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ON TWO FUNCTIONALS INVOLVING THE MAXIMUM OF THE TORSION

FUNCTION

Antoine Henrot1, Ilaria Lucardesi1,∗ and Gérard Philippin2

Abstract. In this paper we investigate upper and lower bounds of two shape functionals involving
the maximum of the torsion function. More precisely, we consider T (Ω)/(M(Ω)|Ω|) and M(Ω)λ1(Ω),
where Ω is a bounded open set of Rd with finite Lebesgue measure |Ω|, M(Ω) denotes the maximum
of the torsion function, T (Ω) the torsion, and λ1(Ω) the first Dirichlet eigenvalue. Particular attention
is devoted to the subclass of convex sets.
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1. Introduction

The two most classical (and most studied) elliptic PDEs are probably the torsion problem, also known
as St-Venant problem, and the Dirichlet eigenvalue problem, see (1.3) and (1.5) below. Many estimates and
qualitative properties have been obtained for these classical problems, see for example works by Pólya, Szegö,
Schiffer, Payne, Hersch, Bandle and many others. In this paper, following these former works, we are interested
in finding bounds (if possible optimal) for quantities involving the maximum of the torsion function. We have
been particularly inspired by two recent works in [25,27], where the ratio T (Ω)λ1(Ω)/|Ω| has been investigated
in a similar way. Here T (Ω) denotes the torsion, λ1(Ω) the first Dirichlet eigenvalue, and |Ω| the volume of Ω,
see Section 1.2 for the precise definitions.

Le M(Ω) be the maximum of the torsion function. In this paper we investigate upper and lower bounds for
the shape functionals

F (Ω) :=
T (Ω)

M(Ω)|Ω|
, (1.1)

G(Ω) := M(Ω)λ1(Ω) , (1.2)

defined over the bounded open sets Ω of Rd with finite Lebesgue measure. In Section 2, we prove that the
obvious upper bound F (Ω) ≤ 1 is actually sharp. Then, we show that for convex domains we have indeed
F (Ω) ≤ 2/3 and we give more precise lower and upper bounds for regular plane convex domains in terms of the
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curvature of their boundaries. In Section 3, we consider the functional G. We prove that the easy lower bound
G(Ω) ≥ 1 is actually sharp. For convex domains, we recall the lower bound G(Ω) ≥ π2/8 obtained by Payne.
Finding the optimal upper bound for G seems much more difficult. Using topological derivatives, we prove that
no maximizer exists in a wide class of domains. When we restrict to the class of convex domains, we can prove
existence of an optimal domain but we cannot identify it. In the plane, we suspect that it is the equilateral
triangle (which is definitely better than the disk). At last, we write the shape derivative of G and prove that
the equilateral triangle does not cancel this shape derivative, in other words it is not a critical point among all
regular open sets.

1.1. Notations

We adopt standard notations for Lebesgue and Sobolev spaces on a bounded open set of Rd, for example
L2(Ω) and H1(Ω) (space of functions in L2 whose derivative, in the sense of distributions, are still in L2).
The boundary values of a Sobolev function are always intended in the sense of traces. The (d− 1)-dimensional
Hausdorff measure is denoted by Hd−1.

Given a bounded open set Ω ⊂ Rd, we denote by |Ω| its Lebesgue measure, by −
∫
Ω

the average integral over
it, and by D(Ω) the space of C∞ functions having compact support contained into Ω. The closure of D(Ω) in
H1(Ω) is denoted by H1

0 (Ω). If the open set Ω has Lipschitz boundary, we denote by n the outer unit normal
vector to ∂Ω, defined a.e. on the boundary.

Given a point x ∈ Rd and a positive parameter r > 0, we denote by Br(x) the ball of radius r centered in x,
and with Br(x) its closure.

We define the minimal width of a set as the minimal distance between two parallel supporting hyperplanes.
We denote by f+ the positive part of a scalar function f , namely f+(x) := max{f(x), 0}.
The partial derivative of a scalar function f defined in Rd with respect to the i-th variable is denoted either

by ∂f/∂xi or by f,i; the same notation is used for higher order partial derivatives.
We adopt the convention of summation over repeated indices.

1.2. First properties

Given a bounded open set Ω of Rd with finite Lebesgue measure, we denote by uΩ the torsion function of Ω,
that is, the solution of {

−∆u = 1 in Ω

u ∈ H1
0 (Ω) ,

(1.3)

and we set
T (Ω) := ‖uΩ‖L1(Ω) , M(Ω) := ‖uΩ‖L∞(Ω). (1.4)

It is easy to check that uΩ is C∞ inside Ω and non negative in Ω, thus

T (Ω) =

∫
Ω

uΩ dx , M(Ω) = max
Ω

uΩ .

We denote by λ1(Ω) first eigenvalue of the Dirichlet Laplacian and by ϕΩ the corresponding (normalized)
eigenfunction, that is, the solution of {

−∆ϕ = λ1(Ω)ϕ in Ω

ϕ ∈ H1
0 (Ω) ,

(1.5)

with ‖ϕΩ‖L2(Ω) = 1.
We recall that the functionals T and λ1 admit the following variational formulations:

T (Ω) = sup
v∈H1

0 (Ω)\{0}

( ∫
Ω
v dx

)2∫
Ω
|∇v|2 dx

, λ1(Ω) = inf
v∈H1

0 (Ω)\{0}

∫
Ω
|∇v|2 dx∫
Ω
v2 dx

· (1.6)
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It follows from the homogeneity relations

T (tΩ) = td+2T (Ω) , M(tΩ) = t2M(Ω) , λ1(tΩ) = t−2λ1(Ω) , t > 0,

that both F and G are scale invariant.
In the sequel, when no ambiguity may arise, we will denote the torsion function and the first eigenfunction

of the Dirichlet Laplacian of a given set Ω simply by u and ϕ, respectively.

Remark 1.1. Note that the functional G can be studied on a larger class of sets, satisfying λ1(Ω) > 0 and
‖uΩ‖∞ < +∞. In particular, since these two conditions are equivalent (see, e.g., [26]), G is naturally defined
on sets on which a Poincaré inequality holds (e.g., sets bounded in one direction).

