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THE CONVERGENCE OF NONNEGATIVE SOLUTIONS FOR THE FAMILY

OF PROBLEMS −∆pu = λeu AS p→∞ ∗, ∗∗

Mihai Mihăilescu1,2,a, Denisa Stancu−Dumitru3.4 and Csaba Varga2.5

Abstract. Let Ω ⊂ RN (N ≥ 2) be a bounded domain with smooth boundary. We show the existence
of a positive real number λ? such that for each λ ∈ (0, λ?) and each real number p > N the equation
−∆pu = λeu in Ω subject to the homogeneous Dirichlet boundary condition possesses a nonnegative
solution up. Next, we analyze the asymptotic behavior of up as p→∞ and we show that it converges
uniformly to the distance function to the boundary of the domain.
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1. Introduction

Let Ω ⊂ RN (N ≥ 2) be a bounded domain with smooth boundary ∂Ω. For each real number p > N consider
the problem {

−∆pu = λeu, for x ∈ Ω
u = 0, for x ∈ ∂Ω,

(1.1)

where ∆p· := div(|∇ · |p−2∇·) stands for the p-Laplace operator. We say that u ∈W 1,p
0 (Ω) is a weak solution of

problem (1.1) if ∫
Ω

|∇u|p−2∇u∇φ dx = λ

∫
Ω

euφ dx, ∀ φ ∈W 1,p
0 (Ω). (1.2)

Keywords and phrases. Weak solution, viscosity solution, nonlinear elliptic equations, asymptotic behavior, distance function to
the boundary.

∗ Correspondence address: Mihai Mihăilescu, Department of Mathematics, University of Craiova, 200585 Craiova, Romania.
E-mail: mmihailes@yahoo.com.
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Note that the integral from the right-hand side of the above relation is well-defined since for p > N we have
W 1,p

0 (Ω) ⊂ L∞(Ω). Moreover, recall that Morrey’s inequality holds true, i.e. there exists a positive constant
Cp such that

‖u‖L∞(Ω) ≤ Cp‖∇u‖Lp(Ω), ∀ u ∈W 1,p
0 (Ω). (1.3)

Furthermore, it is known that lim
p→∞

Cp = ‖δ‖L∞(Ω), where δ(x) := inf
y∈∂Ω

|x−y|, ∀ x ∈ Ω, is the distance function

to the boundary of Ω (see, e.g. [7], Prop. 3.1).
Problem (1.1) has been extensively studied in the literature (see, e.g. [1, 2, 6, 8, 9, 11, 12] and the reference

therein). We recall that Aguilar Crespo and Peral Alonso showed in [2] that for each given p > N problem (1.1)
has at least a solution if λ > 0 is small (see Thm. 1.3 in [2]) while for λ > 0 large enough problem (1.1) does not
have solutions (see Thm. 5.8 in [2]). Note that the existence result from [2] is obtained by using a fixed-point
argument. Our first goal in this paper is to obtain a similar result as the one obtained in ([2], Thm. 1.3) but
using variational techniques. Actually, we will show that there exists λ? > 0 (which does not depend on p) such
that for each p > N and each λ ∈ (0, λ?) problem (1.1) possesses a nonnegative solution up ∈ W 1,p

0 (Ω). Next,
we intend to study the convergence of the family of solutions {up} as p→∞. More precisely, we will show that
up converges uniformly in Ω to δ, as p → ∞. This result is not totally unexpected since it is known that for
each given positive function f ∈ L∞(Ω) \ {0} the family of unique solutions of the family of problems{

−∆pv = f, for x ∈ Ω
v = 0, for x ∈ ∂Ω,

(1.4)

converges uniformly in Ω to δ (see, e.g. Bhattacharya, DiBenedetto and Manfredi [3], or Kawohl [19], or
Perez−Llanos and Rossi [23], or Bocea and Mihăilescu [4]). However, even if the right-hand side from (1.1)
is a positive function from L∞(Ω) it is obvious that we can not apply directly the result on the family of
problems (1.4) in order to derive the convergence of the family of solutions of problem (1.1).

Another result which can be related to our study concerns the family of eigenvalue problems for the p-
Laplacian {

−∆pu = λ|u|p−2u if x ∈ Ω
u = 0 if x ∈ ∂Ω.

