
ESAIM: COCV 24 (2018) 1511–1540 ESAIM: Control, Optimisation and Calculus of Variations
https://doi.org/10.1051/cocv/2018043 www.esaim-cocv.org

DECAY ESTIMATES FOR 1-D PARABOLIC PDES WITH

BOUNDARY DISTURBANCES

Iasson Karafyllis1,* and Miroslav Krstic2

Abstract. In this work, decay estimates are derived for the solutions of 1-D linear parabolic PDEs
with disturbances at both boundaries and distributed disturbances. The decay estimates are given in the
L2 andH1 norms of the solution and discontinuous disturbances are allowed. Although an eigenfunction
expansion for the solution is exploited for the proof of the decay estimates, the estimates do not require
knowledge of the eigenvalues and the eigenfunctions of the corresponding Sturm–Liouville operator.
Examples show that the obtained results can be applied for the stability analysis of parabolic PDEs
with nonlocal terms.
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1. Introduction

The derivation of decay estimates for the solution of parabolic partial differential equations (PDEs) is a
challenging topic, which has attracted the interest of many researchers (see [10, 14, 15, 36, 39–42, 44, 48]). The
main tool for the derivation of decay estimates is the combination of maximum principles and the so-called
“energy” method, i.e., the use of an appropriate functional, which satisfies certain differential inequalities that
allow the estimation of the decay rate of the solution. Usually, decay estimates are obtained for systems which
do not include time-varying disturbances in the PDE problem.

Recently, the derivation of decay estimates for parabolic PDEs with disturbances was studied by many
researchers working mostly in mathematical control theory. Decay estimates for systems with disturbances are
related to the input-to-state stability (ISS) property (first developed by Sontag in [47] for systems described by
ordinary differential equations-ODEs). The intense interest of researchers in control theory in ISS is justified
because: (a) control systems are systems with inputs, and (b) because ISS can be used for the stability analysis
by means of small-gain theorems (see Chap. 5 in [19] and references therein). The extension of ISS to systems
described by PDEs required novel mathematical tools and approaches (see for example [1, 4–7, 16–18, 20, 26,
29–32, 43]).

In particular, for PDE systems there are two qualitatively distinct locations, where a disturbance can
appear: the domain (a distributed disturbance appearing in the PDE) and the boundary (a disturbance
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that appears in the boundary conditions-BCs). Most of the existing results in the literature deal with dis-
tributed disturbances. Boundary disturbances present a major challenge, because the transformation of the
boundary disturbance to a distributed disturbance leads to decay estimates involving the boundary distur-
bance and some of its time derivatives (see for example [1]). This is explained by the use of unbounded
operators for the expression of the effect of the boundary disturbance (see the relevant discussion in [30]
for inputs in infinite-dimensional systems that are expressed by means of unbounded linear operators).
Moreover, although the construction of Lyapunov and “energy” functionals for PDEs has progressed sig-
nificantly during the last years (see for example [2, 27, 28, 31, 33, 39–41, 43, 44]), none of the proposed
Lyapunov functionals can be used for the derivation of the ISS property w.r.t. Dirichlet boundary distur-
bances. Therefore, the “energy” method cannot provide decay estimates for parabolic PDEs with Dirichlet
boundary disturbances (but see [49] for boundary disturbances in boundary conditions of Robin type). On
the other hand, it should be noted that Reaction–Diffusion PDEs with boundary disturbances arise naturally
when studying heat and mass transfer phenomena, where flux disturbances appear at the boundaries and
the reaction terms are the result of chemical reactions. Parabolic PDEs with boundary disturbances appear
also in fluid dynamics (e.g., Navier–Stokes) where boundary/wall disturbances occur naturally in various flow
problems.

The recent articles [21–23] suggested methodologies for the derivation of decay estimates for 1-D parabolic
PDEs with boundary and domain disturbances. Two different methodologies were used in [21–23]: the eigen-
function expansion of the solution and the approximation of the solution by means of finite-difference schemes.
The obtained ISS estimates were expressed in weighted L1, L2 and L∞ norms for the solution under strict
regularity requirements for the disturbances (C2 regularity for boundary disturbances and C1 regularity for
distributed disturbances) and it was shown that such estimates can be used in a straightforward way for the
derivation of decay estimates for parabolic PDEs with nonlocal terms. The interest for the stability analysis
of parabolic PDEs with nonlocal terms is strong, both from the PDE literature as well as from the numerical
analysis literature (see [8, 9, 11–13, 25, 37, 38]). However, recent advances in feedback control of PDEs have
forced the control literature to deal with PDEs containing nonlocal terms. This happened because the feedback
law itself is a functional of the solution of the PDE and appears as a nonlocal term either in the BC or in the
PDE (see [24, 45, 46] and references therein).

This paper focuses on 1-D parabolic PDEs with disturbances acting on both boundary sides and distributed
disturbances. The contribution of the paper is threefold:

• the derivation of decay estimates in the L2 norm for discontinuous disturbances,
• the derivation of decay estimates in the H1 norm for certain cases, and
• the application of the obtained decay estimates to the stability analysis of parabolic PDEs with nonlocal

terms.

More specifically, our first main result (Thm. 2.4) extends recent results (in [21–23]) to various directions:
discontinuous boundary and domain disturbances can be handled and the obtained decay estimate is less
conservative from the corresponding estimates in [21–23]. The derivation of decay estimates in the H1 norm
(Thms. 3.1 and 3.3) is achieved for two cases: (a) the case of Dirichlet BCs at both ends, and (b) the case of
Dirichlet BC on the one end and Robin (or Neumann) BC on the other end. The obtained decay estimates
involve the estimation of the principal eigenvalue of a Sturm–Liouville (SL) operator. To this purpose, we
develop tools which allow the estimation of the principal eigenvalue (Prop. 2.6).

The structure of the paper is as follows. Sections 2 and 3 are devoted to the presentation of the problem
and the statement of the main results which allow the derivation of decay estimates in various norms (Thms.
2.4, 3.1 and 3.3). The application of the obtained decay estimates to the stability analysis of parabolic PDEs
with nonlocal terms is illustrated in Section 4. The examples show the exploitation of the decay estimates for
the derivation of small-gain conditions for global exponential stability of the zero solution. Section 5 of the
present work contains the proofs of all (main and auxiliary) results. The conclusions of the paper are provided
in Section 6.

Notation. Throughout this paper, we adopt the following notation.
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∗ R+ := [0,+∞).
∗ Let A ⊆ Rn be an open set and let Ω ⊆ R and A ⊆ U ⊆ Ā be given sets. By C0(U )(or C0(U ; Ω)), we

denote the class of continuous mappings on U (which take values in Ω). By Ck(U) (or Ck(U ; Ω)), where
k ≥ 1, we denote the class of continuous functions on U , which have continuous derivatives of order k on
U (and also take values in Ω).

∗ Let I ⊆ R be an interval. A function f : I → R is called right continuous on I if for every t ∈ I and ε > 0
there exists δ(ε, t) > 0 such that for all τ ∈ I with t ≤ τ < t+ δ(ε, t) it holds that |f(τ)− f(t)| < ε. A con-
tinuous function f : [0, 1]→ R is called piecewise C1 on [0, 1] and we write f ∈ PC1([0, 1]), if the following
properties hold: (i) for every x ∈ [0, 1) the limit lim

h→0+

(
h−1 (f(x+ h)− f(x))

)
exists and is finite, (ii) for

every x ∈ (0, 1] the limit lim
h→0−

(
h−1 (f(x+ h)− f(x))

)
exists and is finite, (iii) there exists a set J ⊂ (0, 1)

of finite cardinality, where f ′(x) = lim
h→0−

(
h−1 (f(x+ h)− f(x))

)
= lim

h→0+

(
h−1 (f(x+ h)− f(x))

)
holds

for x ∈ (0, 1)\J , and (iv) the mapping (0, 1)\J 3 x→ f ′(x) ∈ R is continuous, i.e., f ′(x) is continuous for
every x ∈ (0, 1)\J . Notice that here a piecewise C1 function is assumed to be continuous on [0, 1] (this is
not assumed in many textbooks).

∗ Let r ∈ C0([0, 1]; (0,+∞)) be given. L2
r(0, 1) denotes the equivalence class of measurable functions f :

[0, 1]→ R for which ‖f‖r =
(∫ 1

0
r(x) |f(x)|2 dx

)1/2
< +∞. L2

r(0, 1) is a Hilbert space with inner product

〈f, g〉 =
∫ 1

0
r(x)f(x)g(x)dx. When r(x) ≡ 1, we use the notation L2(0, 1) for the standard space of square-

integrable functions and ‖f‖ =
(∫ 1

0
|f(x)|2 dx

)1/2
< +∞ for f ∈ L2(0, 1).

∗ Let u : R+ × [0, 1] → R be given. We use the notation u[t] to denote the profile at certain t ≥ 0, i.e.,
(u[t])(x) = u(t, x) for all x ∈ [0, 1]. When u(t, x) is differentiable with respect to x ∈ [0, 1], we use the
notation u′(t, x) for the derivative of u with respect to x ∈ [0, 1], i.e., u′(t, x) = ∂ u

∂ x (t, x). For an interval
I ⊆ R+, the space C0(I;L2

r(0, 1)) is the space of continuous mappings I 3 t→ u[t] ∈ L2
r(0, 1).

∗ For an integer k ≥ 1,Hk(0, 1) denotes the Sobolev space of functions in L2(0, 1) with all its weak derivatives
up to order k ≥ 1 in L2(0, 1).

2. Main results for the L2 norm

Consider the SL operator A : D → L2
r(0, 1) defined by

(Af)(x) = − 1

r(x)

d

dx

(
p(x)

df

dx
(x)

)
+
q(x)

r(x)
f(x), for all f ∈ D and x ∈ (0, 1), (2.1)

where p ∈ C1([0, 1]; (0,+∞)), r ∈ C0([0, 1]; (0,+∞)), q ∈ C0([0, 1];R) andD ⊆ H2(0, 1) is the set of all functions
f : [0, 1]→ R for which

b1f(0) + b2f
′(0) = a1f(1) + a2f

′(1) = 0, (2.2)

where a1, a2, b1, b2 are real constants with |a1|+ |a2| > 0, |b1|+ |b2| > 0. It is well-known (Chap. 11 in [3] and
pages 498–505 in [34]) that all eigenvalues of the SL operator A : D → L2

r(0, 1), defined by (2.1) and (2.2) are
real. The eigenvalues form an infinite, increasing sequence λ1 < λ2 < · · · < λn < · · ·with lim

n→∞
(λn) = +∞ and

to each eigenvalue λn ∈ R (n = 1, 2, . . .) corresponds exactly one eigenfunction φn ∈ C2([0, 1];R) that satisfies
Aφn = λnφn and b1φn(0)+ b2φ

′
n(0) = a1φn(1)+a2φ

′
n(1) = 0. Moreover, the eigenfunctions form an orthonormal

basis of L2
r(0, 1).

