw(y) = JΦ(y)T∇xu(Φ(y)) , ∇yψ(y) = JΦ(y)T∇xϕ(Φ(y))

and (2.1) gives:∫
B+

∣∣∣[JΦ(y)T
]−1∇w(y)

∣∣∣p−2
〈([

JΦ(y)T
]−1
)T [

JΦ(y)T
]−1∇w(y),∇ψ(y)

〉
|detJΦ(y)|dy

=

∫
B+

g(y, w(y))ψ(y)|detJ(Φ(y))|dy. (2.2)
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Setting:

A(y) =
[
J(Φ(y))T

]−1
, K(y) = A(y)TA(y), ρ(y) = |detJ(Φ(y))| (2.3)

it follows that w(y) weakly satisfies

−div
(
ρ(y)|A(y)∇w(y)|p−2K(y)∇w(y)

)
= g(y, w(y))ρ(y) (2.4)

in B+.
We define the odd extension of w(y) and the even extension of ρ(y) and A(y) (and hence of K) as follows:

w̄(y) =

{
w(y), if yn ≥ 0,

−w(y1, . . . , yn−1,−yn), if yn < 0
(2.5)

ρ̄(y) =

{
ρ(y), if yn ≥ 0,

ρ(y1, . . . , yn−1,−yn), if yn < 0
(2.6)

Ā(y) =

{
A(y), if yn ≥ 0,

A(y1, . . . , yn−1,−yn), if yn < 0.
(2.7)

For the function g(y, t) we consider the mixed extension (odd with respect to t and even with respect to yn):

ḡ(y, t) =



g(y, t), if yn ≥ 0, t ≥ 0,

−g(y,−t), if yn ≥ 0, t < 0,

g(y1, . . . , yn−1,−yn, t), if yn < 0, t ≥ 0,

−g(y1, . . . , yn−1,−yn,−t), if yn < 0, t < 0.

(2.8)

In this way, w̄(y) satisfies the following equation

−div(ρ̄(y)|Ā(y)∇w̄(y)|p−2K̄(y)∇w̄(y)) = ḡ(y, w̄)ρ̄(y) (2.9)

in B.
It is easy to verify that (2.9) fulfills the structural assumptions needed to apply standard C1,α regularity

results (in B), see for instance [3, 7, 19].

2.2. Properties of the flattening operator Φ

We assume that ∂Ω is smooth enough and, without loss of generality, we can assume that Ψ(x̄) = 0. Therefore
we can construct Φ in such a way that:

Φ(y) = y + F (y) (2.10)

with F such that F (0) = x̄ and sup
|y|<τ1

|JF (y)| < τ2 for suitable τ1 and τ2 small enough. An explicit representation

of Φ can be found for instance in [5]. By (2.10) we have:

JΦ(y) = I + JF (y) (2.11)

where I is the identity matrix and JF is the Jacobian matrix of F .
By classical results of linear algebra and the regularity properties of Φ it follows that, there exist δ = δ(τ1)

and c1 > 0, c2 > 0, c3 > 0, c4 > 0 such that:

c1|v| ≤ |A(y)v| ≤ c2|v| ∀v ∈ Rn ,∀y ∈ Bδ(0) (2.12)

and
c3|v| ≤ |K(y)v| ≤ c4|v| ∀v ∈ Rn ,∀y ∈ Bδ(0). (2.13)
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3. Main results

3.1. Linearized operator

With a little abuse of notation, even if we are considering the extended functions defined on the whole B, we
will omit the bar over the functions defined in (2.5), (2.6),(2.7), (2.8). For a function v = v(y), in the sequel
we denote by a subscript j the derivative with respect to yj and for a function g = g(y, t) we denote by gj the
derivative with respect to yj and by g′(y, t) the derivative with respect to t.

To compute a linearized equation associated to equation (2.9), we need some basic definition and properties
about the weighted Sobolev spaces (for more details about them see for instance [11,16,21]).

