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STOCHASTIC OPTIMAL CONTROL PROBLEM WITH INFINITE HORIZON

DRIVEN BY G-BROWNIAN MOTION ∗

Mingshang Hu1 and Falei Wang2,a

Abstract. The present paper considers a stochastic optimal control problem, in which the cost func-
tion is defined through a backward stochastic differential equation with infinite horizon driven by
G-Brownian motion. Then we study the regularities of the value function and establish the dynamic
programming principle. Moreover, we prove that the value function is the unique viscosity solution of
the related Hamilton−Jacobi−Bellman−Isaacs (HJBI) equation.

Mathematics Subject Classification. 93E20, 60H10, 35J60.

Received June 12, 2016. Revised January 25, 2017. Accepted June 10, 2017.

1. Introduction

It is well-known that the backward stochastic differential equations (BSDEs) theory provides a powerful
tool for the study of stochastic recursive optimal control problem, which generalizes the classical stochastic
optimal control problem. Indeed, Peng [32] established a generalized dynamic programming principle (DPP)
and provided a probabilistic interpretation for a wide class of Hamilton−Jacobi−Bellman (HJB) equations.
Afterwards, Peng [33,34] introduced the “backward semigroup” approach and extended the previous results to
more general case. For further research on this topic, the reader is referred to [3, 4, 27, 45] and the references
therein.

Recently, Peng introduced a time-consistent fully nonlinear expectation theory. As a typical and important
case, Peng established the G-expectation theory (see [37]). Under the G-expectation framework, the stochastic
integral with respect to G-Brownian motion was also stated. Then Peng [37] and Gao [14] obtained the existence
and uniqueness theorem for stochastic differential equations driven by G-Brownian motion (G-SDEs). More-
over, Hu et al. [16, 17] introduced the backward stochastic differential equations driven by G-Brownian motion
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(G-BSDEs). The G-expectation theory provides a useful tool for studying financial problems under volatility
uncertainty. Indeed, with the help of G-stochastic analysis theory, Epstein and Ji [10, 11] studied a recursive
utility problem under both mean and volatility uncertainty, which generalizes the ones of [5]. In a different
setting, Soner, Touzi and Zhang [42] established the so-called 2BSDEs theory, which shares many similarities
with G-BSDEs.

Recently, Hu and Ji [15] (see also [18]) considered a stochastic recursive optimal control problem under
volatility uncertainty. Since there is no dominated probability measure in the G-framework, it is much more
complicated than the classical case. In particular, the essential infimum of a family of random variables may
not exist and it is difficult to construct a discrete approximation of an admissible control to get the dynamic
programming principle in the nonlinear case. With the help of quasi-surely stochastic analysis theory (see [7,8]),
they introduced an “implied partition” approach to establish the DPP and got that the value function is the
viscosity solution to the following HJBI equation:{

∂tV + inf
u∈U

[G(H(x, V, ∂xV, ∂
2
xxV, u)) + 〈∂xV, b(x, u)〉+ f(x, V, ∂xV σ(x, u), u)] = 0,

V (T, x) = φ(x),

which generalizes the ones of Peng [33].

Motivated by [15,32], we shall study the following HJBI equation:

inf
u∈U

[G(H(x, V, ∂xV, ∂
2
xxV, u)) + 〈∂xV, b(x, u)〉+ f(x, V, ∂xV σ(x, u), u)] = 0, (1.1)

which is a fully nonlinear elliptic partial differential equation (PDE) in Rn. We refer the reader to [1, 4, 24–26]
for a closest related approach, where the related PDEs are HJB equations with Dirichlet boundary.

This paper is devoted to providing a stochastic representation for the viscosity solution to the HJBI equa-
tion (1.1). A key ingredient of our approach is based on the G-BSDEs theory with infinite horizon, which is
introduced by [20] through combining nonlinear stochastic analysis method with the linearization approach
formulated by [2] (see also [13,40]). Indeed, consider the following G-FBSDE with infinite horizon:

X0,x,u
s = x+

∫ s
0
b(X0,x,u

r , ur)dr +
∫ s

0
hij(X

0,x,u
r , ur)d〈Bi, Bj〉r +

∫ s
0
σ(X0,x,u

r , ur)dBr,

Y 0,x,u
s = Y 0,x,u

T +
∫ T
s
f(X0,x,u

r , Y 0,x,u
r , Z0,x,u

r , ur)dr −
∫ T
s
Z0,x,u
r dBr

+
∫ T
s
gij(X

0,x,u
r , Y 0,x,u

r , Z0,x,u
r , ur)d〈Bi, Bj〉r − (K0,x,u

T −K0,x,u
s ).

(1.2)

The value function of our stochastic optimal control problem is given by

V (x) := inf
u∈U [0,∞)

Y 0,x,u
0 .

Since G is a sublinear function, our stochastic control problem is essentially a “ inf sup problem”, which can be
seen as a robust optimal control problem. For recent important developments of this field, we refer the readers
to [9, 28, 29, 44]. In [9], a duality theory for robust utility maximization is stated in a non-dominated model.
In [28], the authors applied 2BSDE with quadratic growth to study robust utility maximization problem and [44]
studied robust exponential and power utilities in a different setting. In [29], the authors dealt with a robust
portfolio optimization problem in a continuous-time financial market with jumps.

A potential application of this paper is to study the problems of minimizing an infinite horizon, discounted
expected cost under volatility uncertainty:

J(x, u) = Ê
[∫ ∞

0

exp(−λs)ψ(X0,x,u
s , us)ds

]
,
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where λ > 0 is a discount factor and ψ(x, u) is a cost function. Indeed, taking f(x, y, u) = −λy + ψ(x, u) and
gij = 0 in the equation (1.2), we have

Y 0,x,u
s = Y 0,x,u

T +

∫ T

s

(−λY 0,x,u
r + ψ(X0,x,u

r , ur))dr −
∫ T

s

Z0,x,u
r dBr − (K0,x,u

T −K0,x,u
s ).

By change of variable formula, we have

Y 0,x,u
0 = Ê

[
exp(−λT )Y 0,x,u

T +

∫ T

0

exp(−λr)ψ(X0,x,u
r , ur)dr

]
.

Note that the expectation of |Y 0,x,u
T | is uniformly bounded (see Sect. 3). Then sending T ↑ ∞ yields that

J(x, u) = Y 0,x,u
0 .

Thus the above stochastic optimal control theory with infinite horizon provides an alternative way for studying
this problem. In the linear case, more research on this topic can be found in [12,22] and the references therein.

The objective of our paper is to prove that the value function V is the viscosity solution of the HJBI
equation (1.1). First, we investigate the properties of the value function V by the G-stochastic analysis approach,
which is different from the ones in [15] since the cost function equation is a G-BSDE with infinite horizon. Then
we obtain the following relation

V (x) = inf
u∈U [0,∞)

Y 0,x,u
0 = ess inf

u∈U [t,∞)
Y t,x,ut ,

which is crucial to give a stochastic representation for the HJBI equation (1.1). Next we establish the DPP
by the “backward semigroup” method and a new version of “implied partition” approach. This provides a
fundamental tool for the study of the stochastic control problems in the G-framework. Finally, we show that
the value function is the viscosity solution of the HJBI equation (1.1) and a stochastic verification theorem is
also stated. Moreover, based on stochastic control approach and the method introduced in [20], we also get the
uniqueness of viscosity solution to equation (1.1).

The uniqueness of viscosity solutions of elliptic PDEs in Rn has been studied for various types of HJB
equations of second order (see, e.g. [6, 30, 31]). In [6], a result is stated under some uniformly continuous
assumptions for H. In [30, 31], the authors both dealt with semi-linear elliptic PDEs under locally uniformly
continuous conditions for H. However, they both assumed some additional conditions, such as condition (6.13)
in [31] and bounded condition (4.2) on diffusion term in [30]. In this paper, we treat the fully nonlinear case
under some locally uniformly continuous conditions for H and remove these additional conditions (see also [20]
for the case there is no control). However, we only consider viscosity solutions of quadratic growth. On the
other hand, Ren [38] studied the viscosity solutions of fully nonlinear elliptic path-dependent PDEs under some
uniformly continuous conditions for H (see [39] for more research on this topic), which provides an important
framework for the study of non-Markovian stochastic control problem with infinite horizon.

The paper is organized as follows. In Section 2, we present some preliminaries for G-Brownian motion and
G-BSDEs theory. We state our stochastic optimal control problem in Section 3. The Section 4 is devoted to
studying the regularities of the value function. In Section 5, we prove that the value function is the unique
viscosity solution of the related HJBI equation.

2. Preliminaries

The main purpose of this section is to recall some basic notions and results of G-expectation and G-BSDEs,
which are needed in the sequel. The readers may refer to [35–37] for more details.
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2.1. G-Brownian motion

Let Ω = Cd0 (R+) be the space of all Rd-valued continuous paths (ωt)t≥0 starting from origin, equipped with
the distance

ρ(ω1, ω2) :=

∞∑
i=1

2−i
[(

max
t∈[0,i]

|ω1
t − ω2

t |
)
∧ 1

]
.

For each t ∈ [0,∞), we denote

• Bt(ω) := ωt for each ω ∈ Ω;
• B(Ω): the Borel σ-algebra of Ω, Ωt := {ω·∧t : ω ∈ Ω}, Ft := B(Ωt);
• L0(Ω): the space of all B(Ω)-measurable real functions;
• L0(Ωt): the space of all B(Ωt)-measurable real functions;
• Cb(Ω): all bounded continuous elements in L0(Ω); Cb(Ωt) := Cb(Ω) ∩ L0(Ωt);
• Lip(Ω) := {ϕ(Bt1 , . . . , Btk) : k ∈ N, t1, . . . , tk ∈ [0,∞), ϕ ∈ Cb.Lip(Rk×d)}, where Cb.Lip(Rk×d) denotes the

space of all bounded and Lipschitz functions on Rk×d; Lip(Ωt) := Lip(Ω) ∩ L0(Ωt).

Given a monotonic and sublinear function G : S(d) → R, let the canonical process Bt = (Bit)
d
i=1 be the d-

dimensional G-Brownian motion on the G-expectation space (Ω,Lip(Ω), Ê[·], (Êt[·])t≥0), where S(d) denotes
the space of all d× d symmetric matrices. For each p ≥ 1, the completion of Lip(Ω) under the norm ||X||LpG :=

(Ê[|X|p])1/p is denoted by LpG(Ω). Similarly, we can define LpG(ΩT ) for each fixed T ≥ 0. In this paper, we
always assume that G is non-degenerate, i.e., there exist some constants 0 < σ2 ≤ σ̄2 <∞ such that

1

2
σ2tr[A−B] ≤ G(A)−G(B) ≤ 1

2
σ̄2tr[A−B] for A ≥ B.

Then there exists a bounded and closed subset Γ ⊂ S+(d) such that

G(A) =
1

2
sup
Q∈Γ

tr[AQ],

where S+(d) denotes the space of all d× d symmetric positive definite matrices.

Theorem 2.1 [7, 19]. There exists a weakly compact set P of probability measures on (Ω,B(Ω)), such that

Ê[ξ] = sup
P∈P

EP [ξ] for all ξ ∈ L1
G(Ω).

P is called a set that represents Ê.

Let P be a weakly compact set that represents Ê. For this P, we define capacity

c(A) := sup
P∈P

P (A), A ∈ B(Ω).

A set A ⊂ B(Ω) is polar if c(A) = 0. A property holds “quasi-surely′′ (q.s.) if it holds outside a polar set. In
the following, we do not distinguish between two random variables X and Y if X = Y q.s.