(1.5)

It is known (see e.g. Lindqvist [20]) that for each real number p ∈ (1,∞) the minimum of the Rayleigh quotient
associated to problem (1.5), i.e.

λ1(p) := inf
u∈C∞

0 (Ω)\{0}

∫
Ω

|∇u|p dx∫
Ω

|u|p dx

, (1.6)

stands for the lowest eigenvalue of problem (1.5) whose corresponding eigenfunctions are minimizers of λ1(p)
that do not change sign in Ω. Next, defining

Λ∞ :=

{‖∇u‖L∞(Ω)

‖u‖L∞(Ω)
: u ∈W 1,∞(Ω) ∩

(
∩q>1W

1,q
0 (Ω)

)}
,

we know (see Lem. 1.5 and Sect. 2 in [18]) that this infimum is always achieved at δ, that is

Λ∞ =
‖∇δ‖L∞(Ω)

‖δ‖L∞(Ω)
=

1

‖δ‖L∞(Ω)
,

and
lim
p→∞

p
√
λ1(p) = Λ∞.
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The asymptotic behavior as p→∞ of problems (1.5) has been extensively studied in the literature (see Fukagai,
Ito and Narukawa [10], Juutinen, Lindqvist and Manfredi [18], Juutinen and Lindqvist [17]). For instance, in
the case when λ = λ1(p) and up > 0 is a solution of (1.5) Juutinen, Lindqvist and Manfredi showed in [18] that
there exists a subsequence of {up} which converges uniformly in Ω to a nontrivial and nonnegative viscosity
solution of the limiting problem{

min {|∇u| − Λ∞u,−∆∞u} = 0 if x ∈ Ω
u = 0 if x ∈ ∂Ω,

(1.7)

where ∆∞ is the ∞-Laplace operator, which on sufficiently smooth functions u : Ω → R is given by ∆∞u :=

〈D2u∇u,∇u〉 =
N∑

i,j=1

∂u
∂xi

∂u
∂xj

∂2u
∂xi∂xj

. Note that δ is not always a viscosity solution of (1.7), but, in the particular

case where Ω is a ball, it turns out that δ is the only viscosity solution of (1.7). Thus, in this case the result
obtained by Juutinen, Lindqvist and Manfredi in [18] is of the same type as the result we propose to analyze
in this paper. However, again, we can not apply directly the result on the family of problems (1.5) in order to
derive the convergence of the family of solutions of problem (1.1).

In order to resume the above ideas we point out, once more, the fact that it was already known that for
each p > N there exists a positive constant λ?p > 0 such that for each λ ∈ (0, λ?p) problem (1.1) has a weak
solution. The main contributions of this paper consist in two aspects. First, we show that λ?p does not tend to
zero, as p → ∞, and consequently there exists a constant λ? > 0, independent of p, such that for each p > N
and each λ ∈ (0, λ?) problem (1.1) has a nonnegative weak solution up. Note also the fact that the existence
of up is obtained by using a different method from those already used in the literature. Second, we analyze the
asymptotic behavior of the family of solutions up, as p → ∞, and we prove that it converges uniformly to the
unique viscosity solution of the limit problem of problem (1.1), i.e.{

min{|∇u| − 1,−∆∞u} = 0, for x ∈ Ω
u = 0, for x ∈ ∂Ω,

which is exactly the distance function to the boundary of the domain. The analysis of this convergence is
facilitated by the method used in obtaining the solutions up and requires a technique which has independent
interest and may have other potential applications.

Our paper is organized as follows. In Section 2 we show the existence of a positive real number λ? such that
for each λ ∈ (0, λ?) and each real number p > N problem (1.1) has a nonnegative weak solution, say up. Next,
in Section 3, we analyze the asymptotic behavior of up as p → ∞ and we show that it converges uniformly to
the distance function to the boundary of the domain.

2. Variational solutions for problem (1.1)

In this section our goal is to show that for λ > 0 sufficiently small problem (1.1) possesses a nonnegative
variational solution. Define the Euler−Lagrange functional associated to problem (1.1), i.e. Jp,λ : W 1,p

0 (Ω)→ R
given by

Jp,λ(u) :=
1

p

∫
Ω

|∇u|p dx− λ
∫
Ω

eu dx, ∀ u ∈W 1,p
0 (Ω).