Let U ⊂ Rn be a bounded smooth domain. For m ≥ 1 and µ ∈ L1(U) the weighted Sobolev space W 1,m
µ (U)

(with respect to the weight µ) is defined as the completion of C∞(U) with respect to the norm:

‖v‖ =

(∫
U

|v|m
) 1

m

+

(∫
U

|∇v|mµ
) 1

m

, (3.1)

where ∇v is the distributional derivative. As for the usual Sobolev spaces, the space W 1,m
0,µ (U) is defined as the

closure of C∞c (U) in W 1,m
µ (U). We set H1

µ(U) = W 1,2
µ (U) and H1

0,µ(U) = W 1,2
0,µ(U), which are the Hilbert spaces

where the linearized operator associated to equation (2.9) is defined.
We set Z = {x ∈ B : ∇w(x) = 0} and we consider ψ ∈ C∞c (B \ Z). For any j = 1, . . . , n, we take ψj as test

function in the weak formulation of (2.9) and, integrating by parts, since w ∈ C2(B\Z), we obtain:∫
B
ρj(y)|A(y)∇w(y)|p−2〈K(y)∇w(y),∇ψ(y)〉dy

+ (p− 2)

∫
B
ρ(y)|A(y)∇w(y)|p−4〈Aj(y)TA(y)∇w(y),∇w(y)〉 · 〈K(y)∇w(y),∇ψ(y)〉dy

+ (p− 2)

∫
B
ρ(y)|A(y)∇w(y)|p−4〈K(y)∇w(y),∇wj(y)〉 · 〈K(y)∇w(y),∇ψ(y)〉dy

+

∫
B
ρ(y)|A(y)∇w(y)|p−2〈Kj(y)∇w(y),∇ψ(y)〉dy

+

∫
B
ρ(y)|A(y)∇w(y)|p−2〈K(y)∇wj(y),∇ψ(y)〉dy

=

∫
B

[gj(y, w(y))ρ(y) + g′(y, w(y))wj(y)ρ(y) + g(y, w(y))ρj(y)]ψdy. (3.2)

By a density argument, (3.2) holds for any ψ ∈ H1
µ(B) ∩ L∞(B) with compact support in B \ Z.

3.2. Hessian estimate

Proposition 3.1. Let w ∈ W 1,∞
loc (B) be a weak solution of (2.9) and let p ∈ (1,∞) be fixed. For y0 ∈ B, let

r > 0 be such that B2r(y0) ⊂ B. For γ < n− 2 (γ = 0 if n = 2), there holds:

sup
z∈B

∫
Br(y0)

|∇w|p−2|D2w|2

|y − z|γ
dy ≤ C , (3.3)

where C = C(y0, r, γ, p, n, ‖w‖W 1,∞ , f).

Proof. Let Gα : R→ R be defined as:

Gα(s) =


s if |s| ≥ 2α,

2

[
s− α s

|s|

]
if α < |s| < 2α,

0 if |s| ≤ α,



BOUNDARY REGULARITY OF SOLUTIONS 853

and let ϕ be a cut-off function such that

ϕ ∈ C∞c (B2r(y0)) ϕ ≡ 1 in Br(y0) and |Dϕ| ≤ 2

r
, (3.4)

with 2r < dist(y0, ∂Ω). Fix γ < n− 2 (or γ = 0 if n = 2) and set:

Hδ(t) =
Gδ(t)

|t|γ+1
, Hδ,z(y) = Hδ(|y − z|)

and
ψ(y) = Gε(wj(y))Hδ,z(y)ϕ2(y). (3.5)

In the sequel, when there is no possibility of confusion, we omit the dependence on y. Using ψ as test function
in (3.2), we have: ∫

B
ρj |A∇w|p−22ϕGε(wj)Hδ,z〈K∇w,∇ϕ〉dy

+

∫
B
ρj |A∇w|p−2ϕ2G′ε(wj)Hδ,z〈K∇w,∇wj〉dy

+

∫
B
ρj |A∇w|p−2ϕ2Gε(wj)〈K∇w,∇Hδ,z〉dy

+ (p− 2)

∫
B
ρ|A∇w|p−42ϕGε(wj)Hδ,z〈ATj A∇w,∇w〉 · 〈K∇w,∇ϕ〉dy

+ (p− 2)

∫
B
ρ|A∇w|p−4ϕ2G′ε(wj)Hδ,z〈ATj A∇w,∇w〉 · 〈K∇w,∇wj〉dy

+ (p− 2)

∫
B
ρ|A∇w|p−4ϕ2Gε(wj)〈ATj A∇w,∇w〉 · 〈K∇w,∇Hδ,z〉dy

+ (p− 2)

∫
B
ρ|A∇w|p−42ϕGε(wj)Hδ,z〈K∇w,∇wj〉 · 〈K∇w,∇ϕ〉dy

+ (p− 2)

∫
B
ρ|A∇w|p−4ϕ2G′ε(wj)Hδ,z〈K∇w,∇wj〉2 dy

+ (p− 2)