Definition 2.2 [36]. Let M0
G(0, T ) be the collection of processes of the following form: for a given partition

{t0, . . . , tN} of [0, T ],

ηt(ω) =

N−1∑
i=0

ξi(ω)1[ti,ti+1)(t),

where ξi ∈ Lip(Ωti), i = 0, 1, 2, . . . , N − 1. For each p ≥ 1, denote by Mp
G(0, T ) the completion of M0

G(0, T )

under the norm ||η||Mp
G

:= (Ê[
∫ T

0
|ηt|pdt])1/p.
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For each 1 ≤ i, j ≤ d, we denote by 〈Bi, Bj〉 the mutual variation process. Then for two processes η ∈
M2
G(0, T ) and ξ ∈M1

G(0, T ), the G-Itô integrals
∫ ·

0
ηsdB

i
s and

∫ ·
0
ξsd〈Bi, Bj〉s are well defined, see Li-Peng [23]

and Peng [37]. Moreover, we also have the corresponding G-Itô formula.
Consider the following G-Itô process (in this paper we always use Einstein convention)

Xν
t = Xν

0 +

∫ t

0

ανsds+

∫ t

0

ηνijs d
〈
Bi, Bj

〉
s

+

∫ t

0

βνjs dB
j
s ,

where ν = 1, . . . , n.

Theorem 2.3 [23, 36]. Suppose that Φ is a C2-function on Rn such that ∂2
xµxνΦ is a function of polynomial

growth for any µ, ν = 1, . . . , n. Let αν , βνj and ηνij, ν = 1, . . . , n, i, j = 1, . . . , d be in M2
G(0, T ). Then for each

t ≥ 0 we have

Φ(Xt)− Φ(Xs) =

∫ t

s

∂xνΦ(Xu)βνju dB
j
u +

∫ t

s

∂xνΦ(Xu)ανudu

+

∫ t

s

[∂xνΦ(Xu)ηνiju +
1

2
∂2
xµxνΦ(Xu)βµiu β

νj
u ]d

〈
Bi, Bj

〉
u
q.s. (2.1)

2.2. G-BSDEs

For a fixed real number T > 0, consider the following type of G-BSDEs:

Yt =ξ +

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

gij(s, Ys, Zs)d〈Bi, Bj〉s −
∫ T

t

ZsdBs − (KT −Kt), q.s. (2.2)

where
f(t, ω, y, z), gij(t, ω, y, z) : [0, T ]×Ω × R× Rd → R

satisfy the following properties:

(H1) There exists a constant β > 0 such that for any y, z, f(·, ·, y, z), gij(·, ·, y, z) ∈M2+β
G (0, T );

(H2) There exists a constant L1 > 0 such that

|f(t, y, z)− f(t, y′, z′)|+
d∑

i,j=1

|gij(t, y, z)− gij(t, y′, z′)| ≤ L1(|y − y′|+ |z − z′|).

Let S0
G(0, T ) = {h(t, Bt1∧t, . . . , Btn∧t) : t1, . . . , tn ∈ [0, T ], h ∈ Cb,Lip(Rn+1)}. For p ≥ 1 and η ∈ S0

G(0, T ),

set ‖η‖SpG = {Ê[supt∈[0,T ] |ηt|p]}
1
p . Denote by SpG(0, T ) the completion of S0

G(0, T ) under the norm ‖ · ‖SpG . For

simplicity, we denote by S2
G(0, T ) the collection of all stochastic processes (Y,Z,K) such that Y ∈ S2

G(0, T ),
Z ∈ M2

G(0, T ;Rd), K is a decreasing G-martingale with K0 = 0 and KT ∈ L2
G(ΩT ). Then the above G-BSDE

admits a unique S2
G(0, T )-solution.

Theorem 2.4 [16]. Assume that ξ ∈ L2+β
G (ΩT ) and f , gij satisfy (H1)−(H2) for some β > 0. Then equation

(2.2) has a unique solution (Y,Z,K) ∈ S2
G(0, T ).

Remark 2.5. Note that there exist non-trivial decreasing and continuous G-martingales. Indeed,
{
∫ t

0
ξijs d〈Bi, Bj〉s − 2

∫ t
0
G(ξs)ds}0≤t≤T is a typical decreasing G-martingale for each ξijs ∈ M1

G(0, T ). Then
the martingale representation theorem (MRP) in the G-framework is much more complicated than the classical
case, see [37,41,43].

Moreover, we have the following estimates.
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Theorem 2.6 [16]. Let ξl ∈ L2+β
G (ΩT ), l = 1, 2 and f l, glij satisfy (H1)−(H2) for some β > 0. Assume that

(Y l, Zl,Kl) ∈ S2
G(0, T ), l = 1, 2 is the solution of equation (2.2) corresponding to the data (ξl, f l, glij). Set

Ŷt = Y 1
t − Y 2

t . Then there exists a constant C depending on T , G, L1 such that

|Ŷt|2 ≤ CÊt

|ξ̂|2 +

(∫ T

0

ĥsds

)2
 ,

Ê

[
sup
t∈[0,T ]

|Ŷt|2
]
≤ C

Ê

[
sup
t∈[0,T ]

Êt
[
|ξ̂|2
]]

+ Ê

 sup
t∈[0,T ]

Êt

(∫ T

0

ĥsds

)2
 .

where ξ̂ = ξ1 − ξ2 and ĥs = |f1(s, Y 2
s , Z

2
s )− f2(s, Y 2

s , Z
2
s )|+

∑d
i,j=1 |g1

ij(s, Y
2
s , Z

2
s )− g2

ij(s, Y
2
s , Z

2
s )|.

However, unlike the classical case, the explicit solutions of linear G-BSDEs can only be stated in an auxil-
iary extended sublinear expectation space. Suppose that f(s, Ys, Zs) = asYs + bsZs + ms and gij(s, Ys, Zs) =
cijs Ys+dijs Zs+nijs , where (as)s∈[0,T ], (cijs )s∈[0,T ] ∈M2

G(0, T ), (bs)s∈[0,T ],(d
ij
s )s∈[0,T ] ∈M2

G(0, T ;Rd) are bounded

processes and ξ ∈ L2+β
G (ΩT ) for some β > 0, (ms)s∈[0,T ], (nijs )s∈[0,T ] ∈M2

G(0, T ). Then we construct an auxiliary

extended G̃-expectation space (Ω̃, L1
G̃

(Ω̃), ÊG̃) with Ω̃ = C0([0,∞),R2d) and

G̃(A) =
1

2
sup
Q∈Γ

tr

[
A

[
Q Id
Id Q

−1

]]
, A ∈ S(2d). (2.3)

Let (Bt, B̃t)t≥0 be the canonical process in the extended space.

Lemma 2.7 [17]. In the extended G̃-expectation space, the solution of the linear G-BSDE (2.2) can be repre-
sented as

Yt = ÊG̃t

[
Γ̃ tT ξ +

∫ T

t

msΓ̃
t
sds+

∫ T

t

nijs Γ̃
t
sd〈Bi, Bj〉s

]
,

where {Γ̃ ts}s∈[t,T ] is the solution of the following G̃-SDE:

Γ̃ ts = 1 +

∫ s

t

arΓ̃
t
rdr +

∫ s

t

cijr Γ̃
t
rd〈Bi, Bj〉r +

∫ s

t

dijr Γ̃
t
rdBr +

∫ s

t

brΓ̃
t
rdB̃r. (2.4)

Moreover,

ÊG̃t

[
Γ̃ tTKT −

∫ T

t

asKsΓ̃
t
sds−

∫ T

t

cijs KsΓ̃
t
sd〈Bi, Bj〉s

]
= Kt. (2.5)

3. Formulation of the problem

We now introduce the definition of admissible control. Assume U is a given compact subset of Rm.

Definition 3.1. For each given t ≥ 0, u : [t,∞) × Ω → U is said to be an admissible control on [t,∞), if
u ∈ M2

G(t,∞;Rm), where M2
G(t,∞;Rm) = ∩

T>t
M2
G(t, T ;Rm), i.e., {us}0≤s≤T ∈ M2

G(t, T ;Rm) for each T ≥ t.

The set of admissible controls on [t,∞) is denoted by U [t,∞). Similarly, we can define U [t, T ].

For each t ≥ 0, u ∈ U [t,∞) and ξ ∈ LpG(Ωt) with p > 2, consider the following G-SDEs:

Xt,ξ,u
s = ξ +

∫ s

t

b(Xt,ξ,u
r , ur)dr +

∫ s

t

hij(X
t,ξ,u
r , ur)d〈Bi, Bj〉r +

∫ s

t

σ(Xt,ξ,u
r , ur)dBr (3.1)
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and G-BSDEs with infinite horizon:{
Y t,ξ,us = Y t,ξ,uT +

∫ T
s
f(Xt,ξ,u

r , Y t,ξ,ur , Zt,ξ,ur , ur)dr −
∫ T
s
Zt,ξ,ur dBr

+
∫ T
s
gij(X

t,ξ,u
r , Y t,ξ,ur , Zt,ξ,ur , ur)d〈Bi, Bj〉r − (Kt,ξ,u

T −Kt,ξ,u
s ),

(3.2)

where b, hij : Rn × U → Rn, σ : Rn × U → Rn×d, f , gij : Rn × R× Rd × U → R are deterministic continuous
functions. For convenience, set (Xx,u, Y x,u, Zx,u,Kx,u) = (X0,x,u, Y 0,x,u, Z0,x,u,K0,x,u) for each (x, u) ∈ Rn ×
U [0,∞).

In this paper, we shall use the following assumptions:

(B1) hij = hji and gij = gji for each 1 ≤ i, j ≤ d;

(B2) There exist some positive constants L,α1 and α2 such that

|b(x, u)− b(x′, u′)|+
∑
i,j

|hij(x, u)− hij(x′, u′)| ≤ L(|x− x′|+ |u− u′|),

|σ(x, u)− σ(x′, u′)| ≤ α1|x− x′|+ L|u− u′|,

|f(x, y, z, u)− f(x′, y′, z′, u′)|+
∑
i,j

|gij(x, y, z, u)− gij(x′, y′, z′, u′)|

≤ L((1 + |x|+ |x′|)|x− x′|+ |y − y′|+ |u− u′|) + α2|z − z′|;

(B3) There exists a constant µ > 0 such that (f(x, y, z, u) − f(x, y′, z, u))(y − y′) + 2G((gij(x, y, z, u) −
gij(x, y

′, z, u))(y − y′)) ≤ −µ|y − y′|2;

(B4) G(
n∑
i=1

(σi(x, u)−σi(x′, u))>(σi(x, u)−σi(x′, u)) + 2(〈x−x′, hij(x, u)−hij(x′, u)〉)di,j=1) + 〈x−x′, b(x, u)−

b(x′, u)〉 ≤ −η|x− x′|2 for some constant η > 0, where σi is the i-th row of σ;

(B5) η̄ := η − (1 + σ̄2)α1α2 > 0.

The following estimates about G-SDEs can be found in Chapter V of Peng [37].

Lemma 3.2. Under assumption (B2), the G-SDE (3.1) has a unique solution Xt,ξ,u ∈M2
G(t, T ) for each T > t.

Moreover, if ξ, ξ′ ∈ LpG(Ωt) with p > 2, then we have, for each δ ∈ [0, T − t],

(i) Êt[|Xt,ξ,u
t+δ −X

t,ξ′,u′

t+δ |p] ≤ CT (|ξ − ξ′|p + Êt[
∫ t+δ
t
|us − u′s|pds]);

(ii) Êt[ sup
s∈[t,T ]

|Xt,ξ,u
s |p] ≤ CT (1 + |ξ|p);

(iii) Êt[ sup
s∈[t,t+δ]

|Xt,ξ,u
s − ξ|p] ≤ CT (1 + |ξ|p)δp/2,

where the constant CT depends on L, α1, G, p, n, U and T .