It is standard to show that Jp,λ ∈ C1(W 1,p
0 (Ω),R) and〈

J
′

p,λ(u), φ
〉

=

∫
Ω

|∇u|p−2∇u∇φ dx− λ
∫
Ω

euφ dx, ∀ u, φ ∈W 1,p
0 (Ω).

Thus, it is obvious that u is a solution of (1.1) if and only if it is a critical point of Jp,λ.
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Note that the Direct Method in the Calculus of Variations can not be applied in this case since Jp,λ fails
to be coercive. Our idea is to analyze problem (1.1) by using Ekeland’s Variational Principle in order to find
critical points of Jp,λ.

Define

λ?p :=
1

2|Ω|eCpp1/p
,

where Cp is the constant given by Morrey’s inequality (1.3).

Lemma 2.1. For each λ ∈ (0, λ?p) we have

Jp,λ(u) ≥ 1

2
, ∀ u ∈W 1,p

0 (Ω) with ‖∇u‖Lp(Ω) = p1/p.

Proof. Using the fact that p > N and Morrey’s inequality we have

Jp,λ(u) =
1

p

∫
Ω

|∇u|p dx− λ
∫
Ω

eu dx

≥ 1

p

∫
Ω

|∇u|p dx− λ|Ω|e‖u‖L∞(Ω)

≥ 1

p

∫
Ω

|∇u|p dx− λ|Ω|eCp‖∇u‖Lp(Ω) , ∀ u ∈W 1,p
0 (Ω).

Then for each u ∈W 1,p
0 (Ω) with ‖∇u‖Lp(Ω) = p1/p and each λ ∈ (0, λ?p) we have

Jp,λ(u) ≥ 1− λ|Ω|eCpp
1/p

≥ 1− λ?p|Ω|eCpp
1/p

=
1

2
·

The proof of the lemma is complete. �

Remark 2.2. Since by ([7], Prop. 3.1) we know that

Cp = p|B1(0)|−1/pN−N(p+1)/p2(p− 1)N(p−1)/p2(p−N)(N−p2)/p2λ1(p)(N−p)/p2 ,

and lim
p→∞

Cp = ‖δ‖L∞(Ω) and lim
p→∞

p1/p = 1 it follows that

lim
p→∞

λ?p =
1

2|Ω|e‖δ‖L∞(Ω)
> 0.

Consequently, defining

λ? := inf
p>N

λ?p, (2.1)

and taking into account that function (1,∞) 3 p −→ λ1(p) is continuous (see, Lindqvist [21] or Huang [13]) we
deduce that λ? > 0 and consequently

λ?p ≥ λ? > 0, ∀ p > N.

The main result of this section is given by the following theorem.

Theorem 2.3. Let λ? > 0 be given by (2.1). Then for each λ ∈ (0, λ?) and each p > N problem (1.1) has a
nonnegative solution up ∈ Bp1/p(0) ⊂W 1,p

0 (Ω) which is characterized by Jp,λ(up) = inf
B
p1/p

(0)
Jp,λ.
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Proof. Fix λ ∈ (0, λ?) and let rp := p1/p.
For each u ∈ Brp(0) ⊂W 1,p

0 (Ω) we have

Jp,λ(u) ≥ 1

p
‖∇u‖pLp(Ω) − λ|Ω|e

Cp‖∇u‖Lp(Ω) .

By Lemma 2.1 we have

inf
∂Brp (0)

Jp,λ ≥
1

2
> 0,

while

Jp,λ(0) = −λ|Ω| < 0.

It follows that

−∞ < cp := inf
Brp (0)

Jp,λ < 0.

Let 0 < ε < inf
∂Brp (0)

Jp,λ− inf
Brp (0)

Jp,λ. Applying Ekeland’s variational principle to the functional Jp,λ : Brp(0)→

R, we find uε ∈ Brp(0) such that

Jp,λ(uε) < inf
Brp (0)

Jp,λ + ε

Jp,λ(uε) < Jp,λ(u) + ε ‖∇u−∇uε‖Lp(Ω), u 6= uε.

Since

Jp,λ(uε) ≤ inf
Brp (0)

Jp,λ + ε ≤ inf
Brp (0)

Jp,λ + ε < inf
∂Brp (0)

Jp,λ,

we deduce that uε ∈ Brp(0).

