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MINIMAL CLUSTERS OF FOUR PLANAR REGIONS WITH THE SAME

AREA ∗
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Abstract. We prove that the optimal way to enclose and separate four planar regions with equal area
using the less possible perimeter requires all regions to be connected. Moreover, the topology of such
optimal clusters is uniquely determined.
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1. Introduction

We consider the problem of enclosing and separating N regions of R2 with prescribed area and with the
minimal possible interface length.

The case N = 1 corresponds to the celebrated isoperimetric problem whose solution, the circle, was known
since antiquity.

For N ≥ 1 first existence and partial regularity in Rn was given by Almgren [1] while Taylor [21] describes
the singularities for minimizers in R3. Existence and regularity of minimizers in R2 was proved by Morgan [14]
(see also [12]): the regions of a minimizer in R2 are delimited by a finite number of circular arcs which meet in
triples at their end-points (see Thm. 2.3).

Foisy et al. [8] proved that for N = 2 in R2 the two regions of any minimizer are delimited by three circular
arcs joining in two points (standard double bubble) and are uniquely determined by their enclosed areas.
Wichiramala [23] proved that for N = 3 in R2 the three regions of any minimizer are delimited by six circular
arcs joining in four points. Such configuration (standard triple bubble) is uniquely determined by the given
enclosed areas, as shown by Montesinos [13]. The case N = 4 has been considered in [11] where some partial
information on minimal clusters is obtained.

The minimization problem can be stated also for N =∞ regions with equal areas (the honeycomb conjecture,
see [15]): Hales [9] proved that the hexagonal grid is indeed the solution.
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Figure 1. The flower (left hand side) and sandwich (right hand side) topologies.

In obtaining the results with N = 2 or N = 3 planar regions, the main difficulty is to prove that each region of
the minimizer is connected. In fact, in general, this is an open question (soap bubble conjecture, Conjecture 2.11,
see Morgan and Sullivan [16]).

To investigate such a conjecture, in this paper (which originates from the Ph.D. thesis [20] of the second
author) we consider the case of N = 4 regions in the plane. In Theorem 6.5 we prove that if the four planar
regions have equal areas then the conjecture is true: the minimizing clusters must be connected. However, in this
case, connectedness and stationarity is not enough to uniquely determine the topology of minimizers. In fact
there are two nontrivial possible topologies: we call them the flower and the sandwich topologies (see Fig. 1).
We then exclude the flower topology, to conclude that minimizers have the sandwich type (Thm. 7.3).

We conjecture that the minimizer with equal areas is symmetric i.e.: the regions E1 and E3 are congruent to
the regions E2 and E4 respectively (see Conjecture 7.4 for more details).

The problem of dividing the sphere in regions of equal areas has also been considered. See for example [7]
where it is proven that the minimizer for four equal areas in the sphere is given by a geodesic tetrahedron.

The plan of the paper is as follows. In Section 2 we set up the notation and collect the known results that
we need in the rest of the paper. In Section 3 we present some tools which apply to general planar clusters. In
particular notice that Proposition 3.3 gives an estimate by below on the measure of each connected component
of a minimal cluster. This estimate can be used to obtain an upper bound on the total number of connected
components of a cluster as in Theorem 3.4.

In Section 4 we start the analysis of planar clusters with four equal areas. In particular we find a precise
estimate on the length of the minimizers (Prop. 4.1), we prove that possible components of a disconnected
region cannot be too small (Prop. 4.2) and cannot be too big (Prop. 4.3). This estimates enable us to prove
that a minimizer can have at most six connected components (Prop. 4.9). In Section 5 we exclude the clusters
with six components. In Section 6 we exclude the clusters with five components and obtain the connectedness
result Theorem 6.5. In Section 7 we consider all connected clusters (four components) and exclude the flower
topology (Prop. 7.2, Thm. 7.3).

2. Notation and preliminary results

Let us denote with E = (E1, . . . , EN ) an N -uple of measurable subsets of R2. We will say that E is an
N -cluster if m(Ei ∩ Ej) = 0 for all i 6= j (m(·) is the Lebesgue measure). The external region E0 is defined as

E0 = R2 \
N⋃
i=1

Ei.

The sets E0, E1, . . . , EN will be called the regions of the cluster E.
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We define the measure and the perimeter of a cluster by:

m(E) := (m(E1), . . . ,m(EN )), P (E) :=
1

2

N∑
i=0

P (Ei)

where P (Ei) is the perimeter of the measurable set Ei. For regular sets Ei one has P (Ei) = H1(∂Ei) which is
the length of the boundary of Ei.

Given a measurable set E we say that C with m(C) > 0 is a component of E if

m(E) = m(C) +m(E \ C) and P (E) = P (C) + P (E \ C)

(i.e. the decomposition E = C ∪ (E \ C) does not add any boundary). We say that E is connected if it has
no component C with 0 < m(C) < m(E) (C = E is a trivial component). Notice that in our definitions a
component does not need to be connected: in general a component can be a union of connected components.
We say that a cluster E is connected if each region Ei, for i = 1, . . . , N , is connected. We say that a cluster is
disconnected if it is not connected (i.e. at least one region is not connected).

A component C of a region Ei of the cluster E (with i 6= 0) is said to be external if is adjacent to the external
region E0 (formally P (C ∪ E0) < P (C) + P (E0)) otherwise it is said to be internal.

Given a vector of positive numbers a ∈ RN+ , a = (a1, . . . , aN ), ai > 0 we will define the family of competitors
as the clusters with measure a:

C(a) = {E : m(E) = a}

among these we will consider the following optimization problem:

p(a) = inf{P (E) : E ∈ C(a)}

and the corresponding minimizers:

M(a) = {E ∈ C(a) : P (E) = p(a)}.

We will also consider the weak variants of this minimization problem:

C∗(a) = {E : m(E) ≥ a}
p∗(a) = inf{P (E) : E ∈ C∗(a)}
M∗(a) = {E ∈ C∗(a) : P (E) = p∗(a)}.

(the comparison between vectors of RN is understood componentwise).

Definition 2.1 (Regular cluster). We say that a planar N -cluster E is regular when:

(1) each region (including the external region E0) is (up to a negligible set) a closed set which is equal to the
closure of its interior points (and in the following we will assume that the Lebesgue representant of the
regions Ei is always a closed set);

(2) each region, but the external one E0, is bounded;
(3) the boundary of the cluster, defined by

∂E =

N⋃
k=1

∂Ek

is the continuous embedding of a finite planar graph (i.e. there are a finite number of simple continuous
curves which we will call edges which can only meet in their end-points which we will call vertices and the
faces of the graph correspond to the connected components of the regions);
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(4) each vertex has order at least three (i.e. it coincides with at least three end-points of the edges).

Notice that the perimeter of a region Ei of a regular cluster E is the sum of the length of the edges of Ei.
Moreover since each edge belongs to the boundary of exactly two regions, we have

P (E) =
1

2

N∑
k=0

P (Ek) =
∑

σ edge of E

`(σ) = H1(∂E).

Definition 2.2 (Stationary cluster). We say that a regular planar cluster E = (E1, . . . , EN ) is stationary if it
satisfies the following conditions:

(1) every edge is either a circular arc or a straight segment (which, in the following, we will identify with an
arc of zero curvature);

(2) in every vertex exactly three arcs meet, defining three equal angles of 120 degrees;
(3) it is possible to associate a real number pi (which we will call pressure) to each region Ei of the cluster, so

that p0 = 0 and such that any arc between the regions Ei and Ej has curvature |pi − pj | (it is a straight
segment if pi = pj) and the region with higher pressure is towards the side where the the arc is convex.

In particular it follows that the sum of the signed curvatures of the three arcs meeting in a vertex is always
zero.

Theorem 2.3 (Existence and regularity). [12,14] Given a ∈ RN+ the family of clusters M(a) is not empty and
every minimal cluster E ∈M(a) is regular and stationary.

Theorem 2.4 (Existence and regularity, weak case). [14] Given a ∈ RN+ the family of clusters M∗(a) is not
empty and every minimal cluster E ∈M∗(a) is regular and stationary.

Weak minimizers have some additional properties which makes them a better ambient space for our investi-
gation.

Proposition 2.5 (Properties of weak minimizers). [23] Let E ∈M∗(a), a ∈ RN+ . Then:

(1) the external region E0 is connected;
(2) all the pressures pi are nonnegative;
(3) if m(Ei) > ai then pi = 0.

Theorem 2.6 (Pressure formula). [6] Let E ∈M∗(a) with a ∈ RN+ . Then

P (E) = 2

N∑
i=1

pim(Ei).

Lemma 2.7 (Turning angle). [23] Let E ∈ M∗(a), a ∈ RN+ and let C be a connected component of some
region Ei of E. Let n be the number of edges of C and let Lj be the total length of the edges of C in common
with the region Ej (Lj = 0 if C and Ej have not edges in common). Then, if i 6= 0, it holds

(6− n)π

3
=

N∑
j=0

(pi − pj)Lj

where pj is the pressure of the region Ej. For i = 0 we have instead

(6 + n)π

3
=

N∑
j=1

(pj − p0)Lj .
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Proposition 2.8 ([4, 5, 20]). Let E ∈ M∗(a) with a ∈ RN+ . Let M be the total number of bounded connected
components of the regions of E.

