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EXISTENCE RESULT FOR DEGENERATE CROSS-DIFFUSION SYSTEM

WITH APPLICATION TO SEAWATER INTRUSION

Jana Alkhayal1, Samar Issa1, Mustapha Jazar1,∗ and Régis Monneau2

Abstract. In this paper we study a degenerate parabolic system, which is strongly coupled. We prove
general existence result, but the uniqueness question remains open. Our proof of existence is based on
a crucial entropy estimate which controls the gradient of the solution together with its non-negativity.
Our system is of porous medium type which is applicable to models in seawater intrusion.
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1. Introduction

For the sake of simplicity, we will work on the torus Ω := TN = (R/Z)
N

with N ≥ 1. Let ΩT := (0, T )×Ω
with T > 0 and m ≥ 1 be an integer. Our purpose is to study a class of degenerate strongly coupled parabolic
system of the form

∂tu
i = div

ui m∑
j=1

Aij∇uj
 in ΩT , for i = 1, . . . ,m. (1.1)

with the initial condition

ui(0, x) = ui0(x) ≥ 0 a.e. in Ω, for i = 1, . . . ,m. (1.2)

In the core of the paper we will assume that A = (Aij)1≤i,j≤m is a real m×m matrix (not necessarily symmetric)
that satisfies the following positivity condition: there exists δ0 > 0, such that

ξTAξ ≥ δ0|ξ|2 for all ξ ∈ Rm. (1.3)

This condition can be weaken, see Section 12. Problem (1.1) appears naturally in the modeling of seawater
intrusion (see Sect. 3).
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2. Main results

To introduce our main result, we define a nonnegative entropy function Ψ :

Ψ(a)− 1

e
=


a ln a for a > 0,

0 for a = 0,

+∞ for a < 0,

(2.1)

which is minimal when a =
1

e
.

Theorem 2.1 (Existence for system (1.1)). Assume that A satisfies (1.3). For i = 1, . . . ,m, let ui0 ∈ L2(Ω)
satisfying ui0 ≥ 0 in Ω and

m∑
i=1

∫
Ω

Ψ(ui0) < +∞, (2.2)

where Ψ is given in (2.1). Then there exists a solution u = (ui)1≤i≤m ∈ (L2(0, T ;H1(Ω)) ∩
C([0, T ); (W 1,∞(Ω))′))m of (1.1), (1.2) in distribution sense, with ui ≥ 0 a.e. in ΩT for i = 1, . . . ,m. De-
note ui(tj) = ui(tj , .) for j = 1, 2. This solution satisfies the following entropy estimate for a.e. t1, t2 ∈ (0, T )

m∑
i=1

∫
Ω

Ψ(ui(t2)) + δ0

m∑
i=1

∫ t2

t1

∫
Ω

|∇ui|2 ≤
m∑
i=1

∫
Ω

Ψ(ui0), (2.3)

where Ψ is given in (2.1).

The entropy estimate (2.3) guarantees that ∇ui ∈ L2(0, T ;L2(Ω)), and therefore allows us to define the

product ui
m∑
i=1

Aij∇uj in (1.1). After our proofs were obtained, we realized that a similar entropy estimate has

been obtained in [4, 8, 10].

Remark 2.2 (Decreasing energy). If A is a symmetric matrix then a solution u of system (1.1) satisfies

d

dt

 m∑
i=1

m∑
j=1

∫
Ω

1

2
Aiju

iuj

 = −
m∑
i=1

∫
Ω

ui

∣∣∣∣∣∣
m∑
j=1

Aij∇uj
∣∣∣∣∣∣
2

.

In this paper we let |·| be the usual Euclidean norm in Rm and let

‖A‖ = sup
|ξ|=1

|Aξ| . (2.4)

3. Application to seawater intrusion

In this section, we describe briefly a model of seawater intrusion, which is a particular case of our system (1.1).
An aquifer is an underground layer of a porous and permeable rock through which water can move. Coastal
aquifers contain freshwater and saltwater from the sea with a sharp interface between them. We refer to [2] for
a general overview on seawater intrusion models.

Let ν = 1− ε0 ∈ (0, 1),

ε0 =
γs − γf
γs

,

and the constants γs and γf are the specific weight of the saltwater and freshwater, respectively.



SOLUTIONS FOR A CROSS-DIFFUSION SYSTEM 1737

Figure 1. Seawater intrusion in coastal aquifer.

In this porous medium, we assume the interface between the saltwater and the bedrock is z = 0; the interface
between the saltwater and the freshwater, which are assumed to be immiscible, can be written as z = g(t, x);
and the interface between the freshwater and the dry soil is z = h(t, x)+g(t, x) (see Fig. 1). Then the evolutions
of h and g are given by a coupled nonlinear parabolic system [16]{

∂th = div {h∇(ν(h+ g))} in ΩT ,

∂tg = div {g∇(νh+ g)} in ΩT .
(3.1)

This is a particular case of (1.1), with a 2× 2 matrix

A =

(
ν ν
ν 1

)
(3.2)

satisfying (1.3).

4. Brief review of the literature

The cross-diffusion systems, in particular the strongly coupled ones (for which the equations are coupled
in the highest derivatives terms), are widely employed in diverse domains such as biology, chemistry, ecology,
fluid mechanics and others. They are difficult to treat. Many of the standard techniques, such as the maximum
principle, cannot be applied for such problems. Hereafter, we cite several models where our method is applicable
(see Sect. 13 for more generalizations).

In [27], Shigesada, Kawasaki and Teramoto proposed a two-species SKT model in one-dimensional space
which arises in population dynamics. It can be written in a generalized form with m-species as

∂tu
i −∆

βi +

m∑
j=1

αiju
j

ui

 =

ai − m∑
j=1

biju
j

ui, in Ω × (0, T ), (4.1)

where ui, for i = 1, . . . ,m, denotes the population density of the i-th species and βi, αij , ai, bij are nonnegative
constants. In the case where βi is positive (4.1) is not of degenerate type. The existence of a global solution
for such problem in arbitrary space dimension is studied in [30], where the quadratic form of the diffusion
matrix is supposed positive definite. On the other hand, the two-species case was frequently studied, see for
instance [14,17,23,28,31] for dimensions 1, 2, and [4,5,25,26] for arbitrary dimension and appropriate conditions.
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In [20], Lepoutre, Pierre and Rolland studied a relaxed model, without a term source of the form{
∂tui = ∆ [ai(ũ)ui] , ũ = (ũi)1≤i≤I , for i = 1, . . . , I,

ũi − δi∆ũi = ui with δi > 0, for i = 1, . . . , I,

in any dimension and for general nonlinearities ai, which are only assumed to be continuous and bounded from
below. They show the existence of a weak solution. Moreover, if the functions ai are locally Lipschitz continuous
then it is shown that this solution has more regularity and then is unique.

Another example of such problems is the electochemistry model studied by Choi, Huan and Lui in [7] where
they consider the general form

∂tu
i =

n∑
`=1

m∑
j=1

∂

∂x`

(
aij` (u)

∂uj

∂x`

)
, u = (ui)1≤i≤m for i = 1, . . . ,m, (4.2)

and prove the existence of a weak solution of (4.2) under assumptions on the matrices Al(u) = (aijl (u))1≤i,j≤m:
it is continuous in u, its components are uniformly bounded with respect to u and its symmetric part is
definite positive. Their strategy of proof seeks to use Galerkin method to prove the existence of solutions to the
linearized system and then to apply Schauder fixed-point theorem. Then they apply the results obtained to an
electrochemistry model.

A fourth example of cross-diffusion models is the chemotaxis model introduced in [21]. The global existence
for classical solutions of this model is studied by Hillen and Painter in [15] where they considered{

∂tu = ∇ · (∇u− χ(u, v)∇v), t > 0, x ∈ Ω

∂tv = µ∆v + g(u, v), t > 0, x ∈ Ω,

on a C3- differentiable compact Riemannian manifold without boundary, where the function u describes the
particle density, v is the density of the external signal, the chemotactic cross-diffusion χ is assumed to be
bounded, and the function g describes production and degradation of the external stimulus.

Another problem is the Muskat Problem for Thin Fluid Layers of the form{
∂tf = (1 +R)∂x(f∂xf) +R∂x(f∂xg),

∂tg = Rµ∂x(g∂xf) +Rµ∂x(g∂xg).