In the present work, we use the following assumption for the SL operator A : D → L2
r(0, 1) defined by (2.1)

and (2.2), where a1, a2, b1, b2 are real constants with |a1|+ |a2| > 0, |b1|+ |b2| > 0.
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(H): The SL operator A : D → L2
r(0, 1) defined by (2.1) and (2.2), where a1, a2, b1, b2 are real constants with

|a1|+ |a2| > 0, |b1|+ |b2| > 0, satisfies

∞∑
n=N

λ−1n max
0≤x≤1

(|φn(x)|) < +∞, for certain N > 0 with λN > 0. (2.3)

It is important to notice that the validity of assumption (H) can be verified without knowledge of eigenvalues
and the eigenfunctions of the SL operator A (see [35]).

We next consider the following system

∂ u

∂ t
(t, x)− 1

r(x)

∂

∂ x

(
p(x)

∂ u

∂ x
(t, x)

)
+
q(x)

r(x)
u(t, x) = f(t, x), x ∈ (0, 1), (2.4)

b1u(t, 0) + b2
∂ u

∂ x
(t, 0)− d0(t) = a1u(t, 1) + a2

∂ u

∂ x
(t, 1)− d1(t) = 0, (2.5)

where u[t] is the state and f(t, x), d0(t), d1(t) are disturbance inputs. The following definition clarifies the notion
of solution that is used throughout the paper.

Definition 2.1. Consider the SL operator A : D → L2
r(0, 1) defined by (2.1) and (2.2), where a1, a2, b1, b2 are

real constants with |a1| + |a2| > 0, |b1| + |b2| > 0, under assumption (H). For every u0 ∈ L2
r(0, 1) let Φ(A;u0)

be the set of all functions f : R+ × [0, 1]→ R, d0, d1 : R+ → R for which the following implication holds:
“If (f, d0, d1) ∈ Φ(A;u0) then d0, d1 : R+ → R are locally bounded functions, f [t] ∈ C0 ([0, 1]),

sup
0<s<t

(‖f [s]‖r) < +∞ for all t > 0, the left limits lim
s→t−

(f(s, z)) exist and are finite for all t > 0 and there exists

an increasing sequence of times { τi ≥ 0 , i = 0, 1, 2, . . . } with τ0 = 0, lim
i→+∞

(τi) = +∞ and a unique mapping

u ∈ C0(R+;L2
r(0, 1)) with u ∈ C1(I × [0, 1]) satisfying u[t] ∈ C2([0, 1]) for all t > 0, lim

t→τ−i
(u(t, x)) = u(τi, x),

lim
t→τ−i

(
∂ u
∂ t (t, x)

)
= −(Au[τi])(x) + lim

t→τ−i
(f(t, x)), lim

t→τ−i

(
∂ u
∂ x (t, x)

)
= ∂ u

∂ x (τi, x) for all i ≥ 1, u(0, x) = u0(x) for all

x ∈ [0, 1], and

∂ u

∂ t
(t, x)− 1

r(x)

∂

∂ x

(
p(x)

∂ u

∂ x
(t, x)

)
+
q(x)

r(x)
u(t, x) = f(t, x), for all (t, x) ∈ I × (0, 1) (2.6)

b1u(t, 0) + b2
∂ u

∂ x
(t, 0)− d0(t) = a1u(t, 1) + a2

∂ u

∂ x
(t, 1)− d1(t) = 0, for all t ∈ I, (2.7)

where I = R+\ { τi ≥ 0 , i = 0, 1, 2, . . . }.”

Remark 2.2. The class of allowable disturbances Φ(A;u0) in Definition 2.1 allows disturbances which are not
bounded on R+, i.e., we may have sup

s>0
(‖f [s]‖r) = +∞ and/or sup

t>0
(|di(t)|) = +∞ for i = 0, 1. The notion of

solution that is described by Definition 2.1 also allows us to consider discontinuous distributed and boundary
disturbances. Indeed, using a methodology similar to that followed in [22], it can be shown that:

• if f : R+ × [0, 1] → R is a real function for which there exists an increasing sequence of times
{ τi ≥ 0 , i = 0, 1, 2, . . . } with τ0 = 0, lim

i→+∞
(τi) = +∞ and the following property: for every i ≥ 1 there

exist functions f1,i, f2,i ∈ C0 ((τi−1, τi)× [0, 1]), ϕi ∈ PC1 ([0, 1]), θi ∈ C0 ([0, 1]), ci ∈ D
⋂
C2([0, 1]), with

f1,i[t] ∈ PC1([0, 1]), f2,i[t] ∈ D
⋂
C2([0, 1]), f [t] = f1[t] + f2[t] for t ∈ (τi−1, τi), sup

t∈(τi−1,τi)

(
‖f1,i[t]‖r

)
+
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sup
t∈(τi−1,τi)

(
‖f2,i[t]‖r

)
+ sup
t∈(τi−1,τi)

(
‖Af2,i[t]‖r

)
< +∞, (τi−1, τi)× [0, 1] 3 (t, x)→ ∂ f1,i

∂ t (t, x) is continuous,

lim
t→τ−i

(f1,i(t, x)) = ϕi(x), lim
t→τ−i

(
∂ f1,i
∂ t (t, x)

)
= θi(x), lim

t→τ−i
(f2,i(t, x)) = ci(x) for all x ∈ [0, 1] (notice that

the bounds for sup
t∈(τi−1,τi)

(
‖f1,i[t]‖r

)
+ sup
t∈(τi−1,τi)

(
‖f2,i[t]‖r

)
+ sup
t∈(τi−1,τi)

(
‖Af2,i[t]‖r

)
are not uniform with

respect to i ≥ 1),

• if d1, d0 : R+ → R are right continuous functions for which there exists an increasing sequence of
times { τi ≥ 0 , i = 0, 1, 2, . . . } with τ0 = 0, lim

i→+∞
(τi) = +∞ such that: (i) d1, d0 ∈ C2 (I), where

I = R+\ { τi ≥ 0 , i = 0, 1, 2, . . . }, (ii) for every τi > 0 the left limits of d1(t), ḋ1(t), d̈1(t), d0(t), ḋ0(t), d̈0(t)

when t tends to τi are finite, and (iii) sup
t∈(τ1,τi+1)

(∣∣∣ḋ1(t)
∣∣∣)+ sup

t∈(τ1,τi+1)

(∣∣∣ḋ0(t)
∣∣∣) < +∞ for i = 0, 1, 2, . . . are

finite,

then (f, d0, d1) ∈ Φ(A;u0). However, Definition 2.1 does not allow arbitrary functions to be considered as inputs
for (2.4) and (2.5): the boundary inputs d0, d1 must be (at least) piecewise continuous functions on R+. Notice
that if (f, d0, d1) ∈ Φ(A;u) and (f̃ , d̃0, d̃1) ∈ Φ(A; ũ) for certain u, ũ ∈ L2

r(0, 1) then (λ f, λ d0, λ d1) ∈ Φ(A;λu)
for every λ ∈ R and (f + f̃ , d0 + d̃0, d1 + d̃0) ∈ Φ(A;u + ũ). In what follows, for any given u0 ∈ L2

r(0, 1),
(f, d0, d1) ∈ Φ(A;u0), the mapping u ∈ C0(R+;L2

r(0, 1)) with u ∈ C1(I × [0, 1]) satisfying u[t] ∈ C2([0, 1]) for
all t > 0, lim

t→τ−i
(u(t, x)) = u(τi, x), lim

t→τ−i

(
∂ u
∂ t (t, x)

)
= −(Au[τi])(x) + lim

t→τ−i
(f(t, x)), lim

t→τ−i

(
∂ u
∂ x (t, x)

)
= ∂ u

∂ x (τi, x)

for all i ≥ 1, u(0, x) = u0(x) for all x ∈ [0, 1], and (2.6), (2.7), is called the (unique) solution of the evolution
equation (2.4) with (2.5) and initial condition u0 ∈ L2

r(0, 1) corresponding to inputs (f, d0, d1) ∈ Φ(A;u0).

Definition 2.3. Consider the SL operator A : D → L2
r(0, 1) defined by (2.1) and (2.2), where a1, a2, b1, b2 are

real constants with |a1| + |a2| > 0, |b1| + |b2| > 0, under assumption (H). The operator A : D → L2
r(0, 1) is

called exponentially stable (ES) if λ1 > 0.
Our first main result provides decay estimates of the solution of (2.4) and (2.5) in the norm of L2

r(0, 1).