We have the following existence and uniqueness theorem of G-BSDE (3.2) with infinite horizon.

Theorem 3.3. Let Assumptions (B1)−(B5) hold. Then the G-BSDE (3.2) has a unique solution
(Y t,ξ,u, Zt,ξ,u,Kt,ξ,u) ∈ S2

G(0,∞) such that for some constant C > 0,

|Y t,ξ,us | ≤ C(1 + |Xt,ξ,u
s |2), ∀s ≥ t q.s.,

where S2
G(0,∞) = ∩

T>0
S2
G(0, T ).

Proof. The proof will be given in the appendix. �
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The aim of our stochastic optimal control problem is to find some u ∈ U [0,∞) so as to minimise the objective
function Y x,u0 for each x ∈ Rn. For this purpose, we define the following value function:

V (x) := inf
u∈U [0,∞)

Y x,u0 for any x ∈ Rn. (3.3)

In order to study the stochastic control problem, we need to define the essential infimum of {Y t,ξ,ut | u ∈
U [t,∞)}.

Definition 3.4. For each ξ ∈ LpG(Ωt) with p > 2, the essential infimum of {Y t,ξ,ut | u ∈ U [t,∞)}, denoted by

ess inf
u∈U [t,∞)

Y t,ξ,ut , is a random variable ζ ∈ L2
G(Ωt) satisfying:

(i) ∀u ∈ U [t,∞), ζ ≤ Y t,ξ,ut q.s.;
(ii) if η is a random variable satisfying η ≤ Y t,ξ,ut q.s. for any u ∈ U [t,∞), then ζ ≥ η q.s.

Then for each x ∈ Rn, we define the following function:

V (t, x) := ess inf
u∈U [t,∞)

Y t,x,ut for each (t, x) ∈ [0,∞)× Rn. (3.4)

It is obvious that V (x) = V (0, x).

Remark 3.5. At this stage, we cannot even conclude that V (t, x) exists (see Example 11 in [15]), which is
different from the linear case.

4. Regularity of the value function

In this section, we shall study the regularities of the value function V . In particular, we will prove that
V (t, x) is a deterministic continuous function independent of the time variable t. From now on, if not specified,
we always assume (B1)−(B5) hold.

Now recall some notations, which are essentially from [15]:

• Lip(Ωts) := {ϕ(Bt1 −Bt, . . . , Btn −Bt) : n ≥ 1, t1, . . . , tn ∈ [t, s], ϕ ∈ Cb.Lip(Rd×n)};
• L2

G(Ωts) := {the completion of Lip(Ω
t
s) under the norm ‖ · ‖L2

G
};

• M0,t
G (t, T ) := {ηs =

∑N−1
i=0 ξi1[ti,ti+1)(s) : t = t0 < . . . < tN = T, ξi ∈ Lip(Ωtti)};

• M2,t
G (t, T ) := {the completion of M0,t

G (t, T ) under the norm ‖ · ‖M2
G
};

• U t[t, T ] := {u : u ∈M2,t
G (t, T ;Rm) taking values in U};

• U[t, T ] := {u =
n∑
i=1

1Aiu
i : n ∈ N, ui ∈ U t[t, T ],1Ai ∈ L2

G(Ωt), Ω =

n⋃
i=1

Ai};

• U t[t,∞) := ∩
T>t
U t[t, T ], U[t,∞) := ∩

T>t
U[t, T ].

Remark 4.1. Since U is bounded, it is easy to check that η ∈ U [t,∞) belongs to the space Mp
G(t, T ) for each

T > t and p ≥ 2.

In order to state the main results of this section, we shall give some useful estimates in the sequel. For this pur-
pose, we need to construct an auxiliary extended G̃-expectation space (Ω̃, L1

G̃
(Ω̃), ÊG̃) with Ω̃ = C0([0,∞),R2d),

where G̃ is given by equation (2.3). Let (Bt, B̃t)t≥0 be the corresponding canonical process.

Lemma 4.2. For some given t ≥ 0, suppose Γ t is the solution of the following G̃-SDE:

Γ ts = 1 +

∫ s

t

β1,i
r Γ trdB

i
r +

∫ s

t

β2,i
r Γ trdB̃

i
r, s ≥ t,
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where (β1,i
s )s∈[0,∞), (β2,i

s )s∈[0,∞) ∈ M2
G(0,∞) are bounded by α2. Then there is a constant CG depending only

on G, such that for each p ≥ 1,

ÊG̃t [|Γ ts |p] ≤ exp(CG(p2 − p)α2
2(s− t)), ∀s ≥ t ≥ 0.

Proof. To simplify presentation, we shall prove only the case that d = 1, as other cases can be proved in the
same way. It follows from Proposition 1.3 of Chap. IV in [37] that

Γ ts = exp

(∫ s

t

β1
rdBr −

1

2

∫ s

t

|β1
r |2d〈B〉r +

∫ s

t

β2
rdB̃r −

1

2

∫ s

t

|β2
r |2d〈B̃〉r −

∫ s

t

β1
rβ

2
rdr

)
.

Thus we conclude that Γ̂ ts =: exp(
∫ s
t
pβ1

rdBr− 1
2

∫ s
t
|pβ1

r |2d〈B〉r +
∫ s
t
pβ2

rdB̃r− 1
2

∫ s
t
|pβ2

r |2d〈B̃〉r−
∫ s
t
p2β1

rβ
2
rdr)

is a G-martingale. Then we obtain that

ÊG̃t [|Γ ts |p] ≤ exp(CG(p2 − p)α2
2(s− t))ÊG̃t [Γ̂ ts ] = exp(CG(p2 − p)α2

2(s− t)),

where CG := 1 + 1
2 (σ̄2 + 1

σ2 ). The proof is complete. �

Lemma 4.3. Let ξ, ξ′ ∈ LpG(Ωt;Rn) with p > 2 and u, u′ ∈ U [t,∞). Then there exists a constant Cη depending
on G,α1, α2, L, U and η, such that for each s ≥ t q.s.

(i) ÊG̃t [|Xt,ξ,u
s |2Γ ts ] ≤ Cη(1 + |ξ|2);

(ii) ÊG̃t [|Xt,ξ,u
s −Xt,ξ′,u

s |2Γ ts ] ≤ exp(−2η̄(s− t))|ξ − ξ′|2;
(iii) |Xt,ξ,u

s − Xt,ξ,u′

s |2Γ ts ≤ exp(η̄(t − s))Ms + Cη
∫ s
t

exp(η̄(r − s))|ur − u′r|2Γ trdr, where M is a symmetric

G̃-martingale. In particular,

ÊG̃t
[∣∣∣Xt,ξ,u

s −Xt,ξ,u′

s

∣∣∣2 Γ ts] ≤ CηÊG̃t [∫ s

t

exp (η̄(r − s)) |ur − u′r|2Γ trdr

]
, ∀s > t.

Proof. Without loss of generality, assume d = 1. By a similar analysis as in the proof of Lemma 4.1 in [20], it is
easy to check that (i) and (ii) hold. Next we shall prove the property (iii). For convenience, we omit superscripts
t and ξ.

Set Cs := exp(η̄(s− t)). Applying the G-Itô formula 2.3 yields that

Cs|Xu
s −Xu′

s |2Γ ts = η̄

∫ s

t

Cr|Xu
r −Xu′

r |2Γ trdr + 2

∫ s

t

Cr〈Xu
r −Xu′

r , b̄r〉Γ trdr +

∫ s

t

Crξrd〈B〉r

+Ms + 2

∫ s

t

Cr〈Xu
r −Xu′

r , σ̄r〉β1
rΓ

t
rd〈B〉r + 2

∫ s

t

Cr〈Xu
r −Xu′

r , σ̄r〉β2
rΓ

t
rdr,

where ϕ̄s = ϕ(Xu
s , us)− ϕ(Xu′

s , u
′
s) for ϕ = b, h, σ, ξs = [2〈Xu

s −Xu′

s , h̄s〉+ |σ̄s|2]Γ ts and

Ms = 2

∫ s

t

Cr(2〈Xu
r −Xu′

r , σ̄r〉+ |Xu
r −Xu′

r |2β1
r )Γ trdBr +

∫ s

t

Cr|Xu
r −Xu′

r |2β2
rΓ

t
rdB̃r.

Denote ϕ̄′s = ϕ(Xu
s , us)−ϕ(Xu′

s , us) for ϕ = b, h, σ and ξ′s = 2[〈Xu
s−Xu′

s , h̄
′
s〉+|σ̄′s|2]Γ ts . Note that

∫ s
t
ξrd〈B〉r−

2
∫ s
t
G(ξr)dr ≤ 0 from Remark 2.5. Then we have

Cs|Xu
s −Xu′

s |2Γ ts ≤ η̄
∫ s

t

Cr|Xx
r −Xu′

r |2Γ trdr +Ms +Π1
s +Π2

s ,

where

Π1
s = 2

∫ s

t

Cr〈Xu
r −Xu′

r , b̄
′
r〉Γ trdr + 2

∫ s

t

CrG(ξ′r)dr
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and

Π2
s = 2

∫ s

t

Cr〈Xu
r −Xu′

r , b̄r − b̄′r〉Γ trdr + 2

∫ s

t

CrG(ξr − ξ′r)dr

+ 2

∫ s

t

Cr〈Xu
r −Xu′

r , σ̄
′
r〉β1

rΓ
t
rd〈B〉r + 2

∫ s

t

Cr〈Xu
r −Xu′

r , σ̄
′
r〉β2

rΓ
t
rdr

+ 2

∫ s

t

Cr〈Xu
r −Xu′

r , σ̄r − σ̄′r〉β1
rΓ

t
rd〈B〉r + 2

∫ s

t

Cr〈Xu
r −Xu′

r , σ̄r − σ̄′r〉β2
rΓ

t
rdr.

Recalling assumption (B4), we obtain that Π1
s ≤ −2η

∫ s
t
Cr|Xu

r −Xu′

r |2Γ trdr. From assumption (B2), we have

Π2
s ≤ 2(1 + σ̄2 + α1σ̄

2)L

∫ s

t

Cr|Xu
r −Xu′

r ||ur − u′r|Γ trdr + 2σ̄2L2

∫ s

t

Cr|ur − u′r|2Γ trdr

+ 2(1 + σ̄2)α1α2

∫ s

t

Cr|Xu
r −Xu′

r |2Γ trdr + 2(1 + σ̄2)α2L

∫ s

t

Cr|Xu
r −Xu′

r ||ur − u′r|Γ trdr.

Note that

2(1 + σ̄2)(1 + α1 + α2)L|Xu
s −Xu′

s ||us − u′s| ≤ η̄|Xu
s −Xu′

s |2 + C1|us − u′s|2,

where C1 := (1 + σ̄2)2(1 + α1 + α2)2L2/η̄.

Then by the definition of η̄, we conclude that

|Xu
s −Xu′

s |2Γ ts ≤ (Cs)
−1Ms + (C1 + 2σ̄2L2)(Cs)

−1

∫ s

t

Cr|ur − u′r|2Γ trdr. (4.1)

On the other hand, applying Hölder’s inequality, Lemmas 3.2 (i) and 4.2 yields that Ms is a symmetric
G̃-martingale, i.e., Ms and −Ms are both G-martingales. Consequently, taking expectation to both sides of
equation (4.1), we deduce that

ÊG̃t [|Xu
s −Xu′

s |2Γ ts ] ≤ (C1 + 2σ̄2L2)ÊG̃t
[∫ s

t

exp (η̄(r − s)) |ur − u′r|2Γ trdr

]
,

which completes the proof. �

Note that the constant Cη is independent of s, which is crucial for our main results. We remark that the
above results can be extended to more general case. Indeed, assume that b̃, h̃ and σ̃ only satisfy (B2). For some
fixed t̄ > 0, we define

b̄(s, x, u) = b̃(x, u)1[0,t̄)(s) + b(x, u)1[t̄,∞)(s).