2. Bounds for the functional F

2.1. The upper bound

The upper bound F (Ω) ≤ 1 is obvious. Actually, we are going to prove that this bound is sharp. This is not
so intuitive since the equality F (Ω) = 1 is only true for constant functions and clearly a torsion function of any
domain Ω is a priori far to be constant. The idea is to use the theory of homogenization. Indeed, by performing
suitable spherical holes (with the appropriate radius) in a domain Ω, we are able to get a sequence of torsion
functions which γ-converges to something which is no longer a torsion function : the “strange term coming from
nowhere” in the celebrated paper by D. Cioranescu and F. Murat, [3]. Our theorem is the following.

Theorem 2.1. In any dimension, we can find a sequence of domains Ωε such that F (Ωε)→ 1.

Here we recall the construction of a sequence of perforated domains introduced by Cioranescu-Murat in [3],
see also [9] for a more precise estimate and convergence result.

Let Ω ⊂ Rd, d ≥ 2 a regular (or a convex) domain, and C0 > 0 be fixed. For every ε > 0, consider the ball
Tε := Brε(0) with a radius rε which satisfies

rε =

{
C0ε

d/(d−2) if d ≥ 3

exp(−C0/ε
2) if d = 2

(2.1)

and the perforated domain
Ωε := Ω \ ∪z∈Zd(2εz + T ε). (2.2)

Note that the removed holes form a periodic set in the plane, with period 2ε. Now let uε denote the torsion
function of the perforated domain Ωε, extended to zero in the holes. It is proved in [3] that the sequence uε
converges weakly in H1

0 (Ω) (and strongly in L2(Ω)) to the solution u∗ of{
−∆u∗ + au∗ = 1 in Ω

u∗ ∈ H1
0 (Ω) ,

where the constant a satisfies

a =


Cd−20

2d
d(d− 2)ωd if d ≥ 3

π

2C0
if d = 2,

(2.3)

and ωd is the volume of the unit ball in Rd. As a consequence we have∫
Ωε

uε dx→
∫
Ω

u∗ dx , |Ωε| → |Ω| , as ε→ 0. (2.4)
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Now we want to analyze the asymptotic behavior of the L∞ norm of the functions uε. We cannot hope for
uniform convergence of uε to u∗, nevertheless we can prove the convergence of the L∞ norms:

Theorem 2.2. Let uε be the torsion functions of the perforated domains Ωε extended to zero in the holes and
let u∗ be their weak limit in H1

0 (Ω).
Then, up to a subsequence, M(Ωε) = ‖uε‖L∞(Ω) → ‖u∗‖L∞(Ω) as ε→ 0.

Proof. We are indebted to G. Buttazzo and B. Velichkov of this proof (see the final comment at the end of the
paper).

First of all, up to a subsequence, we can assume that uε converges pointwise almost everywhere to u∗:

for a.e. x ∈ Ω , uε(x)→ u∗(x).

Applying this to a ball centered at a point where u∗ is maximum, we infer that

‖u∗‖L∞(Ω) ≤ lim inf
ε
‖uε‖L∞(Ω) . (2.5)

Now let us assume that the inequality in (2.5) is strict. Then we could find two positive numbers b1 < b2 such
that

‖u∗‖L∞(Ω) ≤ b1 < b2 ≤ lim inf
ε
‖uε‖L∞(Ω) .

It is proved in [28], (Prop. 3.2.34) that for any non negative function v satisfying ∆v+ 1 ≥ 0 in Ω, the following
inequality holds:

‖v‖L∞(Ω) ≤ C
(∫

Ω

v(x) dx

)d/(d+2)

, (2.6)

where C is a positive constant which only depends on Ω. By taking in (2.6) the subsolution v := (uε − b)+ to
the torsion equation in Ω, with b := (b1 + b2)/2, we obtain

‖(uε − b)+‖L∞(Ω) ≤ C
(∫

Ω

(uε − b)+ dx

)d/(d+2)

. (2.7)

It comes on the one hand

lim inf
ε
‖(uε − b)+‖L∞(Ω) ≥ b2 − b = (b2 − b1)/2 > 0 ,

while on the other hand, by L2 convergence,∫
Ω

(uε − b)+ dx→
∫
Ω

(u∗ − b)+ dx = 0 ,

contradicting inequality (2.7). �

Now we are in position to prove Theorem 2.1. Let us introduce v∗ := au∗. In the following Lemma, we list
some properties of this function.

Lemma 2.3. Let a ∈ R+ and v∗ be the solution of

−a−1∆v∗ + v∗ = 1 (2.8)

in H1
0 (Ω). Then 0 < v∗ ≤ 1 in Ω and, in the limit as a→ +∞, v∗ ⇀ 1 weakly in L2(Ω).
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Proof. The positivity of v∗ in Ω is a simple consequence of the maximum principle. For x0 ∈ Ω maximum point
for v∗ it holds ∆v∗(x0) ≤ 0. In particular, for every x ∈ Ω we have

v∗(x) ≤ v∗(x0) ≤ −∆v∗(x0) + v∗(x0) = 1 ,

which proves the upper bound. Exploiting the optimality of v∗ for the functional

H1
0 (Ω) 3 v 7→ 1

2

∫
Ω

a−1|∇v|2 dx+

∫
Ω

(v2 − v) dx , (2.9)

it is easy to see that v∗ and a−1/2∇v∗ are uniformly (with respect to a) bounded in L2(Ω) and L2(Ω;R2),
respectively. The former bound implies that, in the limit as a→ +∞, up to subsequences, v∗ weakly converges
in L2(Ω) to some v∗. The latter bound, combined with (2.8), implies that the weak limit v∗ is 1. �

An immediate consequence of the previous lemma is

lim inf
ε
‖uε‖L∞(Ω) = ‖u∗‖L∞(Ω) ≤

1

a
· (2.10)

Therefore, using (2.4) and (2.10), we get, for a subsequence:

lim sup
ε

F (Ωε) ≥
∫
Ω
u∗ dx

(maxu∗)|Ω|
=

∫
Ω
v∗ dx

(max v∗)|Ω|
≥
∫
Ω
v∗ dx

|Ω|
→ 1 ,

as a→ +∞. This finishes the proof of Theorem 2.1.

2.2. The upper bound for convex sets

The maximizing sequence used in the previous section is very specific, thus we can expect that in the convex
case we can significantly improve the upper bound. Indeed, let us prove the following

Theorem 2.4. Let Ω be any bounded convex domain in Rd, then

F (Ω) ≤ 2

3
· (2.11)

Moreover, inequality (2.11) is sharp.