It models, [11], the motion of two fluids with different densities and viscosities in a porous meduim in one
dimension, where f and g are the thickness of the two fluids and R, Rµ > 0 depend on the densities and the
viscosities of the fluids. The classical solutions of such problem are studied in [11]. The existence of a weak
solution and its exponential stability are established in [10] on a bounded interval (0, L). Where the existence
of weak solutions on R are established in [18] by using a gradient flow approach. A key argument in [10, 18] is
the availability of two Liapunov functionals.

5. Strategy of the proof

In (1.1), the elliptic part of the equation does not have a Lax-Milgram structure. Otherwise, our existence
result can make use of the entropy estimate (2.3). It is difficult to get this entropy estimate directly (we do not
have enough regularity to do it), so we proceed by approximations.
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Approximation 1.

We discretize in time system (1.1), with a time step ∆t = T/K, where K ∈ N. Then for a given un =
(ui,n)1≤i≤m ∈ (H1(Ω))m, we consider the implicit scheme which is an elliptic system:

ui,n+1 − ui,n

∆t
= div

ui,n+1
m∑
j=1

Aij∇uj,n+1

 . (5.1)

Approximation 2.

We regularize the right-hand term of (5.1). To do that, we take η > 0, 0 < ε < 1 < `, and choose the following
regularization

ui,n+1 − ui,n

∆t
= div

T ε,`(ui,n+1)

m∑
j=1

Aij∇ρη ? ρη ? uj,n+1

 , (5.2)

where T ε,` is truncation operator defined as

T ε,`(a) :=


ε if a ≤ ε,
a if ε ≤ a ≤ `,
` if a ≥ `,

(5.3)

and the mollifier ρη(x) = η−Nρ (x/η) with ρ ∈ C∞c (RN ), ρ ≥ 0,
∫
RN ρ = 1 and ρ(−x) = ρ(x).

Now, with the convolution by ρη in (5.2), the term ∇ρη ? ρη ? uj,n+1 behaves like uj,n+1.

Note that, after a ZN - periodic extension of uj,n+1 to RN , the convolution ρη ? u
j,n+1 is possible over RN .

Approximation 3.

We modify equation (5.2) to make it uniformly elliptic. Let δ > 0, we add div
(
δT ε,`(ui)∇ui

)
to its right

hand side to preserve the entropy estimate. Then we freeze coefficients ui,n+1 on the right-hand side (these
coefficients are now called δT ε,`(vi,n+1)) and obtain the following linear modified system:

ui,n+1 − ui,n

∆t
= div

T ε,`(vi,n+1)

 m∑
j=1

Aij∇ρη ? ρη ? uj,n+1 + δ∇ui,n+1

 . (5.4)

We will look for fixed points of this modified system ie. when vi,n+1 = ui,n+1. Finally, we derive the expected
result by taking appropriate limits to get rid of all the approximations.

6. Organization of the paper

In the next section we recall some useful tools. Then we prove Theorem 2.1; by discretizing our problem on
time in Section 7, we obtain an elliptic problem. We use the Lax-Milgram theorem to show the existence of a
unique solution to the linear problem (5.4). We demonstrate, in Section 8, the existence of a solution of the
nonlinear problem, using the Schaefer’s fixed point theorem. Then we pass to the limit in the following order:
(∆t, ε)→ (0, 0) in Section 9, (`, η)→ (∞, 0) in Section 10 and δ → 0 in Section 11.

Generalizations (including more general matrices A or tensors) will be presented in Sections 11 and 12. We
end with an Appendix showing some technical results.

Preliminary tools

Theorem 6.1 (Schaefer’s fixed point Theorem ([13], Thm. 4 p. 504)).
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Let X be a real Banach space. Suppose that

Φ : X → X

is a continuous and compact mapping. Assume further that the set

{u ∈ X, u = λΦ(u) for some λ ∈ [0, 1]}

is bounded. Then Φ has a fixed point.

Proposition 6.2 (Aubin’s lemma [29]). For any T > 0, and Ω = TN , let E denote the space

E :=
{
g ∈ L2((0, T );H1(Ω)) and ∂tg ∈ L2((0, T );H−1(Ω))

}
,

endowed with the Hilbert norm

‖ω‖E =
(
‖ω‖2L2(0,T ;H1(Ω)) + ‖∂tω‖2L2(0,T ;H−1(Ω))

) 1
2

.

The embedding
E ↪→ L2((0, T );L2(Ω)) is compact.

On the other hand, it follows from ([22], Prop. 2.1 and Thm. 3.1, Chap. 1) that the embedding

E ↪→ C([0, T ];L2(Ω)) is continuous.

Lemma 6.3 (Simon’s Lemma [29]).
Let X, B and Y three Banach spaces, where X ↪→ B with compact embedding and B ↪→ Y with continuous

embedding. If (gn)n is a sequence such that

‖gn‖Lq(0,T ;B) + ‖gn‖L1(0,T ;X) + ‖∂tgn‖L1(0,T ;Y ) ≤ C,

where 1 < q ≤ ∞, and C is a constant independent of n, then (gn)n is relatively compact in Lp(0, T ;B) for all
1 ≤ p < q.

Now we will present the variant of the original result of Simon’s lemma ([29], Cor. 6, p. 87). First of all, let
us define the norm ‖.‖Var([a,b);Y ) where Y is a Banach space with the norm ‖.‖Y .

For a function g : [a, b)→ Y , we set

‖g‖Var([a,b);Y ) = sup
∑
j

‖g(aj+1)− g(aj)‖Y (6.1)

over all possible finite partitions:
a ≤ a0 < · · · < ak < b

Theorem 6.4 (Variant of Simon’s Lemma).
Let X, B and Y three Banach spaces, where X ↪→ B with compact embedding and B ↪→ Y with continuous

embedding. Let (gn)n be a sequence such that

‖gn‖L1(0,T ;X) + ‖gn‖Lq(0,T ;B) + ‖gn‖Var([0,T );Y ) ≤ C, (6.2)

where 1 < q <∞, and C is a constant independent of n. Then (gn)n is relatively compact in Lp(0, T ;B) for all
1 ≤ p < q.
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Proof.
Step 1. Regularization of the sequence

Let ρ̄ ∈ C∞c (R) with ρ̄ ≥ 0,
∫
R ρ̄ = 1 and supp ρ̄ ⊂ (−1, 1). For ε > 0, we set

ρ̄ε(x) = ε−1ρ̄(ε−1x).

We extend gn = gn(t) by zero outside the time interval [0, T ). Because q < +∞, we see that for each n, we
choose some 0 < εn → 0 as n→ +∞ such that

‖ḡn − gn‖Lq(0,T ;B) → 0 as n→ +∞, with ḡn = ρ̄εn ? g
n (6.3)

For any δ > 0 small enough, we also have for n large enough (such that εn < δ):

‖ḡn‖L1(δ,T−δ;X) ≤ ‖g
n‖L1(0,T ;X) ≤ C

and
‖∂tḡn‖L1(δ,T−δ;Y ) ≤ ‖g

n‖Var([0,T );Y ) ≤ C (6.4)

Step 2. Checking (6.4)
By (6.2) there exists a sequence of step functions fη which approximates uniformly gn on [0, T ) as η → 0, with
moreover satisfies

‖fη‖Var([0,T );Y ) → ‖g
n‖Var([0,T );Y ) .

Therefore we get easily (for εn < δ)

‖∂t(ρ̄εn ? fη)‖L1(δ,T−δ;Y ) ≤ ‖fη‖Var([0,T );Y )

which implies (6.4), when we pass to the limit as η goes to zero.
Step 3. Conclusion

We can then apply Corollary 6 in [29] to deduce that ḡn is relatively compact in Lp(0, T ;B) for all 1 ≤ p < q.
Because of (6.3), we deduce that this is also the case for the sequence (gn)n, which ends the proof of the
Theorem. �

Besides the previous statement, several compactness results have been developed recently for piecewise con-
stant functions of time resulting from a time discretization, see [1, 6, 9], Prop. 3.3.1).

Proof of the main theorem

Our goal is to prove Theorem 2.1 in order to get the existence of a solution for system (1.1).

7. Existence for the approximate linear elliptic problem

In this section we prove the existence, via Lax-Milgram theorem, of the unique solution for the linear elliptic
system (5.4).