Theorem 2.4. Suppose that the SL operator A : D → L2
r(0, 1) defined by (2.1) and (2.2) is ES. Then for every

u0 ∈ L2
r(0, 1), (f, d0, d1) ∈ Φ(A;u0), the unique solution u ∈ C0(R+;L2

r(0, 1)) of the evolution equation (2.4)
with (2.5) and initial condition u0 ∈ L2

r(0, 1) satisfies the following estimate for all σ ∈ [0, λ1) and t > 0:

‖u[t]‖r ≤ exp (−λ1 t) ‖u0‖r + λ1

λ1−σC0 sup
0<s<t

(|d0(s)| exp (−σ(t− s)))

+ λ1

λ1−σC1 sup
0<s<t

(|d1(s)| exp (−σ(t− s))) + 1
λ1−σ sup

0<s<t
(‖f [s]‖r exp (−σ(t− s))) , (2.8)

where

C0 :=
p(0)

b21 + b22

√√√√ ∞∑
n=1

1

λ2n

∣∣∣∣b1 dφnd z
(0)− b2φn (0)

∣∣∣∣2 =
1√

b21 + b22
‖ũ‖r , (2.9)

C1 :=
p(1)

a21 + a22

√√√√ ∞∑
n=1

1

λ2n

∣∣∣∣a2φn (1)− a1
dφn
d z

(1)

∣∣∣∣2 =
1√

a21 + a22
‖ū‖r , (2.10)

ũ ∈ C2([0, 1]) is the unique solution of the boundary value problem (p(x)ũ′(x))
′
− q(x)ũ(x) = 0 for x ∈ [0, 1] with

b1ũ(0) + b2ũ
′(0) =

√
b21 + b22, a1ũ(1) +a2ũ

′(1) = 0 and ū ∈ C2([0, 1]) is the unique solution of the boundary value

problem (p(x)ū′(x))
′
− q(x)ū(x) = 0 for x ∈ [0, 1] with b1ū(0) + b2ū

′(0) = 0 and a1ū(1) + a2ū
′(1) =

√
a21 + a22.
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Remark 2.5. Theorem 2.4 generalizes in many ways the result of Theorem 2.3 in [23]. Since Theorem 2.3
in [23] considers inputs for which the solution u is continuous on R+ × [0, 1] and C1 on (0,+∞) × [0, 1],
it follows that no discontinuous inputs are allowed. On the other hand, Theorem 2.4 allows discontin-
uous inputs. Another difference between Theorem 2.3 in [23] and Theorem 2.4 is the obtained decay
estimate. While Theorem 2.3 in [23] provides an decay estimate which involves only terms of the form
sup

0≤s≤t
(|d0(s)| exp (−σ(t− s))) , sup

0≤s≤t
(|d1(s)| exp (−σ(t− s))) with σ = 0, Theorem 2.4 allows positive values

for σ. The difference is important, because Theorem 2.4 provides a “fading memory estimate” (see [19]), which
can be directly used for small-gain analysis. The term describing the effect of the initial condition in (2.8), namely
the term exp (−λ1 t) ‖u0‖r, is less conservative than the one used in Theorem 2.3 in [23]. Finally, Theorem 2.3
in [23] used the infinity norm of the distributed input f , while Theorem 2.4 uses the weighted 2-norm of the
distributed input f . The proofs of Theorem 2.3 in [23] and Theorem 2.4 are very different (due to the fact that
Theorem 2.4 does not impose the demanding regularity requirements for the solution of (2.4) and (2.5) in [23]).

It is clear that formulas (2.9) and (2.10) allow us to calculate the gain coefficients in (2.8) without requiring
knowledge of the eigenvalues and the eigenfunctions of the SL operator A : D → L2

r(0, 1). However, we still need
to know a positive lower bound of the principal eigenvalue λ1. The following proposition provides the means
to avoid the calculation of λ1, as well as the means to verify that the SL operator A : D → L2

r(0, 1) defined by
(2.1) and (2.2) is ES. It deals with the special case p(x) ≡ p, r(x) ≡ 1, because, when p ∈ C2([0, 1]; (0,+∞)),
r ∈ C2([0, 1]; (0,+∞)), using a so-called gauge transformation, it is possible to convert system (2.4) and (2.5)
into one with constant diffusion and zero advection terms. More specifically, this is achieved by the coordinate
change:

ξ =
√
ε

∫ x

0

√
p(s)

r(s)
ds , where ε =

(∫ 1

0

√
r(s)

p(s)
ds

)−2
and U(t, ξ) = (r(x)p(x))

1/4
u(t, x).

Proposition 2.6. Consider the SL operator A : D → L2(0, 1) defined by (2.1) and (2.2), where a1, a2, b1, b2
are real constants with |a1|+ |a2| > 0, |b1|+ |b2| > 0, with p(x) ≡ p, r(x) ≡ 1, under assumption (H). Suppose
that there exist constants ε1, ε2 > 0, λ ∈ [0, 1] and a function g ∈ C2 ([0, 1]; (0,+∞)) such that:

g′(1)− 2q1g(1)− 2R−1(1− λ)(1 + ε1) ≥ 0
2q0g(0)− g′(0)− 2R−1λ(1 + ε0) ≥ 0

(2.11)

and

2R−1 + 2p−1g(x)q(x) > g′′(x), for all x ∈ [0, 1], (2.12)

where

R :=

∫ 1

0

(
λ(1 + ε−10 )

∫ z

0

ds

g(s)
+ (1− λ)(1 + ε−11 )

∫ 1

z

ds

g(s)

)
dz (2.13)

q0 = +∞ if b2 = 0 and q0 = −b1/b2 if b2 6= 0 (2.14)

q1 = −∞ if a2 = 0 and q1 = −a1/a2 if a2 6= 0 (2.15)
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Then the operator A : D → L2(0, 1) is ES. Moreover,

λ1 ≥
min

{
2g(x)q(x) + 2pR−1 − pg′′(x) : x ∈ [0, 1]

}
2 max { g(x) : x ∈ [0, 1] }

> 0.

Conditions (2.11) involve the coefficients a1, a2, b1, b2 in the boundary conditions and guarantee that the

level of dissipation of the “energy” functional V (u) = 1
2

∫ 1

0
g(z)u2(z)dz induced by the boundary conditions is

sufficient large. Inequality (2.12) is an inequality for the function q(z) that is involved in the reaction term of the
operator A and consequently, inequality (2.12) is a bound on the strength of the reaction term. The selection
of the function g ∈ C2 ([0, 1]; (0,+∞)) should be made with caution: an inappropriate selection may give very
demanding conditions for the operator A to be ES, while an appropriate selection for g ∈ C2 ([0, 1]; (0,+∞))
may give a very accurate lower bound for the principal eigenvalue λ1. The following example illustrates the use
of Proposition 2.6 to cases where analytical expressions for the eigenvalues of A cannot be obtained.

Example 2.7. Consider the SL operator A : D → L2(0, 1) defined by (2.1) and (2.2), with p(z) ≡ p, r(z) ≡ 1,
b2 = a2 = 1, b1 ≤ −1 and a1 ≥ 1. Conditions (2.11), (2.13), (2.14), and (2.15) hold with ε0 = ε1 = 1, g(z) ≡ 1,
R = 1, λ = 1/2. Consequently, Proposition 2.6 implies that A is ES if the inequality q(z) > −p holds for
all z ∈ [0, 1]; this is inequality (2.12) for the aforementioned selection of constants. Moreover, the principal
eigenvalue λ1 of operator A satisfies the inequality λ1 ≥ p+ min { q(z) : z ∈ [0, 1] }. Notice that for such cases
it is very difficult (if not impossible) to obtain analytical expressions for the eigenvalues of A. For this example,
less restrictive conditions for the function q(z) that guarantee that the operator A is ES can be obtained if more
complicated functions g(z) are used (e.g., g(z) = exp(σ z) or g(z) = 1 + σ z, where σ ∈ R is a parameter to be
chosen appropriately).

3. Main results for the H1 norm

In order to obtain decay estimates in the H1 norm we need to focus our attention to more specific cases. The
following result provides decay estimates for the Dirichlet case in the L2 norm of the solution as well as in the
L2 norm of the spatial derivative of the solution.

Theorem 3.1 (Dirichlet BCs-no boundary disturbances). Consider the SL operator A : D → L2(0, 1), defined
by (2.1) and (2.2) with p(x) ≡ p, r(x) ≡ 1, q(x) ≡ q, a2 = b2 = 0, a1 = b1 = 1, where q > −pπ2. Con-
sider also the SL operator A′ : D′ → L2(0, 1) defined by (A′g)(x) = −p g′′(x) + q g(x) for all x ∈ [0, 1]
and g ∈ D′ ∈

{
v ∈ H2(0, 1) : v′(0) = v′(1) = 0

}
. Then for every u0 ∈ H1(0, 1) with u0(0) = u0(1) = 0 and

(f, 0, 0) ∈ Φ(A;u0) with f [t] ∈ C1([0, 1]) for all t ≥ 0, (f ′, d̃0, d̃1) ∈ Φ(A′;u′0) where d̃1(t) = −p−1f(t, 1),
d̃0(t) = −p−1f(t, 0) for t ≥ 0, the unique solution u ∈ C0(R+;L2(0, 1)) of the evolution equation (2.4) with (2.5),
d0(t) = d1(t) ≡ 0 and initial condition u0 ∈ H1(0, 1) satisfies the following estimates for all σ ∈ [0, pπ2 + q),
t > 0:

‖u[t]‖ ≤ exp
(
−
(
pπ2 + q

)
t
)
‖u0‖+

1

pπ2 + q − σ
sup

0<s<t
(‖f [s]‖ exp (−σ(t− s))) (3.1)

‖u′[t]‖ ≤ exp
(
−
(
pπ2 + q

)
t
)
‖u′0‖+

(
pπ2 + q

pπ2 + q − σ

)
p−1h(q/p) sup

0<s<t
(‖f [s]‖ exp (−σ(t− s))) , (3.2)
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where

h(s) :=



√
exp(2

√
s)−exp(−2

√
s)−4

√
s

2(s)1/4(exp(
√
s)−exp(−

√
s))

if s > 0√
6/6 if s = 0√
4
√
−s−2 sin(2

√
−s)

4(−s)1/4 sin(
√
−s)

if − π2 < s < 0

. (3.3)

In order to obtain decay estimates in the H1 norm for the case with Dirichlet BC at 0 and Robin (or
Neumann) BC at 1 we need the following definition.