(1) Every bounded connected component is simply connected.
(2) Two connected components of E cannot share more than a single edge.
(3) If N > 2 then each connected component C of E has at least three edges.
(4) Each connected component of a region with k connected components has at most M + 1− k edges, and if it

is internal it has at most M − k edges.
(5) The total number of edges is 3(M − 1) and the total number of vertices is 2(M − 1).
(6) If M ≤ 6 then E ∈M(a) (i.e. E is a strong minimizer).

Theorem 2.9 (Removal of triangle components). [23] Let E ∈ C(a) be a stationary regular cluster and suppose
that a connected component C of some region Ei has three edges. Consider the three arcs which arrive at the
three vertices of C but are not edges of C. The circles containing these three arcs meet in a point P inside the
component C.

Moreover the cluster E′ obtained from E by removing the component C and prolonging the three edges, is
itself a stationary regular cluster E′ ∈ C(a′) with a′i = ai −m(C) (and the region Ei disappears if C was the
only component of Ei) and a′j ≥ aj for all j 6= i. Also the pressures p′j of the regions of E′ are equal to the
pressure pj of the corresponding regions of E (if Ei disappears because C was the only component of Ei, the
regions must be relabeled but again the pressures of the corresponding regions remain the same).

Theorem 2.10 (Double bubble monotonicity). [8] Given r1 > 0 and r2 > 0, up to isometries, there exists a
unique double bubble E such that the external radii of the two regions E1 and E2 are r1 and r2 respectively.
If we increase one radius (say) r1 then the area of the corresponding region E1 increases while the area of the
other region E2 decreases. As a consequence there is a unique double bubble with prescribed areas.

Conjecture 2.11 (Soap bubble conjecture). [16] For all a ∈ RN+ each E ∈M(a) is connected.

The main aim of this paper is to prove that the conjecture holds in the case a = (1, 1, 1, 1).

3. Estimates on general clusters

Lemma 3.1 (Isoperimetric inequality for clusters). Given E ∈ C∗(a) one has

P (E) ≥
√
π


√√√√ N∑
k=1

ak +

N∑
k=1

√
ak

 .

Proof. Given any E ∈ C∗(a), by applying the isoperimetric inequality

P (E) ≥ 2
√
π

√
min{m(E),m(R2 \ E)}

one has:

P (E) =
1

2

N∑
k=0

P (Ek) ≥
√
π


√√√√ N∑
k=1

m(Ek) +

N∑
k=1

√
m(Ek)

 . �

Proposition 3.2 (Variation I). Let E ∈M∗(a) and suppose that Ci is a component of the region Ei. Let ` be
the sum of the lengths of the edges of Ci in common with the region Ek 6= Ei (k = 0 is also admitted). Then

` ≤ 2
√
π
√
m(Ci).
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Proof. Let B be any ball disjoint from E with the same area as Ci, so that P (B) = 2
√
π
√
m(Ci). Consider the

cluster E′ obtained by E by means of the following variations on the regions Ei and Ej :

E′i = (Ei \ Ci) ∪B, E′j = Ej ∪ Ci.

Clearly we have m(E′i) = m(Ei) and m(E′j) > m(Ej). Hence E′ ∈ C∗(a). Moreover, since the edges of length `
has been removed and the ball B has been added, by the minimality of E we have:

0 ≤ P (E′)− P (E) = P (B)− ` = 2
√
π
√
m(Ci)− `. �

Proposition 3.3 (Variation II). Let E ∈ M∗(a) and suppose that Ci is a component of the region Ei with
0 < m(Ci) < m(Ei). Let `k be the sum of the lengths of the edges of Ci in common with the region Ek 6= Ei
(k = 0 is also admitted). Then

`k ≤
m(Ci)

|2ai −m(Ci)|
P (E). (3.1)

Moreover, if we denote by r ≤ N the number of regions which have an edge in common with Ci, for all λ ≥ P (E)
one has:

m(Ci) ≥
16πa2i
r2λ2

(
1− 16πai

r2λ2

)
· (3.2)

Proof. Let

t =

√
m(Ei)

m(Ei)−m(Ci)
=

√
1 +

m(Ci)

m(Ei)−m(Ci)
≤ 1 +

1

2

m(Ci)

m(Ei)−m(Ci)

and consider a new cluster E′ whose regions are defined by E′i = t(Ei \Ci), E′k = t(Ek∪Ci) and E′j = tEj when

j 6∈ {i, k}. Simply speaking, the cluster E′ has been obtained from E by giving Ci to Ek and then rescaling of
a factor t > 1.

Notice that t was defined so that

m(E′i) = t2(m(Ei)−m(Ci)) = m(Ei)

and clearly every other region does not decrease its measure since t > 1. So E′ ∈ C∗(a) is a weak competitor to
E. On the other hand since in the cluster E′ all edges in common between the component tCi and the region
tEk have been removed (and these edges have a total length of t`k) we have

P (E′) = t(P (E)− `k).

Since P (E) ≤ P (E′) one obtains:

P (E) ≤ t(P (E)− `k) ≤
(

1 +
m(Ci)

2(m(Ei)−m(Ci))

)
(P (E)− `k)

= P (E) +
m(Ci)

2(m(Ei)−m(Ci))
P (E)− 2m(Ei)−m(Ci)

2(m(Ei)−m(Ci))
`k

which is equivalent to

`k ≤
m(Ci)

2m(Ei)−m(Ci)
P (E).

Using 0 ≤ ai ≤ m(Ei) and m(Ci) ≤ m(Ei) one can easily check that

2m(Ei)−m(Ci) ≥ |2ai −m(Ci)|
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so that (3.1) is proven.
Now if the component Ci has edges in common with at least r other regions, there is k such that `k ≥ P (Ci)/r.

By also applying the isoperimetric inequality P (Ci) ≥ 2
√
π
√
m(Ci) we obtain:

2
√
π
√
m(Ci) ≤ r`k ≤

rm(Ci)

|2ai −m(Ci)|
P (E) ≤ rλm(Ci)

|2ai −m(Ci)|

if P (E) ≤ λ as in the statement of the Theorem being proved. Whence, by squaring and then dividing by m(Ci),
we obtain

4π ≤ r2λ2m(Ci)

(2ai −m(Ci))2
=

r2λ2m(Ci)

4a2i − 4aim(Ci) +m2(Ci)

which is equivalent to the following quadratic inequality in m(Ci):

m2(Ci)−
(

4ai +
r2λ2

4π

)
m(Ci) + 4a2i ≤ 0.

The corresponding equation has two positive solutions, and m(Ci) is larger than the smaller of the two. So we
obtain:

m(Ci) ≥ 2ai +
r2λ2

8π
−

√(
2ai +

r2λ2

8π

)2

− 4a2i = 2ai −
r2λ2

8π

(√
1 +

32πai
r2λ2

− 1

)
· (3.3)

By using the inequality:
√

1 + x ≤ 1 +
x

2
− x2

8
+
x3

16

with x = 32πai
r2λ2 , after some straightforward simplifications, we obtain (3.2). �

The following result is not used in the rest of the paper, but might be interesting by itself.

Theorem 3.4. Let E ∈ M∗(a) be an N -cluster with N ≥ 3 and suppose that Ci is a component of the region
Ei with 0 < m(Ci) < m(Ei) and suppose that r is the number of regions which are adjacent to Ci.

Let

‖a‖ 1
2

=

 N∑
j=1

√
aj

2

, ‖a‖−1 =

 N∑
j=1

(aj)
−1

−1 .
Then

m(Ci) ≥
20

9

a2i
r2 ‖a‖ 1

2

≥ 20

9

a2i
N2 ‖a‖ 1

2

· (3.4)

In particular, the number Mi of connected components of Ei has the following bound

Mi ≤
9

20
N2
‖a‖ 1

2

ai

and hence the total number M of connected components of E is bounded by

M ≤ 9

20
N2
‖a‖ 1

2

‖a‖−1
·

Proof. Consider, as a competitor, a cluster E′ whose regions E′i are disjoint balls with area ai and let

λ = P (E′) = 2
√
π

N∑
j=1

√
aj = 2

√
π
√
‖a‖ 1

2
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Since E′ ∈ C∗(a) we have P (E) ≤ λ. Notice that E ∈ M∗(a) implies that E ∈ M∗(a∗) with a∗ = m(E), we
can apply Proposition 3.3 with a∗ in place of a and with λ defined as above. So (3.2) holds with this value of
λ and a∗ in place of a.