Now, we define Ip,λ : Brp(0)→ R by Ip,λ(u) = Jp,λ(u) + ε ‖∇u−∇uε‖Lp(Ω). It is clear that uε is a minimum
point of Ip,λ and thus

Ip,λ(uε + tv)− Ip,λ(uε)

t
≥ 0

for small t > 0 and any v ∈ B1(0). The above relation yields

Jp,λ(uε + tv)− Jp,λ(uε)

t
+ ε ‖∇v‖Lp(Ω) ≥ 0.

Letting t→ 0 it follows that 〈J ′

p,λ(uε), v〉+ ε ‖∇v‖Lp(Ω) > 0 and we infer that ‖J ′

p,λ(uε)‖ ≤ ε.
We deduce that there exists a sequence {wm}m ⊂ Brp(0) such that

Jp,λ(wm)→ cp and J
′

p,λ(wm)→ 0. (2.2)

It is clear that {wm}m is bounded in W 1,p
0 (Ω). Thus, there exists up ∈W 1,p

0 (Ω) such that, up to a subsequence,
{wm}m converges weakly to up in W 1,p

0 (Ω) and uniformly in Ω. Thus, we deduce that

lim
m→∞

∫
Ω

ewm(wm − up) dx = 0,

and

lim
m→∞

〈J
′

p,λ(wm), wm − up〉 = 0.
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Thus, we get

lim
m→∞

∫
Ω

|∇wm|p−2∇wm∇(wm − up) dx = 0,

and consequently, {wm}m converges strongly to up in W 1,p
0 (Ω). So, by (2.2),

Jp,λ(up) = cp < 0 and J
′

p,λ(up) = 0. (2.3)

Consequently, up is a weak solution of (1.1). Finally, note that for each v ∈W 1,p
0 (Ω) we have Jp,λ(v) ≥ Jp,λ(|v|).

This information implies that a minimizer of Jp,λ on Brp(0) is nonnegative in Ω.
The proof of Theorem 2.3 is complete. �

3. The convergence of the sequence of solutions given by Theorem 2.3 as
p→∞

The goal of this section is to prove the following result.

Theorem 3.1. Let λ? > 0 be given by (2.1). For each λ ∈ (0, λ?) let up be the nonnegative solution of prob-
lem (1.1) given by Theorem 2.3. Then up converges uniformly in Ω to δ = dist(·, ∂Ω).

In order to prove Theorem 3.1 we first establish the following result.

Lemma 3.2. Let λ? > 0 be given by (2.1). Fix λ ∈ (0, λ?) and let up be the positive solution of problem (1.1)
given by Theorem 2.3. Then there is a subsequence {up} which converges uniformly in Ω, as p → ∞, to some
function u∞ ∈ C(Ω) with u∞ ≥ 0 in Ω.

Proof. Fix q > N . For each p > q we have∫
Ω

|∇up|q dx ≤
(∫

Ω

|∇up|p dx

)q/p
|Ω|1−q/p ≤ pq/p|Ω|1−q/p ≤ (e1/e)q|Ω|1−q/p ≤ (e1/e)q(1 + |Ω|).

Thus, {|∇up|}p is uniformly bounded in Lq(Ω). The fact that q > N guarantees that the embedding of W 1,q
0 (Ω)

into C(Ω) is compact. Taking into account the reflexivity of the space W 1,q
0 (Ω) it follows that there exists a

subsequence (not relabeled) of {up} and a function u∞ ∈ C(Ω) such that up ⇀ u∞ weakly in W 1,q
0 (Ω) and

up → u∞ uniformly in Ω. Moreover, the fact that up ≥ 0 in Ω for each p > N implies that u∞ ≥ 0 in Ω.
The proof of Lemma 3.2 is complete. �

Assuming that solution up of equation (1.1) is smooth enough, we can rewrite equation (1.1) as

−|∇up|p−2∆up − (p− 2)|∇up|p−4∆∞up = λeup , (3.1)

where ∆∞· :=
N∑

i,j=1

∂·
∂xi

∂·
∂xj

∂2·
∂xi∂xj

is the so called ∞-Laplace operator. This equation is nonlinear, but elliptic,

thus it makes sense to consider its viscosity solutions.
Let y ∈ R, z ∈ RN and S be a real symmetric matrix in MN×N . Consider the following continuous function

Hp(y, z, S) = −|z|p−2Trace(S)− (p− 2)|z|p−4〈Sz, z〉 − λey.