∫
B
ρ|A∇w|p−4ϕ2Gε(wj)〈K∇w,∇wj〉 · 〈K∇w,∇Hδ,z〉dy

+

∫
B
ρ|A∇w|p−22ϕGε(wj)Hδ,z〈Kj∇w,∇ϕ〉dy

+

∫
B
ρ|A∇w|p−2ϕ2G′ε(wj)Hδ,z〈Kj∇w,∇wj〉dy

+

∫
B
ρ|A∇w|p−2ϕ2Gε(wj)〈Kj∇w,∇Hδ,z〉dy

+

∫
B
ρ|A∇w|p−22ϕGε(wj)〈K∇wj ,∇ϕ〉dy

+

∫
B
ρ|A∇w|p−2ϕ2G′ε(wj)Hδ,z〈K∇wj ,∇wj〉dy

+

∫
B
ρ|A∇w|p−2ϕ2Gε(wj)〈K∇wj ,∇Hδ,z〉dy

=

∫
B

[gjρ+ g′wjρ+ gρj ]ϕ
2Gε(wj)Hδ,z dy. (3.6)
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In the sequel, c, as well as C, will denote positive constants, possibly depending on r, y0, ‖w‖W 1,∞(B2r(x̄)) but
not on z, whose value can vary from line to line.

We set:

Iδ1 =

∫
B
ρj |A∇w|p−22ϕGε(wj)Hδ,z〈K∇w,∇ϕ〉dy

+ (p− 2)

∫
B
ρ|A∇w|p−42ϕGε(wj)Hδ,z〈ATj A∇w,∇w〉 · 〈K∇w,∇ϕ〉dy

+

∫
B
ρ|A∇w|p−22ϕGε(wj)Hδ,z〈Kj∇w,∇ϕ〉dy (3.7)

Iδ2 =

∫
B
ρj |A∇w|p−2ϕ2Gε(wj)〈K∇w,∇Hδ,z〉dy

+ (p− 2)

∫
B
ρ|A∇w|p−4ϕ2Gε(wj)〈ATj A∇w,∇w〉 · 〈K∇w,∇Hδ,z〉dy

+

∫
B
ρ|A∇w|p−2ϕ2Gε(wj)〈Kj∇w,∇Hδ,z〉dy (3.8)

Iδ3 = (p− 2)

∫
B
ρ|A∇w|p−42ϕGε(wj)Hδ,z〈K∇w,∇wj〉 · 〈K∇w,∇ϕ〉dy

+

∫
B
ρ|A∇w|p−22ϕGε(wj)〈K∇wj ,∇ϕ〉dy (3.9)

Iδ4 =

∫
B
ρj |A∇w|p−2ϕ2G′ε(wj)Hδ,z〈K∇w,∇wj〉dy

+ (p− 2)

∫
B
ρ|A∇w|p−4ϕ2G′ε(wj)Hδ,z〈ATj A∇w,∇w〉 · 〈K∇w,∇wj〉dy

+

∫
B
ρ|A∇w|p−2ϕ2G′ε(wj)Hδ,z〈Kj∇w,∇wj〉dy (3.10)

Iδ5 = (p− 2)

∫
B
ρ|A∇w|p−4ϕ2Gε(wj)〈K∇w,∇wj〉 · 〈K∇w,∇Hδ,z〉dy

+

∫
B
ρ|A∇w|p−2ϕ2Gε(wj)〈K∇wj ,∇Hδ,z〉dy (3.11)

Iδ6 = (p− 2)

∫
B
ρ|A∇w|p−4ϕ2G′ε(wj)Hδ,z〈K∇w,∇wj〉2 dy (3.12)

Iδ7 =

∫
B
ρ|A∇w|p−2ϕ2G′ε(wj)Hδ,z〈K∇wj ,∇wj〉dy (3.13)

Iδ8 =

∫
B

[gjρ+ g′wjρ+ gρj ]ϕ
2Gε(wj)Hδ,z dy. (3.14)

If p ≥ 2, then Iδ6 is positive and hence we trivially have:

Iδ6 + Iδ7 ≥ Iδ7 . (3.15)
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If p < 2, then by the definition of K we have:

|A∇w|p−4〈K∇w,∇wj〉2 = |A∇w|p−4〈A∇w,A∇wj〉2 ≤ |A∇w|p−2|A∇wj |2 , (3.16)

which implies:
(p− 2)|A∇w|p−4〈K∇w,∇wj〉2 ≥ (p− 2)|A∇w|p−2|A∇wj |2 (3.17)

and hence:
Iδ6 + Iδ7 ≥ (p− 1)Iδ7 . (3.18)

We can summarize (3.15) and (3.18) saying that, for every p > 1, it holds:

Iδ6 + Iδ7 ≥ min{1, p− 1}Iδ7 . (3.19)