Let us recall our linear elliptic system. Assume that A is any m×m real matrix. Let vn+1 = (vi,n+1)1≤i≤m ∈
(L2(Ω))m and un = (ui,n)1≤i≤m ∈ (H1(Ω))m. Then for all ∆t, ε, `, η, δ > 0, with ε < 1 < ` and ∆t < τ where
τ is given in (7.2), we look for the solution un+1 = (ui,n+1)1≤i≤m of the following system:

ui,n+1 − ui,n

∆t
= div

{
J iε,`,η,δ(v

n+1, un+1)
}

in D′(Ω),

J iε,`,η,δ(v
n+1, un+1) = T ε,`(vi,n+1)

{
m∑
j=1

Aij∇ρη ? ρη ? uj,n+1 + δ∇ui,n+1

}
,

(7.1)

where T ε,` is given in (5.3).
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Proposition 7.1 (Existence for system (7.1)).
Assume that A is any m×m real matrix. Let ∆t, ε, `, η, δ > 0, with ε < 1 < `, such that

∆t <
δεη2

C0
2`2 ‖A‖2

:= τ, (7.2)

where

C0 = ‖∇ρ‖L1(RN ). (7.3)

Then for n ∈ N, for a given vn+1 = (vi,n+1)1≤i≤m ∈ (L2(Ω))m and un = (ui,n)1≤i≤m ∈ (H1(Ω))m, there exists
a unique function un+1 = (ui,n+1)1≤i≤m ∈ (H1(Ω))m solution of system (7.1). Moreover, this solution un+1

satisfies the following estimate(
1− ∆t

τ

)∥∥un+1
∥∥2
(L2(Ω))m

+∆tεδ
∥∥∇un+1

∥∥2
(L2(Ω))m

≤ ‖un‖2(L2(Ω))m , (7.4)

where τ is given in (7.2).

Proof. The proof is done in four steps using Lax-Milgram theorem.
First of all, let us define for all un+1 = (ui,n+1)1≤i≤m and ϕ = (ϕi)1≤i≤m ∈ (H1(Ω))m, the following bilinear

form:

a(un+1, ϕ) =

m∑
i=1

∫
Ω

ui,n+1ϕi +∆t

m∑
i,j=1

∫
Ω

T ε,`(vi,n+1)Aij
(
∇ρη ? ρη ? uj,n+1

)
· ∇ϕi

+∆tδ

m∑
i=1

∫
Ω

T ε,`(vi,n+1)∇ui,n+1 · ∇ϕi,

which can be also rewritten as

a(un+1, ϕ) =
〈
un+1, ϕ

〉
(L2(Ω))m

+∆t
〈
T ε,`(vn+1)∇ϕ,A∇ρη ? ρη ? un+1

〉
(L2(Ω))m

+∆tδ
〈
T ε,`(vn+1)∇ϕ,∇un+1

〉
(L2(Ω))m

, (7.5)

where 〈·, ·〉(L2(Ω))m denotes the scalar product on (L2(Ω))m and T ε,`(vn+1)∇ϕ =
(
T ε,`(vi,n+1)∇ϕi

)
1≤i≤m. Also

we define the following linear form:

L(ϕ) =

m∑
i=1

∫
Ω

ui,nϕi = 〈un, ϕ〉(L2(Ω))m . (7.6)

Step 1. Continuity of a

For every n ∈ N, un+1 and ϕ ∈ (H1(Ω))m, we have

|a(un+1, ϕ)| ≤ ‖un+1‖(L2(Ω)m‖ϕ‖(L2(Ω))m +∆t`‖A‖‖∇ρη ? ρη ? un+1‖(L2(Ω))m‖∇ϕ‖(L2(Ω))m

+∆tδ`‖∇un+1‖(L2(Ω))m‖∇ϕ‖(L2(Ω))m

≤ 3 max(1, ∆t`‖A‖, ∆tδ`)‖un+1‖(H1(Ω))m‖ϕ‖(H1(Ω))m .

where ‖A‖ is given in (2.4) and we have used the fact that∥∥∇ρη ? ρη ? un+1
∥∥
(L2(Ω))m

≤
∥∥∇un+1

∥∥
(L2(Ω))m

, (7.7)
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and

ε ≤ T ε,`(s) ≤ `, for all s ∈ R. (7.8)

Step 2. Coercivity of a
For all ϕ ∈ (H1(Ω))m, we have that a(ϕ,ϕ) = a0(ϕ,ϕ) + a1(ϕ,ϕ), where

a0(ϕ,ϕ) = ‖ϕ‖2(L2(Ω))m +∆tδ
〈
T ε,`(ϕ)∇ϕ,∇ϕ

〉
(L2(Ω))m

and

a1(ϕ,ϕ) = ∆t
〈
T ε,`(ϕ)∇ϕ,A∇ρη ? ρη ? ϕ

〉
(L2(Ω))m

.

On the one hand, we already have the coercivity of a0:

a0(ϕ,ϕ) ≥ ‖ϕ‖2(L2(Ω))m +∆tδε‖∇ϕ‖2(L2(Ω))m .

On the other hand, we have

|a1(ϕ,ϕ)| ≤ ∆t` ‖A‖ ‖∇ρη ? ρη ? ϕ‖(L2(Ω))m ‖∇ϕ‖(L2(Ω))m

≤ ∆t` ‖A‖
(

1

2α
‖∇ρη ? ρη ? ϕ‖2(L2(Ω))m +

α

2
‖∇ϕ‖2(L2(Ω))m

)
≤ ∆t`2 ‖A‖2 C2

0

2δεη2
‖ϕ‖2(L2(Ω))m +

∆tεδ

2
‖∇ϕ‖2(L2(Ω))m ,

where in the second line we have used Young’s inequality, and chosen α =
δε

‖A‖ `
in the third line, with C0 is

given in (7.3) and ‖A‖ is given in (2.4). So we get that

a(ϕ,ϕ) ≥
(

1− ∆t

2τ

)
‖ϕ‖2(L2(Ω))m +

∆tεδ

2
‖∇ϕ‖2(L2(Ω))m (7.9)

is coercive, since ∆t < τ where τ is given in (7.2).

Step 3. Existence by Lax-Milgram
It is clear that L is linear and continuous on (H1(Ω))m. Then by Step 1, Step 2 and Lax-Milgram theorem
there exists a unique solution, un+1, of system (7.1).

Step 4. Proof of estimate (7.4)

Using (7.9) and the fact that a(un+1, un+1) = L(un+1) we get(
1− ∆t

2τ

)∥∥un+1
∥∥2
(L2(Ω))m

+
∆tεδ

2

∥∥∇un+1
∥∥2
(L2(Ω))m

≤
〈
ui,n, ui,n+1

〉
(L2(Ω))m

≤ 1

2
‖un‖2(L2(Ω))m +

1

2

∥∥un+1
∥∥2
(L2(Ω))m

,

which gives us the estimate (7.4). �

8. Existence for the nonlinear time-discrete problem

In this section we prove the existence, using Schaefer’s fixed point theorem, of a solution for the nonlinear
time discrete-system (8.3) given below. Moreover, we also show that this solution satisfies a suitable entropy
estimate.
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First, to present our result we need to choose a function Ψε,` which is continuous, convex and satisfies that

Ψ ′′ε,`(x) =
1

T ε,`(x)
, where T ε,` is given in (5.3). So let

Ψε,`(a)−1

e
=



a2

2ε
+ a ln ε− ε

2
if a ≤ ε,

a ln a if ε < a ≤ `,

a2

2`
+ a ln `− `

2
if a > `.

(8.1)

Let us introduce our nonlinear time discrete system: Assume that A satisfies (1.3). Let u0 := (ui,0)1≤i≤m :=
(ui0)1≤i≤m that satisfies

C1 :=
m∑
i=1

∫
Ω

Ψε,`(u
i
0) < +∞, (8.2)

such that ui0 ≥ 0 in Ω for i = 1, . . . ,m. Then for all ∆t, ε, `, η, δ > 0, with ε < 1 < ` and ∆t < τ where τ is
given in (7.2), for n ∈ N, we look for a solution un+1 = (ui,n+1)1≤i≤m of the following system:

ui,n+1 − ui,n

∆t
= div

{
J iε,`,η,δ(u

n+1, un+1)
}

in D′(Ω), for n ≥ 0

ui,0(x) = ui0(x) in Ω,

(8.3)

where J iε,`,η,δ is given in system (7.1), and T ε,` is given in (5.3).