Definition 3.2. Consider the SL operator A : D → L2
r(0, 1) defined by (2.1) and (2.2), where a1, a2, b1, b2 are

real constants with q ∈ C2([0, 1]; (0,+∞)), b2 = 0, b1 = a2 = 1, p(x) ≡ p, r(x) ≡ 1, under assumption (H). The
“derived operator” of A is the SL operator A′ : D′ → L2(0, 1) defined by

(A′f)(x) = −pf ′′(x) + (q(x) + 2a1p) f(x), for all f ∈ D′ and x ∈ (0, 1), (3.4)

where D′ ⊆ H2(0, 1) is the set of all functions f : [0, 1]→ R for which

f ′(0) = f(1) = 0. (3.5)

Theorem 3.3 (Dirichlet BC at 0 with no boundary disturbance-Robin BC at 1 with boundary disturbance).
Suppose that the SL operator A : D → L2(0, 1) with q ∈ C2([0, 1]; (0,+∞)), p(x) ≡ p, r(x) ≡ 1, b2 = 0, b1 =
a2 = 1 and its derived operator A′ : D′ → L2(0, 1) defined by (3.4) and (3.5) are ES. Then there exist constants
M,Θ1, Θ2, Θ3, γ0, γ1, γ2, σ > 0 such that for every u0 ∈ H1(0, 1) with u0(0) = 0, (f, 0, d1) ∈ Φ(A;u0) with f [t] ∈
C1([0, 1]) for all t ≥ 0, (f̃ , d̃0, d1) ∈ Φ(A′, Pu0) , where (Pu)(x) = u′(x) +a1xu(x) for all x ∈ [0, 1], f̃ [t] = Pf [t],
d̃0(t) = −p−1f(t, 0) for t ≥ 0, the unique solution u ∈ C0(R+;L2(0, 1)) of the evolution equation (2.4) with (2.5),
d0(t) ≡ 0 and initial condition u0 ∈ H1(0, 1) satisfies the following estimates for all t > 0:

‖u′[t]‖ ≤ (‖u′[0]‖+M ‖u[0]‖) exp (−σ t)
+Θ1 sup

0≤s≤t
(‖f [s]‖ exp (−σ (t− s))) +Θ2 sup

0<s<t
(‖f ′[s]‖ exp (−σ (t− s)))

+γ0 sup
0<s<t

(|f(s, 0)| exp (−σ (t− s))) + γ1 sup
0<s<t

(|d1(s)| exp (−σ (t− s))) (3.6)

‖u[t]‖ ≤ exp (−σ t) ‖u0‖+Θ3 sup
0<s<t

(‖f [s]‖ exp (−σ(t− s))) + γ2 sup
0<s<t

(|d1(s)| exp (−σ(t− s))) (3.7)

Remark 3.4. The proof of Theorem 3.3 provides explicit estimates for all constants M,Θ1, Θ2, γ0, γ1, σ > 0
appearing in the right hand side of (3.6). More specifically, we get

M = 2 |a1|+
max
0≤x≤1

(∣∣q′(x)− 2a21px
∣∣)

µ1 − σ
, γ0 =

µ1

µ1 − σ
C̃0p

−1

γ1 =
µ1

µ1 − σ
C̃1 +

λ1
λ1 − σ

C1

 max
0≤x≤1

(∣∣q′(x)− 2a21px
∣∣)

µ1 − σ
+ |a1|

 , γ2 =
λ1

λ1 − σ
C1

Θ1 =
|a1|

µ1 − σ
+
|a1|

λ1 − σ
+ λ1

max
0≤x≤1

(∣∣q′(x)− 2a21px
∣∣)

(µ1 − σ)(λ1 − σ)
, Θ2 =

1

µ1 − σ
, Θ3 =

1

λ1 − σ
,
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where σ ∈ [0,min (µ1, λ1)) is arbitrary, C0 := ‖ũ‖, C1 := 1√
a21+1

‖ū‖, ũ ∈ C2([0, 1]) is the unique solution of the

boundary value problem pũ′′(z) − q(x)ũ(x) = 0 for x ∈ [0, 1] with ũ(0) = 1, a1ũ(1) + ũ′(1) = 0, ū ∈ C2([0, 1])
is the unique solution of the boundary value problem pū′′(x) − q(x)ū(z) = 0 for x ∈ [0, 1] with ū(0) = 0 and
a1ū(1) + ū′(1) =

√
a21 + 1, 0 < µ1 < µ2 < · · · < µn < · · ·with lim

n→∞
(µn) = +∞ are the eigenvalues of the SL

operator A′, C̃0 := ‖ṽ‖, C̃1 := ‖v̄‖, ṽ ∈ C2([0, 1]) is the solution of the boundary value problem pṽ′′(x) −
(q(x) + 2a1p) ṽ(x) = 0 for x ∈ [0, 1] with ṽ′(0) = 1, ṽ(1) = 0 and v̄ ∈ C2([0, 1]) is the solution of the boundary
value problem pv̄′′(x)− (q(x) + 2a1p) v̄(x) = 0 for x ∈ [0, 1] with v̄′(0) = 0 and v̄(1) = 1.

The proofs of Theorems 3.1 and 3.3 rely on the following technical results, which are of independent inter-
est. Both results show that the spatial derivative of the solution of the evolution equation (2.4) with (2.5)
is determined by solving a specific evolution equation with specific boundary disturbances (even if boundary
disturbances were absent in the original evolution Eqs. (2.4) and (2.5)).

Proposition 3.5. Consider the SL operator A : D → L2(0, 1) defined by (2.1) and (2.2) with p(x) ≡ p, r(x) ≡ 1,
q(x) ≡ q, a2 = b2 = 0, a1 = b1 = 1. Consider also the SL operator A′ : D′ → L2(0, 1) defined by (A′g)(x) =
−p g′′(x) + q g(x) for all x ∈ [0, 1] and g ∈ D′ ∈

{
v ∈ H2(0, 1) : v′(0) = v′(1) = 0

}
. Let u0 ∈ H1(0, 1) with

u0(0) = u0(1) = 0 and (f, 0, 0) ∈ Φ(A;u0) be given functions with f [t] ∈ C1([0, 1]) for all t ≥ 0, (f ′, d̃0, d̃1) ∈
Φ(A′;u′0) where d̃1(t) = −p−1f(t, 1), d̃0(t) = −p−1f(t, 0) for t ≥ 0. Consider the solution u ∈ C0(R+;L2(0, 1))
of the evolution equation (2.4) with (2.5), d0(t) = d1(t) ≡ 0 and initial condition u0 ∈ H1(0, 1) with u0(0) =
u0(1) = 0, corresponding to input f . Consider also the solution v ∈ C0(R+;L2(0, 1)) of the initial-boundary
value problem

∂ v

∂ t
(t, x) = p

∂2 v

∂ x2
(t, x)− q v(t, x) + f ′(t, x) (3.8)

∂ v

∂ x
(t, 0) + p−1f(t, 0) =

∂ v

∂ x
(t, 1) + p−1f(t, 1) = 0 (3.9)

with initial condition v0 = u′0. Then the following equations hold for all (t, x) ∈ R+ × [0, 1]:

v(t, x) =
∂ u

∂ x
(t, x) (3.10)

∫ 1

0

v(t, x)dx = 0. (3.11)

Proposition 3.6. Consider the SL operator A : D → L2(0, 1) defined by (2.1) and (2.2) with p(x) ≡ p, r(x) ≡ 1,
b2 = 0, a2 = b1 = 1. Suppose that the SL operator A′ : D′ → L2(0, 1) defined by (3.4) and (3.5), satisfies
assumption (H). Let u0 ∈ H1(0, 1) with u0(0) = 0, (f, 0, d1) ∈ Φ(A;u0) with f [t] ∈ C1([0, 1]) for all t ≥ 0,
(f̃ , d̃0, d1) ∈ Φ(A′, Pu0), where (Pu)(x) = u′(x) + a1xu(x) for all x ∈ [0, 1], f̃ [t] = Pf [t], d̃0(t) = −p−1f(t, 0)
for t ≥ 0, be given functions. Consider the solution u ∈ C0(R+;L2(0, 1)) of the evolution equation (2.4) with
(2.5), d0(t) ≡ 0 and initial condition u0 ∈ H1(0, 1), corresponding to inputs f , d1. Consider also the solution
v ∈ C0(R+;L2(0, 1)) of the initial-boundary value problem

∂ v

∂ t
(t, x) = p

∂2 v

∂ x2
(t, x)− (q(x) + 2a1p) v(t, x)−

(
q′(x)− 2a21px

)
u(t, z) + f ′(t, x) + a1xf(t, x) (3.12)

∂ v

∂ x
(t, 0) + p−1f(t, 0) = v(t, 1)− d1(t) = 0 (3.13)
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with initial condition v0(x) = u′0(x) + a1xu0(x) for x ∈ [0, 1]. Then the following equation holds for all (t, x) ∈
R+ × [0, 1]:

v(t, x) =
∂ u

∂ x
(t, x) + a1xu(t, x). (3.14)

The following example shows how easily the obtained results can be applied to the study of heat transfer
phenomena.

Example 3.7. Consider a solid bar of length L > 0 and its temperature T (t, z) at time t ≥ 0 and position
z ∈ [0, L]. The temperature of the bar is kept constant at z = 0, i.e.,

T (t, 0) = T0 , for t ≥ 0 (3.15)

while at z = L the bar is in contact with air. The air temperature Tair(t) is subject to variation around a nominal
temperature Tnom, i.e.,

Tair(t) = Tnom + d(t) for t ≥ 0 (3.16)

Applying Newton’s law of cooling and Fourier’s law of heat conduction, we get

− k∂ T
∂ z

(t, L) = h(T (t, L)− Tair(t)) for t ≥ 0 (3.17)

where h > 0 is the heat transfer coefficient of air and k > 0 is the thermal conductivity of the solid. Taking into
account (3.15)–(3.17) and using the dimensionless position x = z/L, we obtain the following evolution problem:

∂ T

∂ t
(t, x) = p

∂2 T

∂ x2
(t, x), for x ∈ (0, 1) (3.18)

T (t, 0)− T0 =
∂ T

∂ x
(t, 1) + a1 T (t, 1)− a1Tnom − a1 d(t) = 0, (3.19)

where p, a1 > 0 are constants. Using the dimensionless deviation variable u(t, x) around the equilibrium
temperature profile T (x) = T0 + a1

1+a1
(Tnom − T0) x, i.e., defining

u(t, x) =
T (t, x)

T0
− 1− a1

1 + a1

(
Tnom
T0
− 1

)
x, (3.20)

we get the following evolution problem:

∂ u

∂ t
(t, x) = p

∂2 u

∂ x2
(t, x) , for x ∈ (0, 1) (3.21)

u(t, 0) =
∂ u

∂ x
(t, 1) + a1 u(t, 1)− d1(t) = 0, (3.22)

where d1(t) = a1d(t)/T0.
The goal is the estimation of the effect of the disturbance d1(t) to the temperature profile of the bar. The

evolution of u may be studied using the results in [21–23]. In this case, we obtain estimates for initial conditions
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u0 ∈ C2([0, 1]) and disturbances d1 ∈ C2(R+) with u0(0) = u′0(1) + a1 u0(1)− d1(0) = 0. Let θ ∈
(
π
2 , π

)
be the

unique solution of the equation tan(θ) = −a−11 θ. It follows from Theorem 2.3 in [23] or Theorem 2.2 in [22] (by
performing all relevant computations) that the following estimate holds for all t ≥ 0:

‖u[t]‖ ≤

√
exp (−pθ2 t)

2− exp (−pθ2 t)
‖u0‖+

√
3

3(1 + a1)
max
0≤s≤t

(|d1(s)|) . (3.23)

Pick θ0 ∈
(
π
2 , θ
)
, ϕ ∈ (0, θ − θ0) and notice that assumption (H4) in [23] holds with η(x) = sin (θ0x+ ϕ). It

follows from Theorem 2.2 in [23] that the following estimate holds for all t ≥ 0, θ0 ∈
(
π
2 , θ
)

and ϕ ∈ (0, θ − θ0):

max
0≤x≤1

(
|u(t, x)|

sin (θ0x+ ϕ)

)
≤ max

exp
(
−pθ20 t

)
max
0≤x≤1

(
|u0(x)|

sin (θ0x+ ϕ)

)
,

max
0≤s≤t

(|d1(s)|)

a1 sin (θ0 + ϕ) + θ0 cos (θ0 + ϕ)

 .