By (3.6) and (3.19) we infer:

min{1, p− 1}Iδ7 ≤ Iδ6 + Iδ7 ≤
5∑
i=1

|Iδi |+ Iδ8 . (3.20)

By the regularity properties of the diffeomorphism Φ we have that there exist c,M > 0 such that:

c ≤ ρ(y) ≤M, |ρj(y)| ≤M ∀y ∈ B , ∀j = 1, . . . , n. (3.21)

By (2.12), (2.13), (3.20) and (3.21), estimating the terms in the righthand side of (3.20), we get:∫
B
|∇w|p−2|∇wj |2G′ε(wj)Hδ,zϕ

2dy ≤ c
∫
B
|Gε(wj)||∇w|p−1|∇ϕ|Hδ,zϕdy

+ c

∫
B
|Gε(wj)||∇w|p−1|∇Hδ,z|ϕ2dy

+ c

∫
B
|Gε(wj)||∇w|p−2|∇wj ||∇ϕ|Hδ,zϕ

+ c

∫
B
|G′ε(wj)||∇w|p−1|∇wj |Hδ,zϕ

2

+ c

∫
B
|Gε(wj)||∇w|p−2|∇wj ||∇Hδ,z|ϕ2

+ c

∫
B

[|gjρ|+ |gρj |+ |g′ρ||wj |]|Gε(wj)|Hδ,zϕ
2dy. (3.22)

Recalling that γ < n − 2 and that, for s < n,

∫
B

1

|y − z|s
dy is uniformly bounded (because B is bounded),

for fixed ε > 0 we can use dominate convergence to let δ to 0 and we get:∫
B

|∇w|p−2|∇wj |2G′ε(wj)ϕ2

|y − z|γ
dy ≤ c

∫
B

|Gε(wj)||∇w|p−1|∇ϕ|ϕ
|y − z|γ

dy

+ c

∫
B

|Gε(wj)||∇w|p−1ϕ2

|y − z|γ+1
dy

+ c

∫
B

|Gε(wj)||∇w|p−2|∇wj ||∇ϕ|ϕ
|y − z|γ

dy

+ c

∫
B

|G′ε(wj)||∇w|p−1|∇wj |ϕ2

|y − z|γ
dy

+ c

∫
B

|Gε(wj)||∇w|p−2|∇wj |ϕ2

|y − z|γ+1
dy

+ c

∫
B

[|gjρ|+ |gρj |+ |g′ρ||wj |]|Gε(wj)|ϕ2

|y − z|γ
dy. (3.23)
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We set:

J1 =

∫
B

|Gε(wj)||∇w|p−1|∇ϕ|ϕ
|y − z|γ

dy

J2 =

∫
B

|Gε(wj)||∇w|p−1ϕ2

|y − z|γ+1
dy

J3 =

∫
B

|Gε(wj)||∇w|p−2|∇wj ||∇ϕ|ϕ
|y − z|γ

dy

J4 =

∫
B

|G′ε(wj)||∇w|p−1|∇wj |ϕ2

|y − z|γ
dy

=

∫
B∩{wj>ε}

|G′ε(wj)||∇w|p−1|∇wj |ϕ2

|y − z|γ
dy

J5 =

∫
B

|Gε(wj)||∇w|p−2|∇wj |ϕ2

|y − z|γ+1
dy

J6 =

∫
B

[|gjρ|+ |gρj |+ |g′ρ||wj |]|Gε(wj)|ϕ2

|y − z|γ
dy.

We remark that the second and the fifth term in the sum at right-hand side of (3.22) and (3.23) disappears
if n = 2, because ∇Hδ,z = 0 if γ = 0.

By definition of Gε it follows that:
|Gε(wj)| ≤ 2|wj | (3.24)

and
|G′ε(wj)| ≤ C. (3.25)

By properties of g and ρ and the regularity of w, recalling that γ < n− 2, we have:

J6 ≤ c
∫
B

1

|y − z|γ
dy ≤ C. (3.26)

We recall that for a, b ∈ R and θ > 0 there holds the Young inequality:

ab ≤ θa2 +
1

4θ
b2. (3.27)

For n ≥ 3 (as above, for n = 2 we have J5 = 0 and J2 = 0), using (3.27) and recalling that γ < n − 2, we
get:

J2 ≤ C , (3.28)

J4 ≤ c
∫
B

|∇w|p−2|∇wj |ϕ2χ{wj>ε}

|y − z|γ
≤ θ

∫
B

|∇wp−2
| |∇wj |2ϕ2χ{wj>ε}

|x− y|γ
dy + C (3.29)

and

J5 ≤ θ
∫
B

|∇w|p−2|∇wj |2ϕ2

|x− y|γ
dy + C. (3.30)