Proposition 8.1 (Existence for system (8.3)). Assume that A satisfies (1.3). Let u0 = (ui0)1≤i≤m that satis-
fies (8.2), such that ui0 ≥ 0 a.e. in Ω for i = 1, . . . ,m. Then for all ∆t, ε, `, η, δ > 0, with ε < 1 < ` and
∆t < τ where τ is given in (7.2), there exists a sequence of functions un+1 = (ui,n+1)1≤i≤m ∈

(
H1(Ω)

)m
for

n ∈ N, solution of system (8.3), that satisfies the following entropy estimate:

m∑
i=1

∫
Ω

Ψε,`(u
i,n+1) + δ∆t

m∑
i=1

n∑
k=0

∫
Ω

|∇ui,k+1|2 + δ0∆t

m∑
i=1

n∑
k=0

∫
Ω

|∇ρη ? ui,k+1|2 ≤
m∑
i=1

∫
Ω

Ψε,`(u
i
0), (8.4)

where Ψε,` is given in (8.1).

Proof. Our proof is based on the Schaefer’s fixed point theorem. So we need to define, for a given w := un =
(ui,n)1≤i≤m ∈ (L2(Ω))m and v := vn+1 = (vi,n+1)1≤i≤m ∈ (L2(Ω))m, the map Φ as:

Φ : (L2(Ω))m → (L2(Ω))m

v 7→ u

where u := un+1 = (ui,n+1)1≤i≤m = Φ(vn+1) ∈ (H1(Ω))m is the unique solution of system (7.1), given by
Proposition 7.1.

Step 1. Continuity of Φ
Let us consider the sequence vk such that vk ∈ (L2(Ω))m,

vk −→ v in (L2(Ω))m.
(8.5)
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We want to prove that the sequence uk = Φ(vk) −→ u = Φ(v) to get the continuity of Φ. From the estimate (7.4),
we deduce that uk is bounded in (H1(Ω))m. Therefore, up to a subsequence, we haveuk ⇀ u weakly in (H1(Ω))m,

and
uk → u strongly in (L2(Ω))m,

where the strong convergence arises becauseΩ is compact. Thus, by the definition of the truncation operator T ε,`,
we can see that T ε,` is Lipschitz continuous together with (8.5) yield to

T ε,`(vik) −→ T ε,`(vi) in L2(Ω), for i = 1, . . . ,m.

Now we have

uik − wi

∆t
= div

{
J iε,`,η,δ(vk, uk)

}
in D′(Ω). (8.6)

This system also holds in H−1(Ω), because J iε,`,η,δ(vk, uk) ∈ L2(Ω). Hence by multiplying this system by a test

function in (H1(Ω))m and integrating over Ω for the bracket 〈·, ·〉H−1(Ω)×H1(Ω), we can pass directly to the

limit in (8.6) as k tends to ∞, and we get

ui − wi

∆t
= div{J iε,`,η,δ(v, u)} in D′(Ω). (8.7)

where we used in particular the weak L2 - strong L2 convergence in the product T ε,`(vk)∇uk. Then u =
(ui)1≤i≤m = Φ(v) is a solution of system (7.1). Finally, by uniqueness of the solutions of (7.1), we deduce that
the limit u does not depend on the choice of the subsequence, and then that the full sequence converges:

uk → u strongly in (L2(Ω))m, with u = Φ(v).

Step 2. Compactness of Φ

By the definition of Φ we can see that for a bounded sequence (vk)k in (L2(Ω))m, Φ(vk) = uk converges
strongly in (L2(Ω))m up to a subsequence, which implies the compactness of Φ.

Step 3. A priori bounds on the solutions of v = λΦ(v)

Assume that v ∈ (L2(Ω))m such that

v = λΦ(v) for some λ ∈ (0, 1].

Then v
λ = Φ(v); or, in other words, v ∈ (L2(Ω))m and

a(v, v) = λL(v)

where a and L are the bilinear and linear operators defined in (7.5) and (7.6) respectively. Using the same
strategy as in the proof of (7.4) with the fact that λ ∈ [0, 1] we obtain that ‖v‖(L2(Ω)))m ≤ C2, where C2 does
not depend on λ.

Step 4. Existence of a solution

Now, we can apply Schaefer’s fixed point Theorem (Thm. 6.1), to deduce that Φ has a fixed point un+1 on
(L2(Ω))m. This implies the existence of a solution un+1 of system (8.3).
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Step 5. Proof of estimate (8.4)

We have,

m∑
i=1

∫
Ω

Ψε,`(u
i,n+1)− Ψε,`(ui,n)

∆t

≤
m∑
i=1

∫
Ω

(
ui,n+1 − ui,n

∆t

)
Ψ ′ε,`(u

i,n+1)

=

m∑
i=1

〈
ui,n+1 − ui,n

∆t
, Ψ ′ε,`(u

i,n+1)

〉
H−1(Ω)×H1(Ω)

= −
m∑
i=1

〈
δT ε,`(ui,n+1)∇ui,n+1 + T ε,`(ui,n+1)

m∑
j=1

Aij∇ρη ? ρη ? uj,n+1, Ψ ′′ε,`(u
i,n+1)∇ui,n+1

〉
L2(Ω)

= −
m∑
i=1

δ
∫
Ω

|∇ui,n+1|2 +

∫
Ω

m∑
j=1

∇ρη ? ui,n+1Aij∇ρη ? uj,n+1


≤ −

m∑
i=1

δ

∫
Ω

|∇ui,n+1|2 − δ0
m∑
i=1

∫
Ω

|∇ρη ? ui,n+1|2,

where we have used, in the second line, the convexity inequality on Ψε,`. In the third line, we used the fact

that
ui,n+1 − ui,n

∆t
∈ H−1(Ω) and ∇Ψ ′ε,`(ui,n+1) = Ψ ′′ε,`(u

i,n+1)∇ui,n+1 ∈ L2(Ω) coming from the fact that

Ψ ′ε,` ∈ C1(R), ([3], Prop. IX.5, p. 155), Ψ ′′ε,`(u
i,n+1) ∈ L∞(Ω) and ∇ui,n+1 ∈ L2(Ω) for all i = 1, . . . ,m. Thus, in

the fourth line we use that ui,n+1 is a solution for system (8.3) where we have applied an integration by parts.
In the fifth line, we used the transposition of the convolution (see for instance [3], Prop. IV.16, p. 67), and the
fact that ρ̌η(x) = ρη(−x) = ρη(x). Finally, in the last line we use that A satisfies (1.3).

Then by a straightforward recurrence we get estimate (8.4). This ends the proof of Proposition 8.1. �

9. Passage to the limit as (∆t, ε)→ (0, 0)

In this section we pass to the limit as (∆t, ε) → (0, 0) in system (8.3) to get the existence of a solution for
the continuous approximate system (9.3) given below.

First, let us define the function Ψ0,` as

Ψ0,`(a)− 1

e
:=



+∞ if a < 0,

0 if a = 0,

a ln a if 0 < a ≤ `,

a2

2`
+ a ln `− `

2
if a > `.

(9.1)

Now let us introduce our continuous approximate system. Assume that A satisfies (1.3). Let u0 = (ui0)1≤i≤m
satisfying

C3 :=

m∑
i=1

∫
Ω

Ψ0,`(u
i
0) < +∞, (9.2)
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which implies that ui0 ≥ 0 a.e. in Ω for i = 1, . . . ,m. Then for all `, η, δ > 0, with 1 < ` < +∞, we look for a
solution u = (ui)1≤i≤m of the following system:

∂tu
i = div

{
J i0,`,η,δ(u)

}
in D′(ΩT ),

J i0,`,η,δ(u) = T 0,`(ui)


m∑
j=1

Aij∇ρη ? ρη ? uj + δ∇ui
 ,

ui(0, x) = ui0(x) in Ω.

(9.3)

where T 0,` is given in (5.3) for ε = 0, and we recall here ΩT := (0, T )×Ω.

Proposition 9.1 (Existence for system (9.3).