(3.24)
Applying the results of the present work, we obtain different results. Theorem 2.4 can be applied to initial

conditions u0 ∈ L2(0, 1) and boundary disturbances d1 such as those described in Remark 2.2 and provides the
following estimate which holds for all t > 0 and σ ∈

[
0, pθ2

)
:

‖u[t]‖ ≤ exp
(
−pθ2 t

)
‖u0‖+

pθ2

pθ2 − σ

√
3

3(1 + a1)
sup

0<s<t
(|d1(s)| exp (−σ(t− s))) . (3.25)

Estimate (3.25) should be compared with estimate (3.23): estimate (3.25) is sharper and more flexible than
estimate (3.23). Moreover, by performing all relevant computations, we can verify that Theorem 3.3 can be
also applied. Using Theorem 3.3 and Remark 3.4, we are in a position to conclude that for initial conditions
u0 ∈ H1(0, 1) with u0(0) = 0 and disturbances d1 such as those described in Remark 2.2, the following estimate

which holds for all t > 0 and σ ∈
[
0,min

(
pπ

2+8a1
4 , pθ2

))
:

‖u′[t]‖ ≤ (‖u′[0]‖+M ‖u[0]‖) exp (−σ t) + γ1 sup
0<s<t

(|d1(s)| exp (−σ (t− s))) , (3.26)

where

M := 2a1 +
8a21p

pπ2+8pa1−4σ

γ1 := pπ2+8pa1
pπ2+8pa1−4σ C̃1 + pθ2

pθ2−σ

√
3a1

3(1+a1)
pπ2+16pa1−4σ
pπ2+8pa1−4σ

C̃1 := 1

exp(
√
2a1)+exp(−

√
2a1)

√
2 +

exp(2
√
2a1)−exp(−2

√
2a1)

2
√
2a1

.

Estimates (3.24)–(3.26) may be used in a straightforward way in order to obtain quantitative results for the
temperature of the bar.

4. Applications to 1-D nonlocal parabolic PDEs

This section provides two examples of 1-D parabolic PDEs with nonlocal terms. The nonlocal terms may
appear either in the BCs or in the PDE. We are not dealing with existence/uniqueness issues for the PDEs;
instead we show how the main results of the present work can be used directly in order to derive exponential
stability estimates for the solution.
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Example 4.1. Let p > 0, q ∈ R with q > −pπ2/4 and consider the system

∂ u

∂ t
(t, x) = p

∂2 u

∂ x2
(t, x)− qu(t, x), (4.1)

with nonlocal BCs

u(t, 0) = u′(t, 1)−
∫ 1

0

β0(s)u(t, s)ds−
∫ 1

0

β1(s)u′(t, s)ds = 0, (4.2)

where β0, β1 ∈ L2(0, 1) are given functions. Here we are not concerned with existence/uniqueness questions for
problem (4.1), (4.2) but rather we assume that β0, β1 ∈ L2(0, 1) satisfy appropriate conditions so that there
exists a set D̃ ⊆ H1(0, 1) with the following property:

“For every u0 ∈ D̃ with u0(0) = 0, the initial-boundary value problem (4.1) and (4.2) with u[0] = u0 has

a unique solution u[t] for t ≥ 0 and the initial-boundary value problem ∂ w
∂ t (t, x) = p∂

2 w
∂ x2 (t, x) − qw(t, x) with

w[0] = u′0, w′(t, 0) = 0 and w(t, 1) −
∫ 1

0
β0(s)u(t, s)ds −

∫ 1

0
β1(s)u′(t, s)ds = 0 has a unique solution w[t] for

t ≥ 0.”
Our aim is to provide conditions for exponential stability of system (4.1) and (4.2). More specifically, we

show that if

‖β0‖h(q/p) + ‖β1‖ h̃(q/p) < 1, (4.3)

where

h(s) :=



√
exp(2

√
s)−exp(−2

√
s)−4

√
s

(exp(
√
s)+exp(−

√
s))
√
s

, if s > 0
√
3
3 , if s = 0√
2
√
−s−sin(2

√
−s)

2 cos(
√
−s)(−s)3/4

, if − π2

4 < s < 0

, h̃(s) :=



√
exp(2

√
s)−exp(−2

√
s)+4

√
s

2
√
2(s)1/4

, if s > 0

1, if s = 0√
2
√
−s+sin(2

√
−s)

2(−s)1/4 cos(
√
−s)

, if − π2

4 < s < 0

(4.4)

then there exist constants M,σ > 0 such that for every u0 ∈ D̃ with u0(0) = 0 the unique solution u[t] of system
(4.1), (4.2) with initial condition u[0] = u0 satisfies the following decay estimate for all t ≥ 0:

‖u[t]‖+ ‖u′[t]‖ ≤M exp (−σ t) (‖u0‖+ ‖u′0‖) . (4.5)

In order to prove the decay estimate (4.5), we first study an auxiliary problem. We consider the solution u[t]

of (4.1) with d1(t) :=
∫ 1

0
β0(s)u(t, s)ds+

∫ 1

0
β1(s)u′(t, s)ds, for t ≥ 0 and

u(t, 0) = u′(t, 1)− d1(t) = 0. (4.6)

The corresponding SL operator A : D → L2(0, 1) is defined by

(Af)(x) = −p f ′′(x) + q f(x), for all f ∈ D and x ∈ (0, 1), (4.7)

where D ⊆ H2(0, 1) is the set of all functions f : [0, 1]→ R for which f(0) = f ′(1) = 0. This operator has eigen-

functions φn(x) =
√

2 sin
(

(2n−1)πx
2

)
, for n = 1, 2, 3, . . . and eigenvalues λn = (2n−1)2π2

4 p+ q, for n = 1, 2, 3, . . ..
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Assumption (H) holds for A : D → L2(0, 1) and since q > −pπ
2

4 , it follows that λ1 > 0 and consequently,
A : D → L2(0, 1) is an ES operator. Its derived operator A′ : D′ → L2(0, 1) is defined by

(A′f)(x) = −p f ′′(x) + q f(x), for all f ∈ D′ and x ∈ (0, 1), (4.8)

where D′ ⊆ H2(0, 1) is the set of all functions f : [0, 1]→ R for which f ′(0) = f(1) = 0. This operator has eigen-

functions ψn(x) =
√

2 cos
(

(2n−1)πx
2

)
, for n = 1, 2, 3, . . . and eigenvalues µn = (2n−1)2π2

4 p+ q, for n = 1, 2, 3, . . ..

Assumption (H) holds for A′ : D′ → L2(0, 1) and since q > −pπ
2

4 , it follows that µ1 > 0 and consequently,
A′ : D′ → L2(0, 1) is an ES operator. It follows from Theorem 3.3 and Remark 3.4 that for every u0 ∈ H1(0, 1)
with u0(0) = 0, (0, 0, d1) ∈ Φ(A′, u′0)

⋂
Φ(A, u0), the unique solution u : R+× [0, 1]→ R of the evolution equation

(4.1) with (4.6) and initial condition u0 ∈ H1(0, 1) satisfies the following estimates for all σ ∈
[
0, π

2

4 p+ q
)

and

t > 0:

‖u[t]‖ ≤ exp (−σ t) ‖u0‖+
pπ2 + 4q

pπ2 + 4q − 4σ
C1 sup

0<s<t
(|d1(s)| exp (−σ(t− s))) , (4.9)

‖u′[t]‖ ≤ exp (−σ t) ‖u′0‖+
pπ2 + 4q

pπ2 + 4q − 4σ
C̃1 sup

0<s<t
(|d1(s)| exp (−σ(t− s))) , (4.10)

where C1 := ‖ū‖, ū ∈ C2([0, 1]) is the unique solution of the boundary value problem pū′′(x) − qū(x) = 0 for
x ∈ [0, 1] with ū(0) = 0 and ū′(1) = 1, C̃1 := ‖v̄‖, v̄ ∈ C2([0, 1]) is the solution of the boundary value problem
pv̄′′(x) − q v̄(x) = 0 for x ∈ [0, 1] with v̄′(0) = 0 and v̄(1) = 1. A direct computation of the solutions of the
aforementioned boundary value problems in conjunction with definition (4.4) shows that C1 = h(q/p) and
C̃1 = h̃(q/p). Moreover, if (4.3) holds, then there exists σ > 0 sufficiently small so that

pπ2 + 4q

pπ2 + 4q − 4σ
C1 ‖β0‖+

pπ2 + 4q

pπ2 + 4q − 4σ
C̃1 ‖β1‖ < 1. (4.11)

Next, we notice that the solution of (4.1) and (4.2) coincides with the solution of (4.1) and (4.6) when

d1(t) =
∫ 1

0
β0(s)u(t, s)ds+

∫ 1

0
β1(s)u′(t, s)ds. Consequently, estimates (4.9) and (4.10) hold for all t > 0 and for

the specific σ > 0 for which (4.11) holds with d1(t) =
∫ 1

0
β0(s)u(t, s)ds+

∫ 1

0
β1(s)u′(t, s)ds. It follows from the

Cauchy–Schwarz inequality that

|d1(t)| ≤ ‖β0‖ ‖u[t]‖+ ‖β1‖ ‖u′[t]‖ , for all t > 0. (4.12)

Combining (4.9), (4.10), and (4.12), we get for all t > 0:

‖u[t]‖ exp (σ t) ≤ ‖u0‖+ pπ2+4q
pπ2+4q−4σC1 ‖β0‖ sup

0<s<t
(‖u[s]‖ exp (σ s))

+ pπ2+4q
pπ2+4q−4σC1 ‖β1‖ sup

0<s<t
(‖u′[s]‖ exp (σ s)) .

