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SUFFICIENCY AND SENSITIVITY FOR NONLINEAR OPTIMAL CONTROL

PROBLEMS ON TIME SCALES VIA COERCIVITY ∗

Roman Šimon Hilscher1,∗∗ and Vera Zeidan2

Abstract. The main focus of this paper is to develop a sufficiency criterion for optimality in nonlinear
optimal control problems defined on time scales. In particular, it is shown that the coercivity of the
second variation together with the controllability of the linearized dynamic system are sufficient for
the weak local minimality. The method employed is based on a direct approach using the structure
of this optimal control problem. The second aim pertains to the sensitivity analysis for parametric
control problems defined on time scales with separately varying state endpoints. Assuming a slight
strengthening of the sufficiency criterion at a base value of the parameter, the perturbed problem is
shown to have a weak local minimum and the corresponding multipliers are shown to be continuously
differentiable with respect to the parameter. A link is established between (i) a modification of the
shooting method for solving the associated boundary value problem, and (ii) the sufficient conditions
involving the coercivity of the accessory problem, as opposed to the Riccati equation, which is also
used for this task. This link is new even for the continuous time setting.
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1. Introduction

Consider the nonlinear time scale optimal control problem

minimize J(x, u) := K(x(a), x(b)) +

∫ b

a

L(t, x(t), u(t))∆t (C)

subject to x ∈ C1
prd[a, b]T and u ∈ Cprd[a, ρ(b)]T such that

x∆(t) = f(t, x(t), u(t)), t ∈ [a, ρ(b)]T, (1.1)

ψ(t, u(t)) = 0, t ∈ [a, ρ(b)]T, (1.2)

ϕ(x(a), x(b)) = 0, (1.3)
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where T is a bounded time scale, i.e., an arbitrary nonempty compact subset of R. Here we set a := minT
and b := maxT and define the time scale intervals by [c, d]T := [c, d] ∩ T. We assume that cardT ≥ 2, i.e.,
a < b. For basic theory of dynamic equations on time scales we refer the reader to [9, 10, 25], and for piecewise
rd-continuous and piecewise rd-continuously differentiable functions to [28]. We assume that n,m, k, r ∈ N are
given dimensions with k ≤ m and r ≤ 2n,

L : [a, ρ(b)]T × Rn × Rm → R, K : Rn × Rn → R,
f : [a, ρ(b)]T × Rn × Rm → Rn, ϕ : Rn × Rn → Rr,
ψ : [a, ρ(b)]T × Rm → Rk,

the state x : [a, b]T → Rn is piecewise rd-continuously ∆-differentiable (C1
prd) and the control u : [a, ρ(b)]T → Rm

is piecewise rd-continuous (Cprd). The regularity of the data will be specified in Section 2, see assumptions (A1)
and (A2). The Hamiltonian corresponding to problem (C) is defined by

H(t, x, u, p, λ, λ0) := pT f(t, x, u) + λ0 L(t, x, u) + λTψ(t, u). (1.4)

A pair (x, u) is feasible for problem (C) if x ∈ C1
prd[a, b]T and u ∈ Cprd[a, ρ(b)]T and it satisfies (1.1)–(1.3).

A feasible pair (x̂, û) is a weak local minimum for (C) if there exists δ > 0 such that for any feasible pair (x, u)
with ‖(x− x̂, u− û)‖Cprd

< δ we have J(x̂, û) ≤ J(x, u), where

‖z‖Cprd
:= sup

t∈[a,ρ(b)]T

|z(t)|.

If the inequality J(x̂, û) < J(x, u) holds for all such feasible pairs (x, u) 6= (x̂, û), then (x̂, û) is a strict weak
local minimum for (C).

The formulation of problem (C) encompasses as special cases both the continuous time optimal control
problem for [a, b]T = [a, b] and the discrete time optimal control problem for [a, b]T = [0, N + 1]Z = {0, 1, . . . , N +
1}. From this point of view the study of optimal control problems on time scales provides not only a unification,
but also a valuable insight into the connections between these two extreme time domains. In many cases we can
obtain new results even for these two special domains. More importantly, in the context of general time scales
we can study “hybrid” problems, which are neither purely continuous nor purely discrete, but a combination
of both. For instance, this is the case of problems in quantum calculus [32,41], impulsive systems [29], or some
economic and population models [3, 7, 8]. See also the references in the above quoted publications.

Regarding the question of optimality conditions for problem (C), the focus during the recent years was
concentrated on deriving first and second order necessary conditions, such as the weak Pontryagin maximum
principle and the accessory problem in [31,53] and the strong Pontryagin-type maximum principle in [16,17]. In
the special case of the calculus of variations on time scales, that is, when f(t, x, u) = u and ψ(t, u) ≡ 0, necessary
as well as sufficient optimality conditions are obtained in [28] in terms of the Euler–Lagrange equation and the
nonnegativity, respectively the coercivity, of the second variation. Furthermore, in [30] the authors derived
other sufficient conditions for this problem in terms of the associated time scale Riccati matrix equation and the
strengthened Legendre condition. In the optimal control setting on time scales, i.e., for problem (C), sufficient
optimality conditions are derived in [54] in terms of the Hamilton–Jacobi equation. For linear-quadratic optimal
control problems on time scales, sufficient optimality conditions are known also in [54] and in [11–13] in terms
of the Riccati equation. However, the question of the sufficiency criteria for the nonlinear problem (C) in terms
of the second variation is completely open.

The first aim of this paper is to develop a sufficient condition for the weak local minimum of problem (C) in
terms of the coercivity of the second variation (see Thm. 3.3), thus generalizing [28], (Thm. 2) from the calculus
of variations to the optimal control setting. To obtain the sufficiency criterion in terms of the coercivity of the
second variation we could not use the known results derived for the abstract setting of infinite dimensional
optimization problems over a Banach space, see e.g. [22] with L∞ controls, because the optimality in our
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problem (C) is over the piecewise rd-continuous controls, which do not form a Banach space. For this reason,
the direct approach used in this paper is inevitable.

Optimal control problems with equality type control constraints have been well-studied for both discrete and
continuous time problems (see e.g., [27, 44,57]), as well as for the time scales setting (see e.g., [31]).

In the continuous time setting, sufficiency criteria for optimal control problems with piecewise continuous
controls are derived via the Hamilton–Jacobi theory, the Riccati differential equation, or the method of quadratic
approximations (coercivity of the second variation), see [2, 14, 15, 33, 45–47, 49]. In the present paper we follow
the latter mentioned approach.

The second aim of this paper is to study the sensitivity of the weak local minimum of problem (C) with respect
to parameters (see Thm. 4.3). Problem (Cω̂) in Section 4, corresponding to a fixed parameter ω̂, is considered
to be the unperturbed problem and it is assumed that it has a weak local minimum (x̂, û). An important
problem in sensitivity analysis is the following: Find conditions on the unperturbed optimal solution (x̂, û) such
that the perturbed problem (Cω) admits an optimal solution

(
x(·, ω), u(·, ω)

)
near (x̂, û) that is a continuously

differentiable function of the parameter ω near ω̂. It is well documented that this type of sensitivity results in
optimization and optimal control are strongly based on having second-order sufficient optimality condition that
are stable under small perturbation.

In the case of discrete time setting, the optimal control can be formulated as a mathematical programming
problem in finite dimension, and known sensitivity results in mathematical programming are adapted to them,
see [23]. For the continuous time setting one approach to sensitivity analysis is to apply results obtained for
abstract optimization problems over Banach or Hilbert spaces, see e.g. [36] and [22]. Since our optimal control
problem is not over a Banach space, this approach cannot be used here. There is a second approach that
directly deals with the second-order sensitivity analysis for nonlinear control problems. It mainly concerns with
developing neighboring feedback schemes for perturbed solutions, which lead to having to solve a boundary value
problem (BVP) via the shooting method. The main idea goes back to [18,19], and was followed by many papers
which suffer by being formal. A rigorous result in this direction was given in [42], which was generalized in [37].
However, the sufficient conditions used in [37, 42] involved the existence of a solution of a Riccati differential
equation, which also served in [37] to prove that the iteration matrix of the shooting method is nonsingular.

In this paper we intend to use the approach of shooting method for the general time scale setting. Since our
sufficiency criterion involves the coercivity of the second variation instead of the Riccati equation, a serious
modification to this approach is necessary to be made in order to solve the time scale (BVP). Furthermore,
unlike the problems in [37, 42] we allow both endpoints to vary, and hence our result here is more general than
those in [37,42], even when we specialize it to the continuous time setting.

The paper is organized as follows. In Section 2 we introduce notation and state main assumptions and known
results about problem (C). In Section 3 we discuss the coercivity of the second variation of the functional J and
its role in sufficiency criteria for problem (C). In Section 4 we perform the sensitivity analysis for problem (C)
depending on a parameter and with separated endpoints. In Section 5 contains conclusions and remarks about
the presented theory. Finally, in Appendix A we present the proofs of two important approximation lemmas
(Lem. 3.4 and 3.6).

Remark 1.1. Optimization problems over time scales are often considered in the form with the shifted state
xσ(t) := x(σ(t)) instead of x(t), where σ(t) is the forward jump operator at t. This form is known in the calculus
of variations setting [5,6,20,28–30,38–40] as well as in the optimal control setting [31,53,54]. In the latter case
the shifted state xσ(t) appears in the Lagrangian L and the dynamics f . We denote such an optimal control
problem by (Cσ). The form of our problem (C) with x(t) only is however more natural, since the equation of
motion at the instant t does not depend on the future values of the state, i.e., on the values at σ(t). Nevertheless,
in view of ([54], Sect. 3) the optimal control problems (C) and (Cσ) are equivalent by using a transformation
involving the implicit function theorem. In this case the resulting costate function p̂(t) in formulas (2.11), (2.12),
and (2.16) below appears without the shift, see ([31], Sects. 6 and 7 and [54], Sect. 6). With this understanding
the main results of this paper apply also to such a problem (Cσ).
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2. Optimal control problem on time scales

In this section we recall basic notions and results about the optimal control problem (C). The objectives
are to state and analyze the main assumptions and to recall known results used in the rest of this paper:
the M -controllability, the weak Pontryagin maximum principle on time scales, and the second variation of
problem (C).

Let (x̂, û) be a feasible pair for problem (C). Consider the matrices A(t) ∈ Rn×n, B(t) ∈ Rn×m, M ∈ Rr×2n,
and N(t) ∈ Rk×m given by

A(t) := fx(t, x̂(t), û(t)), B(t) := fu(t, x̂(t), û(t)), (2.1)

M := ∇ϕ(x̂(a), x̂(b)), N(t) := ∇u ψ(t, û(t)). (2.2)

For ε > 0 we define the ε-tube about the function (x̂, û) as

Tε(x̂, û) :=
{

(t, x, u) ∈ [a, ρ(b)]T × Rn × Rm such that
∣∣(x, u)− (x̂(t), û(t))

∣∣ < ε
}
, (2.3)

the projection of Tε(x̂, û) onto Rn × Rm as

PTε(x̂, û) :=
{

(x, u) ∈ Rn × Rm such that ∃ t ∈ [a, ρ(b)]T :
∣∣(x, u)− (x̂(t), û(t))

∣∣ < ε
}
,

and the ε-ball about the vector ŷ ∈ Rj by

Bε(ŷ) :=
{
y ∈ Rj such that |y − ŷ| < ε

}
.

If (x, u) is another feasible pair for problem (C), then the notation (x, u) ∈ Tε(x̂, û) means that (t, x(t), u(t)) ∈
Tε(x̂, û) for all t ∈ [a, ρ(b)]T. Here ρ(t) is the backward jump operator at t and µ(t) := σ(t)− t is the graininess
function at the point t.

The assumptions on the regularity of the data h(t, x, u) := (L(t, x, u), f(t, x, u), ψ(t, u)), K(x, y), and ϕ(x, y)
of problem (C) near the feasible pair (x̂, û) are summarized in the following.

(A1) There exists ε1 > 0 such that the functions K(·) and ϕ(·) are continuously differentiable on Bε1
(
x̂(a), x̂(b)

)
;

the function h(t, ·, ·) is differentiable in (x, u) on Bε1
(
x̂(t), û(t)

)
; the functions h(t, ·, ·) and∇(x,u)h(t, ·, ·) are

continuous at (x̂, û) uniformly in t; and for (x, u) in PTε1(x̂, û) the functions h(·, x, u) and ∇(x,u)h(·, x, u)
are rd-continuous on [a, ρ(b)]T; the n× n matrix I + µ(t) fx(t, x̂(t), û(t)) is invertible for all t ∈ [a, ρ(b)]T;
the matrices M and N(t) for t ∈ [a, ρ(b)]T have full rank.

(A2) There exists ε1 > 0 such that the functions K(·) and ϕ(·) are twice continuously differentiable on
Bε1
(
x̂(a), x̂(b)

)
; the function h(t, ·, ·) is twice differentiable in (x, u) on Bε1

(
x̂(t), û(t)

)
; the functions

h(t, ·, ·),∇(x,u)h(t, ·, ·), and∇2
(x,u)h(t, ·, ·) are continuous at (x̂, û) uniformly in t; and for (x, u) in PTε1(x̂, û)

the functions h(·, x, u), ∇(x,u)h(·, x, u), and ∇2
(x,u)h(·, x, u) are rd-continuous on [a, ρ(b)]T; the n×n matrix

I + µ(t) fx(t, x̂(t), û(t)) is invertible for all t ∈ [a, ρ(b)]T; the matrices M and N(t) for t ∈ [a, ρ(b)]T have
full rank.

Remark 2.1. We recall from Definition 2 of [28] that h(t, ·, ·) is continuous in (x, u) at the feasible pair (x̂, û)
uniformly in t on [a, ρ(b)]T if for every ε > 0 there exists δ > 0 such that for all t ∈ [a, ρ(b)]T and all (x, u) ∈
Rn × Rm with 0 < |(x, u)− (x̂(t), û(t))| < δ we have

∣∣h(t, x, u)− h(t, x̂(t), û(t))
∣∣ < ε.