Notice also that λ = P (E′) ≥ P (E) ≥ P (Ei) ≥ 2
√
π
√
m(Ei) = 2

√
π
√
a∗i . Moreover r ≥ 3 since, by

Proposition 2.8, we know that for N ≥ 3 every component has at least three edges. Hence we know that

1− 16πa∗i
r2λ2

≥ 1− 16πa∗i
9 · 4πa∗i

=
5

9
·

So (3.2) becomes (notice that r ≤ N)

m(Ci) ≥
16π(a∗i )

2

4πr2 ‖a‖ 1
2

· 5

9
=

20

9
· (a∗i )

2

r2 ‖a‖ 1
2

≥ 20

9
· (a∗i )

2

N2 ‖a‖ 1
2

and, noting that a∗i = m(Ei) ≥ ai, (3.4) is proved.
Now suppose that Ci be the component of Ei with smaller area. Then a∗i = m(Ei) ≥Mi ·m(Ci) and we have

Mi ≤
a∗i

m(Ci)
≤ a∗i

20
9

(a∗i )
2

N2‖a‖ 1
2

=
9

20
·
N2‖a‖ 1

2

a∗i
≤ 9

20
·
N2‖a‖ 1

2

ai

and summing up for i = 1, . . . , N we obtain:

M =

N∑
i=1

Mi ≤
9

20
N2‖a‖ 1

2

N∑
i=1

1

ai
=

9

20
N2
‖a‖ 1

2

‖a‖−1
· �

Proposition 3.5. Let E ∈M∗(a) and let C be a connected component of some region Ei. Let n be the number
of edges of C. Then we have the following estimate on the pressure of the region Ei:

pi ≥
(6− n)π

3P (C)
+

(
1− `

P (C)

)
pmin ≥

(6− n)π

3P (C)

where ` is the length of the external edge of C (` = 0 if C is internal) and pmin is the lowest pressure of the
bounded regions which are adjacent to C.

Proof. By Lemma 2.7 we have

(6− n)π

3
=
∑
j

(pi − pj)Lj = pi
∑
j

Lj −
∑
j 6=0

pjLj

≤ pi
∑
j

Lj − pmin

∑
j 6=0

Lj = piP (C)− pmin(P (C)− `)

where the sum in j is extended to the regions Ej which are adjacent to C. The first estimate of the statement
follows.

To get the second estimate recall that pmin ≥ 0 in view of Proposition 2.5. �

Proposition 3.6 (Variation III). Let E ∈ M∗(a) be a cluster and let B and C be two different components
of the same bounded region Ei of E. Let pi be the pressure of Ei. Suppose that B is external and let L be the
length of the external arc of B and n be the number of different regions which are adjacent to C. Then

pi ≥
P (C)

nm(C)
− 2

L
≥ 2

√
π

n
√
m(C)

− 2

L
·
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Proof. Suppose i = 1 and consider all the regions which are adjacent to C. Suppose that E2 is the region whose
edges in common with C have largest total length. Let ` be such total length in common between C and E2:
we have that n` ≥ P (C).

Let γ be the external edge of B and let v and w be its vertices. The arc γ has radius R = 1/p1, length L and
spans an angle θ = L/R. Given h > 0 we are going to modify B by increasing the radius R up to R + h. Just
consider the two radii in v and w: extend them of a length h and join them with a parallel arc of radius R+ h.
Let D be the strip between these two parallel arcs. We have m(D) = ((R+h)2−R2)θ/2 = Lh+Lh2/(2R) ≥ Lh.
It is easy to see that D ⊆ E0 (since all the external arcs are convex and meet at angles of 120 degrees). Fix
h = m(C)/L and consider the following variation:

E′1 = (E1 \ C) ∪D, E′2 = E2 ∪ C.

If we let E′ = (E′1, E
′
2, E3, . . . , EN ) we notice that m(E′1) ≥ m(E1) (since m(D) ≥ Lh = m(C)) so E′ ∈ C∗(a).

Moreover, in computing the perimeter of E′ the edges in common between C and E2 have been removed so we
gain ` while the arc of length L has increased to length 2h + L(R + h)/R and so we have, by the minimality
of E:

0 ≤ P (E′)− P (E) ≤ −`+ 2h+ L
R+ h

R
− L = m(C)

(
1

R
+

2

L

)
− `

To obtain the statement just remember that 1/R = p1 and remember that ` ≥ P (C)/n. �

Lemma 3.7. Let E ∈ C(a1, a2) be a connected stationary cluster (a double bubble) with a1 ≥ a2. Then the
pressures p1, p2 satisfy the following relations

k8√
a1
≤ p1 ≤ p2 ≤

k8√
a2

with

k8 :=

√
2π

3
+

√
3

4
, 1.5897 < k8 < 1.5898.

Proof. By Theorem 2.10 we know that the external radii r1, r2 and areas a1, a2 of a double bubble are in one-to-
one correspondence. Moreover we know that when r1 = r2 we have a1 = a2 because the resulting double bubble
is symmetric and a direct computation gives a1 = a2 = k28r

2 (with r = r1 = r2). Hence, by the monotonicity
proven in Theorem 2.10, since we have a1 ≥ a2 by assumption, we know that r1 ≥ r2 and hence p1 ≤ p2
(remember that pi = 1/ri). Hence monotonicity gives also:

a1 ≥ k28r21, a2 ≤ k28r22

whence

p1 =
1

r1
≥ k8√

a1
, p2 =

1

r2
≤ k8√

a2
· �

Lemma 3.8 (Reduction to double-bubble). Let E = (E1, . . . , EN ) be a stationary cluster which is reducible
to a double bubble (E′i, E

′
j) by subsequent removal of triangular components where E′i ⊇ Ei, E

′
j ⊇ Ej, E

′
i ⊆

R2 \ (E0 ∪ Ej) and E′j ⊆ R2 \ (E0 ∪ Ei). Let a = m(E) and a =
∑N
k=1 ak.

Then
k8√

max{a− ai, a− aj}
≤ min{pi, pj} ≤ max{pi, pj} ≤

k8√
min{ai, aj}

·

Proof. By Theorem 2.9 we know that the pressures of the double bubble are equal to the corresponding pressures
of the cluster E. Also notice that, for k = i, j one has m(E′k) ≥ m(Ek) = ak (k = i, j), while m(E′i) ≤
m(R2 \ (E0 ∪Ej)) = a− aj and m(E′j) ≤ m(R2 \ (E0 ∪Ei)) = a− ai so, by Theorem 2.10 we obtain the desired
result. �
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E1

E2

E3 E4
y2x

Figure 2. The competitor cluster defined in Proposition 4.1.

Lemma 3.9 (Perimeter of triple bubble). One has

p∗(1, 1, 1) = 6

√
π

2
+

1√
3
≥ k10 := 8.7939

Proof. From [23] we know that each E ∈M∗(1, 1, 1) =M(1, 1, 1) is a standard triple bubble where each region
Ei is composed by the union of an half-circle and an isosceles triangle with two angles of 30 degrees. If r is the
radius of the half circles, the area of each region turns out to be

1 =

(
π

2
+

1√
3

)
r2

while the perimeter is given by

P (E) = (3π + 2
√

3)r = 6

(
π

2
+

1√
3

)
r = 6

√
π

2
+

1√
3

�

4. Estimates on M∗(1, 1, 1, 1)

Proposition 4.1 (The competitor). We have p∗(1, 1, 1, 1) ≤ k0 := 11.1962.

Proof. Let x := 0.2707, y := 0.394 and R = 2(x + y)/
√

3. Consider the cluster represented in Figure 2. The
area of the regions with four edges is given by:

m(E1) = m(E2) = (2x+ y)y
√

3 +
π

3
R2 −

√
3

4
R2 > 1

while the area of the regions with three edges is:

m(E3) = m(E4) =
√

3y2 +
π

2
(y
√

3)2 > 1.

So E ∈ C∗(1, 1, 1, 1). And we have

P (E) = 2
2π

3
R+ 2π

√
3y + 2x+ 8y ≥ k0. �
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Proposition 4.2. Let E ∈M∗(1, 1, 1, 1) and suppose that C is a component of some region. Then:

m(C) ≥ k2 := 0.0244.

Moreover, if the number of regions which have an edge in common with C is not larger than 3 one has

m(C) ≥ k6 := 0.0425.

Proof. We can apply Proposition 3.3 with ai = 1, r ≤ 4, P (E) ≤ k0 so rP (E) ≤ λ := 4k0. We obtain:

m(C) ≥ π

k20

(
1− π

k20

)
≥ k2.

And with r ≤ 3 we would have

m(C) ≥ 16π

9k20

(
1− 16π

9k20

)
≥ k6. �

Proposition 4.3. Let E ∈M∗(1, 1, 1, 1) be such that the region E1 can be decomposed in two parts E1 = E′1∪C1

with
m(E1) = m(E′1) +m(C1), m(E′1) ≥ m(C1), P (E1) = P (E′1) + P (C1)

then
m(C1) ≤ k1 := 0.1605, P (C1) ≤ k7 := 1.4199

Proof. Let m = m(C1). By Lemma 3.1, one has

P (E) ≥
√
π

(√
4 +
√
m+

√
m(E′1) + 3

√
1

)
=
√
π

(√
m+

√
m(E′1) + 5

)
whence

√
m+

√
m(E′1) ≤ P (E)√

π
− 5 ≤ k0√

π
− 5 ≤ c1 := 1.3168

On one hand we have assumed that m(E′1) ≥ m(C1) = m, so 2
√
m ≤ c1 <

√
2 which gives m ≤ 1/2. On the

other hand we know that m(E′1) = m(E1)−m ≥ 1−m, whence

√
m+

√
1−m ≤ c1.