Similarly, we can define h̄ and σ̄. Let (X̄, Ȳ , Z̄, K̄) be the solution to G-FBSDE (3.1)−(3.2) with generators
(b̃, h̃, σ̃, f, g). Then we have the following result.

Lemma 4.4. Let ξ, ξ′ ∈ LpG(Ωt;Rn) with p > 2 and u, u′ ∈ U [t,∞). Then there is a constant C ′η depending on
G,α1, α2, L, t̄, U and η such that for each s ≥ t q.s.

(i) ÊG̃t [|X̄t,ξ,u
s |2Γ ts ] ≤ C ′η(1 + |ξ|2);

(ii) ÊG̃t [|X̄t,ξ,u
s − X̄t,ξ′,u

s |2Γ ts ] ≤ C ′η exp(−2η̄(s− t))|ξ − ξ′|2;

(iii) |X̄t,ξ,u
s − X̄t,ξ,u′

s |2Γ ts ≤ C̃sMs + C ′η
∫ s
t

exp(η̄(r − s))|ur − u′r|2Γ trdr, where M is a symmetric G̃-martingale

and C̃s is a deterministic process.
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Proof. Without loss of generality, assume d = 1 and we shall give the sketch of the proof. To simplify presen-
tation, we shall prove only the case when t ≤ t̄ ≤ s. Then applying Lemma 4.3 on interval [t̄, s], we obtain
that

ÊG̃t̄ [|X̄t,ξ,u
s |2Γ ts(Γ tt̄ )−1] = ÊG̃t̄ [|X̄ t̄,X̄t,ξ,u

t̄
,u

s |2Γ ts(Γ tt̄ )−1] ≤ Cη(1 + |X̄t,ξ,u
t̄ |2),

which implies that

ÊG̃t [|X̄t,ξ,u
s |2Γ ts ] ≤ CηÊG̃t [Γ tt̄ (1 + |X̄t,ξ,u

t̄ |2)].

Thus from Hölder inequality, Lemmas 3.2 and 4.2, we can find a constant Ct̄ depending on G,α1, α2, L, t̄, U and
η such that

ÊG̃t [|X̄t,ξ,u
s |2Γ ts ] ≤ Ct̄(1 + |ξ|2),

and we obtain (i) holds. The property (ii) can be proved in a similar way.
Next we shall prove inequality (iii). Note that∣∣∣X̄t,ξ,u

s − X̄t,ξ,u′

s

∣∣∣2 Γ ts ≤ 2|X̄ t̄,X̄t,ξ,u
t̄

,u
s − X̄ t̄,X̄t,ξ,u

t̄
,u′

s |2Γ ts + 2|X̄ t̄,X̄t,ξ,u
t̄

,u′

s − X̄ t̄,X̄t,ξ,u
′

t̄
,u′

s |2Γ ts .

Then applying Lemma 4.3(ii), we conclude that∣∣∣∣X̄ t̄,X̄t,ξ,u
t̄

,u
s − X̄ t̄,X̄t,ξ,u

t̄
,u′

s

∣∣∣∣2 Γ ts ≤ exp(−η̄(s− t̄))M1
s + Cη

∫ s

t̄

exp(−η̄(s− r))|ur − u′r|2Γ trdr,

where M1 is a symmetric G̃-martingale. Using the same method as Lemma 4.1 in [20], we deduce that∣∣∣∣X̄ t̄,X̄t,ξ,u
t̄

,u′

s − X̄ t̄,X̄t,ξ,u
′

t̄
,u′

s

∣∣∣∣2 Γ ts ≤ exp(−η̄(s− t̄))
(
M2
s + |X̄t,ξ,u

t̄ − X̄t,ξ,u′

t̄ |2Γ tt̄
)
,

where M2 is a symmetric G̃-martingale. Applying G-Itô formula and by a similar analysis as in Lemma 4.3, we
can find a constant C ′t̄ depending on G,α1, α2, L, t̄, U and η such that, for each r ∈ [t, t̄]∣∣∣X̄t,ξ,u

r − X̄t,ξ,u′

r

∣∣∣2 Γ tr ≤ C̃3
rM

3
r + C ′t̄

∫ t̄

t

|ul − u′l|2Γ tl dl,

where M3 is a symmetric G̃-martingale and C̃3
r is a deterministic process. From these inequalities, one can easily

get the desired result. �

Theorem 4.5. Assume that ξ, ξ′ ∈ LpG(Ωt;Rn) with p > 2 and u, u′ ∈ U [t,∞). Then there exist two constants
q > 1 and C̄η depending only on G,U, η, L, α1, α2, µ and q, such that for each s ≥ t q.s.

(i) |Y t,ξ,us | ≤ C̄η(1 + |Xt,ξ,u
s |2);

(ii) |Y t,ξ,ut − Y t,ξ
′,u

t | ≤ C̄η(1 + |ξ|+ |ξ′|)|ξ − ξ′|;
(iii) |Y t,ξ,ut − Y t,ξ,u

′

t | ≤ C̄η(1 + |ξ|)|Êt[
∫∞
t

exp(−µ(r − t))|ur − u′r|2qdr]|
1
2q .

Proof. The property (i) is immediate from Theorem 3.3. Next we shall show the property (iii), since (ii) can
be proved in a similar way (see also Lem. A.1 of [20]). Without loss of generality, assume that d = 1. For
convenience, we omit superscripts t and ξ.

Set (Ŷ , Ẑ) = (Y u − Y u′ , Zu − Zu′). Then we have for each s ≥ t,

Ŷs +Ku′

s = ŶT +Ku′

T +

∫ T

s

f̂rdr +

∫ T

s

ĝrd〈B〉r −
∫ T

s

ẐrdBr − (Ku
T −Ku

s ),
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where f̂s = f(Xu
s , Y

u
s , Z

u
s , us)− f(Xu′

s , Y
u′

s , Zu
′

s , u
′
s), ĝs = g(Xu

s , Y
u
s , Z

u
s , us)− g(Xu′

s , Y
u′

s , Zu
′

s , u
′
s).

By Lemma 3.5 in [20], for each ε > 0, there exist four bounded processes aεs, b
ε
s, c

ε
s, d

ε
s ∈ M2

G(0, T ) for each
T ≥ 0, such that

f̂s = aεsŶs + bεsẐs +ms −mε
s, ĝs = cεsŶs + dεsẐs + ns − nεs,

and |bεs| ≤ α2, |dεs| ≤ α2 |mε
s| ≤ 2(L + α2)ε, |nεs| ≤ 2(L + α2)ε, aεs + 2G(cεs) ≤ −µ, ms = f(Xu

s , Y
u′

s , Zu
′

s , us) −
f(Xu′

s , Y
u′

s , Zu
′

s , u
′
s), ns = g(Xu

s , Y
u′

s , Zu
′

s , us)− g(Xu′

s , Y
u′

s , Zu
′

s , u
′
s).

Applying Lemma 2.7 (see also Thm. 3.6 in [20]) yields that

Ŷt +Ku′

t = ÊG̃t

[
Γ̃ t,εT (ŶT +Ku′

T ) +

∫ T

t

(ms + 2G(ns)−mε
s − aεsKu′

s )Γ̃ t,εs ds

+

∫ T

t

(−nεs − cεsKu′

s )Γ̃ t,εs d〈B〉s +

∫ T

t

nsΓ̃
t,ε
s d〈B〉s −

∫ T

t

2G(ns)Γ̃
t,ε
s ds

]
,

where {Γ̃ t,εs }s∈[t,∞) is given by

Γ̃ t,εs = exp

(∫ s

t

(aεr − bεrdεr)dr +

∫ s

t

cεrd〈B〉r
)
EBs EB̃s .

Here EBs = exp(
∫ s
t
dεrdBr − 1

2

∫ s
t
|dεr|2d〈B〉r) and EB̃s = exp(

∫ s
t
bεrdB̃r − 1

2

∫ s
t
|bεr|2d〈B̃〉r). Therefore, from equa-

tion (2.5) we get that

Ŷt +Ku′

t ≤ ÊG̃t

[
Γ̃ t,εT ŶT +

∫ T

t

(ms + 2G(ns))Γ̃
t,ε
s ds−

∫ T

t

mε
sΓ̃

t,ε
s ds−

∫ T

t

nεsΓ̃
t,ε
s d〈B〉s

]
+Ku′

t , q.s. (4.2)

Note that for each s ≥ t, Γ̃ t,εs ≤ exp(−µ(s − t))Γ t,εs , where Γ t,εs = 1 +
∫ s
t
dεrΓ

t,ε
r dBr +

∫ s
t
bεrΓ

t,ε
r dB̃r. Thus it

follows from property (i) and Lemma 4.3 (i) that

ÊG̃t [Γ̃ t,εT ŶT ] ≤ 2 exp(−µ(T − t))C̄η(1 + Cη)(1 + |ξ|2). (4.3)

Note that |ms|+ 2G(|ns|) ≤ (1 + σ̄2)L((1 + |Xu
s |+ |Xu′

s |)|Xu
s −Xu′

s |+ |us− u′s|). Then by equation (4.2), we
derive that

Ŷt ≤ (1 + σ̄2)LÊG̃t

[∫ T

t

exp(−µ(s− t))
(

(1 + |Xu
s |+ |Xu′

s |)|Xu
s −Xu′

s |+ |us − u′s|
)
Γ t,εs ds

]

+ 2 exp(−µ(T − t))C̄η(1 + Cη)(1 + |ξ|2) +
2(L+ α2)(1 + σ̄2)

µ
ε. (4.4)

Recalling Hölder’s inequality and Lemma 4.3 (i), we conclude that

ÊG̃t

[∫ T

t

exp(−µ(s− t))(1 + |Xu
s |+ |Xu′

s |)|Xu
s −Xu′

s |Γ t,εs ds

]

≤
√

3ÊG̃t

[∫ T

t

exp(−µ(s− t))(1 + |Xu
s |2 + |Xu′

s |2)Γ t,εs ds

] 1
2

ÊG̃t

[∫ T

t

exp(−µ(s− t))|Xu
s −Xu′

s |2Γ t,εs ds

] 1
2

≤
(

6(1 + Cη)

µ

) 1
2

(1 + |ξ|)ÊG̃t

[∫ T

t

exp(−µ(s− t))|Xu
s −Xu′

s |2Γ t,εs ds

] 1
2

.
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On the other hand, in view of Lemma 4.3 (iii), we get that

ÊG̃t

[∫ T

t

exp(−µ(s− t))|Xu
s −Xu′

s |2Γ t,εs ds

] 1
2

≤ ÊG̃t

[∫ T

t

exp(−µ(s− t))
[
exp(−η̄(s− t))Ms + Cη

∫ s

t

exp(η̄(r − s))|ur − u′r|2Γ t,εr dr

]
ds

]} 1
2

≤ ÊG̃t

[∫ T

t

Cη exp(−µ(s− t))
∫ s

t

exp(η̄(r − s))|ur − u′r|2Γ t,εr dr

]
ds

] 1
2

=
√
CηÊG̃t

[∫ T

t

exp(−µ(r − t))|ur − u′r|2Γ t,εr dr

] 1
2

,

where we have used Fubini’s theorem in the last equality. Then by a similar analysis, we can also obtain that

ÊG̃t

[∫ T

t

exp(−µ(s− t))|us − u′s|Γ t,εs ds

]
≤
(

1

µ

) 1
2

{
ÊG̃t

[∫ T

t

exp(−µ(r − t))|ur − u′r|2Γ t,εr dr

]} 1
2

.