(4.13)

‖u′[t]‖ exp (σ t) ≤ ‖u′0‖+ pπ2+4q
pπ2+4q−4σ C̃1 ‖β0‖ sup

0<s<t
(‖u[s]‖ exp (σ s))

+ pπ2+4q
pπ2+4q−4σ C̃1 ‖β1‖ sup

0<s<t
(‖u′[s]‖ exp (σ s)) .

(4.14)
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Since (4.11) holds, we get from (4.13) for all t > 0:

sup
0<s<t

(‖u[s]‖ exp (σ s))

≤
(

1− pπ2+4q
pπ2+4q−4σC1 ‖β0‖

)−1(
‖u0‖+ pπ2+4q

pπ2+4q−4σC1 ‖β1‖ sup
0<s<t

(‖u′[s]‖ exp (σ s))

)
.

(4.15)

Combining (4.14), (4.15), and using (4.11), we get for all t > 0:

sup
0<s<t

(‖u′[s]‖ exp (σ s))

≤
(

1− pπ2+4q
pπ2+4q−4σC1 ‖β0‖ − pπ2+4q

pπ2+4q−4σ C̃1 ‖β1‖
)−1 (

1− pπ2+4q
pπ2+4q−4σC1 ‖β0‖

)
‖u′0‖

+
(

1− pπ2+4q
pπ2+4q−4σC1 ‖β0‖ − pπ2+4q

pπ2+4q−4σ C̃1 ‖β1‖
)−1

pπ2+4q
pπ2+4q−4σ C̃1 ‖β0‖ ‖u0‖ .

(4.16)

The decay estimate (4.5) with appropriate constant M > 0 is a direct consequence of estimates (4.15) and
(4.16).

Example 4.2. Let p > 0, q ∈ R with q > −pπ2 and consider the nonlocal PDE

∂ u

∂ t
(t, x) = p

∂2 u

∂ x2
(t, x)− qu(t, x) +

∫ 1

0

β(s)u′(t, s)ds, (4.17)

where β ∈ L2(0, 1) is a given function with Dirichlet BCs

u(t, 0) = u(t, 1) = 0. (4.18)

Here, again, we are not concerned with existence/uniqueness questions for problem (4.17) and (4.18) but
rather we assume that β ∈ L2(0, 1) satisfies appropriate conditions so that there exists a set D̃ ⊆ H1(0, 1) with
the following property:

“For every u0 ∈ D̃ with u0(0) = u0(1) = 0, the initial-boundary value problem (4.17) and (4.18) with u[0] = u0
has a unique solution u[t] for all t ≥ 0 and the initial-boundary value problem ∂ w

∂ t (t, x) = p∂
2 w
∂ x2 (t, x)− qw(t, x)

with w(t, 0) = w(t, 1) = −p−1
∫ 1

0
β(s)u′(t, s)ds, w[0] = u′0 has a unique solution w[t] for all t ≥ 0.”

Our aim is to provide sufficient conditions for exponential stability of system (4.17) and (4.18). More
specifically, we show that if

p−1h(q/p) ‖β‖ < 1, (4.19)

where h is defined by (3.3), then there exist constants M,σ > 0 such that for every u0 ∈ D̃ with u0(0) = u0(1) =
0 the unique solution u[t] of system (4.17) and (4.18) with initial condition u[0] = u0 satisfies the following decay
estimate for all t ≥ 0:

‖u[t]‖+ ‖u′[t]‖ ≤M exp (−σ t) (‖u0‖+ ‖u′0‖) . (4.20)

The corresponding SL operator A : D → L2(0, 1) is defined by

(Af)(x) = −p f ′′(x) + q f(x), for all f ∈ D and x ∈ (0, 1), (4.21)
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where D ⊆ H2(0, 1) is the set of all functions f : [0, 1] → R for which f(0) = f(1) = 0. We also consider
the SL operator A′ : D′ → L2(0, 1) defined by (A′g)(x) = −p g′′(x) + q g(x) for all x ∈ [0, 1] and g ∈ D′ ∈{
v ∈ H2(0, 1) : v′(0) = v′(1) = 0

}
.

In order to prove the decay estimate (4.20), we first study an auxiliary problem. We consider the solution
u[t] of

∂ u

∂ t
(t, x) = p

∂2 u

∂ x2
(t, x)− qu(t, x) + f(t, x), (4.22)

with (4.18), (f, 0, 0) ∈ Φ(A;u0) with f [t] ∈ C1([0, 1]) for all t ≥ 0, (f ′, d̃0, d̃1) ∈ Φ(A′;u′0) where d̃1(t) =
−p−1f(t, 1), d̃0(t) = −p−1f(t, 0) for t ≥ 0. It follows from Theorem 3.1 that for every u0 ∈ H1(0, 1) with
u0(0) = u0(1) = 0, the unique solution u : R+ × [0, 1] → R of the evolution equation (4.22) with (4.18) and
initial condition u0 ∈ H1(0, 1) satisfies estimates (3.1) and (3.2) for all σ ∈ [0, pπ2 + q) and t > 0. Moreover, if
(4.19) holds, then there exists σ > 0 sufficiently small so that

(
pπ2 + q

pπ2 + q − σ

)
p−1h(q/p) ‖β‖ < 1. (4.23)

Next, we notice that the solution of (4.17) and (4.18) coincides with the solution of (4.22) and (4.18) when

f(t, x) :=
∫ 1

0
β(s)u′(t, s)ds. Consequently, estimates (3.1) and (3.2) hold for all t > 0 and for the specific σ > 0

for which (4.23) holds with f(t, x) :=
∫ 1

0
β(s)u′(t, s)ds. It follows from the Cauchy–Schwarz inequality that

‖f [t]‖ ≤ ‖β‖ ‖u′[t]‖ , for all t ≥ 0. (4.24)

Combining (3.2) and (4.24), we get for all t > 0:

‖u′[t]‖ exp (σ t ) ≤ ‖u′0‖+
pπ2 + q

pπ2 + q − σ
p−1h(q/p) ‖β‖ sup

0<s<t
(‖u′[s]‖ exp (σ s )) . (4.25)

Since (4.23) holds, we get from (4.25) for all t > 0:

sup
0<s<t

(‖u′[s]‖ exp (σ s)) ≤
(

1− pπ2 + q

pπ2 + q − σ
p−1h(q/p) ‖β‖

)−1
‖u′0‖ . (4.26)

The decay estimate (4.20) with appropriate constant M > 0 is a direct consequence of estimates (3.1) and
(4.26).

5. Proofs of main results

We first provide the proofs of Theorem 2.4 and Proposition 2.6.

Proof of Theorem 2.4. First, we prove the following Claim.

Claim: For every solution u : R+ × [0, 1] → R of the evolution equation (2.4) with (2.5), initial condi-
tion u0 ∈ L2

r(0, 1) and corresponding to inputs (f, d0, d1) ∈ Φ(A;u0), the following equations hold for all
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t ≥ 0 and n = 1, 2, . . .:

cn(t) = exp (−λn t) cn(0) + p(1)
a21+a

2
2

(
a2φn (1)− a1 dφn

d z (1)
) ∫ t

0
exp (−λn (t− s)) d1(s)ds

+ p(0)
b21+b

2
2

(
b1

dφn

d z (0)− b2φn (0)
) ∫ t

0
exp (−λn (t−s)) d0(s)ds+

∫ t
0

exp (−λn (t−s))
(∫ 1

0
r(x)f(s, x)φn(x)dx

)
ds,

(5.1)
where

cn(t) :=

∫ 1

0

r(x)u(t, x)φn(x)dx, for n = 1, 2, . . . (5.2)

Proof of Claim. Let { τi ≥ 0 , i = 0, 1, 2, . . . } be the increasing sequence of times with τ0 = 0, lim
i→+∞

(τi) = +∞
involved in Definition 2.1. The mappings R+ 3 t→ cn(t) are continuous for n = 1, 2, . . .. Moreover, the mappings
I 3 t→ cn(t), where I = R+\ { τi ≥ 0 , i = 0, 1, 2, . . . }, are C1 on I. By virtue of (2.6), it follows from repeated
integration by parts, that the following equalities hold for all t ∈ I and n = 1, 2, . . .:

ċn(t) =

∫ 1

0

r(x)
∂ u

∂ t
(t, x)φn(x)dx

= p(1)

(
∂ u

∂ x
(t, 1)φn(1)− x(t, 1)

dφn
dx

(1)

)
+ p(0)

(
dφn
d z

(0)u(t, 0)− ∂ u

∂ x
(t, 0)φn(0)

)
−
∫ 1

0

r(x)u(t, x) (Aφn) (x)dx+

∫ 1

0

r(x)f(t, x)φn(x)dx.

Thus we get for all t ∈ I and n = 1, 2, . . .:

ċn(t) = p(1)

(
∂ u

∂ x
(t, 1)φn(1)− u(t, 1)

dφn
dx

(1)

)
+ p(0)

(
dφn
dx

(0)u(t, 0)− ∂ u

∂ x
(t, 0)φn(0)

)
−
∫ 1

0

r(x)u(t, x) (Aφn) (x)dx+

∫ 1

0

r(x)f(t, x)φn(x)dx. (5.3)

It follows from (5.3), the fact that (Aφn)(x) = λnφn(x) and definition (5.2) that the following equation holds
for all t ∈ I and n = 1, 2, . . .:

ċn(t) + λncn(t) = p(1)
(
∂ u
∂ x (t, 1)φn(1)− u(t, 1)dφn

d x (1)
)

+p(0)
(

dφn

d x (0)u(t, 0)− ∂ u
∂ x (t, 0)φn(0)

)
+
∫ 1

0
r(x)f(t, x)φn(x)dx.