Proof. We use the maximum principle for P -functions. Following [15] (for regular convex domains) or [21] (for
general convex domains), it is known that the function ψ := |∇u|2 + 2u takes its maximum at a critical point of
u, namely at the point where u is maximum. Note that

√
u has only one critical point since it is strictly concave

(see, e.g., [10] for the concavity property and [11], (Introduction) for the strict one). Therefore, for every x ∈ Ω,
we have

|∇u(x)|2 + 2u(x) ≤ 2M(Ω) ; (2.12)

in particular, integrating (2.12) over Ω yields 3T (Ω) ≤ 2M(Ω)|Ω|.
In order to prove the sharpness of the inequality, let us consider the sequence of rectangles in the plane

Ωn := (−n, n)× (0, 1). The same construction holds in any dimension d, using the sequence of parallelepipeds
Ωn := (−n, n)d−1× (0, 1). Let us denote by un the torsion function of Ωn. By the maximum principle, we have

un(x, y) ≤ 1

2
y(1− y) . (2.13)

The function 1
2 y(1−y) can be seen as the torsion function of the unbounded strip {0 < y < 1}. Therefore (2.13)

implies that M(Ωn) ≤ 1
8 .
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Now, in view of (1.3), it is easy to check that the torsion admits the variational formulation

−1

2
T (Ωn) = min

v∈H1
0 (Ωn)

{
1

2

∫
Ωn

|∇v|2 dx−
∫
Ωn

v dx

}
. (2.14)

Let us introduce the function ψn(x) defined as

ψn(x) :=


1 if x ∈ [−n+ 1, n− 1]

n− x if x ∈ [n− 1, n]

x− n if x ∈ [−n,−n+ 1]

0 if |x| > n

(2.15)

and let us choose as a test function in (2.14) the function v(x, y) := ψn(x) 1
2 y(1 − y), which is an element

of H1
0 (Ωn). We immediately get∫

Ωn

v dx =

∫ n

−n
ψn(x) dx

∫ 1

0

1

2
y(1− y) dy =

n

6
− 1

12
≥ n

6
− 1 .

Since |ψ′n(x)| = 1 if x ∈ (−n,−n+ 1) ∪ (n− 1, n) and it is 0 otherwise, and y(1− y)/2 < 1 for every y ∈ (0, 1),
we have ∫

Ωn

|∇v|2 dx ≤ 2 +

∫ n

−n
ψ2
n(x) dx

∫ 1

0

(
1

2
− y
)2

dy = 2 +
n

6
− 1

9
≤ n

6
+ 2 .

Thus

−1

2
T (Ωn) ≤ − n

12
+ 2 ,

which implies that

F (Ωn) ≥ 2

3
− 16

n
→ 2/3 when n→ +∞ . �

For strictly convex and regular domains in the plane, one can improve this upper bound by the following:

Theorem 2.5. Let Ω be a strictly convex bounded domain of class C2 in R2. Let us introduce the quantity β
which depends only on the geometry of Ω (actually its curvature k):

β = 2− 1

4

(
min∂Ω k

max∂Ω k

)3

≤ 2 . (2.16)

Then we have

F (Ω) ≤ β

β + 1
≤ 2

3
· (2.17)

We postpone the proof of this Theorem to Section 2.4, where the proof for a similar lower bound will also be
given at the same time.

2.3. The lower bound

Clearly, by the positivity of T , M , and Lebesgue measure, the infimum of F is greater than or equal to zero.
It is easy to show that the lower bound 0 is optimal: consider the sequence of sets

Ωn := B1(0)

n⋃
i=1

Brn(xi) , n ∈ N ,
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with x1, . . . , xn 6= 0 distinct points in a compact set and rn > 0 a small parameter (whose precise value will be
chosen later). In this case, un := uΩn is the sum of the torsion functions associated to every single connected
component of Ωn, namely un =

∑n
i=0 ui with u0 := uB1(0) and ui := uB

n−1/4 (xi), i = 1 . . . , n. Since

u0(x) =
1− |x|2

2d
and ui =

r2n − |x− xi|2

2d
,

it is easy to see that

T (Ωn) =
ωd

d2(d+ 2)
(1 + nrd+2

n ) , M(Ωn) =
1

2d
, |Ωn| =

ωd
d

(1 + nrdn) ,

where ωd is the volume of the unit ball in Rd. By taking rn = n−1/(2d), we infer that

F (Ωn) =
2

d+ 2

n
1
2−

1
d + 1

n
1
2 + 1

∼ n−
1
d → 0 ,

implying that inf F = 0.

2.4. The lower bound for convex sets

By strict concavity of
√
u when Ω is convex, see e.g. [11], it is easy to get a lower bound for convex sets:

Theorem 2.6. Let Ω be any bounded convex set in Rd, then

F (Ω) ≥ 1

(d+ 1)2
· (2.18)

Proof. Since
√
u is concave, its graph is above the cone of basis Ω and vertex M0 the maximum point of

√
u.

Therefore, by comparison of the volumes:∫
Ω

√
u(x) dx ≥

√
M(Ω)|Ω|
d+ 1

·

By taking the square of the previous inequality and using Cauchy-Schwarz inequality for the left-hand side(∫
Ω

√
u(x) dx

)2

≤ |Ω|
∫
Ω

u(x) dx ,

we get the desired inequality. �

We believe that inequality (2.18) is not optimal. For example, in the plane, we conjecture:

Conjecture: For any plane convex domain, the following lower bound holds:

F (Ω) ≥ 1

3
· (2.19)

Moreover, this inequality should be optimal, and a minimizing sequence could be a sequence of isosceles triangles
degenerating to a segment. Let us remark that when u is concave, for instance when Ω is an ellipse, we obtain
exactly in the same way

T (Ω)

|Ω|M(Ω)
≥ 1

3
· (2.20)

Sufficient conditions on the geometry of Ω to insure the concavity of u have been established by Kosmo-
dem’yanskii in [12].

Let us conclude this section with a theorem in the spirit of Theorem 2.5.
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Theorem 2.7. Let Ω be a strictly convex bounded domain of class C2 in R2. Then we have

F (Ω) ≥ 1

4

(
min∂Ω k

max∂Ω k

)3

, (2.21)

where k is the curvature of Ω.