Applying Hölder’s inequality again, we deduce that

ÊG̃t

[∫ T

t

exp(−µ(r − t))|ur − u′r|2Γ t,εr dr

]

≤ ÊG̃t

[∫ T

t

exp(−µ(r − t))|ur − u′r|2qdr

] 1
q
∣∣∣∣∣
∫ T

t

exp(−µ(r − t))ÊG̃t [|Γ t,εr |p]dr

∣∣∣∣∣
1
p

,

where 1/q + 1/p = 1. Then by Lemma 4.2 and choosing p ∈ (1, 2) small enough, there exists a constant Cµ
depending on µ and p, such that

ÊG̃t

[∫ T

t

exp(−µ(r − t))|ur − u′r|2Γ t,εr dr

]
≤ CµÊG̃t

[∫ T

t

exp(−µ(r − t))|ur − u′r|2qdr

] 1
q

.

Therefore, by equation (4.4), sending ε→ 0 and then letting T →∞, we could find a constant C̃η depending
only on G,U, η, L, α1, α2, q and µ so that

Ŷt ≤ C̃η(1 + |ξ|)ÊG̃t
[∫ ∞

t

exp(−µ(r − t))|ur − u′r|2qdr
] 1

2q

.

Using the same method, we also have that

Y u
′

t − Y ut ≤ C̃η(1 + |ξ|)ÊG̃t
[∫ ∞

t

exp(−µ(r − t))|ur − u′r|2qdr
] 1

2q

.

which is the desired result. �

Remark 4.6. We remark that the above lemma also holds for Ȳ by Lemma 4.4 by a similar analysis.

Now we shall give the main results of this section.
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Lemma 4.7. Let u ∈ U [t,∞) be given. Then there exists a sequence (uk)k≥1 in U[t,∞) such that

lim
k→∞

Ê
[∫ ∞

t

exp(−µs)|us − uks |2qds
]

= 0.

Proof. Note that u is bounded by M := sup{|a| : a ∈ U}. Then for each ε > 0, there is a constant T such that∫ ∞
T

exp(−µs)ds ≤ ε

24q+1M2q
·

By Remark 4.1 and using the same method as in Lemma 13 in [15], we can find a process v′ ∈ U[t, T ] such that

Ê

[∫ T

t

|us − v′s|2qds

]
≤ ε

22q
·

Denote vs := v′s1[t,T ](s) + u01(T,∞)(s), where u0 ∈ U is a fixed constant. It is easy to check that v ∈ U[t,∞).

Then we have

Ê
[∫ ∞

t

exp(−µs)|us − vs|2qds
]

≤ 22q−1Ê
[∫ ∞

t

exp(−µs)|us − v′s|2qds
]

+ 22q−1Ê
[∫ ∞

t

exp(−µs)|vs − v′s|2qds
]

≤ ε

2
+ 22q−1Ê

[∫ ∞
T

exp(−µs)|us − v′s|2qds
]

+ 22q−1Ê
[∫ ∞

T

exp(−µs)|vs − v′s|2qds
]

≤ ε,

which completes the proof. �

Theorem 4.8. The value function V (t, x) is a deterministic function and

V (t, x) = inf
u∈Ut[t,∞)

Y t,x,ut .

Moreover, V (x) = V (t, x) for each t ≥ 0.

Proof. Note that Y t,x,ut is a constant for each u ∈ U t[t,∞). Since U t[t,∞) ⊂ U [t,∞), it is easy to check that

inf
u∈Ut[t,∞)

Y t,x,ut ≥ ess inf
u∈U [t,∞)

Y t,x,ut .

In the following we shall show that Y t,x,ut ≥ infv∈Ut[t,∞) Y
t,x,v
t q.s. for each u ∈ U [t,∞).

For each given u ∈ U [t,∞), from Lemma 4.7, we can find a sequence uk =
∑Nk
i=1 1Ai,ku

i,k ∈ U[t,∞),
k = 1, 2, . . . , such that

lim
k→∞

Ê
[∫ ∞

t

exp(−µs)|us − uks |2qds
]

= 0.

By the uniqueness of G-FBSDE with infinite horizon and the standard arguments, we can obtain that

Nk∑
i=1

1Ai,kY
t,x,ui,k

t = Y t,x,u
k

t q.s.
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Then applying Theorem 4.5 (iii) and choosing a subsequence if necessary, we deduce that
∑Nk
i=1 1Ai,kY

t,x,ui,k

t

converges to Y t,x,ut q.s. Therefore, it follows from

Nk∑
i=1

1Ai,kY
t,x,ui,k

t ≥ inf
v∈Ut[t,T ]

Y t,x,vt q.s.

that Y t,x,ut ≥ infv∈Ut[t,∞) Y
t,x,v
t q.s. Thus

V (t, x) = ess inf
u∈U [t,∞)

Y t,x,ut = inf
v∈Ut[t,∞)

Y t,x,vt .

Note that {Bs+t − Bt}s≥0 is also a G-Brownian motion and U t[t,∞) is the shifted space with respect to
U [0,∞). Then by the uniqueness of G-BSDEs with infinite horizon we get V (t, x) = V (0, x) for each t ≥ 0 and
this completes the proof. �

Corollary 4.9. For any x, y ∈ Rn, we have

|V (x)− V (y)| ≤ C̄η(1 + |x|+ |y|)|x− y|.

Proof. The proof is immediate from Theorems 4.5 and 4.8. �

Theorem 4.10. For each ξ ∈ LpG(Ωt;Rn) with p > 2, we have

V (ξ) = ess inf
u∈U [t,∞)

Y t,ξ,ut q.s.

Proof. The proof is similar to the one in [15]. For readers’ convenience, we shall give the sketch of the proof.
First, we claim that V (ξ) ≤ Y t,ξ,ut q.s. for each u ∈ U [t,∞). Indeed, for any ξ ∈ LpG(Ωt;Rn) with p > 2, there

is a sequence ξk =
∑Nk
i=1 xi,k1Ai,k , k = 1, 2, . . . , such that limk→∞ |ξ− ξk| = 0 q.s. and limk→∞ Ê[|ξ− ξk|2] = 0,

where xi,k ∈ Rn and {Ai,k}Nki=1 is a B(Ωt)-partition of Ω. By Corollary 4.9, we have

|V (ξ)− V (ξk)| ≤ C̄η(1 + |ξ|+ |ξk|)|ξ − ξk|.

Recalling Lemma 4.5, we derive that∣∣∣∣∣Y t,ξ,ut −
Nk∑
i=1

1Ai,kY
t,xi,k,u
t

∣∣∣∣∣ =

Nk∑
i=1

|Y t,ξ,ut − Y t,xi,k,ut |1Ai,k ≤ C̄η(1 + |ξ|+ |ξk|)|ξ − ξk|. (4.5)

Note that

V (ξk) =

Nk∑
i=1

1Ai,kV (xi,k) ≤
Nk∑
i=1

1Ai,kY
t,xi,k,u
t q.s.

Consequently, sending k →∞ yields the desired result.
Next, suppose η ∈ L2

G(Ωt) satisfies that η ≤ Y t,ξ,ut q.s. for each u ∈ U [t,∞). Then it suffices to show that
η ≤ V (t, ξ) q.s. By equation (4.5), we deduce that for any u ∈ U [t,∞),

η ≤
Nk∑
i=1

1Ai,kY
t,xi,k,u
t + C̄η(1 + |ξ|+ |ξk|)|ξ − ξk| q.s.,

which together with Theorem 4.8 indicate that for each k

η ≤ V (t, ξk) + C̄η(1 + |ξ|+ |ξk|)|ξ − ξk| q.s.

Letting k →∞, we obtain that η ≤ V (ξ) q.s. The proof is complete. �

Remark 4.11. We remark that the above results also remain true for the stochastic control problem associated
with Ȳ . However, the value function V̄ depends on time variable t in this case. Indeed, we have V̄ (t, ξ) =
ess inf
u∈U [t,∞)

Ȳ t,ξ,ut q.s.
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5. Dynamic programming principle and related HJBI equation

In this section, we shall establish the link between the value function V and the corresponding HJBI equation.
The main tool is the stochastic “backward semigroup” introduced by Peng [34].

For each (t, x) ∈ [0,∞)×Rn, positive real number δ, u ∈ U [t, t+ δ] and η ∈ LpG(Ωt+δ) with p > 2, we define
the following backward semigroups:

Gt,x,ut,t+δ[η] := Ỹ t,t+δ,x,ut ,

where (Xt,x,u
s , Ỹ t,t+δ,x,us , Z̃t,t+δ,x,us , K̃t,t+δ,x,u

s )t≤s≤t+δ is the solution of the following type of G-FBSDEs in the
interval [t, t+ δ]:


Xt,x,u
s = x+

∫ s
t
b(Xt,x,u

r , ur)dr +
∫ s
t
hij(X

t,x,u
r , ur)d〈Bi, Bj〉r +

∫ s
t
σ(Xt,x,u

r , ur)dBr,

Ỹ t,t+δ,x,us = η +
∫ t+δ
s

f(Xt,x,u
r , Ỹ t,t+δ,x,ur , Z̃t,t+δ,x,ur , ur)dr −

∫ t+δ
s

Z̃t,t+δ,x,ur dBr

+
∫ t+δ
s

gij(X
t,t+δ,x,u
r , Ỹ t,t+δ,x,ur , Z̃t,t+δ,x,ur , ur)d〈Bi, Bj〉r −

(
K̃t,t+δ,x,u
t+δ − K̃t,t+δ,x,u

s

)
.

(5.1)

Then we have the following dynamic programming principle.

Theorem 5.1. Assume (B1)−(B5) hold. Then for each s > 0 and x ∈ Rn, we have

V (x) = inf
u∈U [0,s]

G0,x,u
0,s [V (Xx,u

s )]. (5.2)

In order to prove it, we need the following lemma.

Lemma 5.2. Assume (B1)−(B5) hold. Then for any s > 0 and x ∈ Rn, the following inequality holds true:

V (x) ≤ inf
u∈U [0,s]

G0,x,u
0,s [V (Xx,u

s )].

Proof. The proof will be divided into the following two steps.

Step 1. For each fixed N > 0, we set bi1,N = (bi1 ∧ N) ∨ (−N), hi1,Nij = (hi1ij ∧ N) ∨ (−N), σNi1i2 = (σi1i2 ∧
N) ∨ (−N) for i1 ≤ n, i2 ≤ d and bN = (b1,N , . . . , bn,N )>, hNij = (h1,N

ij , . . . , hn,Nij )>, σN = (σNi1i2). Then we

define b̄N (t, x, u) = bN (x, u)1[0,s)(t) + b(x, u)1[s,∞)(t). Similarly, we can define h̄N and σ̄N . Note that in general
bN , hN and σN only satisfy Assumption (B2).

By Remark 4.11, we derive that

V N (t, x) := ess inf
u∈U [t,∞)

Y t,x,u,Nt = inf
u∈Ut[t,∞)

Y t,x,u,Nt .

Note that V N (t, x) = V (x) for t ≥ s. We claim that for any s ≥ 0 and x ∈ Rn,

V N (0, x) ≤ inf
u∈U [0,s]

G0,x,u,N
0,s

[
V N (s,Xx,u,N

s )
]

= inf
u∈U [0,s]

G0,x,u,N
0,s

[
V (Xx,u,N

s )
]
, (5.3)

where Gt,x,u,Nt,s [·] is defined in the same way as Gt,x,ut,s [·]. The proof will be given in the next step.
Note that there exists a constant C2 > 0 (may vary from line to line) depending on L, s, n, U , G, α1, α2 and

η, such that for any u ∈ U [0,∞),

|Y x,u,N0 − Y x,u0 | ≤ C2(1 + |x|3)

N
·
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Indeed, applying Lemma 4.4, we get for any u ∈ U [0,∞), t ≥ s,

ÊG̃[|Xx,u,N
t −Xx,u

t |2Γ 0
t ] ≤ exp(−2η̄(t− s))ÊG̃[|Xx,u,N

s −Xx,u
s |2Γ 0

s ].