Assume that A satisfies (1.3). Let u0 = (ui0)1≤i≤m satisfying (9.2). Then for all `, η, δ > 0 with 1 < ` < +∞
there exists a function u = (ui)1≤i≤m ∈ (L2(0, T ;H1(Ω))∩C([0, T );L2(Ω)))m, with ui ≥ 0 a.e. in ΩT , solution
of system (9.3) that satisfies the following entropy estimate for a.e. t1, t2 ∈ (0, T ) with ui(t1) = ui(t1, ·)∫

Ω

m∑
i=1

Ψ0,`(u
i(t2)) + δ

∫ t2

t1

∫
Ω

m∑
i=1

∣∣∇ui∣∣2 + δ0

∫ t2

t1

∫
Ω

m∑
i=1

∣∣∇ρη ? ui∣∣2 ≤ ∫
Ω

m∑
i=1

Ψ0,`(u
i
0). (9.4)

Proof. Our proof is based on the variant of Simon’s Lemma (Thm. 6.4). Recall that ∆t =
T

K
where K ∈ N∗

and T > 0 is given. We denote by C a generic constant independent of ∆t and ε. For all n ∈ {0, . . . ,K − 1} and
i = 1, . . . ,m, set tn = n∆t and let the piecewise constant in time function:

U i,∆t(t, x) := ui,n+1(x), for t ∈ (tn, tn+1], (9.5)

with U i,∆t(0, x) := ui0(x) satisfying (8.2).

Step 1. Upper bound on
∥∥∥U∆t

∥∥∥
(L2(0,T ;H1(Ω)))m

We will prove that U∆t = (U i,∆t)1≤i≤m satisfies∫ T

0

‖∇U∆t(t)‖2(L2(Ω))m ≤ C.

For all n ∈ {0, . . . ,K − 1} and i = 1, . . . ,m we have

∇U i,∆t(t, x) = ∇ui,n+1(x), for t ∈ (tn, tn+1].

Then ∫ tn+1

tn

‖∇U i,∆t(t)‖2L2(Ω) = ∆t‖∇ui,n+1‖2L2(Ω).

Hence ∫ T

0

‖∇U∆t(t)‖2(L2(Ω))m = ∆t

K−1∑
k=0

‖∇uk+1‖2(L2(Ω)m

≤ C1

δ
,
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where we have used the entropy estimate (8.4) with C1 is given in (8.2). Hence, using Poincaré−Wirtinger’s

inequality we can get similarly an upper bound on

∫ T

0

∥∥U i,∆t∥∥2
(L2(Ω))m

independently of ∆t (using the fact that∫
Ω

ui,n+1 =

∫
Ω

ui,n =

∫
Ω

ui,0 by Eq. (8.3)) .

Step 2. Upper bound on
∥∥∥U∆t

∥∥∥
(Var([0,T );H−1(Ω)))m

We will prove that ∥∥U∆t∥∥
(Var([0,T );H−1(Ω)))m

≤ C.

We have for i = 1, . . . ,m

∥∥U i,∆t∥∥
Var([0,T );H−1(Ω))

=

K−1∑
n=0

∥∥U i,∆t(tn+1)− U i,∆t(tn)
∥∥
H−1(Ω)

=

K−1∑
n=0

∥∥ui,n+1 − ui,n
∥∥
H−1(Ω)

= ∆t

K−1∑
n=0

∥∥∥∥ui,n+1 − ui,n

∆t

∥∥∥∥
H−1(Ω)

≤ ∆t

K−1∑
n=0

∥∥∥∥∥∥T ε,`(ui,n+1)

 m∑
j=1

Aij∇ρη ? ρη ? uj,n+1 + δ∇ui,n+1

∥∥∥∥∥∥
L2(Ω)

≤ `∆t

K−1∑
n=0

‖A‖∞
m∑
j=1

∥∥∇ρη ? uj,n+1
∥∥
L2(Ω)

+ δ
∥∥∇ui,n+1

∥∥
L2(Ω)


≤ C,

where

‖A‖∞ = max
1≤i≤m

m∑
j=1

|Aij | , (9.6)

and we have used in the last inequality the entropy estimate (8.4), and the fact that

∆t

K−1∑
n=0

∥∥∇ui,n+1
∥∥
L2(Ω)

≤
√
T

(
∆t

K−1∑
n=0

∥∥∇ui,n+1
∥∥2
L2(Ω)

) 1
2

.

Step 3. Ui,∆t ∈ Lp(0,T,L2(Ω)) with p > 2
The estimate (8.4) gives us that U i,∆t ∈ L∞(0, T ;L1(Ω)) ∩ L2(0, T ;H1(Ω)) for i = 1, . . . ,m. Using Sobolev

injections we get H1(Ω) ↪→ L2+α(N)(Ω), with α(N) > 0, and then U i,∆t ∈ L2(0, T ;L2+α(N)(Ω)). Hence by

interpolation, we find that U i,∆t ∈ Lp(0, T ;L2(Ω)) with (
1

p
,

1

2
) = (1−θ)( 1

∞
,

1

2
)+θ(

1

2
,

1

2 + α(N)
) and θ ∈ (0, 1),

i.e. for

p =
4 + 4α(N)

2 + α(N)
> 2. (9.7)

Step 4. Passage to the limit as (∆t, ε)→ (0, 0)
By Steps 1,2 and 3 we have∥∥U i,∆t∥∥

Lp(0,T ;L2(Ω))
+
∥∥U i,∆t∥∥

L2(0,T ;H1(Ω))
+
∥∥U i,∆t∥∥

Var([0,T );H−1(Ω))
≤ C.
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Then by noticing that H1(Ω)
compact
↪→ L2(Ω)

continous
↪→ H−1(Ω), and applying the variant of Simon’s Lemma

(Thm. 6.4), we deduce that (U i,∆t)∆t is relatively compact in L2(0, T ;L2(Ω)), and there exists a function
U = (U i)1≤i≤m ∈ (L2(0, T ;H1(Ω)))m such that, as (∆t, ε)→ (0, 0), we have (up to a subsequence)

U i,∆t → U i strongly in L2(0, T ;L2(Ω)).

By Step 1, we have ∇U i,∆t ⇀ ∇U i weakly in L2(0, T ;L2(Ω)). Now system (8.3) can be written as

U i,∆t(t+∆t)− U i,∆t(t)
∆t

= div
{
J iε,`,η,δ(U

i,∆t(t+∆t), U i,∆t(t+∆t))
}

in D′(ΩT ). (9.8)

Multiplying this system by a test function in D(ΩT ) and integrating over ΩT , we can pass directly to the limit
as (∆t, ε)→ (0, 0) in (9.8) to get

∂tU
i = div

T 0,`(U i)

 m∑
j=1

Aij∇ρη ? ρη ? U j + δ∇U i
 in D′(ΩT ),

where we used the weak L2 - strong L2 convergence in the products such T ε,`(U i,∆t)∇U i,∆t to get the existence
of a solution of system (9.3).

Step 5. Recovering the initial condition
Let ρ̄ ∈ C∞c (R) with ρ̄ ≥ 0,

∫
R ρ̄ = 1 and supp ρ̄ ⊂ (− 1

2 ,
1
2 ). We set

ρ̄∆t(t) = ∆t−1ρ̄(∆t−1t), with ρ̄(t) = ρ̄(−t).