Set for brevity α :=
(

min∂Ω k/max∂Ω k
)3
/4. Note that inequality (2.21) is better than the general inequality

eqrefineqconv when α > 1/8, which occurs when min∂Ω k > max∂Ω k/
3
√

2. In [19], Payne and Philippin have
derived sharp upper bounds for |∇u|. The goal of this section is to derive new lower bounds for these quantities
by using the same approach as in [19] . For the torsion problem one can associate an auxiliary function involving
the curvature k of the level lines {u = const.}. Properly chosen, the auxiliary function turns out to satisfy some
minimum principles, implying the convexity of the level sets of u, under suitable convexity assumptions on Ω.
These results have been derived by Makar–Limanov in [13] for the torsion problem with the associate function

P (x) := k|∆u|3 + u
[
(∆u)2 − u,iju,ij

]
. (2.22)

Proof of Theorems 2.5 and 2.7. Making use of normal coordinates with respect to the level lines {u = const.}
we have

|∇u|2 = u,iu,i = u2n , (2.23)

∆u = unn + kun , (2.24)

u,iju,ij = u2nn + k2u2n + 2u2ns , (2.25)

where an index n stands for the outward normal derivative and an index s stands for the derivative along the
level lines {u = const.}, and k is the curvature of the level lines defined as

k := −
(
u,i
|∇u|

)
,i

=
u,iju,iu,j − |∇u|2∆u

|∇u|3
· (2.26)

The Makar-Limanov function P introduced in (2.22) may be rewritten in terms of normal coordinates as

P = |∇u|3k − 2
[
kun + k2u2n + u2ns

]
· (2.27)

Makar–Limanov’s result is based on the fact that P is super–harmonic. It then follows that P takes its minimum
value Pmin on ∂Ω, so that the following quadratic inequality for k holds:

|∇u|3k − 2u
[
kun + k2u2n + u2ns

]
≥ Pmin , x ∈ Ω . (2.28)

Omitting the term containing u2ns and solving (2.28) for k, we obtain

Φ

4u
{1−

√
1− z} ≤ k|∇u| ≤ Φ

4u

{
1 +
√

1− z}
}
, (2.29)

with

Φ : = |∇u|2 + 2u , (2.30)

z : =
8Pminu

Φ2
· (2.31)
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We note that z ≤ 1 in view of the inequality

P ≤ 1

8u
Φ2 in Ω , (2.32)

derived in [20]. Multiplying (2.29) by −2|∇u|
√
u, we obtain

−Φ|∇u|
2
√
u
{1 +

√
1− z} ≤

√
u
∂Φ

∂n
≤ −Φ|∇u|

2
√
u
{1−

√
1− z} , (2.33)

in view of
∂Φ

∂n
= −2k|∇u|2 . (2.34)

For convenience we set

θ :=
Φ√
u

=
|∇u|2√

u
+ 2
√
u . (2.35)

Replacing (2.35) in (2.33), these inequalities reduce to

∂u

∂n

√(θ
2

)2
− 2Pmin ≤ u

∂θ

∂n
≤ −∂u

∂n

√(θ
2

)2
− 2Pmin , (2.36)

which are equivalent to

−1

2

du

u
≤ − dθ√

θ2 − 8Pmin

≤ 1

2

du

u
· (2.37)

These inequalities link the functions u and θ to their differentials along the orthogonal trajectories of the level
lines (also called fall lines of u). Rewriting (2.37) in the form

−1

2
d(log u) ≤ −d

(
log[θ +

√
θ2 − 8Pmin]

)
≤ 1

2
d(log u) (2.38)

and integrating from a point x ∈ Ω to the maximum point x0 of u along the fall line joining these points, we
obtain √

u(x)

u(x0)
≤
θ(x) +

√
θ2(x)− 8Pmin

θ0 +
√
θ20 − 8Pmin

≤

√
u(x0)

u(x)
, (2.39)

with
θ0 := θ(x0) = 2

√
u(x0) . (2.40)

Multiplying (2.39) by (θ0 +
√
θ20 − 8Pmin)

√
u, replacing back θ by Φ, and recalling that u(x0) = M(Ω), we

obtain
2u
(

1 +
√

1− 2Pmin

M(Ω)

)
− Φ ≤

√
Φ2 − 8Pminu

≤ 2M(Ω)
(

1 +
√

1− 2Pmin

M(Ω)

)
− Φ .

(2.41)

Squaring (2.41) and solving for Φ, we obtain

2Pmin

1 +
√

1− 2Pmin

M(Ω)

+ u
(

1 +

√
1− 2Pmin

M(Ω)

)
≤ Φ (2.42)

≤ 2Pminu

M(Ω)
(

1 +
√

1− 2Pmin

M(Ω)

) +M(Ω)
(

1 +

√
1− 2Pmin

M(Ω)

)
. (2.43)
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Replacing (2.30) in (2.42), after some reduction we obtain the basic inequalities

α̃(M(Ω)− u) ≤ |∇u|2 ≤ β̃(M(Ω)− u) in Ω , (2.44)

with

α̃ := 1−

√
1− 2Pmin

M(Ω)
· (2.45)

β̃ := 1 +

√
1− 2Pmin

M(Ω)
. (2.46)

The upper bound for |∇u|2 in (2.44) was already derived in [19]. The lower bound is nontrivial only for strictly
convex Ω, whereas the upper bound makes sense even for nonconvex Ω. However in this case Pmin is negative,
and β̃ is greater than two. We note that inequalities (2.44) are exact when α̃ = β̃, i.e. when 2Pmin(M(Ω))−1 = 1.
This is the case if and only if Ω is a disk. For practical use of (2.44) a computable positive lower bound for the
quantity 2Pmin(M(Ω))−1 is needed. To this end, we write

Pmin = min
∂Ω

(|∇u|3k) ≥
(

min
∂Ω
|∇u|

)3(
min
∂Ω

k

)
(2.47)

and make use of the inequalities

min
∂Ω
|∇u| ≥ 1

2 max∂Ω k
, (2.48)

M(Ω) = max
Ω

u ≤ 1

2
ρ2 ≤ 1

2

(
min
∂Ω

k
)−2

, (2.49)

derived in [17,18], where ρ is the inradius of Ω. Using (2.47), (2.48), and (2.49), for strictly convex Ω we have

2Pmin

M(Ω)
≥

2
(

min∂Ω |∇u|
)3(

min∂Ω k
)

M(Ω)
≥ 1

2

(
min∂Ω k

max∂Ω k

)3

= 2α . (2.50)