By Lemma 3.2, Hölder’s inequality and a standard argument (see, e.g., Lem. 24 in [15]), for each p ≥ 1, there
exists a constant Cs,p > 0 depending on s, p, n, U , G, α1 and L such that for any u ∈ U [0,∞), r ∈ [0, s],

ÊG̃[|Xx,u,N
r −Xx,u

r |2pΓ 0
r ] ≤ Cs,p exp(−2η̄r)(1 + |x|4p)

N2p
· (5.4)

Therefore, we obtain that

ÊG̃[|Xx,u,N
t −Xx,u

t |2Γ 0
t ] ≤ Cs,1 exp(−2η̄t)(1 + |x|4)

N2
·

Then by a similar analysis as in Lemma 4.5, we can obtain the desired result. Consequently,

|V N (0, x)− V (0, x)| ≤ sup
u∈U [0,∞)

|Y x,u,N0 − Y x,u0 | ≤ C2(1 + |x|3)

N
·

From Theorem 2.6, Corollary 4.9 and inequality (5.4), we have for any u ∈ U [0, s],

|G0,x,u,N
0,s [V (Xx,u,N

s )]−G0,x,u
0,s [V (Xx,u

s )]|2

≤ C2Ê[|V (Xx,u,N
s )− V (Xx,u

s )|2 +

∫ s

0

(1 + |Xx,u,N
t |2 + |Xx,u

t |2)|Xx,u,N
t −Xx,u

t |2dt]

≤ C2(1 + |x|6)

N2
·

Thus ∣∣∣∣ inf
u∈U [0,s]

G0,x,u,N
0,s [V (Xx,u,N

s )]− inf
u∈U [0,s]

G0,x,u
0,s [V (Xx,u

s )]

∣∣∣∣ ≤ C2(1 + |x|3)

N
·

Sending N →∞ in inequality (5.3), we get the desired result.

Step 2. Now we shall complete the proof of equation (5.3). The main idea is from the Lemma 22 in [15] and
we shall only give the sketch of the proof. For each ε > 0, there exists a u ∈ U [0, s] such that

G0,x,u,N
0,s [V (Xx,u,N

s )]− ε ≤ inf
v∈U [0,s]

G0,x,v,N
0,s [V (Xx,v,N

s )]. (5.5)

Now consider the following SDE: for any v ∈ U [0, s],

dX̃x,v,N
r = bN (X̃x,v,N

r − X̃N
r e, vr)dr + hNij (X̃

x,v,N
r − X̃N

r e, vr)d〈Bi, Bj〉r

+σN (X̃x,v,N
r − X̃N

r e, vr)dBr + (N + 1)edB1
r ,

dX̃N
r = (N + 1)dB1

r ,

X̃x,v,N
0 = x, X̃N

0 = 0, r ∈ [0, s],

(5.6)

where e = [1, . . . , 1]> ∈ Rn and B1 is the first component of G-Brownian motion B. By the uniqueness of
G-SDE, one can easily check that

X̃x,v,N
r = Xx,v,N

r + (N + 1)B1
re, X̃

N
r = (N + 1)B1

r , r ∈ [0, s]



890 M. HU AND F. WANG

is the solution to equation (5.6). Note that bN , hN and σN are bounded and√
|σNi1 +N + 1|2 + |σNi2 |2 + . . .+ |σNid |2 ≥ 1.

Thus applying Theorem 3.18 in [21] yields that 1{X̃x,v,Ns ∈[a,b)} ∈ L
2
G(Ωs) for any a, b ∈ Rn with a ≤ b.

Then by the same way as in Lemma 22 in [15] and Lemma 3.2, for each k ≥ 1 we can find a simple function
ξk,u,N ∈ L2

G(Ωs) and an admissible control ūk,N ∈ U(s,∞) so that

Ê[|Xx,u,N
s − ξk,u,N |4] ≤ C2,N (1 + |x|8)

k4
, V (ξk,u,N ) ≤ Y s,ξ

k,u,N ,ūk,N ,N
s ≤ V (ξk,u,N ) + ε, (5.7)

where C2,N is a constant (may vary from line to line) depending on x,N, s,G, u, n, α1, α2, η̄ and L. Consequently,
applying Theorem 4.5 (ii), equation (5.7) and Hölder’s inequality yields that

Ê[|Y s,X
x,u,N
s ,ūk,N ,N

s − V (Xx,u,N
s )|2]

≤ 2(Ê[|Y s,X
x,u,N
s ,ūk,N ,N

s − Y s,ξ
k,u,N ,ūk,N ,N

s |2] + Ê[|Y s,ξ
k,u,N ,ūk,N ,N

s − V (Xx,u,N
s )|2])

≤ 2(C̄ηÊ[(1 + |Xx,u,N
s |+ |ξk,u,N |)2|Xx,u,N

s − ξk,u,N |2] + Ê[(|V (ξk,u,N )− V (Xx,u,N
s )|+ ε)2])

≤ C2,N Ê[(1 + |Xx,u,N
s |+ |ξk,u,N |)4]

1
2 Ê[|Xx,u,N

s − ξk,u,N |4]
1
2 + C2,Nε

2

≤ C2,N (1 + |x|6)

k2
+ C2,Nε

2,

which together with Theorem 2.6 imply that∣∣∣G0,x,u,N
0,s

[
Y
s,Xx,u,Ns ,ūk,N ,N
s

]
−G0,x,u,N

0,s

[
V (Xx,u,N

s )
]∣∣∣ ≤ C2,N (1 + |x|3)

k
+ C2,Nε. (5.8)

Then we denote ũN (r) = u(r)1[0,s](r) + ūk,N (r)1(s,∞)(r), which belongs to U [0,∞). Thus by the definition
of V N ,

V N (0, x) ≤ Y x,ũ
N ,N

0 = G0,x,u,N
0,s

[
Y
s,Xx,u,Ns ,ūk,N ,N
s

]
,

which together with equations (5.5) and (5.8) imply that

V N (0, x)− C2,N (1 + |x|3)

k
− C2,Nε ≤ inf

v∈U [0,s]
G0,x,v,N

0,s

[
V (Xx,v,N

s )
]
.

Sending k →∞ and then letting ε→ 0 in the above inequality yield the desired result. �

Remark 5.3. Note that the method of [15] cannot be directly applied to deal with the above question, since
the set of admissible controls is more complicated in our setting. Thus we introduce a new version of “implied
partition”.

Now we are ready to present the proof of Theorem 5.1.

The proof of Theorem 5.1. By Theorem 4.10, we obtain for any u ∈ U [0,∞),

Y
s,Xx,us ,u
s ≥ V (Xx,u

s ) q.s.,

where Y
s,Xx,us ,u
s = Y x,us is the solution of equation (3.2). Then, by the comparison theorem of G-BSDE, we

obtain that Y x,u0 ≥ G0,x,u
0,s [V (Xx,u

s )] q.s., which concludes that

V (x) ≥ inf
u∈U [0,s]

G0,x,u
0,s [V (Xx,u

s )].
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Recalling Lemma 5.2, we can obtain that

V (x) = inf
u∈U [0,s]

G0,x,u
0,s [V (Xx,u

s )],

which ends the proof. �

Next, we shall prove the value function V is the viscosity solution to the related HJBI equation. Note that H
in equation (5.9) is not uniformly continuous in (x, p,A), which is different from the ones in [6] (see also [30,31]).
Thus we introduce a probabilistic method to treat the uniqueness problem of viscosity solutions.

Theorem 5.4. Assume (B1)−(B5) hold. Then V is the unique viscosity solution of the following HJBI equation
with quadratic growth:

inf
u∈U

[G(H(x, V, ∂xV, ∂
2
xxV, u)) + 〈∂xV, b(x, u)〉+ f(x, V, ∂xV σ(x, u), u)] = 0, (5.9)

where
Hij(x, v, p, A, u) = (σ>(x, u)Aσ(x, u))ij + 2〈p, hij(x, u)〉+ 2gij(x, v, pσ(x, u), u)

for any (x, v, p, A, u) ∈ Rn × R× Rn × S(n)× U .

Proof. From Theorem 5.1, we can prove that V is a viscosity solution of equation (5.9) in the same way as in
Theorem 26 of [15]. Next we shall give the uniqueness of viscosity solution of equation (5.9).

Suppose Ṽ is also a viscosity solution of equation (5.9) with quadratic growth. For each T > 0, it is easy to
check that Ṽ is a viscosity solution of the following fully nonlinear parabolic PDE:{

∂tv + inf
u∈U

[G(H(x, v, ∂xv, ∂
2
xxv, u)) + 〈∂xv, b(x, u)〉+ f(x, v, ∂xvσ(x, u), u)] = 0,

v(T, x) = Ṽ (x).
(5.10)

Then it follows from that the uniqueness of viscosity solution to parabolic PDE (5.10), Theorem A.10 and
Lemma A.14 that for each t ≥ 0,

Ṽ (x) = inf
u∈U [0,t]

G0,x,u
0,t [Ṽ (Xx,u

t )].

By the proof of Lemma 4.5 (see inequality (4.3)), we can find some constant l independent of t so that for
each u ∈ U [0, t],

|G0,x,u
0,t [Ṽ (Xx,u

t )]−G0,x,u
0,t [V (Xx,u

t )]| ≤ l(1 + |x|2) exp(−µt).

Then for each t ≥ 0, we have
|Ṽ (x)− V (x)| ≤ l(1 + |x|2) exp(−µt).

Letting t→∞, we get that V (x) = Ṽ (x) for each x ∈ Rn. The proof is complete. �

Remark 5.5. Remark that [38] recently established the well-posedness of viscosity solutions of fully nonlinear
elliptic path-dependent PDEs under some uniformly continuous conditions, which provides a powerful approach
for studying non-Markovian stochastic control problem with infinite horizon.

Finally, we shall give the following stochastic verification theorem under the case that the value function V
is smooth enough.

Theorem 5.6. Assume (B1)−(B5) hold. Suppose that V is a C2-function such that ∂2
xµxνV is a function of

polynomial growth for any µ, ν = 1, . . . , n. Then an admissible control u∗ ∈ U [0,∞) is optimal if

G(H(Θx,u
∗

s , u∗s)) + 〈∂xV (Xx,u∗

s ), b(Xx,u∗

s , u∗s)〉+ f(Θx,u
∗

s , u∗s)] = 0, a.e. s ≥ 0, q.s.,

where Θx,us := (Xx,u
s , V (Xx,u

s ), ∂xV (Xx,u
s )σ(Xx,u

s , us)) for each u ∈ U [0,∞).
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Proof. Without loss of generality, assume d = 1. Then recalling the definition of H and applying G-Itô for-
mula 2.3 to V (Xx,u∗

t ) yields that

V (Xx,u∗

t ) =V (Xx,u∗

T )−
∫ T

t

∂xV (Xx,u∗

s )b(Xx,u∗

s , u∗s)ds−
∫ T

t

∂xV (Xx,u∗

s )σ(Xx,u∗

s , u∗s)dBs

− 1

2

∫ T

t

H(Θu
∗

s , u∗s)d〈B〉s +

∫ T

t

g(Θu
∗

s , u∗s)d〈B〉s

=V (Xx,u∗

T ) +

∫ T

t

f(Θx,u
∗

s , u∗s)ds+

∫ T

t

g(Θu
∗

s , u∗s)d〈B〉s −
∫ T

t

∂xV (Xx,u∗

s )σ(Xx,u∗

s , u∗s)dBs

− (Ku∗

T −Ku∗

t ),

where Ku∗

t = 1
2

∫ t
0
H(Θu

∗

s , u∗s)d〈B〉s−
∫ t

0
G(H(Θu

∗

s , u∗s))ds is a decreasing G-martingale. Thus by the uniqueness

of G-BSDE with infinite horizon, we conclude that V (Xx,u∗

t ) = Y x,u
∗

t q.s. In particular

V (x) = inf
u∈U [0,∞)

Y x,u0 = Y x,u
∗

0 ,

which completes the proof. �

Example 5.7. Consider the following simple infinite horizon discounted stochastic linear model:

J(x, u) = Ê
[∫ ∞

0

exp(−λt)(Xx,u
t − ut)dt

]
,

where λ > 0, d = 1, b(x, u) = −x + u, h(x, u) = 0, σ(x, u) = x + u and U = [0, 1]. Thus taking f(x, y, u) =
−λy + x− u and g = 0 in equation (3.2) as in the introduction, we have

J(x, u) = Y x,u0 , ∀u ∈ U [0,∞).