Then we have

∥∥∂tU∆t ? ρ̄∆t∥∥2(L2(0,T ;H−1(Ω)))m
=

m∑
i=1

∫ T

0

∥∥∥∥∥
K−1∑
n=0

(ui,n+1 − ui,n)δtn+1
? ρ̄∆t

∥∥∥∥∥
2

H−1(Ω)

=

m∑
i=1

K−1∑
n=0

∫ T

0

(∆tρ̄∆t(t− tn+1))
2

∥∥∥∥ui,n+1 − ui,n

∆t

∥∥∥∥2
H−1(Ω)

≤ C4∆t

m∑
i=1

K−1∑
n=0

∥∥∥∥ui,n+1 − ui,n

∆t

∥∥∥∥2
H−1(Ω)

≤ C4∆t

K−1∑
n=0

m∑
i=1

∫
Ω

∣∣∣∣∣∣T ε,`(ui,n+1)

 m∑
j=1

Aij∇ρη ? ρη ? uj,n+1 + δ∇ui,n+1

∣∣∣∣∣∣
2

≤ 2 C4`
2∆t

K−1∑
n=0

m∑
i=1

∫
Ω


 m∑
j=1

Aij∇ρη ? ρη ? uj,n+1

2

+ δ2
∣∣∇ui,n+1

∣∣2


≤ 2 C4`
2∆t

K−1∑
n=0

{
‖A‖2

∥∥∇ρη ? ρη ? un+1
∥∥2
(L2(Ω))m

+ δ2
∥∥∇un+1

∥∥2
(L2(Ω))m

}
≤ 2 C4`

2∆t

K−1∑
n=0

{
‖A‖2‖∇ρη ? un+1‖2(L2(Ω))m + δ2

∥∥∇un+1
∥∥2
(L2(Ω))m

}
≤ 2 C4`

2C1

(
‖A‖2

δ0
+ δ

)
≤ 2 C4`

2C3

(
‖A‖2

δ0
+ δ

)
,
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where δtn+1
is Dirac mass in t = tn+1, C1 as in (8.2), C3 as in (9.2), C4 := C(

∫ T
0
ρ̄(t) dt), and we have used in

the last line the entropy estimate (8.4). Clearly, ρ̄∆t ? U
i,∆t
t ⇀ U it weakly in L2(0, T ;H−1(Ω)) as (∆t, ε) → 0.

Similarly we have that ρ̄∆t ? U
i,∆t → U i strongly in L2(0, T ;L2(Ω)) since U i,∆t → U i in L2(0, T ;L2(Ω)).

Then we deduce that U i ∈
{
g ∈ L2(0, T ;H1(Ω)); gt ∈ L2(0, T ;H−1(Ω))

}
. And now U i(0, x) has sense, by

Proposition 6.2, and we have that U i(0, x) = ui0(x) by Proposition A.1.

Step 6. Proof of estimate (9.4)
By Step 4, there exists a function U i ∈ L2(0, T ;H1(Ω)) such that the following holds true as (∆t, ε)→ (0, 0)

U i,∆t → U i

∇U i,∆t ⇀ ∇U i

∇ρη ? U i,∆t → ∇ρη ? U i

∣∣∣∣∣∣∣∣ in L2(0, T ;L2(Ω)).

Now using the fact that the norm L2 is weakly lower semicontinuous, with a sequence of integers n2 (depending
on ∆t) such that tn2+1 → t2 ∈ (0, T ) and

U i,∆t(t2) = U i,∆t(tn2+1) = un2+1,

we get for t1 < t2∫ t2

t1

∫
Ω

∣∣∇U i∣∣2 ≤ ∫ t2

0

∫
Ω

∣∣∇U i∣∣2 ≤ lim inf
(∆t,ε)→(0,0)

∫ tn2+1

0

∫
Ω

∣∣∇U i,∆t∣∣2 = lim inf
(∆t,ε)→(0,0)

∆t

n2∑
k=0

∫
Ω

|∇ui,k+1|2, (9.9)

and ∫ t2

t1

∫
Ω

∣∣∇ρη ? U i∣∣2 ≤ ∫ t2

0

∫
Ω

∣∣∇ρη ? U i∣∣2 ≤ lim inf
(∆t,ε)→(0,0)

∆t

n2∑
k=0

∫
Ω

|∇ρη ? ui,k+1|2. (9.10)

Moreover, since we have U i,∆t → U i in L2(0, T ;L2(Ω)), we get that for a.e. t ∈ (0, T ) (up to a subsequence)
U i,∆t(t, ·) → U i(t, ·) in L2(Ω). For such t we have (up to a subsequence) U i,∆t(t, ·) → U i(t, ·) for a.e. in Ω.
Moreover, by applying Lemma A.2 we get that for a.e. t ∈ (0, T )

Ψ0,`(U
i(t)) ≤ lim inf

(∆t,ε)→(0,0)
Ψε,`(U

i,∆t(t)). (9.11)

Integrating over Ω then applying Fatou’s Lemma we get for a.e. t1 < t2

m∑
i=1

∫
Ω

Ψ0,`(U
i(t2)) ≤

∫
Ω

lim inf
(∆t,ε)→(0,0)

m∑
i=1

Ψε,`(U
i,∆t(t2)) ≤ lim inf

(∆t,ε)→(0,0)

m∑
i=1

∫
Ω

Ψε,`(u
i,n2+1). (9.12)

(9.9), (9.10) and (9.12) with the entropy estimate (8.4) give us that for a.e. t1 < t2 ∈ (0, T )

m∑
i=1

∫
Ω

Ψ0,`(U
i(t2)) + δ

m∑
i=1

∫ t2

t1

∫
Ω

∣∣∇U i∣∣2 + δ0

m∑
i=1

∫ t2

t1

∫
Ω

∣∣∇ρη ? U i∣∣2
≤ lim inf

(∆t,ε)→(0,0)

m∑
i=1

∫
Ω

Ψε,`(u
i,n2+1) + lim inf

(∆t,ε)→(0,0)
δ∆t

m∑
i=1

n2∑
k=0

∫
Ω

|∇ui,k+1|2

+ lim inf
(∆t,ε)→(0,0)

δ0∆t

m∑
i=1

n2∑
k=0

∫
Ω

|∇ρη ? ui,k+1|2

≤
m∑
i=1

∫
Ω

Ψε,`(u
i
0) ≤

m∑
i=1

∫
Ω

Ψ0,`(u
i
0),

which is estimate (9.4).
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Step 7. Non-negativity of Ui

Let Ωεi (t) :=
{
x ∈ Ω : U i,∆t(t, x) ≤ ε

}
for all t ∈ [0, T ] and i = 1, . . . ,m. By estimate (8.4), there exists a

positive constant C independent of ε and ∆t such that for all i = 1, . . . ,m we have

C ≥
∫
Ω

Ψε,`(U
i,∆t)

≥
∫
Ωεi (t)

Ψε,`(U
i,∆t)

=

∫
Ωεi (t)

1

e
+

(U i,∆t)2

2ε
+ U i,∆t ln ε− ε

2

≥
∫
Ωεi (t)

1

e
+

(U i,∆t)2

2ε
+ ε ln ε− 1

2

≥
∫
Ωεi (t)

(U i,∆t)2

2ε
− 1

2
,

i.e. ∫
Ωεi (t)

(U i,∆t)2

2ε
≤ C +

1

2
· (9.13)

Now by passing to the limit as (∆t, ε) → (0, 0) in (9.13) we deduce that

∫
Ω−i (t)

∣∣U i∣∣2 = 0, where Ω−i (t) :={
x ∈ Ω : U i(t, x) ≤ 0

}
for all t ∈ [0, T ] and i = 1, . . . ,m, which gives us that (U i)− = 0 in L2(Ω), where

(U i)− = min(0, U i). �

Remark 9.2 (Another method following [22]).
Note that it would be also possible to use a theorem in Lions-Magenes ([22], Chap. 3, Thm. 4.1, p. 257). This

would prove in particular the existence of a unique solution for the following system:
∂tu

i = div
{
J iε,`,η,δ(v, u)

}
in D′(ΩT ),

J iε,`,η,δ(v, u) = T ε,`(vi)

{
m∑
j=1

Aij∇ρη ? ρη ? uj + δ∇ui
}
,

ui(0, x) = ui0(x) in Ω,

(9.14)

where T ε,` is given in (5.3).
It would then be possible to find a fixed point solution v = u of (9.14) to recover a solution of (9.3). We

would have to justify again the entropy inequality (9.4).

10. Passage to the limit as (`, η)→ (∞, 0)
In this section we pass to the limit as (`, η) → (∞, 0) in system (9.3) to get the existence of a solution for

system (10.1) given below (system independent of ` and η).
Let us introduce the system independant of ` and η. Asume that A satisfies (1.3). Let u0 = (ui0)1≤i≤m

satisfying (2.2). Then for all δ > 0 we look for a solution u = (ui)1≤i≤m of the following system: ∂tu
i = div

ui
m∑
j=1

Aij∇uj + δui∇ui
 in D′(ΩT ),

ui(0, x) = ui0(x) a.e. in Ω.