Replacing (2.50) in (2.45) and in (2.46), we obtain the bounds

α̃ ≥ α , β̃ ≤ β := 2− α , (2.51)

in particular, the quantities α and β may be used in (2.44) instead of α̃ and β̃, respectively. Integrating (2.44)

over Ω and exploiting the estimates (2.51), we obtain the following bounds for T (Ω)
|Ω|M(Ω) :

α

α+ 1
≤ T (Ω)

|Ω|M(Ω)
≤ β

β + 1
≤ 2

3
· (2.52)

The upper bound proves Theorem 2.5.
A better lower bound for T (Ω)

|Ω|M(Ω) may be derived by integrating the inequality

P (x) = u,iju.iu.j − |∇u|2∆u+ u[(∆u)2 − u.iju,ij ] ≥ Pmin (2.53)

over Ω. Making use of ∫
Ω

u,iju,iu,j dx = −
∫
Ω

uu,iju,ij dx , (2.54)

we obtain ∫
Ω

P (x) dx =

∫
Ω

u[(∆u)2 − 2u,iju,ij ] dx+ T (Ω) ≥ Pmin|Ω| . (2.55)
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Since (∆u)2 − 2u,iju,ij ≤ 0, it follows that

T (Ω) ≥ Pmin|Ω| . (2.56)

This inequality, together with (2.50), gives the lower bound F (Ω) ≥ α, concluding the proof of
Theorem 2.7. �

3. Bounds for the functional G

3.1. The upper bound

The best available upper bound for G, still not optimal, is very recent and is due to Vogt: in ([29], Thm 1.5),
exploiting semigroups techniques, the author proved that

G(Ω) ≤ d

8
+

1

4

√
5(1 + ln 2/4)

√
d+ 1 .

Among the upper bounds obtained before Vogt, let us mention the one obtained in Theorem 1 of [26], stating
that

G(Ω) ≤ 3d ln 2 + 4 ,

and the one in [24], based on a variational technique, simple and interesting at te same time.
Finding the optimal upper bound suggests to look at the shape optimization problem:

PG sup
{
G(Ω) , Ω ⊂ Rd

}
. (3.1)

Even if it looks like as a standard shape optimization problem, the existence of a solution is not clear for us.
We believe that a maximizer does not exist and a partial result in this direction is given by the following

Proposition 3.1. Let Ω ⊂ Rd be a bounded open set of class C2. Assume that G is differentiable at Ω (i.e.,
the shape derivative of G at Ω exists and is given by (3.13)). Then Ω is not a maximizer for G.

The proof is postponed to Section 3.5 and is based on a topological derivative argument: under suitable regularity
assumptions on Ω, removing a small hole near the boundary makes G increase.

In order to further investigate PG, other useful tools are represented by numerical tests and the theory of
shape derivatives. The former technique suggests that, in the case of polygons in the plane, the optimum should
be non convex. The latter, that we detail in Section 3.5, provides a necessary condition for critical shapes; in
particular, it turns out that the equilateral triangle, even if strictly better than the disk, is not optimal for supG
in dimension d = 2 (see Cor. 3.7 below).

Let us now consider the restricted class of convex domains, for which the equilateral triangle could be a
maximizer.

3.2. The maximization problem in the convex framework

Unlike what happens in the general case, if we add the convex constraint, the existence of a maximizer for G
is guaranteed.

Theorem 3.2. The shape functional G admits a maximizer in the class of bounded convex sets of Rd.

Proof. Let Ωn be a maximizing sequence of convex subsets of Rd. By the scale invariance of G, without loss of
generality, we may assume that the elements of the sequence are all contained in a fixed bounded set K. By the
Blaschke selection theorem, there exists a subsequence (not relabeled) converging to some convex set Ω ⊂ K in
the Hausdorff metric.

We claim that the minimal width wn of Ωn does not vanish as n → +∞, so that the limit set Ω has non-
empty interior: choosing a suitable reference frame in Rd, we may assume that Ωn is contained in the strip
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{x ∈ Rd : 0 ≤ xd ≤ wn}; by the maximum principle, it is easy to see that the torsion function un of Ωn
satisfies un(x) ≤ xd(wn − xd)/2 in Ωn, in particular

M(Ωn) ≤ w2
n

8
; (3.2)

on the other hand, in equation (4.8) from [27], the authors provide the following upper bound for λ1 in terms
of the minimal width:

λ1(Ωn) ≤ π2

w2
n

(
1 + cn(3/2 + 3/21/3 + 21/3)

)
, (3.3)

with cn = cn(Ωn) a positive constant vanishing as wn → 0 (see (19) in [27]). By combining (3.2), (3.3), and the
lower bound (3.5), we conclude that G(Ωn) → π2/8. This gives a contradiction, since π2/8 is clearly not the
maximum of G.

In order to conclude the proof, we need to show that the limit set Ω is a maximizer for G. To this aim, we
prove that M , λ1, and hence G, are continuous in the class of bounded open convex sets, with respect to the
Hausdorff metric.

Let {Ωh}h be a sequence of bounded convex sets converging to some convex set Ω, with respect to the
Hausdorff metric. Under these assumptions, there exists a sequence of positive numbers th → 1 such that
thΩh ⊂ Ω for every h. By comparison, such inclusion readily implies M(thΩh) ≤M(Ω). On the other hand, by
applying [8], Proposition 3.6.1 (see also the comments below its proof), we get M(Ω) ≤M(thΩh)+dH(thΩh, Ω),
being dH the Hausdorff distance. Thus M(thΩh) → M(Ω) as h → +∞. Finally, since M(thΩh) = t2hM(Ωh)
and th → 1, we conclude that M(Ωh) → M(Ω). The continuity of λ1 is more classical and can be found, e.g.,
in [2] or [8]. �

The problem of finding an optimal set is still open. We conjecture that in dimension d = 2 the maximizer of
G among the convex sets is the equilateral triangle T , namely, for every Ω convex, G(Ω) ≤ 4

27π
2 = G(T ) (see

the computations in the proof of Cor. 3.7 below).

3.3. The lower bound

The lower bound G(Ω) ≥ 1 is obvious: indeed, making use of (1.3) and (1.5), we get∫
Ω

ϕdx =

∫
Ω

∇u · ∇ϕdx = λ1(Ω)

∫
Ω

uϕdx ≤ G(Ω)

∫
Ω

ϕdx .

An alternative proof can also be found in Proposition 6 of [1], and Theorem 5 of [22].

Exploiting the same strategy used for the upper bound of F , we show that the constant 1 is sharp.