Remark 2.2. The assumptions involving the function h in (A1) are automatically satisfied, whenever h(·, ·, ·)
and ∇(x,u)h(·, ·, ·) are Crd × C × C continuous on the tube Tε(x̂, û), see ([28], Def. 3 and Cor. 1). Similarly,
the assumptions involving the function h in (A2) are automatically satisfied, whenever h(·, ·, ·), ∇(x,u)h(·, ·, ·),
and ∇2

(x,u)h(·, ·, ·) are Crd × C × C continuous on the tube Tε(x̂, û). In particular, if the function h(·, ·, ·) is

autonomous (independent of t) and of class C1, resp. C2, on Rn × Rm, then the regularity assumption (A1),
resp. (A2), is satisfied.
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Remark 2.3. The assumption of N(t) invertible is customary in optimization in order û to be a regular
point for the control constraints ([35], Chap. 10). Moreover, inspired by the notion of piecewise continuous
invertible matrices in the continuous time setting, the assumption in (A1) and (A2) that N(t) has full rank for
all t ∈ [a, ρ(b)]T also includes the full rank of the one-sided limits N(t±) at left-dense and right dense points
t ∈ [a, ρ(b)]T. As a consequence, we obtain that the inverse matrix function [N(t)NT (t)]−1 is also piecewise
rd-continuous on [a, ρ(b)]T.

Remark 2.4. We note that if the point b is left-scattered and ε > 0 and the tube Tε(x̂, û) are given, then
there exists δ ∈ (0, ε] such that for every feasible pair (x, u) ∈ Tε(x̂, û) with (xρ(b), uρ(b)) ∈ Bδ(x̂ρ(b), ûρ(b)) we
have x(b) ∈ Bδ+εµ(ρ(b))(x̂(b)) ⊆ Bε[1+µ(ρ(b))](x̂(b)). This means that for (x, u) ∈ Tε(x̂, û) the distance x(b)− x̂(b)
is also controlled when the point b is left-scattered, even though the values x(b) and x̂(b) are not in this case
explicitly present in the expression for Tε(x̂, û) in (2.3).

In Lemma 3 of [28], we established conditions which guarantee the composition of h(t, ·, ·) with (x̂(·), û(·)) to
be piecewise rd-continuous on [a, ρ(b)]T.

Lemma 2.5. Let (x̂, û) be feasible for (C) and h be defined on a tube Tε(x̂, û). If h(t, ·, ·) is continuous at (x̂, û)
uniformly in t on [a, ρ(b)]T and if for (x, u) ∈ PTε(x̂, û) the function h(·, x, u) is rd-continuous on [a, ρ(b)]T, then
h(·, x̂(·), û(·)) is piecewise rd-continuous on [a, ρ(b)]T.

Remark 2.6. A close look at the proof of Lemma 3 of [28] easily shows that in the above lemma the rd-
continuity of h(·, x, u) for any (x, u) ∈ PTε(x̂, û) can be weakened by only assuming

(i) for any right-dense point tr ∈ [a, b)T at which the control û is continuous, the function h(·, x̂(tr), û(tr)) is
continuous at tr;

(ii) at any right-dense tr ∈ [a, b)T and any left-dense point tl ∈ (a, b]T, the one-sided limits
limt→t+r h(t, x̂(tr), û(t+r )) and limt→t−l

h(t, x̂(tl), û(t−l )) exist and are finite.

In the next lemma we show that the conclusion of Lemma 2.5 can be transfered into functions (x, u) suffi-
ciently close to (x̂, û). This result then implies that the assumption on the integrability of h(·, x(·), u(·)) and
∇(x,u)h(·, x(·), u(·)) used in assumption (A1) and (A2) from [31] can be dropped.

Lemma 2.7. Let h(·, ·, ·) be defined on Tε1(x̂, û). If ∇(x,u)h(t, ·, ·) is continuous at (x̂, û) uniformly in t on
[a, ρ(b)]T and if for (ξ, v) ∈ PTε1(x̂, û) the function ∇(x,u)h(·, ξ, v) is rd-continuous on [a, ρ(b)]T, then there exists
δ0 ∈ (0, ε1) such that for every pair (x, u) ∈ Tδ0(x̂, û) and for ` := ‖∇(x,u)h(·, x̂(·), û(·))‖Cprd

+ 1, we have

(i) ‖∇(x,u)h(·, x(·), u(·))‖Cprd
≤ `,

(ii) h(t, ·, ·) is continuous at the pair (x, u) uniformly in t on [a, ρ(b)]T.

If in addition we assume that the function h(·, ξ, v) is rd-continuous on [a, ρ(b)]T for any vector (ξ, v) ∈
PTδ0(x̂, û), then

(iii) h(·, x(·), u(·)) is piecewise rd-continuous on [a, ρ(b)]T.

Proof. We abbreviate ẑ(·) := (x̂(·), û(·)) and z(·) := (x(·), u(·)). Since ẑ and ∇zh satisfy for ε = ε1 the assump-
tions of Lemma 2.5, it follows that ∇zh(·, ẑ(·)) is piecewise rd-continuous on [a, ρ(b)]T. Therefore, the number
k := ‖∇zh(·, ẑ(·))‖Cprd

= `− 1 is finite. The continuity of ∇zh(t, ·) at ẑ uniformly in t implies that there exists
δ ∈ (0, ε1) such that

for all (t, w) ∈ [a, ρ(b)]T × Rn+m such that |w − ẑ(t)| < δ we have |∇zh(t, w)| ≤ `. (2.4)

Hence, for any δ0 ∈ (0, δ] and for all z ∈ Tδ0(ẑ), we have ‖∇zh(·, z(·))‖Cprd
≤ `, and thus, part (i) is proven for

any δ0 ∈ (0, δ]. For part (ii), we set δ0 := δ/2 and let z be any function in Tδ0(ẑ). To show the uniform continuity
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of h(t, ·, ·) at z, take any ε > 0 and let δε := min{ε/`, δ0}. Then, by the generalized mean value theorem, for
every (t, y) ∈ [a, ρ(b)]T × Rn+m such that |y − z(t)| < δε we have∣∣h(t, y)− h(t, z(t))

∣∣ ≤ sup
{∣∣∇zh(t, z(t) + τ [y − z(t)]

)∣∣, τ ∈ [0, 1]
}
|y − z(t)|. (2.5)

Set wτ (t) := z(t) + τ(y − z(t)). Then, for all τ ∈ [0, 1] and for all t ∈ [a, ρ(b)]T we have

|wτ (t)− ẑ(t)| ≤ |z(t)− ẑ(t)|+ |y − z(t)| ≤ δ0 + δε ≤ 2 δ0 = δ.

Hence, applying (2.4) to wτ (t) and using (2.5) it follows that∣∣h(t, y)− h(t, z(t))
∣∣ ≤ ` |y − z(t)| < ` δε ≤ ε,

which proves (ii) for z ∈ Tδ0(ẑ). Finally, part (iii) now follows from part (ii) and Lemma 2.5, in which we take
ε := δ0. �

Define the tangent spaces T (t) and the space T of tangent functions by

T (t) := {v ∈ Rm, N(t) v = 0},
T := {v(·) ∈ Cprd[a, ρ(b)]T, v(t) ∈ T (t) for all t ∈ [a, ρ(b)]T}.

The assumption that N(t) has full rank k for all t ∈ [a, ρ(b)]T implies that one can choose the function Y :
[a, ρ(b)]T → Rm×(m−k), Y ∈ Cprd, such that the columns of Y (t) form an orthonormal basis for the space T (t).
That is, we have

Y T (t)Y (t) = I, ImY (t) = T (t) = KerN(t), N(t)Y (t) = 0, t ∈ [a, ρ(b)]T. (2.6)

According to Definition 9.1 of [31], the linear system

η∆ = A(t) η + B(t) v, t ∈ [a, ρ(b)]T, (2.7)

is said to be M -controllable over T if for any vector d ∈ Rr there exists a vector α ∈ Rn and a function v ∈ T
such that the solution η of the initial value problem (2.7) with η(a) = α satisfies M

(
η(a)
η(b)

)
= d.

Remark 2.8. Throughout the paper we denote by Φ(t) the fundamental matrix of system (2.7), that is, Φ(t) is
the solution of the initial value problem Φ∆ = A(t)Φ on [a, ρ(b)]T with Φ(a) = I. Since the matrix I +µ(t)A(t)
is assumed to be invertible on [a, ρ(b)]T, the matrix A(t) is regressive on [a, ρ(b)]T and it follows that Φ(t) is
invertible on [a, b]T, see [9] (Thm. 5.21) and also [50] (Prop. 2.1). The solutions of (2.7) can be then expressed
via the variation of constants formula ([9], Thm. 5.27) as

η(t) = Φ(t) η(a) + Φ(t)

∫ t

a

[Φσ(τ)]−1B(τ) v(τ)∆τ, t ∈ [a, b]T. (2.8)

The following characterization of the M -controllability of (2.7) over T in terms of the associated Grammian
matrix is proven in the same way as in [31], (Prop. 4.6).

Proposition 2.9. Assume that the matrices M =
(
Ma Mb

)
and N(t) have full rank and that I + µ(t)A(t) is

invertible on [a, ρ(b)]T. Then the linear system (2.7) is M -controllable over T if and only if there exists ε0 > 0
such that the r × r Grammian matrix

Z := ε2
0DDT +

∫ b

a

E(t) ET (t)∆t > 0, (2.9)
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i.e., Z is positive definite, where D ∈ Rr×n and E(t) ∈ Rr×(m−k) are matrices defined by

D := M

(
I

Φ(b)

)
= Ma +Mb Φ(b), E(t) := Mb Φ(b) [Φσ(t)]−1B(t)Y (t). (2.10)

The weak Pontryagin maximum principle on time scales for problem (C) is proven in [31], (Thm. 9.4).

Proposition 2.10. Assume that (x̂, û) is a weak local minimum for problem (C) such that the assumption (A1)
holds. Then there exists a constant λ0 ≥ 0, a vector γ̂ ∈ Rr, a function λ̂ : [a, ρ(b)]T → Rk, λ̂ ∈ Cprd, and
a function p̂ : [a, b]T → Rn, p̂ ∈ C1

prd, such that λ0 + ‖p̂‖C 6= 0 and satisfying the conditions

−p̂∆(t) = ∇xHT (t, x̂(t), û(t), p̂σ(t), λ̂(t), λ0), t ∈ [a, ρ(b)]T, (2.11)

∇uHT (t, x̂(t), û(t), p̂σ(t), λ̂(t), λ0) = 0, t ∈ [a, ρ(b)]T, (2.12)(
−p̂(a)

p̂(b)

)
= λ0∇KT (x̂(a), x̂(b)) +MT γ̂. (2.13)

Moreover, if the system (2.7) is M -controllable over T , then we may take λ0 = 1 and in this case the quantities
γ̂, λ̂(·), and p̂(·) are unique.

Let (x̂, û) be a feasible pair satisfying assumption (A2). We recall from Section 9 of [31] the following notions.
A pair (η, v) is called an admissible direction (or a tangent direction) if η ∈ C1

prd[a, b]T, v ∈ Cprd[a, ρ(b)]T, and

η∆(t) = A(t) η(t) + B(t) v(t), N(t) v(t) = 0, t ∈ [a, ρ(b)]T, M

(
η(a)

η(b)

)
= 0. (2.14)

The second variation of the functional J in problem (C) at (x̂, û) in the admissible direction (η, v) is defined as
the quantity

J ′′(η, v) :=
1

2

(
η(a)

η(b)

)T
Γ

(
η(a)

η(b)

)
+

1

2

∫ b

a

(
η(t)

v(t)

)T
∇2

(x,u) Ĥ(t)

(
η(t)

v(t)

)
∆t, (2.15)

where the function ∇2
(x,u) Ĥ(t) on [a, ρ(b)]T is given

∇2
(x,u)Ĥ(t) := ∇2

(x,u)H(t, x̂(t), û(t), p̂σ(t), λ̂(t), 1) (2.16)

and the symmetric 2n× 2n matrix Γ is defined by

Γ := ∇2K(x̂(a), x̂(b)) + γ̂T∇2ϕ(x̂(a), x̂(b)). (2.17)

When (η, v) varies in the space of admissible directions, then J ′′ becomes a quadratic functional.

3. Sufficiency VIA coercivity

In this section we prove the first main result of this paper (Thm. 3.3 below), namely a sufficient condition for
a strict weak local minimum in problem (C) expressed in terms of the coercivity of the second variation J ′′. It
is known in [31], (Thm. 9.7) that the nonnegativity of the second variation is a necessary condition for a weak
local minimum in (C). In this respect the gap between the necessary condition (the nonnegativity of J ′′) and
the presented sufficient condition (the coercivity of J ′′) is as small as possible. The examples illustrating this
fact are already known in the calculus of variations setting, see e.g. [28, 30].
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Definition 3.1. The functional J ′′ is coercive if there exists α > 0 such that

J ′′(η, v) ≥ α

2

{
|η(a)|2 + |η(b)|2 +

∫ b

a

(
|η(t)|2 + |v(t)|2

)
∆t

}
(3.1)

for all admissible directions (η, v).