(10.1)



1752 J. ALKHAYAL ET AL.

Proposition 10.1 (Existence for system (10.1)). Assume that A satisfies (1.3). Let u0 = (ui0)1≤i≤m satisfy-
ing (2.2). Then for all δ > 0 there exists a function u = (ui)1≤i≤m ∈ (L2(0, T ;H1(Ω))∩C([0, T ); (W 1,∞(Ω))′))m,
with ui ≥ 0 a.e. on ΩT , solution of system (10.1), that satisfies the following entropy estimate for a.e.
t1, t2 ∈ (0, T ) with ui(t2) = ui(t2, .):

∫
Ω

m∑
i=1

Ψ(ui(t2)) + δ

∫ t2

t1

∫
Ω

m∑
i=1

∣∣∇ui∣∣2 + δ0

∫ t2

t1

∫
Ω

m∑
i=1

∣∣∇ui∣∣2 ≤ ∫
Ω

m∑
i=1

Ψ(ui0), (10.2)

with Ψ is given in (2.1).

Proof. Let C be a generic constant independent of ` and η, and u` := (ui,`)1≤i≤m a solution of system (9.3),
where we drop the indices η and δ to keep light notations. The proof is accomplished by passing to the limit as
(`, η)→ (∞, 0) in (9.3) and using Simon’s lemma (Lem. 6.3), in order to get the existence result.

Step 1. Upper bound on ∂tu
i,`

As in Step 3 of the proof of Proposition 9.1, estimate (9.4) gives us that ui,` ∈ Lp(0, T, L2(Ω)) with p > 2 is

given in (9.7). Let q =
2p

p+ 2
> 1. It remains to prove that for i = 1, . . . ,m

∥∥∂tui,`∥∥Lq(0,T ;(W 1,∞)′(Ω))
< C.

We have

‖∂tui,`‖Lq(0,T ;(W 1,∞(Ω))′) =

(∫ T

0

∥∥∂tui,`∥∥q(W 1,∞(Ω))′

) 1
q

=

∫ T

0

∥∥∥∥∥∥div

T 0,`(ui,`)

 m∑
j=1

Aij∇ρη ? ρη ? uj,` + δ∇ui,`


∥∥∥∥∥∥
q

(W 1,∞(Ω))′


1
q

≤

∫ T

0

∫
Ω

∣∣∣∣∣∣T 0,`(ui,`)

 m∑
j=1

Aij∇ρη ? ρη ? uj,` + δ∇ui,`
∣∣∣∣∣∣
q

1
q

≤

∫ T

0

∫
Ω

∣∣ui,`∣∣
∣∣∣∣∣∣

m∑
j=1

Aij∇ρη ? ρη ? uj,`
∣∣∣∣∣∣+ δ

∣∣∇ui,`∣∣
q

1
q

≤
∥∥ui,`∥∥

Lp(0,T ;L2(Ω))

∥∥∥∥∥∥
m∑
j=1

Aij∇ρη ? ρη ? uj,`
∥∥∥∥∥∥
L2(0,T ;L2(Ω))

+ δ
∥∥ui,`∥∥

Lp(0,T ;L2(Ω))

∥∥∇ui,`∥∥
L2(0,T ;L2(Ω))

≤
∥∥ui,`∥∥

Lp(0,T ;L2(Ω))

‖A‖∞ m∑
j=1

∥∥∇ρη ? uj,`∥∥L2(0,T ;L2(Ω))
+ δ

∥∥∇ui,`∥∥
L2(0,T ;L2(Ω))

 ≤ C,
where we have used in the fifth line Holder’s inequality (since we have

1

q
=

1

p
+

1

2
) and in the last line the

entropy estimate (9.4).
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Step 2. Passage to the limit as (`, η)→ (∞, 0)
In view of Step 1 of this proof and (9.4) we have that∥∥ui,`∥∥

Lp(0,T ;L2(Ω))
+
∥∥ui,`∥∥

L2(0,T ;H1(Ω))
+
∥∥∂tui,`∥∥Lq(0,T ;(W 1,∞(Ω))′)

≤ C,

where p > 2 is given in (9.7) and q =
2p

p+ 2
> 1. Then by noticing that H1(Ω)

compact
↪→ L2(Ω)

continous
↪→

(W 1,∞(Ω))′, and applying Simon’s Lemma (Lem. 2.3), we deduce that (ui,`)` is relatively compact in
L2(0, T ;L2(Ω)), and there exists a function ui ∈ L2(0, T ;H1(Ω)) such that, as (`, η)→ (∞, 0), we have (up to
a subsequence)

ui,` → ui strongly in L2(0, T ;L2(Ω)).

In addition, since ui,` → ui a.e., ui is nonnegative a.e. hence T 0,`(ui,`) → ui strongly in L2(0, T ;L2(Ω)).
Multiplying system (9.3) by a test function in D(ΩT ) and integrating over ΩT we can pass directly to the limit
as (`, η)→ (∞, 0), and we get

∂tu
i = div

ui
m∑
j=1

Aij∇uj + δui∇ui
 in D′(ΩT ).

where we used in particular the weak L2 - strong L2 convergence in the products such T 0,`(ui,`)∇ui,`. Therefore,
u = (ui)1≤i≤m is a solution of system (10.1).

Step 3. Recovering the initial condition
Using Step 1 of this proof with the fact that W 1,1(0, T ; (W 1,∞(Ω))′) ↪→ C([0, T ); (W 1,∞(Ω))′) then ui(0, x)
makes sense and ui(0, x) = ui0(x) for all i = 1, . . . ,m, by Proposition A.1.

Step 5. Proof of the estimate (10.2)
The proof is similar to Step 6 of the proof of Proposition 9.1. �

11. Passage to the limit as δ → 0

Proof. Let C be a generic constant independent of δ and uδ := (ui,δ)1≤i≤m a solution of system (10.1). We
follow the lines of proof of Proposition 10.1.

An upper bound on ui,δt and estimate (10.2) allow us to apply Simon’s Lemma (Lem. 2.3), then (ui,δ)δ is
relatively compact in L2(0, T ;L2(Ω)), and there exists a function ui ∈ L2(0, T ;H1(Ω)) such that, as δ → 0, we
have (up to a subsequence)

ui,δ → ui strongly in L2(0, T ;L2(Ω)),

and

∂tu
i = div

ui
m∑
j=1

Aij∇uj
 in D′(ΩT ).

Similarly to Step 4 of the proof of Proposition 10.1 the initial condition is recoverd. Also estimate (2.3) can be
easily obtained. �

Remark 11.1 (Passage to the limit as (`, η, δ)→ (∞, 0, 0)).
It is possible to pass to the limit in system (9.3) as (`, η, δ) → (∞, 0, 0) at the same time: By using the

entropy estimate (9.4) and applying Simon’s Lemma on the sequence ρη ? u
i,` instead of ui,`. Moreover, to get

the entropy estimate (2.3) it is sufficient to use the fact that
∫
Ω
Ψ0,`(ρη ? u

i,`) ≤
∫
Ω
ρη ? Ψ0,`(u

i,`).
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Generalizations

12. Generalization on the matrix A

Assumption (1.3) can be weaken. Indead, we can assume that A = (Aij)1≤i,j≤m is a real m×m matrix that
satisfies a positivity condition, in the sense that there exist two positive definite diagonal m ×m matrices L
and R and δ0 > 0, such that we have

ζTLARζ ≥ δ0|ζ|2, for all ζ ∈ Rm. (12.1)

Remark 12.1 (Comments on the positivity condition (12.1)). The assumption of positivity condition (12.1),
generalize our problem for A not necessarily having a symmetric part positive definite. Here is an example of
such a matrix, whose symmetric part is not definite positive, but the symmetric part of LAR is definite positive
for some suitable positive diagonal matrices L and R.

We consider

A =

(
1 −a
2a 1

)
with |a| > 2.

Indeed,

Asym =
AT +A

2
=

(
1 a

2
a
2 1

)
,

satisfying det(Asym) = 1− a2

4
< 0. And let

L =

(
2 0
0 1

)
and R = I2 =

(
1 0
0 1

)
.

On the other hand,

B = L.A.R =

(
2 −2a
2a 1

)
,

satisfies that

Bsym =

(
2 0
0 1

)
,

is definite positive.

Proposition 12.2 (The case where L = I2). Let A be a matrix that satisfies the positivity condition (12.1) with
L = I2. Then ū is a solution for system (1.1) with the matrix Ā = AR (instead of A) if and only if ui = Rii ū

i

is a solution for system (1.1) with the matrix A.