Now let f(x) =
√
x +
√

1− x. By computing the sign of f ′(x) we easily notice that f(x) is increasing for
x ∈ [0, 1/2]. By direct computation one checks that f(k1) > c1 (in fact k1, which is defined in the statement
of the theorem being proved, has been choosen to satisfy this relation). Since we know that f(m) ≤ c1 and
m ≤ 1/2 we conclude that m = m(C1) < k1. To get the estimate on the perimeter, we use again the isoperimetric
inequality:

P (C1) = 2P (E)−

(
P (E′1) + P (E0) +

4∑
i=2

P (Ei)

)
≤ 2k0 − 2

√
π(
√

1−m(C1) +
√

4 + 3
√

1)

≤ 2k0 − 2
√
π(
√

1− k1 + 5) ≤ k7. �

Definition 4.4 (Big/small components). Let E be a regular N -cluster. We say that a component C of a region
Ei is small if m(C) ≤ m(Ei)/2. Otherwise we say that C is big. Notice that at most one connected component
of each region can be big.

Corollary 4.5. Let E ∈ M∗(1, 1, 1, 1). Then each region Ei has exactly one big connected component E′i.
Furthermore m(E′i) ≥ 1− k1, where k1 is the constant introduced in Proposition 4.3.
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Proof. Let E1
i , . . . , E

M
i be the connected components of the region Ei. Suppose by contradiction that all Eji are

small: m(Eji ) ≤ m(Ei)/2, j = 1, . . . ,M . Let K be the smallest index such that

K∑
j=1

m(Eji ) > k1. (4.1)

We claim that
K∑
j=1

m(Eji ) < m(Ei)− k1. (4.2)

Otherwise we would have (notice that k1 < 1/4)

K−1∑
j=1

m(Eji ) =

K∑
j=1

m(Eji )−m(EKi ) ≥ m(Ei)− k1 −m(EKi ) ≥ m(Ei)− k1 −
m(Ei)

2
≥ m(Ei)

2
− k1

≥ 1

2
− k1 > k1

which is a contradiction since K was the minimal index satisfying the inequality (4.1). So, if we define

E′i =

K⋃
j=1

Eji , E′′i = Ei \ E′i

we have (by (4.1) and (4.2))

m(E′i) > k1, m(E′′i ) > k1.

This is now a contradiction with Proposition 4.3, since the smaller of the two components E′i, E
′′
i should have

a measure smaller than k1.

Finally if E′i is the big connected component of the region Ei, applying Proposition 4.3 with Ci = Ei \ E′i,
we find m(Ei) ≥ 1− k1. �

Corollary 4.6. Let E ∈M∗(1, 1, 1, 1). Then at most one of the big components is internal.

Proof. Suppose by contradictions that two big components E1
i and E1

j are internal. Then by the isoperimetric
inequality:

P (E) ≥ P (E1
i ∪ E2

i ) + P (E0)

≥ 2
√
π

(√
m(E1

i ) +m(E2
i ) +

√
m(E1) +m(E2) +m(E3) +m(E4)

)
≥ 2
√
π
(√

2(1− k1) +
√

4
)
≥ 11.6831 > k0 ≥ p∗(1, 1, 1, 1).

Which is a contradiction. �

Proposition 4.7. Let E ∈ M∗(1, 1, 1, 1) be such that both regions Ei and Ej are disconnected (i 6= j). Then
every small component C of either Ei or Ej satisfies:

m(C) ≤ k3 := 0.0408, P (C) ≤ k9 := 0.7154.
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Proof. Without loss of generality we might suppose that i = 1, j = 2. Let E′1 be the larger small component
of E1 and let E′2 be the larger small component of E2. Suppose moreover that m := m(E′1) ≥ m(E′2). Then we
have

m(E1 \ E′1) ≥ 1−m, m(E′1) = m,

m(E2 \ E′2) ≥ 1−m, m(E′2) ≥ k2.

So, from the isoperimetric inequality:

P (E)√
π
≥
√
m(R2 \ E0) +

2∑
i=1

√
m(Ei \ E′i) +

2∑
i=1

√
m(E′i) +

4∑
j=3

√
m(Ej)

we obtain:

P (E)√
π
≥
√

4 +
√

1−m+
√
m+

√
1−m+

√
k2 + 2

√
1 = 4 + 2

√
1−m+

√
m+

√
k2.

If we set f(x) = 2
√

1− x+
√
x and remember that P (E) ≤ k0 (Prop 4.1) we obtain

f(m) ≤ k0√
π
− 4−

√
k2 ≤ c2 := 2.1606

We have:

f ′(x) = −(1− x)−
1
2 +

1

2
x−

1
2 , f ′′(x) = −1

2
(1− x)−

3
2 − 1

4
x−

3
2 .

By direct computation one checks that f ′(k1) > 0.1565 > 0 and since f ′′ < 0 we know that f is strictly
increasing on [0, k1]. By direct computation one checks k3 was choosen so that f(k3) > c2. If, by contradiction,
m > k3 since m ∈ [k2, k1] (by Prop. 4.2 and Prop. 4.3) we would have f(m) > f(k3) > c2 against (4). So m < k3.

Since m was the measure of the largest small component we obtain the first estimate: m(C) ≤ m ≤ k3.
To prove the estimate on the perimeter P (C) suppose now that C = E′1 (not it will not matter if E′1 is larger

or smaller than E′2). Recall that (Prop. 4.2)

m(E′1) ≥ k2, m(E′2) ≥ k2

and the previous estimate gives:

m(E1 \ E′1) ≥ 1− k3, m(E2 \ E′2) ≥ 1− k3.

Hence, using the isoperimetric inequality we have

2P (E) = P (E′1) + P (E′2) +

2∑
i=1

P (Ei \ E′i) +

4∑
i=3

P (Ei) + P (R2 \ E0)

≥ P (E′1) + 2
√
π
(√

k2 + 2
√

1− k3 + 2
√

1 +
√

4
)

whence, recalling also that P (E) ≤ k0:

P (E′1) ≤ 2k0 − 2
√
π(
√
k2 + 2

√
1− k3 + 4) ≤ k9. �

Proposition 4.8. Let E ∈M∗(1, 1, 1, 1) be such that the region Ei has at least three components. Then every
small component C of Ei satisfies:

m(C) ≤ k4 := 0.0411.
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Proof. Without loss of generality we might suppose that i = 1. Notice that, by Corollary 4.5, there are at least
two small components of E1. Let E′1 be the larger small component of E1 and E′′1 be another small component
of E1. Let m := m(E′1) ≥ m(E′′1 ). Then we have

m(E1 \ (E′1 ∪ E′′1 )) ≥ 1−m−m, m(E′1) = m, m(E′′1 ) ≥ k2.

So, from the isoperimetric inequality:

P (E)√
π
≥
√
m(R2 \ E0) +

√
m(Ei \ (E′i ∪ E′′i )) +

√
m(E′i) +

√
m(E′′i ) +

4∑
j=2

√
m(Ej)

we obtain:
P (E)√

π
≥
√

4 +
√

1− 2m+
√
m+

√
k2 + 3

√
1 = 5 +

√
1− 2m+

√
m+

√
k2. (4.3)

If we set f(x) =
√

1− 2x+
√
x and remember that P (E) ≤ k0 (Prop. 4.1) we obtain

f(m) ≤ k0√
π
− 5−

√
k2 ≤ c3 := 1.1606

We have:

f ′(x) = −(1− 2x)−
1
2 +

1

2
x−

1
2 , f ′′(x) = −(1− 2x)−

3
2 − 1

4
x−

3
2 .

By direct computation one checks that f ′(k1) > 0.0344 > 0 and since f ′′ < 0 we know that f is strictly
increasing on [0, k1]. By direct computation one checks that k4 has been choosen so that f(k4) > c3. If, by
contradiction, m > k4 since m ∈ [k2, k1] (by Props. 4.2 and 4.3) we would have f(m) > f(k4) > c3 against (4.3).
So m ≤ k4. �

Proposition 4.9. Let E ∈M∗(1, 1, 1, 1). Then the total number of small components is not larger than two.

Proof. Suppose by contradiction that the cluster E ∈ M∗(1, 1, 1, 1) has at least three small compo-
nents C1, C2, C3. Suppose m := m(C1) ≥ m(C2) ≥ m(C3). Let C = C1 ∪ C2 ∪ C3 and let E′i = Ei \ C for
i = 1, . . . , 4.

From the isoperimetric inequality:

P (E)√
π
≥
√
m(R2 \ E0) +

4∑
i=1

√
m(E′i) +

3∑
i=1

√
m(Ci).

Now consider the quantity

A =

4∑
i=1

√
m(E′i)

to get an estimate of A from below we use the estimates k2 ≤ m(Ci) ≤ m but we have to distinguish three
different cases:

(1) if the small components all belong to the same region we have A ≥
√

1− 3m+ 3
√

1;
(2) if only two of the small components belong to the same region: A ≥

√
1− 2m+

√
1−m+ 2

√
1;

(3) if the three small components belong to three different regions: A ≥ 3
√

1−m+
√

1.