Theorem 3.3. In any dimension, we can find a sequence of domains Ωε such that G(Ωε)→ 1.

Proof. Let ε > 0 be fixed and consider the perforated domain Ωε defined in (2.2), obtained by removing to a
given regular set Ω periodic spherical holes of period 2ε and radius rε. The value of the constant C0 appearing
in (2.1) will be chosen later. Let Aε : L2(Ω) → L2(Ω) be the resolvent operator of the Dirichlet Laplacian on
Ωε, which associates to f ∈ L2(Ω) the unique solution u ∈ H1

0 (Ωε) to −∆u = f , extended by zero outside Ωε.

By applying Theorem 2.5 in [9], we infer that, for every f ∈ L2(Ω), Aε(f) strongly converges to A(f) in
L2(Ω), where A is the resolvent operator of −∆ + a in H1(Ω) with Dirichlet boundary conditions, being a
(function of C0) defined in (2.3). In particular, in view of Theorem 2.3.2 from [7], the eigenvalues of Aε converge
to the corresponding eigenvalue of A; in other words, we have

λ1(Ωε)→ λ1(Ω) + a ,
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as ε→ 0. On the other hand, as already noticed in (2.10), we have lim infεM(Ωε) ≤ 1
a . Thus

lim inf
ε

G(Ωε) = lim inf
ε

λ1(Ωε)M(Ωε) ≤
1

a
(λ1(Ω) + a) = 1 +

λ1(Ω)

a
· (3.4)

By choosing a suitable C0 (small enough in the case of d = 2 and large enough in the case of d ≥ 3), the
parameter a can be taken arbitrarily large, so that the right-hand side of (3.4) is arbitrarily close to 1. This
fact, together with the trivial lower bound G ≥ 1, concludes the proof. �

3.4. The lower bound for convex sets

In the convex setting, the optimal lower bound for G was provided by Payne in 1981: for every bounded
convex domain Ω of Rd, we have

G(Ω) <
π2

8
, (3.5)

and the bound is sharp (see [16], Thm. and Eq. (3.12)). The optimality of the constant can be checked, e.g., by
considering the sequence of parallelepipeds Ωn := (−n, n)d−1 × (0, 1). Indeed, as already seen in the proof of
Theorem 2.4, by comparing the torsion function of Ωn with the function xd(1− xd)/2 we get

M(Ωn) ≤ 1/8 ; (3.6)

on the other hand, recalling the definition (2.15) of ψn and taking

v(x1, . . . , xd) := sin(πxd)Π
d−1
j=1ψn(xj) ∈ H1

0 (Ωn)

as test function in the variational formulation (1.6) of λ1(Ωn), we get

λ1(Ωn) ≤
∫
Ωn
|∇v|2 dx∫

Ωn
v2 dx

=
d− 1

n− 2/3
+ π2 . (3.7)

From (3.6) and (3.7) we obtain the inequality

G(Ωn) ≤ π2

8
+

d− 1

8(n− 2/3)
,

whose right-hand side is arbitrarily close to π2/8 as n→ +∞.

3.5. Optimality conditions via shape derivatives

In this section we derive optimality conditions by computing the first order shape derivative of G. Namely,
given Ω ⊂ Rd bounded, open, regular or convex, connected set, we study the limit (when the latter exists)

G′(Ω, V ) := lim
t→0

G(Ωt)−G(Ω)

t
,

with Ωt := (I + tV )(Ω), I being the identity map and V : Rd → Rd an arbitrary C1 vector field.
Recalling that G(Ω) = M(Ω)λ1(Ω), if the shape derivative exists, it reads

G′(Ω, V ) = M ′(Ω, V )λ1(Ω) +M(Ω)λ′1(Ω, V ) . (3.8)

It is well known (see, e.g., [8], Thm. 5.7.1) that

λ′1(Ω, V ) = −
∫
∂Ω

(∂ϕ
∂n

)2
V · ndHd−1 , (3.9)

where ϕ is the (normalized) first eigenfunction and n denotes the unit outer normal to ∂Ω. Remark that ∂ϕ
∂n is

well defined as soon as Ω is regular or convex, since ϕ ∈ H2(Ω) in that case.
The computation of M ′ is more delicate and requires additional assumptions.
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Proposition 3.4. Let Ω ⊂ Rd be a bounded open convex set. Then, for every V ∈ C1(Rd), the shape derivative
of M at Ω in direction V exists and is given by

M ′(Ω, V ) = u′(x0) ,

where x0 is a maximum point for u and u′ is the solution of{
∆u′ = 0 in Ω

u′ +∇u · V ∈ H1
0 (Ω) .

Proof. Let ut denote the torsion function of Ωt, for t > 0, and consider the function ψ : R×Rd → Rd defined as

(t, x) 7→ ψ(t, x) := ∇ut(x) .

By optimality of x0 for u, we have ψ(0, x0) = 0. Moreover, the matrix Dxψ(0, x0) is invertible: indeed, setting
v :=

√
u, we have

Dxψ(0, x0) = Hessu(x0) = 2
√
M(Ω) Hessv(x0) ,

and the matrix Hessv is negative definite everywhere in Ω (see [11]). Thus, by the implicit function theorem,
we infer that, in a neighborhood of x0, for t small enough, there exists a unique xt such that ∇ut(xt) = 0;
furthermore, t 7→ xt is differentiable.

We claim that, for every t,

ut(xt) = M(Ωt) , (3.10)

and that, as t→ 0,

ut(x0)− u(x0)

t
→ u′(x0) , (3.11)

ut(xt)− ut(x0)

t
→ 0 . (3.12)

Once proved the claims we are done, indeed we have

M(Ωt)−M(Ω)

t
=
ut(xt)− u(x0)

t
=
ut(xt)− ut(x0)

t
+
ut(x0)− u(x0)

t
→ u′(x0) ,

which concludes the proof.

Let us show (3.10). As already pointed out in the proof of Theorem 3.2, exploiting [8] (Prop. 3.6.1) we infer
that the sequence ut uniformly converges to u, extended to zero in a larger common domain independent of t.
In particular, every sequence of maximizers yt for ut converges to the unique minimizer x0 of u (see, e.g., [4],
Prop. 5.2, 7.24 applied to the sequence −ut). Finally, since xt are isolated critical points in a neighborhood of
x0, they must coincide with yt, so that ut(xt) = ut(yt) = M(Ωt).