(5.4)

Proceeding exactly as in the proof of Theorem 2.3 in [23], it can be shown that for all t ∈ I and n = 1, 2, . . .
the following equalities hold:

u(t, 0)
dφn
dx

(0)− ∂ u

∂ x
(t, 0)φn(0) =

d0(t)

b21 + b22

(
b1
dφn
dx

(0)− b2φn(0)

)
(5.5)

φn(1)
∂ u

∂ x
(t, 1)− u(t, 1)

dφn
dx

(1) =
d1(t)

a21 + a22

(
a2φn(1)− a1

dφn
dx

(1)

)
. (5.6)
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Using (5.4)–(5.6), we obtain for all t ∈ I and n = 1, 2, . . .:

ċn(t) + λncn(t) = p(1)d1(t)
a21+a

2
2

(
a2φn(1)− a1 dφn

d x (1)
)

+p(0)d0(t)
b21+b

2
2

(
b1

dφn

d x (0)− b2φn(0)
)

+
∫ 1

0
r(x)f(t, x)φn(x)dx.

(5.7)

Integrating the differential equations (5.7), we obtain (5.1) for all t ≥ 0 and n = 1, 2, . . .. The proof of the
claim is complete.

Next, we recognize that the solution u : R+ × [0, 1] → R of the evolution equation (2.4) with (2.5), initial
condition u0 ∈ L2

r(0, 1) and corresponding to inputs (f, d0, d1) ∈ Φ(A;u0) satisfies the following equation:

u[t] = u1[t] + u2[t] + u3[t] + u4[t], for all t ≥ 0, (5.8)

where the above equality should be seen as an equality of functions in L2
r(0, 1) with

u1(t, x) :=

∞∑
n=1

exp (−λn t) cn(0)φn(x), for (t, x) ∈ R+ × (0, 1) (5.9)

u2(t, x) :=

∞∑
n=1

φn(x)
p(0)

b21 + b22

(
b1

dφn
dx

(0)− b2φn (0)

)∫ t

0

exp (−λn (t− s)) d0(s)ds, for (t, x) ∈ R+ × (0, 1)

(5.10)

u3(t, x) :=

∞∑
n=1

φn(x)
p(1)

a21 + a22

(
a2φn (1)− a1

dφn
dx

(1)

)∫ t

0

exp (−λn (t− s)) d1(s)ds, for (t, x) ∈ R+ × (0, 1)

(5.11)

u4(t, x) =

∞∑
n=1

φn(x)

∫ t

0

exp (−λn (t− s))
(∫ 1

0

r(z)f(s, z)φn(z)dz

)
ds, for (t, x) ∈ R+ × (0, 1). (5.12)

Next, we estimate each component of u : R+ × [0, 1]→ R separately.

(1) Estimate for u1 : R+ × [0, 1]→ R.
Since the eigenfunctions {φn}∞n=1 of the SL operator A : D → L2

r(0, 1) defined by (2.1) and (2.2) form an
orthonormal basis of L2

r(0, 1), it follows that Parseval’s identity holds, i.e.,

‖u1[t]‖2r =

∞∑
n=1

A2
n(t), for all t ≥ 0, (5.13)

where An(t) :=
∫ 1

0
r(z)u1(t, z)φn(z)dz. Using (5.9), (5.13) and the fact that λn ≥ λ1 for all n = 1, 2, . . .,

we get for all t ≥ 0:

‖u1[t]‖r ≤ exp (−λ1 t) ‖u0‖r . (5.14)

(2) Estimate for u2 : R+ × [0, 1]→ R.
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Again, Parseval’s identity holds, i.e.,

‖u2[t]‖2r =

∞∑
n=1

B2
n(t), for all t ≥ 0, (5.15)

where

Bn(t) =
p(0)

b21 + b22

(
b1

dφn
d z

(0)− b2φn (0)

)∫ t

0

exp (−λn (t− s)) d0(s)ds, (5.16)

(a consequence of (5.10)). Using (5.16), we get all σ ∈ [0, λ1), t > 0 and n = 1, 2, . . .:

|Bn(t)|2 ≤ 1

(λn − σ)2

(
p(0)

b21 + b22

)2 ∣∣∣∣b1 dφn
d z

(0)− b2φn (0)

∣∣∣∣2 sup
0<s<t

(
|d0(s)|2 exp (−2σ(t− s))

)
. (5.17)

Therefore, by virtue of (5.15) and (5.17), the following estimate holds for all σ ∈ [0, λ1), t > 0:

‖u2[t]‖r ≤ K0 sup
0<s<t

(|d0(s)| exp (−σ(t− s))) , (5.18)

where

K0 :=
p(0)√
b21 + b22

√√√√ ∞∑
n=1

1

(λn − σ)2

∣∣∣∣∣ b1√
b21 + b22

dφn
dx

(0)− b2√
b21 + b22

φn (0)

∣∣∣∣∣
2

. (5.19)

Equation (2.9) is a direct consequence of Theorem 2.3 in [23]. Moreover, definitions (2.9), (5.19) imply
that K0 ≤ λ1

λ1−σC0. Consequently, the following estimate holds for all σ ∈ [0, λ1), t > 0:

‖u2[t]‖r ≤
λ1

λ1 − σ
C0 sup

0<s<t
(|d0(s)| exp (−σ(t− s))) . (5.20)

(3) Estimate for u3 : R+ × [0, 1]→ R.
Again, Parseval’s identity holds, i.e.,

‖u2[t]‖2r =

∞∑
n=1

G2
n(t), for all t ≥ 0, (5.21)

where

Gn(t) =
p(1)

a21 + a22

(
a2φn (1)− a1

dφn
d z

(1)

)∫ t

0

exp (−λn (t− s)) d1(s)ds. (5.22)

Using (5.22), we get all σ ∈ [0, λ1), t > 0 and n = 1, 2, . . .:

|Gn(t)|2 ≤ 1

(λn − σ)2

(
p(1)

a21 + a22

)2 ∣∣∣∣a1 dφn
dx

(0)− a2φn (0)

∣∣∣∣2 sup
0<s<t

(
|d1(s)|2 exp (−2σ(t− s))

)
. (5.23)
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Therefore, by virtue of (5.21), (5.23), the following estimate holds for all σ ∈ [0, λ1), t > 0:

‖u3[t]‖r ≤ K1 sup
0<s<t

(|d1(s)| exp (−σ(t− s))) , (5.24)

where

K1 :=
p(1)√
a21 + a22

√√√√ ∞∑
n=1

1

(λn − σ)2

∣∣∣∣∣ a2√
a21 + a22

φn (1)− a1√
a21 + a22

dφn
dx

(1)

∣∣∣∣∣
2

. (5.25)

Equation (2.10) is a direct consequence of Theorem 2.3 in [23]. Moreover, definitions (2.10), (5.25) imply
that K1 ≤ λ1

λ1−σC1. Consequently, the following estimate holds for all σ ∈ [0, λ1), t > 0:

‖u3[t]‖r ≤
λ1

λ1 − σ
C1 sup

0<s<t
(|d1(s)| exp (−σ(t− s))) (5.26)

(4) Estimate for u4 : R+ × [0, 1]→ R.
Again, Parseval’s identity holds, i.e.,

‖u2[t]‖2r =

∞∑
n=1

D2
n(t), for all t ≥ 0, (5.27)

where

Dn(t) =

∫ t

0

exp (−λn (t− s)) fn(s)ds (5.28)

and fn(t) :=
∫ 1

0
r(z)f(t, z)φn(z)dz. Since the eigenfunctions {φn}∞n=1 of the SL operator A : D → L2

r(0, 1)
defined by (2.1) and (2.2) form an orthonormal basis of L2

r(0, 1), it follows that Parseval’s identity holds,
i.e.,

‖f [t]‖2r =

∞∑
n=1

f2n(t), for all t > 0. (5.29)

It follows from (5.28) that the following inequality holds for all σ ∈ [0, λ1), t ≥ 0 and n = 1, 2, . . .:

|Dn(t)| ≤
∫ t

0

exp (−λn (t− s)) |fn(s)|ds ≤
∫ t

0

exp (−(λ1 − σ) (t− s)) |fn(s)| exp (−σ(t− s)) ds. (5.30)

Using the Cauchy–Schwarz inequality and (5.30), we obtain for all σ ∈ [0, λ1), t ≥ 0 and n = 1, 2, . . .:

|Dn(t)| ≤ 1√
λ1 − σ

(∫ t

0

exp (−(λ1 − σ) (t− s)) |fn(s)|2 exp (−2σ(t− s)) ds

)1/2

which directly implies

|Dn(t)|2 ≤ 1

λ1 − σ

∫ t

0

exp (−(λ1 − σ) (t− s)) |fn(s)|2 exp (−2σ(t− s)) ds. (5.31)
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Combining (5.28), (5.29), and (5.31), we obtain for all σ ∈ [0, λ1), t > 0:

‖u4[t]‖2r ≤
1

λ1 − σ

∫ t

0

exp (−(λ1 − σ) (t− s)) ‖f [s]‖2r exp (−2σ(t− s)) ds

which directly implies

‖u4[t]‖2r ≤
1

(λ1 − σ)2
sup

0<s<t

(
‖f [s]‖2r exp (−2σ(t− s))

)
. (5.32)

Therefore, we conclude that the following inequality holds for all σ ∈ [0, λ1), t > 0:

‖u4[t]‖r ≤
1

λ1 − σ
sup

0<s<t
(‖f [s]‖r exp (−σ(t− s))) . (5.33)

Equation (5.8) implies that

‖u[t]‖r ≤ ‖u1[t]‖r + ‖u2[t]‖r + ‖u3[t]‖r + ‖u4[t]‖r , for all t ≥ 0. (5.34)

Using (5.34), (5.14), (5.20), (5.26), and (5.33), we get estimate (2.8). The proof is complete.

Proof of Proposition 2.6. It suffices to show that there exists a constant µ > 0∫ 1

0

g(x)f(x)(Af)(x)dx ≥ µ
∫ 1

0

f2(x)dx, for all f ∈ D. (5.35)

Since p(x) ≡ p, r(x) ≡ 1, we obtain from (2.1) for all f ∈ D:

∫ 1

0
g(x)f(x)(Af)(x)dx = pg(1)

(
g′(1)
2g(1)f(1)− f ′(1)

)
f(1) + pg(0)

(
f ′(0)− g′(0)

2g(0)f(0)
)
f(0)

+p
∫ 1

0
g(x) (f ′(x))

2
dx+

∫ 1

0

(
g(x)q(x)− p

2g
′′(x)

)
f2(x)dx.