With a straightforward algebraic manipulation one can check that for all x ∈ [0, 1/3] one has

3
√

1− x+ 1 ≥
√

1− 2x+
√

1− x+ 2 ≥
√

1− 3x+ 3



MINIMAL CLUSTERS OF FOUR PLANAR REGIONS WITH THE SAME AREA 1317

so that in every case it holds A ≥
√

1− 3m+ 3.
Hence

P (E′)√
π
≥
√

4 +
√

1− 3m+ 3 +
√
m+ 2

√
k2 =

√
1− 3m+

√
m+ 5 + 2

√
k2 (4.4)

If we set f(x) =
√

1− 3x+
√
x and remember that P (E′) = P (E) ≤ k0 (Prop. 4.1) we obtain

f(m) ≤ k0√
π
− 5− 2

√
k2 ≤ k5 := 1.0044

We have:

f ′(x) = −3

2
(1− 3x)−

1
2 +

1

2
x−

1
2 , f ′′(x) = −9

4
(1− x)−

3
2 − 1

4
x−

3
2 .

By direct computation one checks that f(k1) > 1.1206 > k5 and f(k2) > 1.1189 > k5. And since f ′′ < 0 we
know that f is concave and hence f(x) > k5 if x ∈ [k2, k1]. Since f(m) ≤ k5 and we already know that m ≥ k2
(Prop. 4.2) we conclude that m > k1, which is a contradiction. �

Corollary 4.10. Let E ∈ M∗(1, 1, 1, 1). Then there are at most six bounded connected components. Four
connected components are big and at most two are small (see Def. 4.4).

If the small components are exactly two, they have measure between k2 and k4, they are external, and they
have edges in common with all the other regions. If the two small components belong to the same region they
both have four edges, while if they belong to different regions they might have four or five edges.

If there is only one small component it has measure not larger than k1.

Proof. By Proposition 4.9 there are at most two small components, so the total number of bounded connected
components is at most six.

If we have two small components they can either belong to the same region, and then by Proposition 4.8
each small component has measure not larger than k4. Or, the two components belong to different regions and
then by Proposition 4.7 each small component has measure not larger than k3 < k4. Every small component
which is adjacent only to three other regions would have measure larger than k6 by Proposition 4.2 and since
k6 > k4 this is impossible. So every small component must have edges in common with all the other four regions,
included the external one: so they have at least four edges and are external. If the two components belong to
two different regions they can have four or five edges (the two small component might have an edge in common).
If the two components belong to the same region, each other region is connected and hence they cannot have
more than four edges (each edge is adjacent to a different component).

If there is only one small component we can only apply Proposition 4.3 to get the estimate with the con-
stant k1. �

5. Clusters with six components

In this section we will consider possible minimizers E ∈M∗(1, 1, 1, 1) with exactly six bounded components
and we will exclude that they exist.

The following Corollary assures that we have m(Ei) = 1 for i = 1, . . . , 4. This will be used in the following
without further notice.

Corollary 5.1. M∗(1, 1, 1, 1) =M(1, 1, 1, 1).

Proof. Given any E ∈ M∗(1, 1, 1, 1) by Corollary 4.10 we know that E has no more than six bounded com-
ponents. By Proposition 2.8 we conclude that E ∈ M(1, 1, 1, 1), hence M∗(1, 1, 1, 1) ⊆ M(1, 1, 1, 1). Since
M∗(1, 1, 1, 1) is not empty (Thm. 2.4) we obtain p∗(1, 1, 1, 1) = P (E) = p(1, 1, 1, 1).

On the other hand, given E′ ∈ M(1, 1, 1, 1) we have E′ ∈ C∗(1, 1, 1, 1) and since P (E′) = p(1, 1, 1, 1) =
p∗(1, 1, 1, 1) we conclude that E′ ∈M∗(1, 1, 1, 1). �
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Corollary 5.2. Let E ∈M∗(1, 1, 1, 1). Then we exclude that one region Ei can have three components.

Proof. Suppose by contradiction that the region E1 is composed by three components: one big and two small
(recall that, by Corollary 4.5, each region has one big component). By Proposition 2.8 we know that every
component has at least three edges. By Corollary 4.10, a small component has four edges, so, the two small
components have exactly four vertices and the region E1 has at least 3 + 4 + 4 = 11 vertices. But the total
number of bounded connected components is M = 6 and by Proposition 2.8 the number of vertices should be
v = 2(M − 1) = 10. This is a contradiction. �

Proposition 5.3. Let E ∈M∗(1, 1, 1, 1). Then we exclude that two different regions are disconnected.

Proof. By contradiction suppose that C1 and C2 are small components of E1 and E2 respectively and let
E′1 = E1 \ C1 and E′2 = E2 \ C2 be the two big components.

Recall that, by Corollary 4.10, the small components C1 and C2 have four or five edges.

If the component Ci (i = 1, 2) has five edges, by Proposition 3.5 and Proposition 4.7, one finds that

pi ≥
π

3P (C)
≥ π

3k9
> 1.4637 >

k0
8

(5.1)

On the other hand if Ci has only four edges, one finds:

pi ≥
2π

3P (C)
≥ 2π

3k9
>
k0
4
·

Remember that, by Theorem 2.6 and Proposition 4.1, we have

p1 + p2 + p3 + p4 =
P (E)

2
≤ k0

2
·

Without loss of generality we might and shall suppose that p1 ≥ p2.

Notice that p1 and p2 are both larger than the average and, in particular, p2 is not the lowest pressure:
p2 > min{p3, p4}. If both regions C1 and C2 had four edges, we would find p1+p2 > k0/2 which is a contradiction.
Hence we know that C1 has four or five edges and C2 has five edges (if Ci has four edges pi is the higher pressure).

Step 1. we claim that at most one component is internal. By Corollary 4.10 we know that the small com-
ponents are external and by Corollary 4.6 we know that at most one big component is internal. The claim follows.

Step 2. we claim that E′2 is external and has three or four edges.

Notice that since at most one component is internal, and we have a total of 6 bounded components, the
external region E0 has either 5 or 6 vertices. On the other hand the big component E′2 has at least 3 vertices
and the small component C2 has 5 vertices. Two of the vertices of C2 are in common with the vertices of E0

and, if E′2 were internal, all its vertices would be distinct from the vertices of E0 and, of course, from the vertices
of C2. So we find at least 3 + 3 + 5 = 11 distinct vertices of the cluster E while we know (Prop. 2.8) that E has
exactly 10 vertices.

The same contradiction holds in the case that E′2 has more than four vertices since also in this case at least
three of them would be internal.

Step 3. we claim that E′1 and E′2 are adjacent. Let `1 and `2 be the lengths of the external edges of E′1 and E′2
respectively (`i = 0 if E′i is internal). Suppose by contradiction that E′1 and E′2 have no common edge. Then

k0 ≥ P (E) ≥ P (E′1) + P (E′2) + P (E0)− (`1 + `2)
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and by applying the isoperimetric inequality and the estimates m(E′i) ≥ 1− k3 we obtain:

k0 ≥ 2
√
π(2
√

1− k3 +
√

4)− (`1 + `2)

whence
`1 + `2

2
≥ 2
√
π(
√

1− k3 + 1)− k0
2
> c4 := 1.4186.

If we let `i be the largest between `1 and `2 we have `i > c4 and from Proposition 3.6 we obtain the following
estimate on the pressure of the corresponding region Ei (remember that every component of E is adjacent to
at most four different regions):

pi ≥
√
π

2
√
m(Ci)

− 2

`i
≥
√
π

2
√
k3
− 2

c4
> 2.9776 >

k0
4
· (5.2)

Remember that p1 + p2 + p3 + p4 ≤ k0/2 so pi is the highest pressure (actually i = 1 since we decided that
p1 ≥ p2). Then let n ≥ 3 be the number of edges of E′i and let Li,j be the total length of the edges in common
between E′i and Ej (so that Li,0 = `i):

π ≥ (6− n)π

3
=
∑
j

(pi − pj)Li,j ≥ pi`i

whence:

pi ≤
π

`i
≤ π

c4
< 2.2146

which is in contradiction with with (5.2).

Step 4. if a connected region Ei (i = 3, 4) is internal, it is adjacent to both E′1 and E′2.

The proof is the same as in the previous Step. Just take Ei in place of E′2 and E′1 or E′2 in place of E′1. Notice
that `2 = 0 so that `i = `1 and the proof completes in exactly the same way (the estimates are actually stronger).

Step 5. we claim that if one of E3 or E4 is internal and the other one is external with only three edges, then
E3 and E4 must be adjacent. We proceed in a similar way as the step before. Suppose by contradiction that E3

is internal and not adjacent to E4.

So E3 is only adjacent to the components of E1 and E2 and it has at most four edges, so, by Lemma 2.7, we
have

0 <
(6− 4)π

3
≤

2∑
i=1

(p3 − pi)L3,i.

We deduce that p3 ≥ p2 since otherwise (being p1 ≥ p2) the right hand side of the previous equation would be
negative. So p3 ≥ p2 ≥ k0/8.

Now, let `i be the length of the external edges of E′i (recall that only one component can be internal hence
E′i is external and `i > 0). We have

k0 ≥ P (E) ≥ P (E′1 ∪ E′2 ∪ E3) + P (E0)− (`1 + `2)

whence, by applying the isoperimetric inequality,

`1 + `2
2

≥
√
π(
√

2(1− k3) + 1 +
√

4)− k0
2
> c5 := 0.9747.
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Now if `i is the maximum between `1 and `2 we know that `i > c5. By Proposition 3.6 (since any component
can be adjacent to at most 4 different regions), we have

pi ≥
2
√
π

4
√
m(Ci)

− 2

`i
≥
√
π

2
√
k3
− 2

c5
> 2.3355 >

3

16
k0.