Recalling that |∇ϕ| ≤ 2

ρ
, we also have:

J1 ≤ C (3.31)

and

J3 ≤ θ
∫
B

|∇w|p−2|∇wj |2ϕ2

|x− y|γ
dy + C. (3.32)
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After setting ϑ = cθ, we choose θ such that ϑ < 1. By the above estimates we get:∫
B∩{wj>ε}

|∇w|p−2|∇wj |2

|y − z|γ
(G′ε(wj)− ϑ)ϕ2dy ≤ c. (3.33)

By definition of Gε it follows that, ∀s > 0, G′ε(s) converges to 1 as ε goes to 0 and hence by Fatou’s Lemma
we get: ∫

B\{wj=0}

|∇w|p−2|∇wj |2

|y − z|γ
ϕ2dy ≤ c (3.34)

and hence: ∫
B\Z

|∇w|p−2|∇wj |2

|y − z|γ
ϕ2dy ≤ c , (3.35)

where c depends on y0, r, n, p, γ, g, Φ, ‖w‖W 1,∞(B2r(x̄)) but it does not depend on z. Recalling the properties of ϕ,
we proved that

sup
z∈B

∫
Br(y0)\Z

|∇w|p−2|D2w|2

|y − z|γ
dy ≤ c. �

3.3. Proof of Theorem 1.1

Taking γ = 0 in (3.3), we have that: ∫
Br(y0)

|∇w|p−2|D2w|2dy ≤ C

and hence by the properties of Φ we immediately get that the same kind of estimate holds for u in Φ(B) and,
recalling that Ω is compact, we get that there exists C > 0 such that:∫

Ω

|∇u|p−2|D2u|2 ≤ C. (3.36)

If p ≤ 2, we trivially have
∫
Ω
|D2u|2 ≤

∫
Ω
|∇u|p−2|D2u|2 and hence (i) of Theorem 1.1 follows by (3.36).

If p > 2, since for suitable c > 0 there holds |∇
(
|∇u|p−1

)
| ≤ c|∇u|p−2|D2u|, recalling that ∇u is bounded,

we have that there exists C > 0:

|∇
(
|∇u|p−1

)
|2 ≤ c2|∇u|2(p−2)|D2u|2 ≤ C|∇u|p−2|D2u|2

and hence (ii) of Theorem 1.1 follows by (3.36), provided that, for every i ∈ {1, . . . , n}, the i-th generalized
derivative of |∇u|p−1 coincides with the classical one, both denoted with

(
|∇u|p−1

)
i

almost everywhere in Ω.
In fact, for ϕ ∈ C∞c (Ω), we have:∫

Ω

(
|∇u|p−1

)
i
ϕ
Gε(|∇u|)
|∇u|

= −
∫
Ω

|∇u|p−1ϕi
Gε(|∇u|)
|∇u|

−
∫
Ω∩{ε<|∇u|<2ε}

|∇u|p−1ϕ
1

ε
. (3.37)

Since we are considering the case p > 2, we have:∣∣∣∣∣
∫
Ω∩{ε<|∇u|<2ε}

|∇u|p−1ϕ
1

ε

∣∣∣∣∣ ≤
∫
Ω∩{ε<|∇u|<2ε}

|∇u|p−2|ϕ| ≤ Cε. (3.38)

Moreover by (3.36) we have that
(
|∇u|p−1

)
i
∈ L1(Ω) and, recalling that Gε(|∇u|)

|∇u| ≤ 2, as ε tends to 0, we can

use dominated convergence in the other terms in (3.37) and we get the thesis.



858 G. RIEY AND B. SCIUNZI

References

[1] L. Damascelli and B. Sciunzi, Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations. J. Differ.
Equ. 206 (2004) 483–515.

[2] L. Damascelli and B. Sciunzi, Harnack inequalities, maximum and comparison principles, and regularity of positive solutions
of m-Laplace equations. Calc. Var. Partial Differ. Equ. 25 (2006) 139–159.

[3] E. Di Benedetto, C1+α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7 (1983) 827–850.

[4] A. Farina, L. Montoro and B. Sciunzi, Monotonicity of solutions of quasilinear degenerate elliptic equations in half-spaces.
Math. Ann. 357 (2013) 855–893

[5] J. Garcia Azorero, A. Malchiodi, L. Montoro and I. Peral, Concentration of solutions for some singularly perturbed mixed
problems: asymptotics of minimal energy solutions. Ann. Inst. H. Poincaré Anal. Non Lineare 27 (2010) 37–56.
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