Remark 3.2. One can easily show by using the variation of constants formula (2.8) that the above definition
of the coercivity is equivalent to removing the term |η(t)|2 from the integrand. Indeed, assume that there exists
β > 0 such that for all admissible directions (η, v) we have

J ′′(η, v) ≥ β

2

{
|η(a)|2 + |η(b)|2 +

∫ b

a

|v(t)|2∆t
}
. (3.2)

Then we obtain from (2.8) by the Schwarz and arithmetic–geometric mean inequalities for some constant k > 0
the estimate

|η(t)|2 ≤ k
{
|η(a)|2 +

∫ b

a

|v(t)|2∆t
}
,

which upon adding the term k |η(b)|2 on the right–hand side and integration over [a, b]T yields∫ b

a

|η(t)|2∆t ≤ k(b− a)

{
|η(a)|2 + |η(b)|2 +

∫ b

a

|v(t)|2∆t
}
. (3.3)

Therefore, if (3.2) holds, then by (3.3) we get

J ′′(η, v) ≥ β

4

{
|η(a)|2 + |η(b)|2 +

∫ b

a

|v(t)|2∆t
}

+
β

4k(b− a)

∫ b

a

|η(t)|2

≥ α

2

{
|η(a)|2 + |η(b)|2 +

∫ b

a

(
|η(t)|2 + |v(t)|2

)
∆t

}
, α := min

{
β

2
,

β

2k(b− a)

}
,

showing that (3.1) is satisfied. The coercivity condition in (3.2) is used e.g. for the time scale calculus of
variations problem in [28], (Sect. 6), where v(t) = η∆(t).

The following theorem is a direct generalization of Theorem 2 of [28] from the calculus of variations setting
to the optimal control setting on time scales. This result also extends the sufficient condition for continuous
time nonlinear optimal control problems in [55], (Thm. 2.3).

Theorem 3.3 (Sufficiency for problem (C)). Let (x̂, û) be feasible for problem (C), assumption (A2) holds, and
system (2.7) is M -controllable over T . Let p̂(·), λ̂(·), λ0 = 1, and γ̂ satisfy the weak Pontryagin maximum
principle (Prop. 2.10) and assume that the second variation of the functional J at (x̂, û) is coercive, i.e., for
some α > 0 inequality (3.1) holds for all admissible directions (η, v). Then (x̂, û) is a strict weak local minimum
for (C). In addition, there exists δ0 > 0 such that for any feasible pair (x, u) with ‖(x− x̂, u− û)‖Cprd

< δ0 we
have

J(x, u)−J(x̂, û) ≥ α

16

{
|x(a)−x̂(a)|2+|x(b)−x̂(b)|2 +

∫ b

a

(
|x(t)−x̂(t)|2+|u(t)−û(t)|2

)
∆t

}
.

The proof of Theorem 3.3 is displayed below after important preparatory lemmas. The first lemma states that
the difference (x, u) − (x̂, û) of two feasible pairs (x, u) and (x̂, û) can be approximated by an admissible pair
(η, v). This statement generalizes Lemma 7 of [28] to the control setting. Its proof is displayed in Appendix A.
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Lemma 3.4. Let (x̂, û) be a feasible pair for (C), assumption (A1) holds, and system (2.7) is M -controllable
over T . Then for every ε > 0 there exists δ > 0 such that for any feasible pair (x, u) with ‖(x− x̂, u− û)‖Cprd

< δ
there exists an admissible direction (η, v), i.e., a solution of (2.14), which satisfies for all t ∈ [a, ρ(b)]T the
estimate ∣∣(x(t)− x̂(t)− η(t), u(t)− û(t)− v(t)

)∣∣
≤ ε

{∣∣(x(a)− x̂(a), x(b)− x̂(b)
)∣∣+

∫ b

a

∣∣(x(t)− x̂(t), u(t)− û(t)
)∣∣∆t}. (3.4)

In addition, if b is left-scattered, then inequality (3.4) with |x(b) − x̂(b) − η(b)| on its left-hand side is also
satisfied.

Remark 3.5. In the calculus of variations setting, see e.g. [6, 28], we have f(t, x, u) = u and no control
constraints. In this case m = k = n, A(t) ≡ 0, B(t) ≡ I, Y (t) ≡ I, N(t) ≡ 0, Φ(t) ≡ I on [a, ρ(b)]T. This yields
that

D = Ma +Mb, E(t) ≡Mb, Z = ε2
0 (Ma +Mb) (MT

a +MT
b ) + (b− a)MbM

T
b .

The problem (C) is then always M -controllable, which can be also seen from the invertibility of the above matrix
Z. Indeed, Z is in this case positive semidefinite (for all ε0 > 0), and if Zω = 0 for some ω ∈ Rr, then MT

b ω = 0
as well as MT

a ω = 0, i.e., MTω = 0. But since M has full rank, it follows that ω = 0. The construction of the
pair (η̃, ṽ) in (A.16) and (A.15) in the proof of Lemma 3.4 in Appendix A then reduces to g(t) ≡ 0, π(t) ≡ 0,
ν(t) ≡ 0, β = 0, and

α̃ = −ε2
0 (MT

a +MT
b )Z−1γ,

ṽ(t) = −MT
b Z−1γ = η̃∆(t), t ∈ [a, ρ(b)]T,

η̃(t) = −ε2
0 (MT

a +MT
b )Z−1γ − (t− a)MT

b Z−1γ, t ∈ [a, b]T.

In the proof of Lemma 7, page 160 from [28] we have used a slightly simpler construction of a constant function
η̃∆(t) and a linear function η̃(t) with the aid of the matrix (MMT )−1. In this respect it is quite surprising
that such an explicit construction of (η̃, ṽ) is also possible in the optimal control setting. In this construction
we can appreciate the crucial role of the matrix Z, whose invertibility characterizes the M -controllability of
system (2.7) over T , according to Proposition 2.9.

The second lemma provides an estimate for the second variation of J evaluated at the difference between
a feasible pair (x, u) and the reference pair (x̂, û). Its proof is also displayed in Appendix A.

Lemma 3.6. Let (x̂, û) be feasible for problem (C), assumption (A2) holds, and system (2.7) is M -controllable
over T . If the functional J ′′ at (x̂, û) is coercive for some α > 0, then there exists δ0 > 0 such that for all
feasible pairs (x, u) with ‖(x− x̂, u− û)‖Cprd

< δ0 we have

J ′′(x−x̂, u−û) ≥ α

8

{
|x(a)−x̂(a)|2+|x(b)−x̂(b)|2+

∫ b

a

(
|x(t)−x̂(t)|2+|u(t)−û(t)|2

)
∆t

}
.

We are now ready to present the proof of Theorem 3.3.

Proof of Theorem 3.3. First we recall the definition of the Hamiltonian H(t, x, u, p, λ, λ0) with λ0 = 1 in (1.4).
Let (x̂, û) be feasible and let p̂(·), λ̂(·), λ0 = 1, and γ̂ be the associated functions satisfying the weak Pontryagin
maximum principle (Prop. 2.10). Moreover, let the second variation of J at (x̂, û) be coercive with a constant
α > 0 as in (3.1). As in (2.16), we use the notation Ĥ(t) := H(t, x̂(t), û(t), p̂σ(t), λ̂(t), 1), and if (x, u) is another
feasible pair, then we set H(t) := H(t, x(t), u(t), p̂σ(t), λ̂(t), 1). Similar notation will be used for the gradient
and Hessian matrix of Ĥ(t) and H(t) with respect to the second and third variables. We adopt the notation

dx̂(t) := x(t)− x̂(t), t ∈ [a, b]T, dû(t) := u(t)− û(t), t ∈ [a, ρ(b)]T, (3.5)
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and set c := (dx̂T (a),dx̂T (b))T and dŷ(t) := (dx̂T (t),dûT (t))T . By the second order Taylor expansion and the
integration by parts, we calculate the difference

J(x, u)− J(x̂, û) = (K + γ̂Tϕ)(x(a), x(b))− (K + γ̂Tϕ)(x̂(a), x̂(b))

+

∫ b

a

{
H(t)− Ĥ(t)− [p̂σ(t)]Tdx̂∆(t)

}
∆t

=

[
∇K(x̂(a), x̂(b)) + γ̂TM +

(
p̂(a)
−p̂(b)

)T ]
c+

1

2
cT ∇2

(
KT + γ̂T∇2ϕT

)
(ω0, ζ0) c

+

∫ b

a

{(
∇xĤ(t) + [p̂∆(t)]T

)
dx̂(t) +∇uĤ(t) dû(t)

+
1

2
dŷT (t)∇2

(x,u)H(t, ξ0(t), ν0(t), p̂σ(t), λ̂(t), 1) dŷ(t)

}
∆t, (3.6)

where (
ω0

ζ0

)
=

(
x̂(a)

x̂(b)

)
+ θ1 c,

(
ξ0(t)

ν0(t)

)
=

(
x̂(t)

û(t)

)
+ θ2(t) dŷ(t), t ∈ [a, ρ(b)]T,

with θ1 ∈ (0, 1) and θ2(t) ∈ (0, 1) for all t ∈ [a, ρ(b)]T. We now apply the first order conditions from the weak
Pontryagin maximum principle (Prop. 2.10) and subtract and add the term J ′′(dx̂, dû) in (3.6) to get

J(x, u)− J(x̂, û) = J ′′(dx̂, dû) +
1

2
cT
[
∇2(K + γ̂Tϕ)(ω0, ζ0)− Γ

]
c

+
1

2

∫ b

a

{
dŷT (t)

[
∇2

(x,u)H(t, ξ0(t), ν0(t), p̂σ(t), λ̂(t), 1)−∇2
(x,u)Ĥ(t)

]
dŷ(t)

}
∆t,

where Γ is given in (2.17). By the continuity of ∇2(K + γ̂Tϕ)(·, ·) and by the continuity of
∇2

(x,u)H(t, ·, ·, p̂σ(t), λ̂(t), 1) at (x̂, û) uniformly in t on [a, ρ(b)]T, for every β > 0 there exists δ1 > 0 (with

δ1 < ε1) such that for any (ω, ζ) ∈ Bδ1(x̂(a), x̂(b)) and for any (ξ, ν) ∈ Rn × Rm and t ∈ [a, ρ(b)]T with
(t, ξ, ν) ∈ Tδ1(x̂, û) we have∣∣∇2(K + γ̂Tϕ)(ω, ζ)− Γ

∣∣ < β,
∣∣∇2

(x,u)H(t, ξ, ν, p̂σ(t), λ̂(t), 1)−∇2
(x,u)Ĥ(t)

∣∣ < β. (3.7)

Put δ := min{δ0, δ1, ε1}, where δ0 is the number from Lemma 3.6 and δ1 is the number from above corresponding
to β := α/8. Then by Lemma 3.6 and inequality (3.7) for any feasible pair (x, u) with ‖(dx̂,dû)‖Cprd

< δ we
have

J(x, u)− J(x̂, û) ≥
(
α

8
− β

2

){
|c|2 +

∫ b

a

|dŷ(t)|2∆t
}

=
α

16

{
|dx̂(a)|2 + |dx̂(b)|2 +

∫ b

a

(
|dx̂(t)

∣∣2 + |dû(t)|2
)
∆t

}
.

Therefore, (x̂, û) is a strict weak local minimum for problem (C). We note that the term
(1/2) dŷT (t)∇2

(x,u)H(t, ξ0(t), ν0(t), p̂σ(t), λ̂(t), 1) dŷ(t) used in the above calculations is indeed integrable on

[a, b]T, since it is equal to H(t) − Ĥ(t) − ∇(x,u)Ĥ(t) dŷ(t) on [a, ρ(b)]T, which is an rd-continuous function
by Lemma 2.7 (iii). The proof is now complete. �

We illustrate the applicability of Theorem 3.3 by the following example, which was analyzed in the continuous
time setting in [45], Example 3.1.
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Example 3.7. Consider the time scale T := [0, 1] ∪ [2, 3], which is denoted by [0, 3]T. Define the following
optimal control problem on [0, 3]T by

minimize J(x, u) :=

∫ 3

0

{
u3

1(t)− 1

2
u2

2(t)− 1

8
x(t)u1(t)

}
∆t (3.8)

subject to x ∈ C1
prd[0, 3]T and u ∈ Cprd[0, 3]T such that

x∆(t) = −1

8
x(t) + u1(t), u2

1(t) + u2
2(t) = 4, t ∈ [0, 3]T, x(0) = 0 = x(3).

Here n = 1, m = 2, k = 1, r = 2, and u = (u1, u2)T . The goal is to use Theorem 3.3 to show that the feasible
pair (x̂, û) with x̂(t) ≡ 0 and û(t) ≡ (0, 2)T on [0, 3]T is a weak local minimum for problem (3.8). It is immediate
that assumption (A2) holds, where M = I2×2 and N(t) ≡ (0, 4) are of full rank, and I + µ(t) fx

(
t, x̂(t), û(t)

)
=

1− 1
8 µ(t) ≥ 1− 1

8 > 0 on [0, 3]T. System (2.14) with v = (v1, v2)T is then of the form

η∆(t) = −1

8
η(t) + v1(t), v2(t) ≡ 0, t ∈ [0, 3]T, η(0) = 0 = η(3). (3.9)

That is, A(t) ≡ − 1
8 and B(t) ≡ (1, 0) on [0, 3]T. Hence, the system in (3.9) is in this case M -controllable over

the set T = {v(·) = (v1(·), 0)T , v1 ∈ Cprd[0, 3]T}, as it can be seen directly or via Theorem 9.3 of [31].

Set p̂(t) ≡ 0, λ̂(t) ≡ 1
2 , λ0 = 1, and take any γ̂ ∈ R2. Then clearly (x̂, û, p̂, λ, 1, γ̂) satisfies the weak Pontryagin

maximum principle (Prop. 2.10). According to (2.15) and taking into account that v2(t) ≡ 0, the second variation
of (3.8) at (x̂, û) is

J ′′(η, v1) :=
1

2

∫ 3

0

{
v2

1(t)− 1

4
η(t) v1(t)

}
∆t, (3.10)

where the functions η ∈ C1
prd[0, 3]T and v1 ∈ Cprd[0, 3]T satisfy (3.9). We first prove the positivity of (3.10) via

the Picone formula in Proposition 4.11 from [54]. We set

W (t) :=


1

8
tan

(
− 1

8
t+

1

8
+ arctan

71

56

)
, t ∈ [0, 1],

1

8
tan

(
− 1

8
t+

1

4
+
π

4

)
, t ∈ [2, 3].