So p1 > 3k0/16 (since p1 has been choosen to be the maximum between p1 and p2).
Now we work on E4 which is external with m = 3 edges. Remember that p2 cannot be the lowest pressure

and since p1 ≥ p2 and p3 ≥ p2 we deduce that p4 is the lowest pressure. Hence, by Lemma 2.7

π =
(6−m)π

3
=
∑
j

(p4 − pj)L4,j ≤ p4L4,0

and by Proposition 3.2

p4 ≥
π

L4,0
≥ π

2
√
π
√
m(E4)

=

√
π

2
> 0.8862 >

k0
16

So, we have found that

P (E) = 2(p1 + p2 + p3 + p4) > 2

(
3k0
16

+
k0
8

+
k0
8

+
k0
16

)
= k0

which contradicts the minimality of E. The claim is proved.

Step 6. we claim that E0 has not five edges. Suppose by contradiction that E0 has exactly five edges and
consider two possible cases: E′2 has either (i) three or (ii) four edges.

If E′2 has three edges the region E2 = C2 ∪ E′2 has 8 distinct vertices (since C2 has five vertices). Three
vertices of C2 (let us call them x1, x2 and x3) are not vertices of E0, and one vertex of E′2 (let us call it y) is not
a vertex of E0. On the other hand E0 has five vertices, and four of them are shared by C2 and E′2. We denote
by v the remaining vertex. Up to now we have considered 9 vertices in total, since the cluster E has exactly 10
vertices, there is an additional vertex w belonging to neither E0 nor E2. The situation is depicted in Figure 3a.
We see that 11 edges have been already identified, so 4 edges are missing.

Consider the three edges which meet in the vertex w. At least two of them should connect w to the vertices xk
of C2. In fact if only one edges connects w to C2 the other two edges of w should go to v and y and hence the
two remaining vertices of C2 should be joined together which is not admitted (we would obtain a two sided
component). Not all three edges of w can join the three free vertices of C2 because otherwise we would obtain
two three-sided internal components. But we know that at most one component can be internal. So, exactly
two edges join w with two vertices of C2. The two vertices of C2 must be consecutive, otherwise the third
vertex x2 could not be connected to anything (the edge would be closed in the loop: w, x3, x2 x1). We have two
possibilities: the two vertices are either x1 and x2 or x2 and x3 (the order of the vertices is given by the Figure,
where x1 is “closer” to the component E′2).

In the first case (x1 and x2 are joined to w) the third edge in w cannot go to x3 (already excluded) and
cannot go to v because otherwise the edge from x3 to y would cross the already defined edges. So the diagram
is completed by an edge joining w with y and an edge joining v with x3. The resulting diagram is depicted in
Figure 3b. We know that C1 is external and has four or five edges: the only possibility is X = C1. Then E′1
must be adjacent to E′2 so it must be Z = E′1: however E′1 cannot be adjacent to C1 and we get a contradiction.

In the second case (x2 and x3 are joined to w) we can complete the diagram in a unique way, by adding an
edge from w to v and an edge from y to x1 as represented in Figure 3c. In this case we have X = E′1 since E′1
must be adjacent to E′2 but cannot have six edges. So W = C1 because C1 is external and not adjacent to E′1.
So Y and Z are the two connected regions E3 and E4. However in Step 4 we proved that the connected region,
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w

(a) Case (i), incomplete diagram
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Z
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(c)

Figure 3. Diagrams used in the proof of Proposition 5.3, Step 6, case (i).

x1

x2

x3 x1

x2

x3

v v

y1

y2

y1

y2

C2 C2

E′
2 E′

2

X

Y

Z

W

Figure 4. Diagram used in the proof of Proposition 5.3, Step 6, case (ii).

if internal, must be adjacent to both E′1 and E′2 which is not the case for the component Z. So this configuration
must be excluded, too.

So, the case when E′2 has only three edges has been completed and excluded. Suppose now (ii) that E′2 has
four edges. In this case no additional vertex must be added, and we are in the situation depicted in Figure 4.
Let x1, x2 and x3 be the free vertices of C2 and v be the free vertex of E0, as before. Let y1 and y2 be the two
free vertices of E′2. There are three edges missing in the diagram and there is only one possibility (since the
edges from C2 cannot go back to C2 and they cannot cross each other): x1 is joined to y1, x2 to y2 and x3 to v.
The component C1 is external with four or five edges, hence C1 is either X or Z. The component E′1 is adjacent
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C2

E0

v

E′
2

(a)

E0

C2

v

E′
2

(b)

Figure 5. Diagrams used in the proof of Proposition 5.3 Step 7.

to E′2 but cannot be adjacent to C1 hence E′1 is either X or Z. So Y and W are the two connected regions E3

and E4: say Y = E3 and W = E4.

But now we notice that E3 is internal and E4 is external with only three edges, hence by Step 5 they should
be adjacent, which is not the case.

Step 7. Conclusion. We know now that E0 has six edges. Recall that C2 is external and has five vertices, two of
which are shared with E0 while E′2 has at least three vertices (all distinct from C2) two of which are shared with
the vertices of E0. So we have identified 6 vertices of E0 and at least 3+1 = 4 internal vertices of E2 = C2∪E′2.
We know that the cluster has 10 vertices in total, so we have identified all of them. In particular we conclude
that E′2 has three vertices. Let x1, x2 and x3 be the three internal vertices of C2 and let v be the internal vertex
of E′2.

If we look at the edges, we have already identified the six edges of E0, other four are the internal edges of C2

and other two are the internal edges of E′2. To reach the total of 15 edges, we need to place other three edges.
No edge can join two points of C2 (otherwise a two sided component would rise). So the three missing edges
start from the three internal points of C2. One of them goes to the internal vertex of E′2 and the other two go
to the two free vertices of E0.

There are now two possibilities: either (a) the vertex v is connected to the middle of the three internal vertices
of C2 or (b) it is connected to one lateral vertex (see Fig. 5)

We can easily exclude case (a) because the component C1 must be one of the two five-sided components (C1

has either four or five edges and there are no components with four edges) while E′1 must be adjacent to E′2
and hence must be the other component with five edges. But this is a contradiction since C1 cannot be adjacent
to E′1.

So we remain with the configuration of case (b). The region with three edges adjacent to C2 is not C1 (because
C1 has four or five edges) and it cannot be E′1 because E′1 must be adjacent to E′2. Hence we conclude that it
is one of E3 and E4. Let us say it is E3. Then E4 must be the region with five edges, because otherwise C1

and E′1 would be adjacent to each other. So C1 has four edges and hence p1 ≥ k0/4 is the region with higher
pressure and p2 ≥ k0/8 is the second higher pressure while p3 + p4 ≤ k0/8.

We know that E3 has three edges, E4 has five edges and both E3 and E4 are external. Let Lj,k be the total
length of the edges between Ej and Ek. Applying Proposition 3.2 we obtain, for j = 3, 4:

Lj,0 ≤ 2
√
π
√
m(Ej) = 2

√
π (5.3)
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Since p1 and p2 are the largest pressures and E3 is not adjacent to E4 we have, for j = 3, 4

Lj,0 pj ≥
4∑
k=1

Lj,k(pj − pk)

hence, by Lemma 2.7

L3,0 p3 ≥ π, L4,0 p4 ≥
π

3
(5.4)

and putting together with (5.3) we obtain

p3 ≥
π

L3,0
≥
√
π

2
, p4 ≥

π

3L4,0
≥
√
π

6
·

Now we are going to improve the estimates on p1 and p2. First notice that if we denote by `i the length of
the external edge of Ci we have, by Proposition 3.3 (notice that m(Ci) < k3 < 1),

`i ≤
m(Ci)

|2−m(Ci)|
P (E) ≤ m(Ci)

2− k3
k0

while, by the isoperimetric inequality, we have

P (Ci) ≥ 2
√
π
√
m(Ci).

Now, applying Proposition 3.5 to the component Ci with i = 1, 2, which has ni = i+ 3 edges, we have

pi ≥
(6− ni)π
3P (Ci)

+ pmin

(
1− `i

P (Ci)

)
≥ (3− i)π

3k9
+

√
π

6

(
1− m(Ci)k0

(2− k3)2
√
π
√
m(Ci)

)

=
(3− i)π

3k9
+

√
π

6

(
1−

√
m(Ci)k0

2
√
π(2− k3)

)
≥ (3− i)π

3k9
+

√
π

6

(
1−

√
k3k0

2
√
π(2− k3)

)
≥ (3− i)π

3k9
+ c7

with c7 := 0.1992. By using (5.4)

P (E) = 2(p1 + p2 + p3 + p4) ≥ 2

(
2π

3k9
+ c7 +

π

3k9
+ c7 +

√
π

2
+

√
π

6

)
=

2π

k9
+ 4c7 +

4

3

√
π ≥ 11.9428 > k0

which is a contradiction. �

6. Clusters with five components

In this section we consider a weak minimizer E ∈ M∗(1, 1, 1, 1) with five bounded components. Only one
region is disconnected: we will assume the region is E1 and we denote with E′1 and C1 respectively, its big and
small connected components.