Note that V (x) = 1
λ+1 (x− 1) is the classical solution to the following equation

inf
u∈U

[G((x+ u)2∂2
xxV (x))− x∂xV (x) + u∂xV (x)− λV (x) + x− u] = 0.

Since
G((x+ u)2∂2

xxV (x))− x∂xV (x) + ∂xV (x)− λV (x) + x− 1 = 0,

we deduce that u∗s = 1, s ≥ 0 is an optimal control.

Remark 5.8. Note that [12] also studied the existence of optimal Markov control policy, i.e., u∗s = u∗(X∗s ) in
a weak framework (see also [45]). However, in general we cannot get a optimal Markov control policy since our
formulation is a “strong” framework.

Acknowledgements. The authors would like to thank Prof. Shige Peng for his helpful discussions and suggestions. The
authors also thank the editor and the anonymous referee for their careful reading, helpful suggestions.

Appendix A.

A.1. The proof of Theorem 3.3

Proof. We shall only prove the existence, since the uniqueness can be proved in a similar way as in [20]. Without
loss of generality, we assume that gij = 0. For convenience, we omit superscripts t, ξ and u.
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Denote by (Y n, Zn,Kn) ∈ S2
G(0, n) the unique solution of the following G-BSDE in the interval [t, n]:

Y ns =

∫ n

s

f(Xr, Y
n
r , Z

n
r , ur)dr −

∫ n

s

Znr dBr − (Kn
n −Kn

s ).

Setting fs = f(Xs, Y
n
s , Z

n
s , us)− f(Xs, 0, 0, us), we have

Y ns =

∫ n

s

(f(Xr, 0, 0, ur) + fr)dr −
∫ n

s

Znr dBr − (Kn
n −Kn

s ),

Then by Lemma 3.5 in [20], for each ε > 0, we can get that

fs = an,εs Y ns + bn,εs Zns −mn,ε
s ,

where an,εs , bn,εs ,mn,ε
s are in M2

G(0, T ) for each T > t and an,εs ≤ −µ, |bn,εs | ≤ α2 and |mn,ε
s | ≤ 2(L+ α2)ε. Thus

applying Lemma 2.7, we derive that in the extended G̃-expectation space,

Y ns = ÊG̃s
[∫ n

s

(f(Xr, 0, 0, ur) +mn,ε
r ) exp(

∫ r

s

an,εl dl)Γ s,n,εr dr

]
q.s.

where

Γ s,n,εr = 1 +

∫ r

s

bn,εl Γ s,n,εl dB̃l.

Thus we deduce that

|Y ns | ≤ ÊG̃s
[∫ n

s

e−µ(r−s)Γ s,n,εr |f(Xr, 0, 0, ur)|dr
]

+
2(L+ α2)

µ
ε.

On the other hand, it follows from Lemma 4.3 that for each t ≤ s ≤ r,

ÊG̃s [|f(Xr, 0, 0, ur)|Γ s,n,εr ] ≤ Cf ÊG̃s [(1 + |Xr|2)Γ s,n,εr ] ≤ Cf + CfCη(1 + |Xs|2),

where Cf is a constant depending on f . Then letting ε→ 0, we can obtain that

|Y ns | ≤
Cf
µ

(1 + Cη)(1 + |Xs|2), q.s.

Now we define Y n, Zn and Kn on the whole time axis by setting

Y ns = Zns = 0, Kn
s = Kn

n , ∀s > n.

Therefore using the same strategy as in [20] implies that for each t ≤ s ≤ n ≤ m,

|Y ns − Y ms | ≤
Cf
µ

(1 + Cη)(1 + |Xs|2) exp(µs)(exp(−µn)− exp(−µm)), q.s.

Thus, we get for each t < T ≤ n ≤ m,

lim
m,n→∞

Ê[ sup
s∈[t,T ]

|Y ns − Y ms |2] = 0.

In sprit of Proposition 3.8 in [16], we conclude that

lim
m,n→∞

‖Zn − Zm‖M2
G(t,T ) = 0.
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Consequently, there exist two processes (Y, Z) ∈ S2
G(0,∞)×M2

G(0,∞) such that

lim
n→∞

Ê[ sup
s∈[t,T ]

|Y ns − Ys|2 +

∫ T

t

|Zns − Zs|2dt] = 0.

It is obvious that |Ys| ≤ Cf
µ (1 + Cη)(1 + |Xs|2) for each s ≥ t q.s. Denote

Ks := Ys − Yt +

∫ s

t

f(Xr, Yr, Zr, ur)dr −
∫ s

t

ZrdBr.

One can easily check that (Y, Z,K) is the solution to equation (3.2). �

A.2. G-Stochastic optimal control problem in finite horizon

This section is devoted to extending the results in [15] to the case that the terminal condition is a continuous
function of quadratic growth. The main idea is based on [20], where there is no control. For some fixed T > 0
and for each (t, x, u) ∈ [0, T ]× Rn × U [t, T ], consider the following type of G-BSDEs on finite interval [t, T ]:

Y t,T,x,us = φ(Xt,x,u
T ) +

∫ T

s

f(Xt,x,u
r , Y t,T,x,ur , Zt,T,x,ur , ur)dr −

∫ T

s

Zt,T,x,ur dBr

+

∫ T

s

gij(X
t,x,u
r , Y t,T,x,ur , Zt,T,x,ur , ur)d〈Bi, Bj〉r − (Kt,T,x,u

T −Kt,T,x,u
s ), (A.1)

where φ is a continuous function such that |φ(x)| ≤ M(1 + |x|2) for some constant M . By Theorem 2.4,
the equation (A.1) has a unique solution (Y t,T,x,u, Zt,T,x,u,Kt,T,x,u) ∈ S2

G(t, T ). For convenience, we set
(Y T,x,u, ZT,x,u,KT,x,u) = (Y 0,T,x,u, Z0,T,x,u,
K0,T,x,u). Then we denote

V̄ (t, x) = ess inf
u∈U [t,T ]

Y t,T,x,ut .

Note that there exists a sequence Lipschitz functions {φm}∞m=1 such that

|φ(x)− φm(x)| ≤ 1

m
1{|x|≤m} + 2M(1 + |x|2)1{|x|>m} ≤

1

m
+

2M(1 + |x|3)

m
·

Let (Y t,T,m,x,u, Zt,T,m,x,u,Kt,T,m,x,u) be the unique S2
G(t, T )-solution of G-BSDEs (A.1) with terminal condi-

tion Y t,T,m,x,uT = φm(Xt,x,u
T ) and denote

V̄ m(t, x) = ess inf
u∈U [t,T ]

Y t,T,m,x,ut .

Lemma A.9. Under assumptions (B1)−(B2), V̄ m(t, x) is a deterministic continuous function. Moreover,
V̄ m(t, x) is the unique viscosity solution of the following fully nonlinear PDE with terminal condition V̄ m(T, x) =
φm(x): {

∂tv + inf
u∈U

[G(H(x, v, ∂xv, ∂
2
xxv, u)) + 〈∂xv, b(x, u)〉+ f(x, v, ∂xvσ(x, u), u)] = 0,

v(T, x) = φ(x).
(A.2)

Proof. The proof is immediate from [15,17]. �

Now we shall state the main result of this appendix.
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Theorem A.10. Assume (B1)−(B2) hold. Then V̄ (t, x) is the unique viscosity solution of the fully nonlinear
PDE (A.2) with terminal condition V̄ (T, x) = φ(x).

In order to prove this theorem, we need the following lemmas.

Lemma A.11. For each function ϕ ∈ C(Rn) with quadratic growth, Ê[ϕ(Xx,u
t )] is a continuous function of

(t, x, u) ∈ [0, T ]× Rn × U [0, T ].

Proof. The proof is similar to Lemma A.5 in [20]. For convenience, we shall give the sketch of the proof. Assume
|ϕ(x)| ≤ Cϕ(1 + |x|2), where Cϕ is generic constant depending on ϕ and may vary from line to line. For each
given N > 0 and T > 0, for any t, t′ < T , x, x′ ∈ Rn and u, u′ ∈ U [0, T ], we have∣∣∣Ê [ϕ(Xx,u

t )]− Ê
[
ϕ(Xx′,u′

t′ )
]∣∣∣ ≤ Ê

[
|ϕ(Xx,u

t )− ϕ(Xx′,u′

t′ )|1{|Xx,ut |≤N}∩
{
|Xx
′,u′
t′ |≤N

}]
+
Cϕ
N

Ê
[
1 + |Xx′,u′

t′ |3 + |Xx,u
t |3

]
.

Note that for each given ε > 0, there is ρ > 0 such that

|ϕ(z)− ϕ(z′)| ≤ ε

2
whenever |z − z′| < ρ and |z|, |z′| ≤ N.

From Lemma 3.2 and Hölder’s inequality, there is a constant δ > 0 such that

Ê[|ϕ(Xx,u
t )− ϕ(Xx′,u′

t′ )|1{|Xx,ut −Xx
′,u′
t′ |≥ρ}] <

ε

2

whenever |x− x′| ≤ δ, |t− t′| ≤ δ and ‖u− u′‖M2
G(0,T ) ≤ δ. Consequently,

∣∣∣Ê [ϕ(Xx,u
t )]− Ê

[
ϕ(Xx′,u′

t′ )
]∣∣∣ ≤ Ê

[
|ϕ(Xx,u

t )− ϕ
(
Xx′,u′

t′

)
|1{|Xx,ut −Xx

′,u′
t′ |<ρ}∩{|Xx,ut |≤N}∩

{
|Xx
′,u′
t′ |≤N

}]
+ Ê

[
|ϕ(Xx,u

t )− ϕ(Xx′,u′

t′ )|1{
|Xx,ut −Xx

′,u′
t′ |≥ρ

}]+
Cϕ
N

Ê
[
1 + |Xx′,u′

t′ |3 + |Xx,u
t |3

]
≤ ε+

Cϕ
N

Ê
[
1 + |Xx′,u′

t′ |3 + |Xx,u
t |3

]
whenever |x− x′| ≤ δ, |t− t′| ≤ δ and ‖u− u′‖M2

G(0,T ) ≤ δ. Thus we get

lim sup
(t′,x′,u′)→(t,x,u)

|Ê[ϕ(Xx,u
t )]− Ê

[
ϕ(Xx′,u′

t′ )
]
| ≤ ε+

Cϕ
N

Ê
[
1 + |Xx,u

t |3
]
.