Then W (t) is a solution of the Riccati dynamic equation

W∆ +

(
Wσ +

1

8

)2

1− µ(t)Wσ
+

1

64
= 0, t ∈ [0, 3]T,

with K(t) := 1−µ(t)Wσ(t) ≥ 1−W (2) = 7
8 > 0 on [0, 3]T. Thus, by Proposition 4.11 of [54], it follows that for

any pair (η, v1) admissible for (3.10) we have

J ′′(η, v1) =
1

2

∫ 3

0

z2(t)

K(t)
∆t ≥ 0, (3.11)

where z(t) := K(t) v1(t) −M(t) η(t) and M(t) := 1
8 K(t) + Wσ(t) on [0, 3]T. In addition, if J ′′(η, v1) = 0 for

such a pair (η, v1), then (3.11) yields that z(t) ≡ 0, which by (3.9) means that η satisfies the linear dynamic
equation η∆(t) = [Wσ(t)/K(t)] η(t) on [0, 3]T with η(0) = 0 = η(3). This implies by the uniqueness of solutions
that η(t) ≡ 0, and hence by (3.9) that also v1(t) ≡ 0 on [0, 3]T. Therefore, the functional J ′′(η, v1) is positive.
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To prove that J ′′(η, v1) is coercive we notice from (3.9) that v1(t) = η∆(t) + 1
8 η(t) on [0, 3]T, and hence

J ′′(η, v1) = I(η) :=
1

2

∫ 3

0

{
[η∆(t)]2 − 1

64
η2(t)

}
∆t,

where η ∈ C1
prd[0, 3]T with η(0) = 0 = η(3). Note that the functional I(η) is positive and the corresponding

strengthened Legendre condition R(t±) ≡ 1 > 0 at dense points of [0, 3]T holds. Thus, the functional I(η) is
coercive in η∆ by applying the version of Theorem 4.1 from [30] for quadratic forms without shift in η, see also
Proposition 3 of [51] and Remark 1.1. It follows that there exists β > 0 such that for any η ∈ C1

prd[0, 3]T with
η(0) = 0 = η(3) we have

I(η) ≥ β

2

∫ 3

0

∣∣η∆(t)
∣∣2∆t ≥ α

2

∫ 3

0

v2
1(t)∆t =

α

2

∫ 3

0

v2(t)∆t, (3.12)

where α := 7β/128 > 0 and where the last inequality in (3.12) is obtained by using (3.9) and the Cauchy–
Schwarz inequality. Whence, we proved that the second variation J ′′(η, v1) in (3.10) is coercive. Therefore,
the feasible pair x̂(t) ≡ 0, û(t) ≡ (0, 2)T together with λ0 = 1, p̂(t) ≡ 0, λ̂(t) ≡ 1

2 , and γ̂ ∈ R2 satisfy the
assumptions of Theorem 3.3. Hence, by this theorem, (x̂, û) is a strict weak local minimum for problem (3.8).

4. Application to sensitivity analysis

In this section we provide a sensitivity analysis for the nonlinear optimal control problem (C) with separated
endpoints. In particular, we will show that given a problem (Cω) depending on a parameter ω, then a weak
local minimum (x̂, û) for (Cω̂) with corresponding multipliers (p̂, λ̂, γ̂a, γ̂b) can be embedded into a family of
optimal solutions

(
x(·, ω), u(·, ω)

)
and corresponding multipliers

(
p(·, ω), λ(·, ω), γa(ω), γb(ω)

)
for sufficiently

small perturbations of the parameter ω near ω̂. This result is based on a suitable application of the implicit
function theorem and the new sufficiency criterion in Theorem 3.3.

Consider the parametric nonlinear optimal control problem

minimize J(x, u, ω) := Ka(x(a), ω) +Kb(x(b), ω) +

∫ b

a

L(t, x(t), u(t), ω)∆t (Cω)

subject to x ∈ C1
prd[a, b]T and u ∈ Cprd[a, ρ(b)]T such that

x∆(t) = f(t, x(t), u(t), ω), t ∈ [a, ρ(b)]T, (4.1)

ψ(t, u(t), ω) = 0, t ∈ [a, ρ(b)]T, (4.2)

ϕa(x(a), ω) = 0, ϕb(x(b), ω) = 0. (4.3)

Similarly to problem (C) in Section 1 we assume that n,m, k, ra, rb, d ∈ N are given dimensions with k ≤ m ≤ n
and ra ≤ n, rb ≤ n, the state x : [a, b]T → Rn, the control u : [a, ρ(b)]T → Rm, the parameter ω ∈ Rd, and the
data satisfy

L : [a, ρ(b)]T × Rn × Rm × Rd → R, Ka : Rn × Rd → R, Kb : Rn × Rd → R,

f : [a, ρ(b)]T × Rn × Rm × Rd → Rn, ϕa : Rn × Rd → Rra , ϕb : Rn × Rd → Rrb ,

ψ : [a, ρ(b)]T × Rm × Rd → Rk.

The Hamiltonian corresponding to problem (Cω) is defined by

H(t, x, u, p, λ, ω) := pT f(t, x, u, ω) + L(t, x, u, ω) + λTψ(t, u, ω). (4.4)
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Since we now consider the problem (Cω) with separated endpoints, we have r = ra + rb in the context of
problem (C) and

ϕ(x, y, ω) =

(
ϕa(x, ω)

ϕb(y, ω)

)
, ∇(x,y) ϕ(x, y, ω) =

(
∇x ϕa(x, ω) 0

0 ∇y ϕb(y, ω)

)
.

Throughout this section we fix ω̂ ∈ Rd and the feasible pair (x̂, û) for problem (Cω̂). We assume the following
hypothesis (H1) to hold on the data, where

h(t, x, u, ω) :=
(
L(t, x, u, ω), f(t, x, u, ω), ψ(t, u, ω)

)
.

(H1) There exists ε1 > 0 such that the functions (Ka(·, ·), ϕa(·, ·)), and (Kb(·, ·), ϕb(·, ·)) are twice continuously
differentiable respectively on Bε1

(
x̂(a), ω̂

)
and Bε1

(
x̂(b), ω̂

)
; the function h(t, ·, ·, ·) is twice differentiable

in (x, u, ω) on Bε1
(
x̂(t), û(t)) × Bε1(ω̂

)
; the functions h(t, ·, ·, ·), ∇(x,u)h(t, ·, ·, ·), and ∇2

(x,u)h(t, ·, ·, ·) are

continuous at (x̂, û, ω̂) uniformly in t; and for (x, u, ω) in PTε1(x̂, û) × Bε1(ω̂) the functions h(·, x, u, ω),
∇(x,u)h(·, x, u, ω), and ∇2

(x,u)h(·, x, u, ω) are rd-continuous on [a, ρ(b)]T.

Following the notation in (2.1) and (2.2), we define the matrices Â(t) ∈ Rn×n, B̂(t) ∈ Rn×m, M̂a ∈ Rra×n,
M̂b ∈ Rrb×n, N̂(t) ∈ Rk×m by

Â(t) := fx(t, x̂(t), û(t), ω̂), B̂(t) := fu(t, x̂(t), û(t), ω̂), (4.5)

M̂a := ∇x ϕa(x̂(a), ω̂), M̂b := ∇x ϕb(x̂(b), ω̂), N̂(t) := ∇u ψ(t, û(t), ω̂). (4.6)

For brevity, let Ŷ : [a, ρ(b)]T → Rm×(m−k), Ŷ (·) ∈ Cprd, be the matrix whose columns form an orthonormal

basis for Ker N̂(t), i.e., we have N̂(t) Ŷ (t) = 0 and Ŷ T (t) Ŷ (t) = Im−k on [a, ρ(b)]T × Rd.
For given multipliers (p̂, λ̂) in C1

prd × Cprd, we also define the function Ŝ(t) ∈ Rm×m by

Ŝ(t) := Ĥuu(t)− µ(t) B̂T (t) [I + µ(t) ÂT (t)]−1Ĥxu(t) (4.7)

where the inverse in the above formula exists by hypothesis (H1), and

Ĥ(t) := H(t, x̂(t), û(t), p̂σ(t), λ̂(t), ω̂). (4.8)

A pair (η, v) ∈ C1
prd × Cprd is called admissible for problem (Cω) at the feasible pair (x, u) if

η∆(t) = fx(t, x(t), u(t), ω) η(t) + fu(t, x(t), u(t), ω) v(t), t ∈ [a, ρ(b)]T,

∇u ψ(t, u(t), ω) v(t) = 0, t ∈ [a, ρ(b)]T,

∇x ϕa(x(a), ω) η(a) = 0, ∇x ϕb(x(b), ω) η(b) = 0.

 (4.9)

The second variation of the functional J(·, ω) in problem (Cω) at a feasible pair (x, u) and multipliers
(p, λ, γa, γb) in the admissible direction (η, v) is defined as

J ′′(η, v;x, u, ω) :=
1

2
ηT (a)Γa η(a) +

1

2
ηT (b)Γb η(b) +

1

2

∫ b

a

(
η(t)
v(t)

)T
∇2

(x,u)H(t)

(
η(t)

v(t)

)
∆t,

where the function ∇2
(x,u)H(t) on [a, ρ(b)]T is given by

∇2
(x,u)H(t) =

(
Hxx(t) Hxu(t)
HT
xu(t) Huu(t)

)
:= ∇2

(x,u)H(t, x(t), u(t), pσ(t), λ(t), ω)
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and the symmetric n× n matrices Γa and Γb are defined by

Γa := ∇2
xxKa(x(a), ω) + γa

T ∇2
xx ϕa(x(a), ω),

Γb := ∇2
xxKb(x(b), ω) + γb

T ∇2
xx ϕb(x(b), ω).

}
(4.10)

Here we have p : [a, b]T → Rn, λ : [a, ρ(b)]T → Rk and γa ∈ Rra , γb ∈ Rrb . We use the notation J ′′(η, v; ω̂) and
Γ̂a, Γ̂b to designate respectively J ′′(η, v; x̂, û, ω̂) and Γa, Γb in which the multipliers are (p̂, λ̂, γ̂a, γ̂b).

In addition to hypothesis (H1) displayed above, we impose the following hypotheses on the base problem (Cω̂).

(H2) There are multipliers (λ0 = 1, p̂, λ̂, γ̂a, γ̂b) satisfying with (x̂, û) the weak maximum principle given by
Proposition 2.10 for the problem (Cω̂).

(H3) The n × n matrix I + µ(t) Â(t) is invertible for all t ∈ [a, ρ(b)]T; the matrices M̂a, M̂b and N̂(t) for
t ∈ [a, ρ(b)]T in (4.6) have full rank; and the pair (Â(·), B̂(·)) is controllable in the sense that for every
αa ∈ Rra and αb ∈ Rrb there exist functions v ∈ Cprd[a, ρ(b)]T and η ∈ C1

prd[a, b]T such that

η∆(t) = Â(t) η(t) + B̂(t) v(t), N̂(t) v(t) = 0, t ∈ [a, ρ(b)]T, (4.11)

M̂a η(a) = αa, M̂b η(a) = αb. (4.12)

(H4) The second variation J ′′(·; ω̂) is coercive on the space W 1,2 × L2, i.e., these exists α > 0 such that

J ′′(η, v; ω̂) ≥ α

2

{
|η(a)|2 + |η(b)|2 +

∫ b

a

(
|η(t)|2 + |v(t)|2

)
∆t

}
for all functions η ∈ W 1,2[a, b]T and v ∈ L2[a, ρ(b)]T satisfying equation (4.11) for almost all t ∈ [a, ρ(b)]T
and M̂a η(a) = 0, M̂b η(b) = 0.

(H5) The (m−k)×(m−k) matrix-valued function Ŷ T (t) Ŝ(t) Ŷ (t) is invertible on [a, ρ(b)]T, where Ŝ(t) is given
in (4.7).

Remark 4.1. As in Proposition 2.9, the controllability assumption in (H3) can be equivalently formulated in
terms of the corresponding (ra + rb)× (ra + rb) Grammian matrix(

ε2
0 M̂a M̂

T
a ε2

0 M̂a D̂Tb
ε2

0 D̂b M̂T
a Ẑb

)
> 0

for some ε0 > 0, where D̂b ∈ Rrb×n, Ẑb ∈ Rrb×rb , and Êb(t) ∈ Rrb×(m−k) are defined by

D̂b := M̂b Φ̂(b), Ẑb := ε2
0 D̂b D̂Tb +

∫ b

a

Êb(t) ÊTb (t) ∆̂t,

Êb(t) := M̂b Φ̂(b) [Φ̂σ(t)]−1B̂(t) Ŷ (t).

Here Φ̂(t) is the fundamental matrix of Φ̂∆ = Â(t) Φ̂ on [a, ρ(b)]T with Φ̂(a) = I.

Remark 4.2.
(i) Hypotheses (H1)–(H4) imply through Theorem 3.3 that (x̂, û) is a weak local minimum for (Cω̂).
(ii) The invertibility of I + µ(t) Â(t) on [a, ρ(b)]T, the full rank property of N̂(t) on [a, ρ(b)]T, and Remark 2.3

yield the existence of ε2 ∈ (0, ε1) such that if t ∈ [a, ρ(b)]T and (x, u, ω) satisfy (x, u, ω) ∈ Bε2(x̂(t)) ×
Bε2(û(t))×Bε2(ω̂), then ∇u ψ(t, u, ω) is of full rank and the matrix I + µ(t) fx(t, x, u, ω) is invertible.

(iii) By using Remark 4.1 and part (ii) of this remark, hypothesis (H3) implies that for some ε3 ∈ (0, ε2) the
system (4.9) is controllable for all (x, u) ∈ C1

prd[a, b]T×Cprd[a, ρ(b)]T with ‖x− x̂‖Cprd
< ε3, ‖u− û‖Cprd

< ε3

and ω ∈ Bε3(ω̂). Note that a direct proof of this fact can be easily made along the one given for the
continuous time setting in ([22], p. 319).
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(iv) We recall that the space L2 consists of functions y which are Lebesgue measurable on [a, ρ(b)]T and∫ b
a
|y(t)|2∆t is finite, and the space W 1,2 consists of functions y, such that y is Lebesgue measurable

on [a, b]T, y
∆ exists almost everywhere and is Lebesgue measurable on [a, ρ(b)]T, and y, y∆ ∈ L2. We refer

to [1, 4, 24, 48] for properties of the Sobolev and Lebesgue spaces on time scales. We also note that the
coercivity assumption in (H4) above is slightly stronger than in Definition 3.1, since the considered spaces
are different, namely C1

prd × Cprd ⊆W 1,2 × L2.