Proposition 6.1. Let E ∈M∗(1, 1, 1, 1) be a cluster with 5 connected components. Then, up to a relabeling of
the components, the topology of E is one of the cases represented in Figure 6.

Proof. Suppose that E1 is the only disconnected region and let E′1 and C1 respectively be the big and small
connected components of E1. By Proposition 2.8 we know that ∂E is composed by 12 edges and 8 vertices
moreover both E′1 and C1 may have at most 4 edges if they are external and 3 edges if they are internal.
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Figure 6. Classification of clusters with five components, Proposition 6.1.

Step 1. Suppose that both E′1 and C1 have four edges (and hence they are external). All the 8 vertices of the
cluster are vertices of either E′1 or C ′1 and both E′1 and C1 have an external edge with two external vertices.
The external region E0 has four edges.

The remaining two internal vertices of E′1 must be connected with the two internal vertices of C1 (remember
that we cannot have two edges with the same end points, because two-sided components are not allowed).
Hence the cluster is of type (A) in Figure 6.

Step 2. Suppose that E′1 has 4 edges (hence it is external) and suppose C1 is external with 3 edges. In this
case we need to add an additional vertex v.

If v is external then the external region E0 has five edges. The vertex v must be connected to an internal
vertex of E′1 while the other internal vertex of E′1 must be connected to the internal vertex of C1. The resulting
topology is (D).

If, instead, the additional vertex v is internal, it must be connected to the two internal vertices of E′1 and to
the internal vertex of C1. Hence we are in case (C’).

Step 3. Suppose E′1 has 4 edges (hence it is external) and suppose C1 is internal with 3 edges. Since the
external region must have at least three edges, there is an additional external vertex v and E0 has three edges.
One of the three vertices of C1 must be connected to the vertex v while the other two vertices of C1 must be
connected to the two internal vertices of E′1. The resulting topology is (B).

Step 4. Suppose E′1 has 3 edges and is external while C1 has four edges (and hence is external). We repeat the
same reasoning of Step 2 with E′1 and C1 exchanged and we obtain cases (D’) and (C).
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Step 5. Suppose E′1 has 3 edges and is internal while C1 has four edges (and hence is external). We repeat the
same reasoning of Step 3 and obtain case (B) with E′1 and C1 exchanged. But in this case we would have two
big internal components: E′1 and E3 and this is impossible in view of Corollary 4.6.

Step 6. Suppose that both E′1 and C1 have three edges and are external. There are two additional ver-
tices v, w which are not vertices of E′1 or C1. Since the external region E0 has at most 5 edges (there
are only 5 bounded components) one of the two vertices, say v, is internal. The other vertex w cannot be
internal, because otherwise v and w need to be joined by two different edges, which is not possible. The inter-
nal vertex v must be connected to w and to the two internal vertices of E′1 and C1. The resulting topology is (E).

Step 7. Suppose that both E′1 and C1 have three edges and suppose E′1 is external and C1 is internal. We need
to place two additional vertices v and w. Certainly one among v and w is external, since E0 has at least three
edges. In case both v and w are external E0 has four edges.

If two of the three vertices of C1 are connected to the same vertex, we would obtain an additional three sided
component (say it is E2). Hence we notice we have three components with three edges: E′1, C1 and E2. Let n0,
n3 and n4 be the number of edges of E0, E3 and E4. By Euler’s formula we have 24 = 3× 3 + n0 + n3 + n4 ≤
9 + 4 + n3 + n4, which means that max{n3, n4} ≥ 11

2 , i.e max{n3, n4} ≥ 6 (notice that n3 and n4 are integers),
which is impossible by Proposition 2.8 (each component can only have one edge in common with each other
component).

So the three vertices of C1 are connected to v, w and to the internal vertex of E′1. Necessarily v and w are
also connected to the external vertices of E′1 hence they are both external and E0 has 4 edges. The resulting
cluster is of type (F).

Step 8. Suppose that both E′1 and C1 have three edges and suppose that E′1 is internal and C1 is external. We
obtain the same classification of Step 7 but with E′1 and C1 exchanged. We obtain case (F’).

Step 9. Suppose that both E′1 and C ′1 have three edges and are both internal. This is impossible because the
external region would only have two edges, which is excluded. �

Proposition 6.2. Let E ∈ M∗(1, 1, 1, 1). Then E cannot have the topologies (B), (C), (C ′), (D), (D′), (E),
(F ) of Figure 6.

Proof. Notice that in each case it is possible (by subsequently removing triangular components) to reduce the
cluster E to a double bubble (E′′1 , E

′′
2 ) where E′′1 ⊇ E′1 and E′′2 ⊇ E2.

So, by applying Lemma 3.8 we obtain at once

p1 ≤
k8√

min{m(E′1),m(E2)}
=

k8√
1−m(C1)

≤ k8√
1− k1

≤ 1.7352. (6.1)

In the case when C1 has only three edges (i.e. cases (B), (C ′), (D), (E), and (F )) we can apply Proposition 3.5
and then Proposition 4.3 to obtain

p1 ≥
(6− 3)π

3P (C1)
≥ π

k7
≥ 2.2125

and this is in contradiction with (6.1).

In both cases (C) and (D′) we can reduce the triangular components to find a double bubble (E′′2 , E
′′
4 ) with

E′′2 ⊇ E2 and E′′4 ⊇ E4. Moreover E′′2 ⊆ R2 \ (E0 ∪ E4) and E′′4 ⊆ R2 \ (E0 ∪ E2) so that m(E′′2 ) ≤ 3 and
m(E′′4 ) ≤ 3. So, by using Lemma 3.8 we obtain

min{p2, p4} ≥
k8√

min{4−m(E4), 4−m(E2)}
=

k8√
3
·
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In case (D′) we can find another reduction to a double bubble (E′′2 , E
′′
3 ) and, as before, we find

min{p2, p3} ≥
k8√

3

so that, in this case, min{p2, p3, p4} ≥ k8/
√

3.
In case (C) we apply Proposition 3.5 to the component C1 to obtain:

p1 ≥
(6− 4)π

3P (C1)
≥ 2π

3k7
≥ 1.4750 > 0.9179 ≥ k8√

3

and then we apply the same Proposition 3.5 to E3 to obtain (notice that we consider ` = 0 since E3 is internal):

p3 ≥
(6− 3)π

3P (E3)
+ min{p1, p2, p4} ≥ min{p1, p2, p4} ≥

k8√
3
·

So, in both cases C and D′, we obtain

min{p2, p3, p4} ≥
k8√

3
.

Now we need to estimate the length ` of the external edge of C1. By Proposition 3.3 we have (notice that
m(C1) < k1 < 1),

` ≤ m(C1) · P (E)

|2−m(C1)|
≤ m(C1)k0

2− k1
while, by Proposition 4.3, we have

P (C1) ≤ k7.

By applying Proposition 3.5, and using the previous estimates, we get

p1 ≥
(6− 4)π

3P (C1)
+ min{p2, p3, p4}

(
1− ` · 1

P (C1)

)
≥ 2π

3k7
+
k8√

3

(
1− m(C1)k0

2− k1
· 1

2
√
π
√
m(C1)

)

≥ 2π

3k7
+
k8√

3

(
1−

√
k1k0

2
√
π(2− k1)

)
≥ 1.7615

which, again, is in contradiction with (6.1). �

Proposition 6.3. Let E ∈ M∗(1, 1, 1, 1) has 5 components. Then we exclude that E has the topology (F ′) of
Figure 6.

Proof. By removing the triangular components we are able to reduce the cluster E to a double bubble (E′′2 , E
′′
3 )

with E′′2 ⊇ E2 and E′′3 ⊇ E3. Notice that E′′2 ⊆ R2 \ (E0 ∪E3) and E′′3 ⊆ R2 \ (E0 ∪E2) so that m(E′′2 ) ≤ 3 and
m(E′′3 ) ≤ 3. So, by Lemma 3.8, we obtain

min{p2, p3} ≥
k8√

3
·

We repeat the same argument with E4 in place of E3 to obtain min{p2, p4} ≥ k8√
3

so that

min{p2, p3, p4} ≥
k8√

3
·
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Now we estimate the length ` of the external edge of C1 by using Proposition 3.3:

` ≤ m(C1)

|2−m(C1)|
· P (E)

i.e. (notice that m(C1) < k1 < 1)

`

P (C1)
≤ `

2
√
π
√
m(C1)

≤
√
m(C1)P (E)

2
√
π(2−m(C1))

≤
√
k1k0

2
√
π(2− k1)

and we apply Proposition 3.5 to obtain

p1 ≥
(6− 3)π

3P (C1)
+ min{p2, p3}

(
1− `

P (C1)

)
≥ π

k7
+
k8√

3

(
1−

√
k1k0

(2− k1)2
√
π

)
≥ c8 := 2.4990.