Then we obtain the desired result by letting ε ↓ 0 and then sending N →∞. �

Lemma A.12. Assume (B1)−(B2) hold. Then the value function V̄ (t, x) exists and

V̄ (t, x) = inf
u∈Ut[t,T ]

Y t,T,x,ut .

Proof. Assume u ∈ U [t, T ] and uk ∈ U [t, T ] for k ≥ 1. Then it follows from Lemma A.11 and Theorem 2.6 (see

also Thm. 7 in [15]) that Y t,T,x,u
k

t converges to Y t,T,x,ut in L2
G(Ωt) whenever uk converges to u in M2

G(0, T ) as
k →∞. Then one can complete the proof by the same way as in Theorem 17 of [15]. �
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Lemma A.13. Assume (B1)−(B2) hold. Then the following properties hold:

(i) There exists a constant C depending on M , T , G, L, α1 and α2 such that

‖Y t,T,m,x,u‖S2
G(t,T ) + ‖Zt,T,m,x,u‖M2

G(t,T ) ≤ C(1 + |x|2), ∀x ∈ Rn,m ≥ 1, u ∈ U [t, T ];

(ii) lim
m→∞

Ê[ sup
s∈[t,T ]

|Y t,T,m,x,us − Y t,T,x,us |2] = 0;

(iii) V̄ (t, x) is a continuous function of quadratic growth;
(iv) lim

m→∞
V̄ m(tm, xm) = V̄ (t, x) for each given (tm, xm) ∈ [0, T ]× Rn with (tm, xm)→ (t, x).

Proof. Note that φm and f(x, 0, 0, u), gij(x, 0, 0, u) are functions of quadratic growth in x with uniformly
bounded coefficients. Applying Proposition 3.5 and Corollary 5.2 in [16], we obtain (i). By Theorem 2.6 and
Theorem 3.3 in [43], we can find a constant C̃ depending on M , T , G, L, α1 and α2 (may vary from line to
line), such that, for any (t, x, u) ∈ [0, T ]× Rn × U [0, T ],

lim
m→∞

Ê[ sup
s∈[t,T ]

|Y t,T,m,x,us − Y t,T,x,us |2] ≤ lim
m→∞

C̃((Ê[|φ(Xt,x,u
T )− φm(Xt,x,u

T )|3])
2
3 +Ê[|φ(Xt,x,u

T )− φm(Xt,x,u
T )|3])

≤ lim
m→∞

C̃

(
1

m2
+

Ê[|Xt,x,u
T |9] + (Ê[|Xt,x,u

T |9])
2
3

m2

)
= 0. (A.3)

Moreover, from Lemma 3.2 (ii), we obtain that

lim
m→∞

sup
u∈Ut[t,T ]

|Y t,T,m,x,ut − Y t,T,x,ut |2 ≤ lim
m→∞

C̃

(
1

m2
+ sup
u∈Ut[t,T ]

Ê[|Xt,x,u
T |9] + (Ê[|Xt,x,u

T |9])
2
3

m2

)
= 0.

In particular, lim
m→∞

V̄ m(t, x) = V̄ (t, x) by Lemma A.12.

Now we prove lim
m→∞

V̄ (tm, xm) = V̄ (t, x) for each given (tm, xm) ∈ [0, T ]×Rn with (tm, xm)→ (t, x). Without

loss of generality, we assume tm ≤ t and gij = 0. By a similar analysis as in (ii) and Lemma A.11, we can obtain

lim
m→∞

sup
u∈U [0,T ]

Ê

[
sup
s∈[t,T ]

|Y tm,T,xm,us − Y t,T,x,us |2 +

∫ T

t

|Ztm,T,xm,us − Zt,T,x,us |2ds

]
= 0. (A.4)

It is easy to check that V̄ (t, x) = ess inf
u∈U [0,T ]

Y t,T,x,ut . Since V̄ (t, x) is a deterministic function, taking expectation

to both sides of equation (A.1) yields that

V̄ (t, x) = Ê
[

ess inf
u∈U [0,T ]

Y t,T,x,ut

]
≤ inf
u∈U [0,T ]

Ê

[
φ(Xt,x,u

T ) +

∫ T

t

f(Xt,x,u
r , Y t,T,x,ur , Zt,T,x,ur , ur)dr

]
.

From Lemma A.12, we derive that

V̄ (t, x) = inf
u∈Ut[t,T ]

Ê
[
Y t,T,x,ut

]
≥ inf
u∈U [0,T ]

Ê

[
φ(Xt,x,u

T ) +

∫ T

t

f(Xt,x,u
r , Y t,T,x,ur , Zt,T,x,ur , ur)dr

]
,

which implies that

V̄ (t, x) = inf
u∈U [0,T ]

Ê
[
Y t,T,x,ut

]
= inf
u∈U [0,T ]

Ê

[
φ(Xt,x,u

T ) +

∫ T

t

f(Xt,x,u
r , Y t,T,x,ur , Zt,T,x,ur , ur)dr

]
.



STOCHASTIC OPTIMAL CONTROL PROBLEM WITH INFINITE HORIZON DRIVEN BY G-BROWNIAN MOTION 897

Consequently,

|V̄ (t, x)− V̄ (tm, xm)|≤ sup
u∈U [0,T ]

Ê

[
|φ(Xt,x,u

T )− φ(Xtm,xm,u
T )|

+

∫ t

tm

|f(Xtm,xm,u
r , Y tm,T,xm,ur , Ztm,T,xm,ur , ur)|dr

+

∫ T

t

|f(Xt,x,u
r , Y t,T,x,ur , Zt,T,x,ur , ur)− f(Xtm,xm,u

r , Y tm,T,xm,ur , Ztm,T,xm,ur , ur)|dr

]

≤ sup
u∈U [0,T ]

Ê[(t− tm)
1
2

(∫ t

tm

3(|f(Xtm,xm,u
r , 0, 0, ur)|2+|LY tm,T,xm,ur |2 + |α2Z

tm,T,xm,u
r |2)dr

) 1
2

+

∫ T

t

(L(1 + |Xt,x,u
r |+ |Xtm,xm,u

r |)|Xt,x,u
r −Xtm,xm,u

r |+ L|Y t,T,x,ur − Y tm,T,xm,ur |) dr

+ α2

∫ T

t

|Zt,T,x,ur − Ztm,T,xm,ur |dr + |φ(Xt,x,u
T )− φ(Xtm,xm,u

T )|].

By Lemma A.11, (i) and equation (A.4), we derive that

lim
m→∞

|V̄ (t, x)− V̄ (tm, xm)| = 0,

and the property (iii) holds.
From (iii), we get that

lim
m→∞

|V̄ m(tm, xm)− V̄ (t, x)| ≤ lim
m→∞

|V̄ m(tm, xm)− V̄ (tm, xm)|+ lim
m→∞

|V̄ (tm, xm)− V̄ (t, x)|

= lim
m→∞

|V̄ m(tm, xm)− V̄ (tm, xm)|.

By Lemma 3.2 (ii) and equation (A.3), we obtain

lim
m→∞

|V̄ m(tm, xm)− V̄ (t, x)| ≤ lim
m→∞

C̃

(
1

m
+ sup
u∈U [0,T ]

Ê[|Xtm,xm,u
T |9]

1
2 + Ê[|Xtm,xm,u

T |9]
1
3

m

)
= 0.

The proof is complete. �

Lemma A.14. Assume (B1)−(B2) hold. Then for any t ≤ s ≤ T , x ∈ Rn, we have

V̄ (t, x) = ess inf
u∈U [t,s]

Gt,x,ut,s [V̄ (s,Xt,x,u
s )] = inf

u∈Ut[t,s]
Gt,x,ut,s [V̄ (s,Xt,x,u

s )].

Proof. From Lemma A.12, it suffices to show that

V̄ (t, x) = inf
u∈Ut[t,s]

Gt,x,ut,s [V̄ (s,Xt,x,u
s )].

By Theorem 21 in [15], we have

V̄ m(t, x) = inf
u∈Ut[t,s]

Gt,x,ut,s [V̄ m(s,Xt,x,u
s )].

From the proof of Lemma A.13, we conclude that for each l > 0,

lim
m→∞

sup
|x|≤l
|V̄ m(t, x)− V̄ (t, x)| = 0.
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Thus applying Theorem 2.6 and Lemma 3.2 (ii), we can find some constant C̃ independent of m and l (may
vary from line to line) so that

lim
m→∞

sup
u∈Ut[t,s]

|Gt,x,ut,s [V̄ m(s,Xt,x,u
s )]−Gt,x,ut,s [V̄ (s,Xt,x,u

s )]|

≤ lim
m→∞

C̃ sup
u∈Ut[t,s]

Ê[|V̄ m(s,Xt,x,u
s )− V̄ (s,Xt,x,u

s )|2]
1
2

≤ C̃ lim
m→∞

[
sup
|x|≤l
|V̄ m(t, x)− V̄ (t, x)|+ sup

u∈Ut[t,s]

Ê[1 + |Xt,x,u
s |6]

1
2

l

]

≤ C̃

l
·

Sending l→∞ yields that

lim
m→∞

inf
u∈Ut[t,s]

Gt,x,ut,s [V̄ m(s,Xt,x,u
s )] = inf

u∈Ut[t,s]
Gt,x,ut,s [V̄ (s,Xt,x,u

s )],

which completes the proof. �

Now we are in a position to give the proof of Theorem A.10.

Proof of Theorem A.10. By Lemmas A.9, A.13 and Proposition 4.3 in [6], it is easy to verify that V̄ is a viscosity
solution of the fully nonlinear PDE (A.2) with terminal condition V̄ (T, x) = φ(x). The uniqueness can be found
in Theorem 6.1 of [3] and the proof is complete. �
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Abel Symp. 2, Springer, Berlin (2007) 541–567.

[36] S. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stoch. Proc. Appl. 118
(2008) 2223–2253.

[37] S. Peng, Nonlinear expectations and stochastic calculus under uncertainty. Preprint arXiv:1002.4546 (2010).

[38] Z. Ren, Viscosity solutions of fully nonlinear elliptic path dependent PDEs. Ann. Appl. Probab. 26 (2016) 3381–3414.

[39] Z. Ren, N. Touzi and J. Zhang, An overview of viscosity solution of path dependent PDEs. Stochastic Analysis and Applications-
In Honour of Terry Lyons, Springer Proceedings in Mathematics and Statistics 100 (2014) 397–453.

[40] M. Royer, BSDEs with a random terminal time driven by a monotone generator and their links with PDEs. Stoch. Stoch. Rep.
76 (2004) 281–307.

[41] H.M. Soner, N. Touzi and J. Zhang, Martingale representation theorem for the G-expectation. Stoch. Proc. Appl. 121 (2011)
265–287.

[42] H.M. Soner, N. Touzi and J. Zhang, Wellposedness of second order backward SDEs. Prob. Theory Related Fields 153 (2012)
149–190.

[43] Y. Song, Some properties on G-evaluation and its applications to G-martingale decomposition. Sci. China Math. 54 (2011)
287–300.

[44] R. Tevzadze, T. Toronjadze and T. Uzunashvili, Robust utility maximization for a diffusion market model with misspecified
coefficients. Finance and Stochastics 17 (2013) 535–563.

[45] J. Yong and X. Zhou, Stochastic controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999).

http://arxiv.org/abs/1407.6210
http://arxiv.org/abs/1002.4546

	Introduction
	Preliminaries
	G-Brownian motion
	G-BSDEs

	Formulation of the problem
	Regularity of the value function
	Dynamic programming principle and related HJBI equation
	Appendix A.
	The proof of Theorem 3.3
	G-Stochastic optimal control problem in finite horizon

	References