(v) The controllability assumption in hypothesis (H3) does not only produce a surjective map from {(η, v) ∈
C1

prd ×Cprd} onto Cprd ×Cprd ×Rra+rb , but, similarly to the continuous time setting (see [22], (Lem. 1)),
it also yields the surjectivity of the linearized constraints from W 1,2 × L2 onto L2 × L2 ×Rra+rb . That is,
for any (d, c, (αa, αb)) ∈ L2 × L2 × Rra+rb there exists (η, v) ∈W 1,2 × L2 satisfying (4.12) and

η∆(t) = Â(t) η(t) + B̂(t) v(t) + d(t), N̂(t) v(t) = c(t), t ∈ [a, ρ(b)]T.

(vi) Hypotheses (H1) and (H4), and part (v) of this remark imply by [21], (Lem. 6) that there is ε4 ∈ (0, ε3)
such that for all (ω, γa, γb, x, u, p, λ) such that

max
{
|ω − ω̂|, |γa − γ̂a|, |γb − γ̂b|, ‖(x, p)− (x̂, p̂)‖Cprd

, ‖(u, λ)− (û, λ̂)‖Cprd

}
< ε4

the functional J ′′(η, v;x, u, ω) is coercive for all (η, v) which are admissible for (Cω), i.e., satisfying (4.9).

(vii) Assumption (H5) reduces to Ŝ(t) being invertible on [a, ρ(b)]T when no control constraints are present
(k = 0), while it is vacuous when the maximal number of control constraints is imposed (k = m).

The main result of this section is formulated as follows. The positive numbers ε2 and ε4 in the statement and
its proof refer to parts (ii) and (vi) of Remark 4.2.

Theorem 4.3 (Sensitivity analysis). Under hypotheses (H1)– (H5) there exists ε ∈ (0, ε4) such that for all
ω ∈ Rd with |ω − ω̂| < ε the problem (Cω) has a strict weak local minimum (x(·, ω), u(·, ω)) with multipliers
p(·, ω) : [a, b]T → Rn, p(·, ω) ∈ C1

prd, and λ(·, ω) : [a, ρ(b)]T → Rk, λ(·, ω) ∈ Cprd, and vectors γa(ω) ∈ Rra ,

γb(ω) ∈ Rrb , which are C1 in the argument ω and satisfy equations (4.1)– (4.3) and

−p∆(t, ω) = HT
x

(
t, x(t, ω), u(t, ω), pσ(t, ω), λ(t, ω), ω

)
, t ∈ [a, ρ(b)]T, (4.13)

HT
u

(
t, x(t, ω), u(t, ω), pσ(t, ω), λ(t, ω), ω

)
= 0, t ∈ [a, ρ(b)]T, (4.14)

−p(a, ω) = ∇xKT
(
x(a, ω), ω

)
+∇x ϕTa

(
x(a, ω), ω

)
γa(ω), (4.15)

p(b, ω) = ∇xKT
(
x(b, ω), ω

)
+∇x ϕTb

(
x(b, ω), ω

)
γb(ω). (4.16)

Proof. The proof aims to construct, for ω near ω̂, a family of pairs (x(t, ω), u(t, ω)) which are feasible
for (Cω), i.e., satisfying equations (4.1)–(4.3), and multipliers (p(t, ω), λ(t, ω), γa(ω), γb(ω)) satisfying with
(x(t, ω), u(t, ω)) the weak Pontryagin maximum principle, i.e., equations (4.13)–(4.16). Then, by means of
Theorem 4.3 and parts (ii), (iii), and (vi) of Remark 4.2, the strict weak local minimality of (x(t, ω), u(t, ω))
for (Cω) follows.
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Step 1. In this step we construct for ξ := (x, p, ω) that is uniformly near ξ̂(t) := (x̂(t), p̂(t), ω̂), a family
(u(t, ξ), λ(t, ξ)) that satisfies the control constraint (4.2) and the stationarity condition (4.14). By hypothesis
(H2), we have (x̂, û, ω̂), p̂ : [a, b]T → Rn, p̂ ∈ C1

prd, λ̂ : [a, ρ(b)]T → Rk, λ̂ ∈ Cprd, and γ̂a ∈ Rra , γ̂b ∈ Rrb , which
satisfy

x̂∆(t) = f(t, x̂(t), û(t), ω̂), t ∈ [a, ρ(b)]T, (4.17)

ψ(t, û(t), ω̂) = 0, t ∈ [a, ρ(b)]T, (4.18)

ϕa(x̂(a), ω̂) = 0, ϕb(x̂(b), ω̂) = 0, (4.19)

−p̂∆(t) = ĤT
x (t) = ÂT (t) p̂σ(t) + L̂Tx (t), t ∈ [a, ρ(b)]T, (4.20)

ĤT
u (t) = B̂T (t) p̂σ(t) + L̂Tu (t) + N̂T (t) λ̂(t) = 0, t ∈ [a, ρ(b)]T, (4.21)

−p̂(a) = ∇xKT
a (x̂(a), ω̂) + M̂T

a γ̂a, p̂(b) = ∇xKT
b (x̂(b), ω̂) + M̂T

b γ̂b. (4.22)

Here the Hamiltonian is defined in (4.4), and we use the abbreviated notation of (4.5)–(4.8) at ω = ω̂, and

L̂(t) := L(t, x̂(t), û(t), ω̂).

The same notation is applied with the first and second order gradients of the functions L, H, and ψ. From
equations (4.20) and (4.21) we then obtain on [a, ρ(b)]T the expressions (suppressing the argument t)

p̂σ = (I + µÂT )−1(p̂− µL̂Tx ), (4.23)

B̂T (I + µÂT )−1(p̂− µL̂Tx ) + L̂Tu + N̂T λ̂ = 0. (4.24)

By Remark 4.2(ii), the matrix I + µ(t) fx(t, x, u, ω) is invertible for all (x, u, ω) ∈ Rn × Rm × Rd such that
|(x, u, ω) − (x̂(t), û(t), ω̂)| < ε2 for all t ∈ [a, ρ(b)]T. Note that, by the formula (A−1)′ = −A−1A′A−1 for the
derivative of the inverse of the matrix function A, we have

∇u (I + µfTx )−1 = −µ f̃Tx fTxu f̃Tx , where f̃x := (I + µfTx )−1. (4.25)

Consider now the mapping F : [a, ρ(b)]T × Rn × Rm × Rn × Rk × Rd → Rm+k,

F (t, x, u, p, λ, ω) :=

(
G(t, x, u, p, λ, ω)

ψ(t, u, ω)

)
,

where the function G is defined by

G(t, x, u, p, λ, ω) := fTu (t, x, u, ω) [I + µ(t) fTx (t, x, u, ω)]−1 [p− µ(t)LTx (t, x, u, ω)]

+ LTu (t, x, u, ω) + λTψu(t, u, ω). (4.26)

We aim to solve the equation F (t, x, u, p, λ, ω) = 0 for (u, λ) in terms of (t, x, p, ω) near (t, x̂(t), û(t), p̂(t), λ̂(t), ω̂)
on [a, ρ(b)]T by the implicit function theorem. By (4.25), the partial derivatives of G are given by (suppressing
the arguments of the functions)

Gx = fTux f̃
T
x (p− µLTx )− µ fTu f̃Tx [fTxx f̃

T
x (p− µLTx ) + LTxx] + LTux,

Gu = fTuu f̃
T
x (p− µLTx )− µ fTu f̃Tx [fTxu f̃

T
x (p− µLTx ) + LTxu] + LTuu + λTψuu,

Gp = fTu f̃
T
x ,

Gω = fTuω f̃
T
x (p− µLTx )− µ fTu f̃Tx [fTxω f̃

T
x (p− µLTx ) + LTxω] + LTuω + λTψuω.
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Evaluating at (t, x̂(t), û(t), p̂(t), λ̂(t), ω̂) and using formulas (4.23) and (4.7) we obtain

Ĝx = f̂Tux p̂
σ − µB̂T (I + µÂT )−1 (f̂Txx p̂

σ + L̂Txx) + L̂Tux

= Ĥux − µB̂T (I + µÂT )−1 Ĥxx,

Ĝu = f̂Tuu p̂
σ − µB̂T (I + µÂT )−1 (f̂Txu p̂

σ + L̂Txu) + L̂Tuu + λT ψ̂uu

= Ĥuu − µB̂T (I + µÂT )−1 Ĥxu = Ŝ,

Ĝp = B̂T (I + µÂT )−1,

Ĝω = f̂Tuω p̂
σ − µB̂T (I + µÂT )−1 (f̂Txω p̂

σ + L̂Txω) + L̂Tuω + λT ψ̂uω

= Ĥuω − µB̂T (I + µÂT )−1 Ĥxω.



(4.27)

Therefore, the (m+ k)× (m+ k) Jacobi matrix of the mapping F with respect to (u, λ) is

K̂(t) := ∇(u,λ) F̂ (t) =

(
Ĝu(t) ψ̂Tu (t)

ψ̂u(t) 0

)
=

(
Ŝ(t) N̂T (t)

N̂(t) 0

)
.

We will show that the matrix K̂(t) is invertible. In fact, by assumptions (H3) and (H5) the matrices N̂(t) N̂T (t)
and Ŷ T (t) Ŝ(t) Ŷ (t) are invertible and by Remark 2.3, their inverses are piecewise rd-continuous on [a, ρ(b)]T.
One can verify that (suppressing the argument t)

K̂−1 =

(
Ŷ (Ŷ T ŜŶ )−1Ŷ T [I − Ŷ (Ŷ T ŜŶ )−1Ŷ T Ŝ] N̂†

N̂†T [I − ŜŶ (Ŷ T ŜŶ )−1Ŷ T ] −N̂†T Ŝ [I − Ŷ (Ŷ T ŜŶ )−1Ŷ T Ŝ] N̂†

)
, (4.28)

where N̂† = N̂T (N̂N̂T )−1 ∈ Rm×k is the Moore–Penrose pseudoinverse of N̂ . Indeed, by using the identity
Ŷ Ŷ T = I−N̂†N̂ we calculate that K̂K̂−1 = Im+k. Moreover, K̂−1(t) is also piecewise rd-continuous on [a, ρ(b)]T.

Given that K̂(t) is invertible and F̂ (t) = F (t, x̂(t), û(t), p̂(t), λ̂(t), ω̂) = 0 on [a, ρ(b)]T, by the implicit function
theorem there exist ε5 ∈ (0, ε4) and a unique pair of functions (u, λ) : D → Rm×Rk such that

∣∣(u(t, ξ), λ(t, ξ))−
(û(t), λ̂(t))| < ε4 and

F
(
t, x, u(t, ξ), p, λ(t, ξ), ω

)
=

(
G
(
t, x, u(t, ξ), p, λ(t, ξ), ω

)
ψ
(
t, u(t, ξ), ω

) )
= 0 (4.29)

on D, where ξ := (x, p, ω) and ξ̂(t) = (x̂(t), p̂(t), ω̂) as above and

D :=
{

(t, ξ) ∈ [a, ρ(b)]T × R2n × Rd,
∣∣(x, p)− (x̂(t), p̂(t))

∣∣ < ε5, |ω − ω̂| < ε5

}
. (4.30)

That is, by (4.26) we have for (t, ξ) ∈ D the equations

fTu (t, x, u(t, ξ), ω)
[
I + µ(t) fTx (t, x, u(t, ξ), ω)

]−1[
p− µ(t)LTx (t, x, u(t, ξ), ω)

]
−LTu (t, x, u(t, ξ), ω) + λT (t, ξ)ψu(t, u(t, ξ), ω) = 0,

ψ(t, u(t, ξ), ω) = 0.

 (4.31)

The functions u(t, ·) and λ(t, ·) are C1 in the argument ξ = (x, p, ω) uniformly in t, the functions u(·, ξ) and
λ(·, ξ) are Cprd in the argument t. By differentiating (4.29) with respect to ξ we then obtain the formula(

ûξ
λ̂ξ

)
=

(
ûx ûp ûω
λ̂x λ̂p λ̂ω

)
= −K̂−1

(
Ĝx Ĝp Ĝω
0 0 ψ̂ω

)
. (4.32)
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The explicit formulas for the partial derivatives ûx, ûp, ûω and λ̂x, λ̂p, λ̂ω now follow by substituting the
expressions in (4.28) and (4.27) into equation (4.32).

In the remaining steps of this proof we construct for ω near ω̂ a solution to the boundary value problem
(BVP) in (x, p) obtained by inserting the functions u(t, ξ) and λ(t, ξ) found in Step 1 into equations (4.1)
and (4.13) with boundary conditions given by (4.3), (4.15), and (4.16). The method we use is a modification
and generalization of the “shooting method” used for the continuous time setting, see e.g. [37].

Step 2. We will perturb the initial state x̂(a) and the multiplier γ̂a in a special way in terms of the parameter ω
and a “shooting parameter” s, while preserving the initial condition ϕa(x(a, s, ω), ω) = 0. Consider the equation

g(s, γ, ω) = 0, g(s, γ, ω) := ϕa
(
s− M̂T

a (γ − γ̂a), ω
)
,

where s ∈ Rn and γ ∈ Rra . Then g(x̂(a), γ̂a, ω̂) = ϕa(x̂(a), ω̂) = 0 and the partial derivatives

gs(s, γ, ω) = ∇x ϕa
(
s− M̂T

a (γ − γ̂a), ω
)
, gγ(s, γ, ω) = −∇x ϕa

(
s− M̂T

a (γ − γ̂a), ω
)
M̂T
a .