We are interested in finding viscosity solutions of the partial differential equation{
Hp(u,∇u,D2u) = 0, for x ∈ Ω
u = 0, for x ∈ ∂Ω.

(3.2)
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Definition 3.3.

(a) An upper semicontinuous function u : Ω → R is a viscosity subsolution of (3.2) if, u|∂Ω ≤ 0 and, whenever
x0 ∈ Ω and ψ ∈ C2(Ω) are such that u(x0) = ψ(x0) and u(x) < ψ(x) for all x ∈ Br(x0)\{x0} then

Hp(ψ(x0),∇ψ(x0), D2(ψ(x0))) ≤ 0.

(b) A lower semicontinuous function u : Ω → R is a viscosity supersolution of (3.2) if, u|∂Ω ≥ 0 and, whenever
x0 ∈ Ω and ψ ∈ C2(Ω) are such that u(x0) = ψ(x0) and u(x) > ψ(x) for all x ∈ Br(x0)\{x0} then

Hp(ψ(x0),∇ψ(x0), D2(ψ(x0))) ≥ 0.

(c) A continuous function u : Ω → R is a viscosity solution of (3.2) if it is both a viscosity subsolution and a
viscosity supersolution of (3.2).

The following result can be obtained by using the ideas of Juutinen, Lindqvist and Manfredi from ([18], Lem. 1.8).
We include the proof for reader’s convenience.

Lemma 3.4. A continuous weak solution of (1.1) is a viscosity solution of (3.2).

Proof. We start by checking that up is a viscosity supersolution of (3.2). Let x0 ∈ Ω and let ψ ∈ C2(Ω) be a
test function such that up(x0) = ψ(x0) and up(x) > ψ(x) for all x ∈ Br(x0)\{x0}.

We want to show that

−∆pψ(x0) = −|∇ψ(x0)|p−2∆ψ(x0)− (p− 2)|∇ψ(x0)|p−4∆∞ψ(x0) ≥ λeψ(x0).

Assume by contradiction that this is not the case. By continuity, there exists a radius r > 0 such that

−|∇ψ(x)|p−2∆ψ(x)− (p− 2)|∇ψ(x)|p−4∆∞ψ(x) < λeψ(x),

for every x ∈ Br(x0)\{x0}. Taking r smaller if necessary, we may assume that up > ψ in Br(x0)\{x0}. Set
m := inf |x−x0|=r(up − ψ)(x) and define w(x) := ψ(x) + m

2 . The function w verifies w(x0) > up(x0) and
w(x) < up(x) for all x ∈ ∂Br(x0). Moreover, it holds that

−∆pw(x) < λeψ(x), in Br(x0). (3.3)

Multiplying (3.3) by (w − up)+, which vanishes on ∂Br(x0) we get∫
Br(x0)∩[w>up]

|∇w(x)|p−2∇w(x)∇(w − up)(x) dx < λ

∫
Br(x0)∩[w>up]

eψ(x)(w − up)(x) dx.

Testing in (1.2) with (w − up)+ extended by zero outside Br(x0) we obtain∫
Br(x0)∩[w>up]

|∇up(x)|p−2∇up(x)∇(w − up)(x) dx = λ

∫
Br(x0)∩[w>up]

eup(x)(w − up)(x) dx.

Subtracting the last two relations and using the fact that up > ψ on Br(x0) \ {x0} we get

0 ≤
∫
Br(x0)∩[w>up]

(|∇w(x)|p−1 − |∇up(x)|p−1)(|∇w(x)| − |∇up(x)|) dx

≤
∫
Br(x0)∩[w>up]

(|∇w(x)|p−2∇w(x)− |∇up(x)|p−2∇up(x))∇(w(x)− up(x)) dx

< λ

∫
Br(x0)∩[w>up]

[eψ(x) − eup(x)](w(x)− up(x)) dx ≤ 0,

a contradiction. Therefore, up is a viscosity supersolution of problem (3.2). The fact that up is a viscosity
subsolution runs as above and we omit the details. �
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By Lemma 3.2 we may extract a subsequence up → u∞ uniformly in Ω as p → ∞. Next, our goal is to
identify the limit equation verified by u∞.