By Lemma 2.7 applied to the component E′1 we have

π =
(6− 3)π

3
=

4∑
j=0

(p1 − pj)Lj ≥ (p1 −max{p0, p2, p3, p4})P (E′1)

= (p1 −max{p2, p3, p4})2
√
π
√

1− k1

so that

max{p2, p3, p4} ≥ p1 −
√
π

2
√

1− k1
Hence

P (E) = 2(p1 + p2 + p3 + p4) ≥ 2(p1 + max{p2, p3, p4}+ 2 min{p2, p3, p4})

≥ 4c8 − 2 ·
√
π

2
√

1− k1
+ 4 · k8√

3
≥ 11.5561 ≥ k0

which is a contradiction. �

Proposition 6.4. Let E ∈ M∗(1, 1, 1, 1) be a cluster with 5 components. Then we exclude that E has the
topology (A) depicted in Figure 6.

Proof. First of all notice that

2k0 ≥ 2P (E) = P (E′1) + P (C1) + P (E2) + P (E4) + P (E0) + P (E3)

≥ 2
√
π
(√

1− k1 +
√
k2 + 2

√
1 +
√

4
)

+ P (E3)

so that

P (E3) ≤ 2k0 − 2
√
π
(√

1− k1 +
√
k2 + 4

)
≤ c9 := 4.4111.

Now let `j be the total length of the external edges of the region Ej (j = 1, 2, 4). If we remove E1 from
E we obtain a 3-cluster E′ = (E2, E3, E4) with E′ ∈ C∗(1, 1, 1). Hence, by Lemma 3.9 we have P (E′) ≥ k10.
Moreover

`1 = P (E)− P (E′) ≤ k0 − k10.
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We can repeat the same argument for `2 and `4 to obtain

max{`1, `2, `4} ≤ k0 − k10. (6.2)

By Proposition 3.5 we have (notice that we let ` = 0 since E3 is internal)

p3 ≥
(6− 4)π

3P (E3)
+ min{p1, p2, p4} > min{p1, p2, p4}. (6.3)

The same proposition applied to the component C1 gives

p1 ≥
(6− 4)π

3P (C1)
≥ 2π

3k7
≥ 1.4750.

Since

k0 ≥ P (E) = 2(p1 + p2 + p3 + p4) ≥ 2p1 + 6 min{p2, p3, p4} ≥
4π

3k7
+ 6 min{p2, p3, p4},

we obtain

min{p2, p3, p4} ≤
k0
6
− 2π

9k7
≤ 1.3744,

so that
p1 > min{p2, p3, p4}. (6.4)

Putting together (6.3) and (6.4) we can say that the minimum among p1, p2, p3, p4 is either p2 or p4. Without
loss of generality we can assume that such a minimum is p2.

Hence, applying Lemma 2.7 to the region E2 we obtain

(6− 4)π

3
=

4∑
i=0

(p2 − pi)Li ≤ p2`2

where Li is the total length of the edges between E2 and Ei (so that L0 = `2) and we used the estimate
p2 − pi ≤ 0 for i 6= 0. So, using (6.2)

min{p1, p2, p3, p4} = p2 ≥
2π

3`2
≥ 2π

3(k0 − k10)
·

Now, use again Proposition 3.5 on the region E3 to obtain

p3 ≥
(6− 4)π

3P (E3)
+ min{p1, p2, p4} ≥

2π

3c9
+

2π

3(k0 − k10)
≥ c10 := 1.3466. (6.5)

Finally we apply Lemma 2.7 to the region E0 to obtain

(6 + 4)π

3
= p1`1 + p2`2 + p4`4 ≤ max{`1, `2, `4}(p1 + p2 + p4)

hence, using also (6.2)

p1 + p2 + p4 ≥
10π

3(k0 − k10)
·

So, using also (6.5), we have

P (E) = 2p3 + 2(p1 + p2 + p4) ≥ 2c10 +
20π

3(k0 − k10)
≥ 11.4116 > k0

which is a contradiction. �
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Theorem 6.5. Let E ∈M(1, 1, 1, 1). Then E is connected.

Proof. By Corollary 5.1 we know that E ∈M∗(1, 1, 1, 1).
By Corollary 4.5 and by Proposition 4.9 we know that each region Ei has exactly one big component and

the total number of small components is not larger than two.
If the cluster has exactly two small components, with Corollary 5.2, we exclude that they belong to the same

region and with Proposition 5.3 we exclude that they belong to two different regions.
Finally, from Proposition 6.1 and Propositions 6.2, 6.3 and 6.4 we exclude that the cluster has exactly one

small connected component (which means five connected components in total). �

7. Connected clusters (four components)

Proposition 7.1. Let E ∈M∗(1, 1, 1, 1) be a connected cluster. Then E has one of the two topologies depicted
in Figure 1.

Proof. Since every region is connected, by Proposition 2.8 every region (comprising E0) has three or four
edges and the cluster has a total of nine edges and six vertices. Let x be the number of regions (bounded or
unbounded) with four edges and let y the number of regions (bounded or unbounded) with three edges. We
have one unbounded region E0 and four bounded regions, hence: x+ y = 5. Moreover summing up all the edges
of all the regions we would count each edge twice, hence we have: 4x + 3y = 18. Solving the system of two
equations gives x = 3, y = 2 hence we have three regions with four edges and two regions with four edges.

If the unbounded region E0 has three edges (note that there is a total of six vertices), there is one internal
region and three external regions. The internal region can only have three edges (because it is not adjacent
to E0) and we are in the first case of the statement.

If the unbounded region E0 has four edges, all the bounded regions are external: two of them have three
edges and two have four edges. The regions with four edges are adjacent to all other regions hence the regions
with three edges don’t touch each other. We are in the second case of the statement. �

Proposition 7.2. Let E ∈M∗(1, 1, 1, 1) be a connected cluster. Then E has not the flower topology.

Proof. Suppose by contradiction that E has the flower topology and let E1 be the internal three sided region.
First of all notice that

k0 ≥ P (E) ≥ P (E0) + P (E1) ≥ 2
√
π
√

4 + P (E1)

so that
P (E1) ≤ k0 − 4

√
π ≤ c11 := 4.1064.

Now let `2 be the length of the external edge of the region E2. If we remove E2 from E we obtain a 3-cluster
E′ = (E1, E3, E4) with E′ ∈ C∗(1, 1, 1). Hence, by Lemma 3.9 we have P (E′) ≥ k10. Moreover

`2 = P (E)− P (E′) ≤ k0 − k10.

We can repeat the same argument for the lengths `3 and `4 of the external edges of E3 and E4, to obtain

max{`2, `3, `4} ≤ k0 − k10. (7.1)

By removing the triangular components we are able to reduce the cluster E to a double bubble (E′′2 , E
′′
3 )

with E′′2 ⊇ E2 and E′′3 ⊇ E3. Notice that E′′2 ⊆ R2 \ (E0 ∪E3) and E′′3 ⊆ R2 \ (E0 ∪E2) so that m(E′′2 ) ≤ 3 and
m(E′′3 ) ≤ 3. So, by Lemma 3.8, we obtain

min{p2, p3} ≥
k8√

3
·
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We repeat the same argument with E4 in place of E3 to obtain min{p2, p4} ≥ k8√
3

so that

min{p2, p3, p4} ≥
k8√

3
·

Now, use again Proposition 3.5 on the region E1 to obtain (notice that we let ` = 0 since E1 is internal)

p1 ≥
(6− 3)π

3P (E1)
+ min{p2, p3, p4} ≥

π

c11
+
k8√

3
≥ c12 := 1.6829. (7.2)

Finally we apply Lemma 2.7 to the region E0 to obtain

(6 + 3)π

3
= p2`2 + p3`3 + p4`4 ≤ max{`1, `2, `4} · (p2 + p3 + p4)

hence, using also (7.1)

p2 + p3 + p4 ≥
3π

k0 − k10
·

So, using also (7.2), we have

P (E) = 2p1 + 2(p2 + p3 + p4) ≥ 2c12 +
6π

k0 − k10
≥ 11.2124 > k0

which is a contradiction. �

Theorem 7.3. Let E ∈M(1, 1, 1, 1). Then E has the sandwich topology as in Figure 1.

Proof. By Theorem 6.5 we know that E is connected so by Proposition 7.1 we know that E can either have the
flower or the sandwich topology. With Proposition 7.2 we exclude the flower topology and the result follows. �

Conjecture 7.4. Up to isometries there is a unique stationary cluster E ∈ C(1, 1, 1, 1) with the sandwich
topology. In such a cluster the regions E1 and E3 are isometric to E2 and E4 (respectively).

A stationary sandwich cluster with given external radii r1, r2, r3, r4 can be uniquely constructed by taking
the double bubble with external radii r1, r2 and then “growing” a triangular region in each vertex so that it
reaches the prescribed external radius In fact both the area and the radii of a growing triangular camera are
strictly increasing, see [13,23]

Not only that, since when the triangular region grows, the area of the quadrangular regions decreases, if r1
and r2 are fixed it is possible to find r3 = r4 so that the area of the triangular regions become equal to the
area of the smaller quadrangular region. If r1 = r2 we then find that all four regions have equal area and with
a rescaling we obtain a stationary symmetric sandwich cluster in C(1, 1, 1, 1).

We believe that when r1 > r2 then the previous construction would yield a cluster where m(E1) > m(E2) =
m(E3) = m(E4). This would exclude that asymmetric sandwich cluster can have all equal areas.

We have some numerical computations [18] which confirm this.
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