By evaluating at the point (s, γ, ω) = (x̂(a), γ̂a, ω̂) we obtain that gs(x̂(a), γ̂a, ω̂) = M̂a and gγ(x̂(a), γ̂a, ω̂) =

−M̂aM̂
T
a , which is an invertible ra× ra matrix. Hence, by the implicit function theorem there exists ε6 ∈ (0, ε5)

and a unique C1 function γa(s, ω) such that for all (s, ω) ∈ Bε6(x̂(a))×Bε6(ω̂) we have

|γa(s, ω)− γ̂a| < ε5, γa(x̂(a), ω̂) = γ̂a, ϕa
(
s− M̂T

a (γa(s, ω)− γ̂a), ω
)

= 0, (4.33)

∇s γa(s, ω) = −g−1
γ (s, γa(s, ω), ω) gs(s, γa(s, ω), ω), ∇s γa(x̂(a), ω̂) = (M̂aM̂

T
a )−1M̂a. (4.34)

Step 3. On the interval [a, ρ(b)]T we now consider the time scale differential system

x∆ = f(t, x, u(t, ξ), ω),

−p∆ = fTx (t, x, u(t, ξ), ω)
[
I + µ(t) fTx (t, x, u(t, ξ), ω)

]−1
p

+
[
I + µ(t) fTx (t, x, u(t, ξ), ω)

]−1
LTx (t, x, u(t, ξ), ω)

 (4.35)

together with the initial conditions

x(a) = s− M̂T
a (γa(s, ω)− γ̂a),

p(a) = −∇xKT
a

(
s− M̂T

a (γa(s, ω)− γ̂a), ω
)

−∇x ϕTa
(
s− M̂T

a (γa(s, ω)− γ̂a), ω
)
γa(s, ω),

 (4.36)

where ξ = (x, p, ω) as before, u(t, ξ) is the function from Step 1 satisfying (4.31), and γa(s, ω) is the function
from Step 2 satisfying (4.33). We know that the functions x̂(t) and p̂(t) solve system (4.35) at (s, ω) = (x̂(a), ω̂)
and that the function γa(s, ω) is C1 for (s, ω) ∈ Bε6(x̂(a))×Bε6(ω̂). From the properties of u(t, ξ) and the data
we have that the right-hand side of (4.35) satisfies the assumptions of the embedding theorem [26], (Thm. 3.1)
and hence, there exists ε7 ∈ (0, ε6) such that for every (s, ω) ∈ Bε7(x̂(a)) × Bε7(ω̂) there is a unique solution
x(t, s, ω) and p(t, s, ω) of (4.35) and (4.36) with the following properties:

(i) The functions x(t, x̂(a), ω̂) = x̂(t) and p(t, x̂(a), ω̂) = p̂(t) on [a, b]T.
(ii) The functions x(·, ·, ·) and p(·, ·, ·) are continuous on [a, b]T ×Bε7(x̂(a))×Bε7(ω̂).
(iii) The pair (x(t, s, ω), p(t, s, ω)) ∈ Bε5(x̂(t), p̂(t)) for all t ∈ [a, b]T and (s, ω) ∈ Bε7(x̂(a))×Bε7(ω̂) and hence,

the equalities in (4.31) hold with x = x(t, s, ω) and p = p(t, s, ω), as (t, (x, p), ω) ∈ D, defined by (4.30).
That is,

G
(
t, x(t, s, ω), u

(
t, x(t, s, ω), p(t, s, ω), ω

)
, p(t, s, ω),

λ
(
t, x(t, s, ω), p(t, s, ω), ω

)
, ω
)

= 0,

ψ
(
t, u
(
t, x(t, s, ω), p(t, s, ω), ω

)
, ω
)

= 0,

 (4.37)

hold on [a, ρ(b)]T ×Bε7(x̂(a))×Bε7(ω̂).
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(iv) The functions x(t, ·, ·) and p(t, ·, ·) are C1 and the time scale derivatives x∆(t, ·, ·) and p∆(t, ·, ·) satisfy on
[a, ρ(b)]T the identity

∇(s,ω)

(
x∆(t, s, ω)

p∆(t, s, ω)

)∣∣∣∣
(s,ω)=(x̂(a),ω̂)

=

(
∇(s,ω) x(t, x̂(a), ω̂)

∇(s,ω) p(t, x̂(a), ω̂)

)∆
.

(v) The pair of n× n matrix-valued functions(
Z(t), Λ(t)

)
:=
(
∇s x(t, x̂(a), ω̂),∇s p(t, x̂(a), ω̂)

)
, t ∈ [a, b]T, (4.38)

satisfies the linearized system of (4.35) and (4.36) with respect to s at (x̂(a), ω̂). That is, by using (4.32)
and (4.27) we have

Z∆ = A(t)Z − B(t)Λ, −Λ∆ = C(t)Z − D(t)Λ, t ∈ [a, ρ(b)]T, (4.39)

Z(a) = I −Ma, −Λ(a) = Γ̂a(I −Ma) +Ma, (4.40)

where the n× n coefficients A(t), B(t), C(t), D(t) are (suppressing the argument t)

A := Â − B̂Ŷ (Ŷ TŜŶ )−1Ŷ T
[
Ĥux − µ B̂T (I+µÂT )−1Ĥxx

]
,

B := B̂Ŷ (Ŷ TŜŶ )−1Ŷ T B̂T (I+µÂT )−1,

C := (I+µÂT )−1
[
Ĥxx − Ĥxu Ŷ (Ŷ TŜŶ )−1Ŷ T

(
Ĥux − µ B̂T (I+µÂT )−1Ĥxx

)]
,

D := (I+µÂT )−1
[
Ĥxu Ŷ (Ŷ TŜŶ )−1Ŷ T B̂T (I+µÂT )−1−ÂT

]
,


(4.41)

and the symmetric n× n matrix Ma is defined by

Ma := M̂T
a (M̂aM̂

T
a )−1M̂a. (4.42)

We note that system (4.39) is a time scale symplectic system according to the terminology of [52],
(Thm. 4.8), whose coefficients A(t), B(t), C(t), D(t) are piecewise rd-continuous on [a, ρ(b)]T by (4.41).

Step 4. In this step we show that there exists ε8 ∈ (0, ε7) and continuously differentiable functions s : Bε8(ω̂)→
Bε7(x̂(a)) and γb : Bε8(ω̂)→ Bε7(γ̂b) such that the solution

(
x(t, s(ω), ω), p(t, s(ω), ω)

)
of (4.35) and (4.36) also

satisfies for ω ∈ Bε8(ω̂) the equations

ϕb
(
x(b, s(ω), ω), ω

)
= 0,

p(b, s(ω), ω) = ∇xKT
b

(
x(b, s(ω), ω), ω

)
+∇x ϕTb

(
x(b, s(ω), ω), ω

)
γb(ω).

}
(4.43)

To prove this we will apply the implicit function theorem to the rb + n equations (4.43). Let

Q(s, γ, ω) =

(
ϕb
(
x(b, s, ω), ω

)
p(b, s, ω)−∇xKT

b

(
x(b, s, ω), ω

)
−∇x ϕTb

(
x(b, s, ω), ω

)
γ

)
. (4.44)

Then we have Q(x̂(b), γ̂b, ω̂) = 0. With the rb × n matrix M̂b given in (4.6) and the symmetric n× n matrix Γ̂b
defined in (4.10), where x(b) = x̂(b), γb = γ̂b, ω = ω̂, and with the notation (4.38) we calculate

Tb := ∇(s,γ)Q
(
x̂(b), γ̂b, ω̂

)
=

(
M̂b xs(b, x̂(a), ω̂) 0

ps(b, x̂(a), ω̂)− Γ̂b xs(b, x̂(a), ω̂) −M̂T
b

)

=

(
M̂b Z(b) 0

Λ̂(b)− Γ̂b Z(b) −M̂T
b

)
. (4.45)
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We note that this Jacobian matrix has dimensions (rb + n) × (n + rb). To verify that the matrix Tb in (4.45)
is invertible, we show that for every pair (α, β) ∈ Rrb × Rn there exists a unique pair (c, d) ∈ Rn × Rrb , which
solves the linear algebraic system

M̂b Z(b) c = α, [Λ(b)− Γ̂b Z(b)] c− M̂T
b d = β. (4.46)

For fixed vectors α ∈ Rrb and β ∈ Rn we consider the variational problem to minimize

J(η, v) := βT η(b) +
1

2

[
ηT (a) Γ̂a η(a) + ηT (b) Γ̂b η(b)

]
+

1

2

∫ b

a

(
η(t)
v(t)

)T
∇(x,u)Ĥ(t)

(
η(t)
v(t)

)
∆t (4.47)

subject to η ∈W 1,2[a, b]T and v ∈ L2[a, ρ(b)]T satisfying

η∆(t) = Â(t) η(t) + B̂(t) v(t), N̂(t) v(t) = 0, t ∈ [a, ρ(b)]T a.e.,

Ma η(a) = 0, Mb η(b) = M̂T
b (M̂bM̂

T
b )−1α,

}
(4.48)

where Γ̂a and Γ̂b are given by (4.10) at the “hat” quantities, Ĥ(t) is defined in (4.8), and the matrices Ma and
Mb are given by (4.42) and

Mb := M̂T
b (M̂bM̂

T
b )−1M̂b. (4.49)

From assumption (H3) we know that the set of admissible directions (η, v) for problem (4.47)–(4.48) is not
empty, and it is closed and convex. Also as noted in part (v) of Remark 4.2, the controllability assumption
in (H3) yields the surjectivity of the constraints given by (4.48). Hence, by the coercivity assumption (H4), it
follows from [34], (Thm. 1.1) that problem (4.47) has a unique solution (η̄, v̄) ∈ W 1,2 × L2. Moreover, by [56],
(Cor. 3.11) the weak Pontryagin maximum principle (Prop. 2.10) with λ0 = 1 holds for (4.47), that is, there
exist functions q̄ : [a, b]T → Rn with q̄ ∈ W 1,2 and λ̄ : [a, ρ(b)]T → Rk with λ̄ ∈ L2, and vectors γ̄a ∈ Rn and
γ̄b ∈ Rn such that

−q̄∆(t) = ÂT (t) q̄σ(t) + Ĥxx(t) η̄(t) + Ĥxu(t) v̄(t), t ∈ [a, ρ(b)]T a.e., (4.50)

B̂T (t) q̄σ(t) + N̂T (t) λ̄(t) + Ĥux(t) η̄(t) + Ĥuu(t) v̄(t), t ∈ [a, ρ(b)]T a.e., (4.51)

−q̄(a) = Γ̂a η̄(a) +Ma γ̄a, q̄(b) = Γ̂b η̄(b) +Mb γ̄b + β. (4.52)

In turn, this implies that the quadruple (η̄, q̄, γ̄a, γ̄b) satisfies the vector form of the linear system (4.39)
with (4.40), that is,

η̄∆(t) = A(t) η̄(t)− B(t) q̄(t), q̄∆(t) = C(t) η̄(t)− D(t) q̄(t), t ∈ [a, ρ(b)]T a.e., (4.53)

together with (4.52) and

Ma η̄(a) = 0, Mb η̄(b) = M̂T
b (M̂bM̂

T
b )−1α. (4.54)

Moreover, the function v̄(t) is given by [56], (Formula (3.45)) by (suppressing the argument t)

v̄ = Ŷ (Ŷ T ŜŶ )−1Ŷ T [ B̂T (I + µÂT )−1(Ĥxx η̄ − q̄)− Ĥux η̄ ], a.e. on [a, ρ(b)]T. (4.55)

Since the functions η̄(t) and q̄(t) are continuous on [a, b]T and the coefficients in (4.55) belong to Cprd, it follows
that v̄ ∈ Cprd[a, ρ(b)]T as well. Given that (η̄, v̄) solves system (4.48) and v̄ ∈ Cprd[a, ρ(b)]T, we obtain that
η̄ ∈ C1

prd[a, b]T. In fact, from (4.53) and the piecewise rd-continuity of A(t), B(t), C(t), D(t) in (4.41) it follows

that (η̄, q̄) ∈ C1
prd[a, b]T. Now we define the vectors c ∈ Rn and d ∈ Rrb by

c := η̄(a) +Ma γ̄a, d := (M̂bM̂
T
b )−1M̂b γ̄b. (4.56)
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Then by using (I −Ma) M̂a = 0 and Maγ̄a =Mac we obtain

η̄(a) = (I −Ma) η̄(a) = (I −Ma) c,

−q̄(a) = Γ̂a η̄(a) +Ma γ̄a = Γ̂a (I −Ma) c+Ma c.

Therefore, we get by the uniqueness of solutions of the initial value problem (4.39)–(4.40) that (η̄(t), q̄(t)) =
(Z(t) c, Λ(t) c) on [a, b]T. Given that η̄(t) also satisfies the second condition in (4.54) andMb is defined in (4.49),
it results that the vectors c and d from (4.56) satisfy

M̂b Z(b) c = M̂b η̄(b) = α,

[Λ(b)− Γ̂b Z(b)] c− M̂T
b d = q̄(b)− Γ̂b η̄(b)−Mb γ̄b

(4.52)
= β.

This shows that the pair (c, d) solves the linear system (4.46) and hence, the matrix Tb defined in (4.45) is
invertible. By the implicit function theorem applied to system (4.43), i.e., to equation Q(s, γ, ω) = 0 with
Q(s, γ, ω) given in (4.44), there exists ε8 ∈ (0, ε7) and a pair of C1 functions (s(ω), γb(ω)) from Bε8(ω̂) to
Bε7(ω̂)×Bε7(γ̂b) such that Q(s(ω), γb(ω), ω) = 0 on Bε8(ω̂).