Theorem 3.5. Let u∞ be the function obtained as a uniform limit of a subsequence of {up} in Lemma 3.2.
Then u∞ is a viscosity solution of problem{

min{|∇u| − 1,−∆∞u} = 0, for x ∈ Ω
u = 0, for x ∈ ∂Ω.

(3.4)

Proof. First, we show that u∞ is a supersolution of (3.4). Fix x0 ∈ Ω and a function ψ ∈ C2(Ω) such that
u∞(x0) = ψ(x0) and u∞(x) > ψ(x), for any x ∈ Br(x0)\{x0}. Since up → u∞ uniformly, there exists a sequence
{xp}p ∈ Ω such that xp → x0, up(xp) = ψ(xp) and up − ψ has a local minimum at xp (see details for example
in Bocea, Mihăilescu and Stancu−Dumitru [5], Thm. 3.1).

By Lemma 3.4 the function up is a viscosity solution of (3.2) and therefore

−|∇ψ(xp)|p−2∆ψ(xp)− (p− 2)|∇ψ(xp)|p−4∆∞ψ(xp) ≥ λeψ(xp). (3.5)

By relation (3.5) it is clear that |∇ψ(xp)| 6= 0. Multiplying (3.5) by 1/[(p− 2)|∇ψ(xp)|p−4] we get

−|∇ψ(xp)|2

p− 2
∆ψ(xp)−∆∞ψ(xp) ≥

λeψ(xp)

(p− 2)|∇ψ(xp)|p−4
· (3.6)

Letting p→∞ we obtain

−∆∞ψ(x0) ≥ lim sup
p→∞

[
λ1/peψ(xp)/p

(p− 2)1/p|∇ψ(xp)|1−4/p

]p
·

In particular, we find
−∆∞ψ(x0) ≥ 0. (3.7)

Next, we claim that
|∇ψ(x0)| − 1 ≥ 0. (3.8)

Suppose that this is not the case, and then
1

|∇ψ(x0)|
> 1.

Using that fact we deduce

lim
p→∞

λ1/peψ(xp)/p

(p− 2)1/p|∇ψ(xp)|1−4/p
=

1

|∇ψ(x0)|
> 1.

It follows that there exists ε0 > 0 such that

λ1/peψ(xp)/p

(p− 2)1/p|∇ψ(xp)|1−4/p
≥ 1 + ε0, for each p > 1 sufficiently large.

The above estimates yield

lim sup
p→∞

[
λ1/peψ(xp)/p

(p− 2)1/p|∇ψ(xp)|1−4/p

]p
= +∞,

which contradicts (3.7). Thus, (3.8) holds true.
Therefore (3.7) and (3.8) yield

min{−∆∞ψ(x0), |∇ψ(x0)| − 1} ≥ 0. (3.9)
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In order to end the proof of this theorem it remains to check that u∞ is a viscosity subsolution of (3.4). Let
x0 ∈ Ω be fixed and let ψ ∈ C2(Ω) be a test function such that u∞(x0) = ψ(x0) and u∞(x) < ψ(x), for any
each x in a neighborhood of x0. We have to check that

min{−∆∞ψ(x0), |∇ψ(x0)| − 1} ≤ 0.

If |∇ψ(x0)| = 0 then the above inequality obviously holds true. It suffices to show that if |∇ψ(x0)| > 0 and

|∇ψ(x0)| − 1 > 0, (3.10)

then −∆∞ψ(x0) ≤ 0. We follow the arguments considered in the supersolution case and we can construct a
sequence xp → x0 as n→∞ such that

−|∇ψ(xp)|2

p− 2
∆ψ(xp)−∆∞ψ(xp) ≤

[
λ1/peψ(xp)/p

(p− 2)1/p|∇ψ(xp)|1−4/p

]p
·

Letting p→∞ from (3.10) we obtain

−∆∞ψ(x0) ≤ lim inf
p→∞

[
λ1/peψ(xp)/p

(p− 2)1/p|∇ψ(xp)|1−4/p

]p
= 0,

which ends the proof. �

Proof of Theorem 3.1 (concluded). It is well-known that equation (3.4) has as unique solution δ, namely the
distance function to the boundary of Ω (see Jensen [15], or Juutinen [16], or Ishibashi and Koike [14], p. 546).
Thus, using the results of Lemma 3.2 and Theorem 3.5, we conclude that the entire sequence up converges
uniformly to δ in Ω, as p→∞.
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