Proposition 12.3 (The case where R = I2). Let un+1 = (ui,n+1)1≤i≤m be a solution of system (8.3) with a
matrix A satisfying the positivity condition (12.1) with R = I2 and L a positive diagonal matrix. Then un+1

satisfies the following entropy estimate

m∑
i=1

∫
Ω

LiiΨε,`(u
i,n+1) + δ∆t min

1≤i≤m
{Lii}

m∑
i=1

n∑
k=0

∫
Ω

|∇ui,k+1|2

+ δ0∆t

m∑
i=1

n∑
k=0

∫
Ω

|∇ρη ? ui,k+1|2 ≤
m∑
i=1

∫
Ω

LiiΨε,`(u
i
0)
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Proof. Similarly to Step 5 of the proof of Proposition 8.1 we have

m∑
i=1

∫
Ω

Lii

(
Ψε,`(u

i,n+1)− Ψε,`(ui,n)

∆t

)
≤ −

∫
Ω

m∑
i=1

m∑
j=1

LiiAij(∇ρη ? ρη ? uj,n+1) · ∇ui,n+1

−δ
m∑
i=1

∫
Ω

Lii|∇ui,n+1|2

≤
∫
Ω

m∑
i=1

m∑
j=1

(∇ρη ? uj,n+1)LiiAij(∇ρη ? ui,n+1)

−δ
m∑
i=1

∫
Ω

Lii|∇ui,n+1|2

≤ −δ0
∫
Ω

m∑
i=1

|∇ρη ? ui,n+1|2

−δ min
1≤i≤m

{Lii}
m∑
i=1

∫
Ω

|∇ui,n+1|2,

where we have used, in the last line, the fact that the matrix A satisfies (12.1) with R = I2. Then by a
straightforward recurrence we get (12.2). �

Corollary 12.4. Theorem 2.1 still hold true if we replace condition (1.3) by condition (12.1).

13. Generalisations on the problem

13.1. The tensor case

Our study can be applied on a generalized systems of the form

∂tu
i =

m∑
j=1

N∑
k=1

N∑
l=1

∂

∂xk

(
fi(u

i)Aijkl
∂uj

∂xl

)
for i = 1, . . . ,m, (13.1)

where fi satisfies 

fi ∈ C(R),

0 ≤ fi(a) ≤ C(1 + |a|) for a ∈ R and C > 0,

0 < fi(a) for a ∈ (0, a0] with a0 > 0,∫ A

a0

1

fi(a)
da < +∞ for all A ≥ a0.

An example for such fi is

fi(a) = max
(

0,min
(
a,
√
|a− 1|

))
.

Moreover, A = (Aijkl)i,j,k,l is a tensor of order 4 that satisfies the following positivity condition: there exists
δ0 > 0 such that ∑

i,j,k,l

Aijkl η
i ηj ζk ζl ≥ δ0|η|2|ζ|2 for all η ∈ Rm, ζ ∈ RN . (13.2)
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The entropy function Ψi is chosen such that Ψi is nonnegative, lower semi-continuous, convex and satisfies that

Ψ ′′i (a) =
1

fi(a)
for i = 1, . . . ,m. Our solution satisfies the following entropy estimate for a.e. t > 0

m∑
i=1

∫
Ω

Ψi(u
i(t)) + δ0

m∑
i=1

∫ t

0

∫
Ω

|∇ui|2 ≤
m∑
i=1

∫
Ω

Ψi(u
i
0). (13.3)

To get this entropy we can apply the same strategy announced in Section 5 where fi(u
i) will be replaced by

T ε,`(fi(v
i)) with T ε,` given in (5.3) and we use the fact that∫

Ω

∑
i,j,k,l

∂ui

∂xk
Aijkl

∂uj

∂xl
=
∑
n∈ZN

∑
i,j,k,l

(̂
∂ui

∂xk

)
(n)Aijkl

(̂
∂uj

∂xl

)
(n)

=
∑
n∈ZN

∑
i,j,k,l

nk ûi(n)Aijkl nl ûj(n)

≥ δ0
∑
n∈ZN

|n|2 |û|2 = δ0 ‖∇u‖2(L2(Ω))m .

13.2. The variables coefficients case

Here the coefficients Aij(x, u) may depend continuously of (x, u). Then we have to take ρη ? (Aij(x, u)(∇ρη ?
uj)) instead of Aij∇(ρη ? ρη ? u

j) in the approximate problem. We can consider a problem

∂tu
i = div

ui m∑
j=1

Aij(x, u)∇u

+ gi(x, u),

where the source terms are continuous with respect to the variable u and there exists a positive constant c such
that

−c |u| ≤ gi(x, u) ≤ c(1 + |u|).

13.3. Laplace-type equations

Moreover, our method applies to models of the form

∂tu
i = ∆(ai(u)ui) with u = (ui)1≤i≤m, (13.4)

under these assumptions: 

ai(u) ≥ 0 if uj ≥ 0 for j = 1, . . . ,m,

ai is at most linear,

ai ∈ C1(R),

Sym

((
∂ai
∂uj

)
i,j

)
≥ δ0I with δ0 > 0,

∂ai
∂uj

are bounded from below for all i, j = 1, . . . ,m

(13.5)

where Sym denotes the symmetric part of a matrix. We can consider a particular case of (13.4) where ai(u) =
m∑
j=1

Aiju
j . Then problem (13.4) can be written as

∂tu
i = div

ui
m∑
j=1

Aij∇uj +

 m∑
j=1

Aijuj

∇ui
 , (13.6)
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which can be also solved under these assumptions:{
Aij ≥ 0 for i, j = 1, . . . ,m,

Sym(A) ≥ δ0I.

Appendix A: Technical results

In this section we will present some technical results that are used in our proofs.

Proposition A.1 (Recovering the initial condition). Let Y be a Banach space with the norm ‖.‖Y . Consider
a sequence (gm)m ∈ C(0, T ;Y ) such that ∂t(gm) is uniformly bounded in Lq(0, T ;Y ) with 1 < q ≤ ∞, and
(gm)|t=0 → g0 in Y . Then there exists g ∈ C(0, T ;Y ) such that gm → g in C(0, T ;Y ) and

g|t=0 = g0 in Y.

Proof. We have that for all s < t ∈ (0, T )

‖gm(t)− gm(s)‖Y =

∥∥∥∥∫ t

s

∂τ (gm)(τ)

∥∥∥∥
Y

≤
∫ t

s

‖∂τ (gm)(τ)‖Y ds

≤ (t− s)
q−1
q ‖∂τ (gm)(τ)‖Lq(0,T ;Y ) ≤ (t− s)

q−1
q C, (A.1)

where we have used in the second line Holder’s inequality, and the fact that (gm)τ is uniformly bounded
in Lq(0, T ;Y ). Since (A.1) implies the equicontinuity of (gm)m, by Arzelà-Ascoli theorem, there exists g ∈
C(0, T ;Y ) such that gm → g in C(0, T ;Y ). Moreover, Taking s = 0 in (A.1) we get

‖gm(t)− gm(0)‖Y ≤ t
q−1
q C. (A.2)

By passing to the limit in m in (A.2), we deduce that

‖g(t)− g0‖Y ≤ t
q−1
q C.

Particularly, for t = 0, we have

‖g(0)− g0‖Y = 0.

This implies the result. �

Lemma A.2 (Convergence result). Let (aε)ε a real sequence such that aε → a0 as ε→ 0. Then we have

Ψ0,`(a0) ≤ lim inf
ε→0

Ψε,`(aε),

where Ψε,` and Ψ0,` are given in (8.1) and (9.1) respectively.

Proof. Consider the case where a0 = 0.
We consider the subsequence (aεk1 )εk1 ∈ (−∞; 1

e ]. Let (bε)ε ∈ (−∞; 1
e ] a sequence that decreases to 0 as

ε → 0 with bε > aε. Since Ψε,` is decreasing on (−∞; 1
e ] we have Ψε,`(aε) ≥ Ψε,`(bε). Moreover, using the fact

that Ψε,`(bε)→ 0 = Ψ0,`(0) we get the result.
Otherwise, consider (aεk2 )εk2 ∈ ( 1

e ; +∞) the proof is the same as above but with taking bε < aε since Ψε,` is

nondecreasing in ( 1
e ; +∞).

For the other cases, a0 < 0 and a0 > 0, the result is easily obtained. �
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