Set now ε := ε8. For ω ∈ Bε(ω̂) we now define the functions

x(t, ω) := x(t, s(ω), ω), p(t, ω) := p(t, s(ω), ω), t ∈ [a, b]T,

where x(t, s, ω) and p(t, s, ω) are from Step 3, and the functions

u(t, ω) := u(t, x(t, ω), p(t, ω), ω), λ(t, ω) := λ(t, x(t, ω), p(t, ω), ω), t ∈ [a, ρ(b)]T,

where u(t, x, p, ω) and λ(t, x, p, ω) are from Step 1, the function

γa(ω) := γa(s(ω), ω),

where γa(s, ω) is from Step 2, and the function γb(ω) from this Step 4. Then the functions x(t, ω), u(t, ω),
p(t, ω), λ(t, ω), γa(ω), and γb(ω) are C1 in ω and satisfy for ω ∈ Bε(ω̂) the following relations. By (4.33) we
have

ϕa
(
s(ω)− M̂T

a (γa(ω)− γ̂a), ω
)

= 0, (4.57)

while (4.36) yields

x(a, ω) = s(ω)− M̂T
a (γa(ω)− γ̂a),

−p(a, ω) = ∇xKT
a

(
s(ω)− M̂T

a (γa(ω)− γ̂a), ω
)

+∇x ϕTa
(
s(ω)− M̂T

a (γa(ω)− γ̂a), ω
)
γa(ω),

 (4.58)

In conclusion, by (4.35) we obtain

x∆(t, ω) = f
(
t, x(t, ω), u(t, ω), ω

)
,

−p∆(t, ω) = HT
x

(
t, x(t, ω), u(t, ω), pσ(t, ω), λ(t, ω), ω

)
,

}
t ∈ [a, ρ(b)]T, (4.59)

and by (4.37) we get

HT
u

(
t, x(t, ω), u(t, ω), pσ(t, ω), λ(t, ω), ω

)
= 0,

ψ
(
t, u(t, ω), ω

)
= 0,

}
t ∈ [a, ρ(b)]T. (4.60)

By combining (4.57) with (4.58) we obtain

ϕa
(
x(a, ω), ω

)
= 0,

−p(a, ω) = ∇xKT
a

(
x(a, ω), ω

)
+∇x ϕTa

(
x(a, ω), ω

)
γa(ω),

}
(4.61)
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while by (4.43) we have

ϕb
(
x(b, ω), ω

)
= 0,

p(b, ω) = ∇xKT
b

(
x(b, ω), ω

)
+∇x ϕTb

(
x(b, ω), ω

)
γb(ω).

}
(4.62)

For each ω ∈ Bε(ω̂) consider the problem (Cω). Then, assumptions (H1)–(H4) and parts (i)– (iii) and (vi) of
Remark 4.2 are still satisfied for ω ∈ Bε(ω̂). It then follows from equations (4.59)–(4.62) that the functions
x(t, ω), u(t, ω), p(t, ω), λ(t, ω) and vectors γa(ω), γb(ω) satisfy for ω ∈ Bε(ω̂) the assumptions of Theorem 3.3
for problem (Cω). Therefore, by this theorem, for all ω ∈ Bε(ω̂) the pair (x(·, ω), u(·, ω) is a strict weak local
minimum for problem (Cω). The proof is complete. �

5. Conclusions

In this paper we developed a sufficiency criterion for the weak local minimum in the nonlinear optimal
control problem on time scales (C). Our setting includes piecewise rd-continuous control functions, arbitrary
state-endpoints constraints, and pointwise equality control constraints. We employed a direct approach via the
coercivity of the second variation. The presented criterion and the method of proof extends the corresponding
result known for the calculus of variations on time scales in [28], (Thm. 2).

We also applied our new sufficiency criterion to obtain a sensitivity result for a separable endpoints prob-
lem (Cω), which is a perturbation of the problem (C) by a parameter present in all the data. By assuming the
sufficient conditions to be satisfied at the base problem (Cω̂), for ω near ω̂ we constructed a feasible solution
for (Cω) and a set of multipliers that are continuously differentiable in the parameter ω and which satisfy the
sufficiency theorem developed in the first part of the paper. In this way the strict weak local optimality of the
feasible pair for the perturbed problem (Cω) is deduced. The approach employed is a modification and a gen-
eralization to the variable endpoints setting and to time scales of the “shooting method” previously used, for
instance in [37,42,43], in the continuous time case with fixed initial state constraints. The way we parametrize
the initial condition in Step 2 of the proof of Theorem 4.3 can be utilized to extend the results in [37, 42, 43]
to the separable endpoints. Furthermore, unlike those references, we do not rely on the Riccati equation to
construct a solution to the boundary value problem, but instead we use the coercivity condition used in the
sufficiency theorem.

Note that the equality control constraints in (1.2) do not encompass the situation, when the constraints are
of the type u(t) ∈ U for all t ∈ [a, ρ(b)]T, where U ⊆ Rm is a given set. The extension of the results of this paper
for this and more general constraints is under investigation.

A. Proofs of auxiliary lemmas

In this section we present the proofs of the two crucial approximation lemmas from Section 3.

Proof of Lemma 3.4. Let ε > 0 be fixed and let a feasible pair (x̂, û) satisfy (A1). If (x, u) is also a feasible
pair, then we use the notation (dx̂,dû) introduced in (3.5) for the difference of (x, u) and (x̂, û). Let Φ(t) be the
fundamental matrix of the linear system in (2.7) or (2.14). Then Φ(t) is invertible on [a, b]T, by Remark 2.8. In
this proof we abbreviate the inverse of Φσ by Φσ−1 and the norm ‖·‖Cprd

by ‖·‖.

Step 1. Define the function F (t, x, u, w) := f(t, x, u)−w, so that ∇(x,u,w)F = (fx, fu,−I). We apply the Taylor
theorem to the function ϕ(·, ·) near (x̂(a), x̂(b)) and to the functions F (t, ·, ·, ·) and ψ(t, ·) near (x̂(t), û(t), x̂∆(t))
and û(t), respectively, and use the compactness property of the time scale [a, ρ(b)]T. Then there exists δ1 ∈
(0, ε1), where ε1 is from assumption (A1), such that for any feasible pair (x, u) with |(dx̂(a),dx̂(b))| < δ1 and
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‖(dx̂, dû,dx̂∆)‖ < δ1 we have

ϕ(x(a), x(b)) = ϕ(x̂(a), x̂(b)) +M

(
dx̂(a)

dx̂(b)

)
+ γ, (A.1)

F (t, x(t), u(t), x∆(t)) = F (t, x̂(t), û(t), x̂∆(t)) +
(
A(t), B(t), −I

) dx̂(t)

dû(t)

dx̂∆(t)

+ g(t), (A.2)

ψ(t, u(t)) = ψ(t, û(t) +N(t) dû(t) + π(t), (A.3)

where t ∈ [a, ρ(b)]T and where γ, g(t), π(t) are the Taylor remainders in (A.1)–(A.3), i.e.,

γ := Rϕ(x(a), x(b)), g(t) := RF (t, x(t), u(t), x∆(t)), π(t) := Rψ(t, u(t)). (A.4)

The Taylor remainders in (A.4) moreover satisfy the growth estimates

|γ| ≤ ε

2K1

∣∣(dx̂(a),dx̂(b))
∣∣, |g(t)| ≤ ε

8K2
2

∣∣(dx̂(t),dû(t),dx̂∆(t))
∣∣,

|π(t)| ≤ ε

4K3

∣∣dû(t)
∣∣,

 (A.5)

where K1, K2, K3 are positive constants defined by

K1 := |Z−1| ‖Φ‖ × C

K2 := max

{
D, |M |2 |Z−1| ‖Y ‖2 ‖B‖ ‖Φ‖2 ‖Φσ−1‖2, ‖Φ‖ ‖Φσ−1‖

(
1 + |M | |Z−1| ‖Φ‖ × E

)}
,

K3 := |M | |Z−1| ‖B‖ ‖Φ‖2 ‖Φσ−1‖ ‖N‖ ‖(NNT )−1‖ × C,

and where C, D, E are given by

C := max
{
|M | ‖Y ‖2 ‖B‖ ‖Φσ−1‖, E

}
,

D := 1 + ‖A‖+ ‖B‖,

E := ε2
0 |D|+ (b− a) |M | ‖Y ‖2 ‖B‖2 ‖Φ‖ ‖Φσ−1‖2.

 (A.6)

Recall that the matrix Y (t) is chosen according to (2.6), the matrices D and Z and the number ε0 are defined
in (2.10) and (2.9) in Proposition 2.9, and the matrices A(t), B(t), M , N(t) are defined in (2.1) and (2.2). From
assumption (A1) and Lemma 2.5 it results that the norms ‖·‖ := ‖·‖Cprd

occurring in the constants K1, K2,
and K3 are in fact finite. Observe also that the feasibility of (x, u) and equations (A.1) and (A.2) imply that
on [a, ρ(b)]T we have

γ = −M
(

dx̂(a)
dx̂(b)

)
, g(t) = dx̂∆(t)−A(t) dx̂(t)− B(t) dû(t), π(t) = −N(t) dû(t), (A.7)

which yields that the functions g(·) and π(·) are piecewise rd-continuous on [a, ρ(b)]T.

Step 2. We show that without loss of generality the term dx̂∆(t) in the second inequality in (A.5) can be
deleted, that is, there exists δ2 ∈ (0, δ1) such that for any feasible pair (x, u) with |(dx̂(a),dx̂(b))| < δ2 and
‖(dx̂, dû)‖ < δ2 we have on [a, ρ(b)]T

|γ| ≤ ε

2K1

∣∣(dx̂(a),dx̂(b))
∣∣, |g(t)| ≤ ε

4K2

∣∣(dx̂(t),dû(t))
∣∣,

|π(t)| ≤ ε

4K3

∣∣(dx̂(t),dû(t))
∣∣.

 (A.8)
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By the continuity of f(t, ·, ·) at (x̂, û) uniformly in t on [a, ρ(b)]T there exists δ3 ∈ (0, δ1/4) such that for
any feasible pair (x, u) with ‖(dx̂, dû)‖ < δ3 and any t ∈ [a, ρ(b)]T we have |dx̂∆(t)| =

∣∣f(t, x(t), u(t)) −
f(t, x̂(t), û(t))

∣∣ < δ1/2. Hence, for such an (x, u) with ‖(dx̂, dû)‖ < δ3 we get∣∣(dx̂(t),dû(t),dx̂∆(t))
∣∣ ≤ ∣∣(dx̂(t),dû(t))

∣∣+ |dx̂∆(t)| < δ3 + δ1/2 < δ1, t ∈ [a, ρ(b)]T.

Therefore, ‖(dx̂, dû,dx̂∆)‖ < δ1 holds, which in turn implies that (A.5) is satisfied as well. In particular, the
first inequality in (A.8) is established. Now, using assumption (A1) we can apply Lemma 2.7(i) to ∇(x,u)f at
(x̂, û) to obtain δ ∈ (0, δ3) such that for any pair (x, u) with ‖(dx̂, dû)‖ < δ we have the inequality∣∣∇(x,u)f(t, x(t), u(t))

∣∣ ≤ 1 +
∥∥∇(x,u)f(·, x̂(·), û(·))

∥∥ = 1 + ‖(A,B)‖ ≤ D, t ∈ [a, ρ(b)]T, (A.9)

where D is defined in (A.6). Let (x, u) be any feasible pair with ‖(dx̂, dû)‖ < δ. Then (A.9) and the generalized
mean value theorem imply

|dx̂∆(t)| =
∣∣f(t, x(t), u(t))− f(t, x̂(t), û(t))

∣∣ ≤ D |(dx̂(t),dû(t))|, t ∈ [a, ρ(b)]T. (A.10)

Thus, using δ < δ3, (A.5), (A.10), and K2 ≥ D ≥ 1 (see the definition of K2 above) we obtain

|g(t)|
(A.5)

≤ ε

8K2
2

∣∣(dx̂(t),dû(t))
∣∣+

ε

8K2
2

∣∣(dx̂∆(t))
∣∣ (A.10)

≤ ε (1 +D)

8K2
2

∣∣(dx̂(t),dû(t))
∣∣

≤ 2εK2

8K2
2

∣∣(dx̂(t),dû(t))
∣∣ ≤ ε

4K2

∣∣(dx̂(t),dû(t))
∣∣, t ∈ [a, ρ(b)]T.

This shows the second inequality in (A.8). Moreover, by (A.5) we also get

|π(t)| ≤ ε

4K3
|dû(t)| ≤ ε

4K3

∣∣(dx̂(t),dû(t))
∣∣, t ∈ [a, ρ(b)]T,

showing the third estimate in (A.8). The proof of Step 2 is finished.

Step 3. Consider now the nonhomogeneous linear system

η̃∆ = A(t) η̃ + B(t) ṽ + g(t), N(t) ṽ(t) = −π(t), t ∈ [a, ρ(b)]T, M

(
η̃(a)
η̃(b)

)
= −γ. (A.11)

We define the auxiliary piecewise rd-continuous function ν : [a, ρ(b)]T → Rm and the vectors β ∈ Rr and α̃ ∈ Rn
by

ν(t) := −NT (t) [N(t)NT (t)]−1π(t), t ∈ [a, ρ(b)]T, (A.12)

β := Mb Φ(b)

∫ b

a

Φσ−1(s) [B(s) ν(s) + g(s) ]∆s, (A.13)

α̃ := −ε2
0DTZ−1(γ + β). (A.14)

Moreover, with the matrix E(t) given in (2.10) we define the functions ṽ : [a, ρ(b)]T → Rm and η̃ : [a, b]T → Rn
by

ṽ(t) := −Y (t) ET (t)Z−1(γ + β) + ν(t), t ∈ [a, ρ(b)]T, (A.15)

η̃(t) := Φ(t) α̃+ Φ(t)

∫ t

a

Φσ−1(s) [B(s) ṽ(s) + g(s) ]∆s, t ∈ [a, b]T. (A.16)

Then ṽ(·) belongs to Cprd[a, ρ(b)]T and η̃(·) belongs to C1
prd[a, b]T, and the pair (η̃, ṽ) satisfies (A.11). Indeed,

by using Φ∆(t) = A(t)Φ(t) and the product rule (fg)∆ = f∆g + fσg∆ it is straightforward to verify that
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the ∆-derivative of the right-hand side of (A.16) is equal to A(t) η̃(t) + B(t) ṽ(t) + g(t), i.e., the first equality
in (A.11) holds. Next, we have

N(t) ṽ(t) = −N(t)Y (t) ET (t)Z−1(γ + β)− π(t)
(2.6)
= −π(t),

showing the second equality in (A.11). Finally, by using η̃(a) = α̃ and evaluating (A.16) at t = b together with
the definition of D and E(t) in (2.10) we obtain

M

(
η̃(a)
η̃(b)

)
(A.16)

= Ma α̃+Mb

(
Φ(b) α̃+ Φ(b)

∫ b

a

[Φσ(s)]−1 [B(s) ṽ(s) + g(s) ]∆s

)
(A.15), (A.14)

= −ε2
0DDTZ−1(γ + β)−

∫ b

a

E(s) ET (s)Z−1(γ + β)∆s + β

(2.9)
= −ZZ−1(γ + β) + β = −γ.