Assertion (3.11) follows by applying the mean value property to the harmonic functions ut−u and u′: choose
R > 0 such that BR(x0) ⊂ Ωt for every t� 1, then we have∣∣∣∣ut(x0)− u(x0)

t
− u′(x0)

∣∣∣∣ =

∣∣∣∣∣−
∫
BR(x0)

ut(x)− u(x)

t
− u′(x0) dx

∣∣∣∣∣ ≤ C‖(ut − u)/t− u′‖L2(BR(x0)) .

The right-hand side vanishes as t → 0, since the map t 7→ ut ∈ L2(Rd) is differentiable at 0 with derivative
d
dtubt=0= u′ (see, for instance, [8], Thm. 5.3.1).
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Similarly, property (3.12) follows by combining the mean value property of ∇ut, the differentiability of t 7→ xt,
and the strong convergence of ut to u in H1(Rd):

ut(xt)− ut(x0)

t
= ∇ut(ξt) ·

xt − x0
t

=

(
−
∫
BR(ξt)

∇ut(x) dx

)
· xt − x0

t

−→ ∇u(x0) · v0 = 0 , as t→ 0 ,

with ξt a suitable intermediate point between x0 and xt, R a positive radius such that BR(ξt) ⊂ Ωt for every
t� 1, and v0 the derivative d

dtxtbt=0. �

Remark 3.5. We point out that Proposition 3.4 is valid in a more general setting, when the torsion function
uΩ belongs to W 1,∞(Ω) and has a unique maximum point which is non degenerate (i.e. invertible Hessian at
the point). These properties are ensured by the convexity of Ω.

Theorem 3.6. Let Ω ⊂ Rd be a bounded open convex set. Then, for every V ∈ C1(Rd), the shape derivative
of G at Ω in direction V exists and is given by

G′(Ω, V ) =

∫
∂Ω

[
λ1(Ω)

∂u

∂n

∂φx0

∂n
−M(Ω)

(∂ϕ
∂n

)2]
V · ndHd−1 , (3.13)

where x0 ∈ Ω is a maximum point of u and φx0
is the (Green function) solution of{

−∆φx0
= δx0

in D′(Ω)

φx0 = 0 on ∂Ω .

Proof. First, we rewrite in terms of φx0
the derivative M ′(Ω, V ), whose existence is ensured by Proposition 3.4:

M ′(Ω, V ) = 〈−∆φx0
, u′〉 = −

∫
∂Ω

u′
∂φx0

∂n
dHd−1 =

∫
∂Ω

∂u

∂n

∂φx0

∂n
V · ndHd−1 . (3.14)

Formula (3.13) follows by combining (3.8), (3.9), and (3.14). �

As a consequence of Theorem 3.6 we obtain the following optimality condition: if Ω ⊂ Rd bounded open
convex set is a critical shape for G, then

λ1(Ω)
∂u

∂n

∂φx0

∂n
−M(Ω)

(
∂ϕ

∂n

)2

= 0 a.e. on ∂Ω . (3.15)

Now we partially answer a question raised in [22] where the author asked whether the disk could be the
maximizer for G.

Corollary 3.7. The equilateral triangle gives a better value than the disk; however it is not a critical shape
for G.

Proof. Let T ⊂ R2 be the equilateral triangle with side of length 1 and vertices in (−1/2,−1/(2
√

3)),
(1/2,−1/(2

√
3)), and (0, 1/

√
3), so that the center is at the origin. In this case, u, ϕ, M , and λ1 can be
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explicitly computed and read

u(x, y) =
1

2
√

3

(
y +

1

2
√

3

)(
y −
√

3x− 1√
3

)(
y +
√

3x− 1√
3

)

=
1

2
√

3

(
y3 − 3x2y −

√
3

2
y2 −

√
3

2
x2 +

1

6
√

3

)

ϕ(x, y) =

(
2√
3

)3/2 [
sin

(
4π

3

(
1−
√

3y
))
− 2 cos(2πx) sin

(
2π

3

(
1−
√

3y
))]

M(T ) = u(0, 0) =
1

36
, λ1(T ) =

16

3
π2 .

Therefore G(T ) = 4π2/27 ' 1.4622 while, for the unit disk D, we have G(D) = j20,1/4 ' 1.4458 which proves
the first part of the claim.

Now assume by contradiction that T is a critical shape for G. Since the normal derivative of u on ∂T is never
zero except at the vertices (where both ∇u and ∇ϕ vanish), we may recast the optimality condition (3.15) as

∂φ0
∂n

= h a.e. on ∂T , (3.16)

with h := M(Ω)(λ1(Ω))−1
(
∂u
∂n

)−1(∂ϕ
∂n

)2
. In particular, if we multiply both sides by an arbitrary harmonic

function w and integrate over ∂T , we obtain

−w(0) =

∫
∂T

whdH1 . (3.17)

By taking as test functions w ≡ 1 and w = Re(z6), we get
∫
∂T

hdH1 = −1∫
∂T

Re(z6)hdH1 = 0 .

Exploiting the symmetry of the domain and of the functions involved, these conditions can be rephrased as
follows: 

∫
Σ

hdH1 = −1

3∫
Σ

Re(z6)hdH1 = 0 ,

where Σ denotes the basis of the triangle, i.e. the segment Σ = [−1/2, 1/2]×{−1/(2
√

3)}. This system may be
rewritten as 

σ :=

∫ 1/2

0

(1 + cos(2πx))2

x2 − 1/4
dx = −27

8

τ :=

∫ 1/2

0

P (x)
(1 + cos(2πx))2

x2 − 1/4
dx = 0 ,

(3.18)

with

P (x) : = Re(z6)bΣ = (x6 − 15x4y2 + 15x2y4 − y6)by=−1/(2√3)= x6 − 5

4
x4 +

5

48
x2 − 1

1728
·
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Making use of the factorization

P (x) =

(
x2 − 1

4

)(
x4 − x2 − 7

48

)
− 1

27
,

we obtain

τ =

∫ 1/2

0

(
x4 − x2 − 7

48

)
(1 + cos(2πx))2 dx− σ

27
·

It is easy to check that ∫ 1/2

0

(1 + cos(2πx))2 dx =
3

4
;

∫ 1/2

0

x2(1 + cos(2πx))2 dx =
1

16
− 15

32π2
;

∫ 1/2

0

x4(1 + cos(2πx))2 dx =
3

320
− 15

64π2
+

189

128π4
·

Thus we get

τ +
σ

27
=

3

320
− 15

64π2
+

189

128π4
− 1

16
+

15

32π2
− 7

48
· 3

4

=
3

320
− 1

16
− 7

64
+

15

32π2
− 15

64π2
+

189

128π4

= −13

80
+

15

64π2
+

189

128π4
·

Since π is not algebraic, the last relation is in contradiction with (3.18), which in turn implies τ +σ/27 = −1/8.
Therefore we conclude that the equilateral triangle is not a critical shape. �

Remark 3.8. We point out that the choice of any test function of the form w = Rezn, for n = 1, . . . , 5, in (3.17)
does not provide any contradiction. Moreover the numerical values of σ and τ defined in the above proof are
not so far of what appears in (3.18). In some sense, the equilateral triangle is not far from being a critical point.