Therefore, the third equality in (A.11) is also satisfied, which completes the proof of Step 3.

Step 4. We claim that the pair (η̃, ṽ) defined in (A.15)–(A.16) satisfies the estimate

∣∣(η̃(t), ṽ(t))
∣∣ ≤ ε{∣∣(dx̂(a),dx̂(b))

∣∣+

∫ b

a

∣∣(dx̂(s),dû(s))
∣∣∆s}, t ∈ [a, ρ(b)]T. (A.17)

In addition, inequality (A.17) with |η̃(b)| on the left–hand side also holds when b is left-scattered. For the proof
of (A.17) we use the estimates in (A.8) with the properly chosen constants K1, K2, K3 from Step 1. From (2.10)
and (A.12)–(A.14) we get

‖E‖ ≤ |M | ‖Y ‖ ‖B‖ ‖Φ‖ ‖Φσ−1‖, |ν(t)| ≤ ‖N‖ ‖(NNT )−1‖ |π(t)|, t ∈ [a, ρ(b)]T,

|β| ≤ |M | ‖Φ‖ ‖Φσ−1‖
∫ b

a

(
‖B‖ |ν(s)|+ |g(s)|

)
∆s, |α̃| ≤ ε2

0 |D| |Z−1|
(
|γ|+ |β|

)
.

 (A.18)

Then it follows from (A.15) and the estimates in (A.18) that

|ṽ(t)| ≤ |Z−1| ‖Y ‖ ‖E‖
(
|γ|+ |β|

)
+ |ν(t)| (A.19)

≤ K1 |γ|+K2

∫ b

a

|g(s)|∆s +K3

∫ b

a

|π(s)|∆s, t ∈ [a, ρ(b)]T, (A.20)

while from (A.16), (A.18), and (A.19) we obtain

|η̃(t)| ≤ ‖Φ‖ |α̃|+ ‖Φ‖ ‖Φσ−1‖
(
‖B‖

∫ b

a

|ṽ(s)|∆s +

∫ b

a

|g(s)|∆s
)

≤ K1 |γ|+K2

∫ b

a

|g(s)|∆s +K3

∫ b

a

|π(s)|∆s, t ∈ [a, b]T. (A.21)

Therefore, combining (A.20) and (A.21) with (A.8) we get

∣∣(η̃(t), ṽ(t))
∣∣ ≤ |η̃(t)|+ |ṽ(t)| ≤ 2K1 |γ|+ 2K2

∫ b

a

|g(s)|∆s + 2K3

∫ b

a

|π(s)|∆s

(A.8)

≤ ε
∣∣(dx̂(a),dx̂(b))

∣∣+ ε

∫ b

a

∣∣(dx̂(s),dû(s))
∣∣∆s (A.22)
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for all t ∈ [a, ρ(b)]T, as we claim in (A.17). In addition, if b is left-scattered, then it follows from (A.21) at t = b
and (A.8) that the inequality in (A.22) with |η̃(b)| on the left-hand side is also satisfied. The proof of Step 4 is
complete.

Step 5. Define the pair (η, v) by η(t) := dx̂(t) − η̃(t) on [a, b]T and v(t) := dû(t) − ṽ(t) on [a, ρ(b)]T. Then
η ∈ C1

prd[a, b]T, v ∈ Cprd[a, ρ(b)]T, and by (A.7) and (A.11) we get

M

(
η(a)
η(b)

)
= M

(
dx̂(a)
dx̂(b)

)
−M

(
η̃(a)
η̃(b)

)
= −γ + γ = 0.

Furthermore, by (A.7) and (A.11) we also have for t ∈ [a, ρ(b)]T

η∆(t) = dx̂∆(t)− η̃∆(t) = A(t) [dx̂(t)− η̃(t)] + B(t) [dû(t)− ṽ(t)] = A(t) η(t) + B(t) v(t),

and similarly

N(t) v(t) = N(t) dû(t)−N(t) ṽ(t) = −π(t) + π(t) = 0.

This shows that (η, v) is admissible. Finally, since (dx̂ − η,dû − v) = (η̃, ṽ), the estimate in (3.4) is a direct
consequence of (A.17). The proof of this lemma is complete. �

Proof of Lemma 3.6. In this proof we will again utilize the notation in (3.5). Fix ε > 0. By Lemma 3.4 there
exists δ > 0 such that for every feasible pair (x, u) with ‖(dx̂, dû)‖Cprd

< δ there exists an admissible pair (η, v)
satisfying (3.4). Take δ0 := δ, let (x, u) be feasible with ‖(dx̂,dû)‖Cprd

< δ0, and let (η, v) be the associated
admissible pair from Lemma 3.4. Define (η̃, ṽ) := (dx̂− η,dû− v), so that (dx̂, dû) = (η, v) + (η̃, ṽ). Then

J ′′(dx̂,dû) = J ′′(η + η̃, v + ṽ)

= J ′′(η, v) + J ′′(η̃, ṽ) +

(
η(a)
η(b)

)T
Γ

(
η̃(a)
η̃(b)

)
+

∫ b

a

(
η(t)
v(t)

)T
∇(x,u)Ĥ(t)

(
η̃(t)
ṽ(t)

)
∆t,

where Γ and ∇(x,u)Ĥ(t) are given in (2.17) and (2.16). Since ∇(x,u)Ĥ(t) is piecewise rd-continuous on [a, ρ(b)]T,

there exists C > 0 such that ‖∇(x,u)Ĥ(t)‖Cprd
≤ C and |Γ | ≤ C. Using the coercivity assumption on the term

J ′′(η, v) we then obtain

2 J ′′(dx̂, dû) ≥ α
{
|η(a)|2 + |η(b)|2 +

∫ b

a

(
|η(t)|2 + |v(t)|2

)
∆t

}
− C

{
|η̃(a)|2 + |η̃(b)|2

}
− C

∫ b

a

(
|η̃(t)|2 + |ṽ(t)|2

)
∆t− 2C

{
|η(a)| |η̃(a)|+ |η(b)| |η̃(b)|

}
− 2C

∫ b

a

(
|η(t)| |η̃(t)|+ |v(t)| |ṽ(t)|

)
∆t. (A.23)

We will find a lower bound for the first term in (A.23) and upper bounds for all the others in terms of the

quantities
∣∣(dx̂(a),dx̂(b))

∣∣2 = |dx̂(a)|2 + |dx̂(b)|2 and

∥∥(dx̂,dû)
∥∥2

L2 =

∫ b

a

(
|dx̂(t)|2 + |dû(t)|2

)
∆t.

In the following calculations we will also use the expression
∥∥(dx̂, dû)

∥∥
L1 =

∫ b
a

∣∣(dx̂(t),dû(t))
∣∣∆t appearing

in (3.4), as well as the estimate ∥∥(dx̂, dû)
∥∥2

L1 ≤ (b− a)
∥∥(dx̂, dû)

∥∥2

L2 , (A.24)



SUFFICIENCY AND SENSITIVITY FOR NONLINEAR OPTIMAL CONTROL PROBLEMS... 1731

which follows from the Cauchy–Schwarz inequality. We also recall that

η = dx̂− η̃, v = dû− ṽ, η∆ = dx̂∆ − η̃∆. (A.25)

By the arithmetic-geometric mean inequality (2xy ≤ x2 + y2) and (A.24), we get from (3.4) for all t ∈ [a, ρ(b)]T

|η̃(t)|2 ≤ |η̃(t)|2+|ṽ(t)|2 ≤ 2ε2
{∣∣(dx̂(a),dx̂(b))

∣∣2+ (b− a)
∥∥(dx̂,dû)

∥∥2

L2

}
. (A.26)

The first inequality in (A.26) holds of course also for t = b. Inequality (A.26) implies that

|η̃(a)|2+|η̃(b)|2 ≤ 4ε2
{∣∣(dx̂(a),dx̂(b))

∣∣2+ (b− a)
∥∥(dx̂, dû)

∥∥2

L2

}
(A.27)

and ∫ b

a

(
|η̃(t)|2+|ṽ(t)|2

)
∆t ≤ 2ε2 (b− a)

{∣∣(dx̂(a),dx̂(b))
∣∣2+ (b− a)

∥∥(dx̂, dû)
∥∥2

L2

}
. (A.28)

Since by (A.25) we have |η(t)| ≤ |dx̂(t)|+ |η̃(t)| on [a, b]T and |v(t)| ≤ |dû(t)|+ |ṽ(t)| on [a, ρ(b)]T, it follows by
the arithmetic-geometric mean inequality and (A.24) that for all t ∈ [a, b]T

|η(t)| |η̃(t)| ≤ ε |dx̂(t)|2 + (ε+ 2ε2)
{∣∣(dx̂(a),dx̂(b))

∣∣2 + (b− a)
∥∥(dx̂, dû)

∥∥2

L2

}
, (A.29)

and for all t ∈ [a, ρ(b)]T

|v(t)| |ṽ(t)| ≤ ε |dû(t)|2 + (ε+ 2ε2)
{∣∣(dx̂(a),dx̂(b))

∣∣2 + (b− a)
∥∥(dx̂, dû)

∥∥2

L2

}
. (A.30)

Therefore, by taking t = a and t = b in (A.29) we obtain

|η(a)| |η̃(a)|+ |η(b)| |η̃(b)| ≤ (3ε+ 4ε2)
{∣∣(dx̂(a),dx̂(b))

∣∣2 + (b− a)
∥∥(dx̂, dû)

∥∥2

L2

}
, (A.31)

and integrating the sum of (A.29) and (A.30) over [a, b]T we get∫ b

a

(
|η(t)| |η̃(t)|+ |v(t)| |ṽ(t)|

)
∆t ≤ (2ε+ 4ε2) (b− a)

∣∣(dx̂(a),dx̂(b))
∣∣2

+ [ε+ 2ε(b− a) + 4ε2(b− a)2]
∥∥(dx̂, dû)

∥∥2

L2 . (A.32)

Now by (A.25) we have |dx̂(t)| ≤ |η(t)|+ |η̃(t)| on [a, b]T and |dû(t)| ≤ |v(t)|+ |ṽ(t)| on [a, ρ(b)]T. Then, by taking
the square on both sides we obtain |dx̂(t)|2 ≤ 2

(
|η(t)|2 + |η̃(t)|2

)
on [a, b]T and |dû(t)|2 ≤ 2

(
|v(t)|2 + 2 |ṽ(t)|2

)
on [a, ρ(b)]T. This implies that for t ∈ [a, ρ(b)]T we have

2
(
|η(t)|2 + |v(t)|2

)
≥ |dx̂(t)|2 + |dû(t)|2 − 2

(
|η̃(t)|2 + |ṽ(t)|2

)
.

By integrating over [a, b]T and using (A.28) we then obtain∫ b

a

(
|η(t)|2+|v(t)|2

)
∆t ≥ −2ε2(b− a)

∣∣(dx̂(a),dx̂(b))
∣∣2 + [ 1

2 − 2ε2(b− a)2]
∥∥(dx̂, dû)

∥∥2

L2 . (A.33)

In a similar way we get by (A.27) that

|η(a)|2 + |η(b)|2 ≥ 1
2

(
|dx̂(a)|2 + |dx̂(b)|2

)
−
(
|η̃(a)|2 + |η̃(b)|2

)
≥ ( 1

2 − 4ε2)
∣∣(dx̂(a),dx̂(b))

∣∣2 − 4ε2(b− a)
∥∥(dx̂, dû)

∥∥2

L2 . (A.34)
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Now we insert the estimates in (A.34), (A.33), (A.27), (A.28), (A.31), and (A.32) into inequality (A.23) and
collect the terms with the same powers of ε to get

2 J ′′(dx̂, dû) ≥ (α/2−Dε− Eε2)
∣∣(dx̂(a),dx̂(b))

∣∣2 + (α/2− Fε−Gε2)
∥∥(dx̂,dû)

∥∥2

L2 ,

where
D := 2C [3 + 2(b− a)], E := 2 [6C + (α+ 5C) (b− a)]

F := 2C [1 + 5(b− a)], G := 2 (b− a) [2α+ 6C + (α+ 5C) (b− a)].

Choose ε > 0 small enough so that max{Dε,Eε2, Fε,Gε2} < α/8. Then with this choice of ε we have by the
beginning of this proof (i.e., by Lem. 3.4) the corresponding δ0 := δ such that for every feasible pair (x, u) with
‖(dx̂, dû)‖Cprd

< δ0 the inequality

2 J ′′(dx̂, dû) ≥ (α/2− α/8− α/8)
∣∣(dx̂(a),dx̂(b))

∣∣2 + (α/2− α/8− α/8)
∥∥(dx̂, dû)

∥∥2

L2

= (α/4)
{∣∣(dx̂(a),dx̂(b))

∣∣2 +
∥∥(dx̂,dû)

∥∥2

L2

}
.

The proof of this lemma is complete. �
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