We conclude the Section with the proof of Proposition 3.1.

Proof of Proposition 3.1. Assume by contradiction that Ω is a maximizer for G. Given x ∈ Ω and ε > 0 a small
parameter, we set Ωε(x) the perforated domain Ω \Bε(x) and we denote by uε,x the associated torsion function.

In the limit as ε→ 0, we have the following asymptotic expansions for λ1(Ωε(x)) and uε,x in terms of λ1(Ω)
and u (cf. [6, 14], (Chap. 8)):

λ1(Ωε(x)) =


λ1(Ω) +

2π

| log ε|
ϕ2(x) + o(1/| log ε|) if d = 2

λ1(Ω) + εd−2(d− 2)ωdϕ
2(x) + o(εd−2) if d > 2

uε,x(y) =


u(y)− 2π

| log ε|
u(x)φx(y) + o(1/| log ε|) if d = 2

u(y)− εd−2(d− 2)ωdu(x)φx(y) + o(εd−2) if d > 2 ,
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where ωd is the measure of the (d−1)-sphere and φx(y) is the Green function of the Laplace operator vanishing
on the boundary of Ω. In particular, choosing x different from the maximum point x0 of u and evaluating uε,x
at x0, we obtain

M(Ωε(x)) ≥


M(Ω)− 2π

| log ε|
u(x)φx(x0) + o(r(ε)) if d = 2

M(Ω)− εd−2(d− 2)ωdu(x)φx(x0) + o(r(ε)) if d > 2 ,

where r(ε) = 1/| log ε| if d = 2 and εd−2 otherwise. In particular, we obtain the lower bound

G(Ωε(x)) ≥ G(Ω) +R(x)r(ε) + o(r(ε)) , (3.19)

with
R(x) := M(Ω)ϕ2(x)− λ1(Ω)u(x)φx0(x) (3.20)

(here we have used the symmetry of the Green function: φx(x0) = φx0(x)). To get a contradiction, it suffices to
find a point x in which R(x) > 0. Taking x close to the boundary, say x = x1 − δn(x1) for some x1 ∈ ∂Ω and
0 < δ � 1, and recalling that ϕ vanishes on ∂Ω, we may write

ϕ(x) = −δ ∂ϕ
∂n

(x1) +
δ2

2

∂2ϕ

∂n2
(x1) + o(δ2) .

Furthermore, by combining (1.5) with the relation ∆ϕ = ∆∂Ωϕ+H∂Ω
∂ϕ
∂n + ∂2ϕ

∂n2 on ∂Ω, we get

∂2ϕ

∂n2
(x1) = −H∂Ω(x1)

∂ϕ

∂n
(x1) .

Arguing in the same way for u and φx0
, we obtain the developments

u(x) = −δ ∂u
∂n

(x1) +
δ2

2

∂2u

∂n2
(x1) + o(δ2) ,

φx0
(x) = −δ ∂φx0

∂n
(x1) +

δ2

2

∂2φx0

∂n2
(x1) + o(δ2) ,

and the equalities

∂2u

∂n2
(x1) = −1−H∂Ω(x1)

∂u

∂n
(x1) ,

∂2φx0

∂n2
(x1) = −H∂Ω(x1)

∂φx0

∂n
(x1) .

In view of these computations, we infer that

R(x) =
(
δ2 + δ3H∂Ω(x1)

) [
M(Ω)

(∂ϕ
∂n

)2
− λ1(Ω)

∂u

∂n

∂φx0

∂n

]
(x1)− δ3

2
λ1(Ω)

∂φx0

∂n
(x1) + o(δ3) .

By optimality of Ω, the equality (3.15) holds true at x1, so that

R(x) = −δ
3

2
λ1(Ω)

∂φx0

∂n
(x1) + o(δ3) .

By the Hopf’s principle
∂φx0
∂n is strictly negative on the boundary ∂Ω, therefore R(x) is strictly positive. In

particular, in view of (3.19) we conclude that, if x is close enough to the boundary,

G(Ωε(x)) > G(Ω) ,

which is in contradiction with the maximality of Ω. �
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Final comment. In the conference “Shape optimization and isoperimetric and functional inequalities”, held
in CIRM – Luminy (France) on November 21–25, 2016, we had the occasion to discuss with Buttazzo and
Velichkov, who kindly gave us the proof of Theorem 2.2.

In the same conference, we announced our results to M. van den Berg, since they disproved some conjectures
he gave in [22]. Few weeks later, M. van den Berg posted [23] on ArXiv, where he gave a different proof of
our Theorem 3.3. Finally, we point out that the recent contribution [5] generalizes some of our results to more
general operators.

Acknowledgements. We thank the referee for his/her careful reading of the paper and for the useful suggestions.
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Their Applications. Birkhäuser, Boston (1989) 661–696.

[10] A.U. Kennington, Power concavity and boundary value problems. Indiana Univ. Math. J. 34 (1985) 687–704.

[11] N.J. Korevaar and J.L. Lewis, Convex solutions of certain elliptic equations have constant rank Hessians. Arch. Ration. Mech.
Anal. 97 (1987) 19–32.

[12] A.A. Kosmodem’yanskii, Sufficient conditions for the concavity of the solution of the Dirichlet problem for the equation
∆u = −1. Mat. Zametki 42 (1987) 537–542.

[13] L.G. Makar–Limanov, Solution of the Dirichlet’s problem for the equation ∆u = −1 in a convex region. Math. Notes Akademy
Sci. USSR 9 (1971) 52–53.

[14] V. Maz’ya, S. Nazarov and B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed
domains. Vol. 1. Birkhäuser, Basel (2000).
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