(5.36)

Since f(z) = f(0) +
∫ z
0
f ′(s)ds for all x ∈ [0, 1] and since ε0 > 0, we get for all x ∈ [0, 1]:

f2(x) ≤ (1 + ε0)f2(0) + (1 + ε−10 )

(∫ x

0

f ′(s)ds

)2

. (5.37)

Using the Cauchy–Schwarz inequality, which gives

(∫ x

0

f ′(s)ds

)2

≤
(∫ x

0

ds

g(s)

)(∫ x

0

g(s) (f ′(s))
2

ds

)
≤
(∫ x

0

ds

g(s)

)(∫ 1

0

g(s) (f ′(s))
2

ds

)
, for all x ∈ [0, 1]

we get from (5.37) for all x ∈ [0, 1]:

f2(x) ≤ (1 + ε0)f2(0) + (1 + ε−10 )

(∫ x

0

ds

g(s)

)(∫ 1

0

g(s) (f ′(s))
2

ds

)
. (5.38)
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Inequality (5.38) implies the following inequality:

∫ 1

0

f2(x)dx ≤ (1 + ε0)f2(0) +

(
(1 + ε−10 )

∫ 1

0

∫ x

0

ds

g(s)
dx

)(∫ 1

0

g(s) (f ′(s))
2

ds

)
. (5.39)

Moreover, since f(x) = f(1)−
∫ 1

x
f ′(s)ds for all x ∈ [0, 1] and since ε1 > 0, we get for all x ∈ [0, 1]:

f2(x) ≤ (1 + ε1)f2(1) + (1 + ε−11 )

(∫ 1

x

f ′(s)ds

)2

. (5.40)

Using again the Cauchy–Schwarz inequality, which gives

(∫ 1

x

f ′(s)ds

)2

≤
(∫ 1

x

ds

g(s)

)(∫ 1

x

g(s) (f ′(s))
2

ds

)
≤
(∫ 1

x

ds

g(s)

)(∫ 1

0

g(s) (f ′(s))
2

ds

)
, for all x ∈ [0, 1]

we get from (5.40) for all x ∈ [0, 1]:

f2(x) ≤ (1 + ε1)f2(1) + (1 + ε−11 )

(∫ 1

x

ds

g(s)

)(∫ 1

0

g(s) (f ′(s))
2

ds

)
. (5.41)

Inequality (5.41) implies the following inequality:

∫ 1

0

f2(x)dx ≤ (1 + ε1)f2(1) +

(
(1 + ε−11 )

∫ 1

0

∫ 1

x

ds

g(s)
dx

)(∫ 1

0

g(s) (f ′(s))
2

ds

)
. (5.42)

Multiplying (5.39) by λ and (5.42) by 1− λ and adding, we get from (2.13):

∫ 1

0

f2(x)dx ≤ λ(1 + ε0)f2(0) + (1− λ)(1 + ε1)f2(1) +R

(∫ 1

0

g(s) (f ′(s))
2

ds

)
. (5.43)

Combining (5.36) and (5.43), we get for all f ∈ D:

∫ 1

0
g(x)f(x)(Af)(x)dx ≥ pg(1)

(
g′(1)
2g(1)f(1)− f ′(1)− (1−λ)(1+ε1)

Rg(1) f(1)
)
f(1)

+pg(0)
(
f ′(0)− g′(0)

2g(0)f(0)− λ(1+ε0)
Rg(0) f(0)

)
f(0) +

∫ 1

0

(
g(x)q(x)− p

2g
′′(x) + pR−1

)
f2(x)dx

(5.44)

Using (2.2), (2.11), (2.14), and (2.15), it follows that for all f ∈ D the following inequalities hold:(
g′(1)
2g(1)f(1)− f ′(1)− (1−λ)(1+ε1)

Rg(1) f(1)
)
f(1) ≥ 0(

f ′(0)− g′(0)
2g(0)f(0)− λ(1+ε0)

Rg(0) f(0)
)
f(0) ≥ 0.

The above inequalities in conjunction with (5.44) imply that (5.35) holds for all f ∈ D with

µ := min
0≤x≤1

(
g(x)q(x)− p

2
g′′(x) + pR−1

)
.
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Inequality (2.12) implies that µ > 0. Inequality (5.35) with f = φ1 gives

λ1 ≥
min

{
2g(x)q(x) + 2pR−1 − pg′′(x) : x ∈ [0, 1]

}
2 max { g(x) : x ∈ [0, 1] }

.

The proof is complete.

Since the proof of Theorem 3.1 requires Proposition 3.5, we first prove Proposition 3.5.

Proof of Proposition 3.5. Since the SL operator A′ : D′ → L2(0, 1) satisfies assumption (H) and since
(f ′, d̃0, d̃1) ∈ Φ(A′;u′0), where d̃1(t) = −p−1f(t, 1), d̃0(t) = −p−1f(t, 0) for t ≥ 0, it follows from Definition
2.1 that there exists an increasing sequence of times { τi ≥ 0 , i = 0, 1, 2, . . . } with τ0 = 0, lim

i→+∞
(τi) = +∞

and a unique function v : R+ × [0, 1] → R for which the mapping R+ 3 t → v[t] ∈ L2(0, 1) is continuous,
with v ∈ C1(I × [0, 1]) satisfying v[t] ∈ C2([0, 1]) for all t > 0, lim

t→τ−i
(v(t, x)) = v(τi, x), lim

t→τ−i

(
∂ v
∂ t (t, x)

)
=

−(A′v[τi])(x) + lim
t→τ−i

(f ′(t, x)), lim
t→τ−i

(
∂ v
∂ x (t, x)

)
= ∂ v

∂ x (τi, x), v(0, x) = v0(x) = u′0(x) for all x ∈ [0, 1], and

∂ v

∂ t
(t, x) = p

∂2 v

∂ x2
(t, x)− q v(t, x) + f ′(t, x), for all (t, x) ∈ I × (0, 1) (5.45)

∂ v

∂ x
(t, 0) + p−1f(t, 0) =

∂ v

∂ x
(t, 1) + p−1f(t, 1) = 0, for all t ∈ I, (5.46)

where I = R+\ { τi ≥ 0 , i = 0, 1, 2, . . . }. It follows from (5.45) and (5.46) that

d

dt

∫ 1

0

v(t, x)dx = −q
∫ 1

0

v(t, x)dx, for all t ∈ I. (5.47)

Since v0 = u′0 with u0(0) = u0(1) = 0 and since the mapping t →
∫ 1

0
v(t, z)dz is continuous, it follows that

(3.11) holds. Define:

ũ(t, x) =

∫ x

0

v(t, s)ds, for (t, x) ∈ R+ × [0, 1]. (5.48)

It is straightforward (using (3.11), (5.45), (5.46), and definition (5.48)) to verify that

∂ ũ

∂ t
(t, x) = p

∂2 ũ

∂ x2
(t, x)− q ũ(t, x) + f(t, x), for all (t, x) ∈ I × (0, 1) (5.49)

ũ(t, 0) = ũ(t, 1) = 0, for all t ≥ 0. (5.50)

Moreover, since v0 = u′0, we obtain from definition (5.48) that ũ(0, x) = u0(x) for all x ∈ [0, 1]. Uniqueness
of the evolution problem (5.49), (5.50) implies that ũ ≡ u. Equation (3.10) is a direct consequence of definition
(5.48) and the fact that ũ ≡ u. The proof is complete.

Proof of Theorem 3.1. The SL operator A : D → L2(0, 1) defined by (2.1) and (2.2) with p(x) ≡ p, r(x) ≡ 1,
a2 = b2 = 0, a1 = b1 = 1, q(x) ≡ q, has eigenvalues λn = pn2π2 + q for n ≥ 1 and eigenfunctions φn(x) =√

2 sin (nπx) for n ≥ 1. Therefore, A satisfies assumption (H) and is ES since λ1 = pπ2 + q > 0. Theorem 2.4
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implies that for every u0 ∈ L2(0, 1), (f, 0, 0) ∈ Φ(A;u0), the unique solution u : R+ × [0, 1]→ R of the evolution
equation (2.4) with (2.5), d0(t) = d1(t) ≡ 0 and initial condition u0 ∈ L2(0, 1) satisfies estimate (3.1) for all
σ ∈ [0, pπ2 + q) and t > 0. Moreover, Theorem 2.4, definition (3.3) and direct computation of the functions ũ, ū
involved in (2.9) and (2.10) gives √√√√ ∞∑

n=1

n2π2

(pn2π2 + q)
2 = p−1h (q/p) . (5.51)

The SL operator A′ : D′ → L2(0, 1) defined by (A′f)(x) = −p f ′′(x) + q f(x), for all f ∈ D′ and x ∈ (0, 1)
with D′ ⊆ H2(0, 1) being the set of all functions f : [0, 1] → R for which f ′(0) = f ′(1) = 0, has eigenvalues
λ0 = q, λn = pn2π2 + q for n ≥ 1 and eigenfunctions ψ0(x) ≡ 1, ψn(x) =

√
2 cos (nπx) for n ≥ 1. Therefore, A′

satisfies assumption (H) but it is not necessarily an ES operator. Consequently, we cannot use Theorem 2.4 to
system (3.8) and (3.9). However, we are in a position to prove (exactly as in the proof of Thm. 2.4) the following
claim. Its proof is omitted, since it is identical to that in the proof of Theorem 2.4 and the only additional thing
is the use of (3.11).

Claim: For every solution v : R+ × [0, 1] → R of the evolution equation (3.8) with (3.9), initial condition
v0 = u′0, where u0 ∈ H1(0, 1) with u0(0) = u0(1) = 0, the following equations hold for all t ≥ 0 and n = 1, 2, . . .:

cn(t) = exp
(
−
(
pn2π2 + q

)
t
)
cn(0)− (−1)

n√
2
∫ t
0

exp
(
−
(
pn2π2 + q

)
(t− s)

)
f(s, 1)ds

+
√

2
∫ t
0

exp
(
−
(
pn2π2 + q

)
(t− s)

)
f(s, 0)ds+

√
2
∫ t
0

exp
(
−
(
pn2π2 + q

)
(t− s)

) (∫ 1

0
f ′(s, z) cos(nπz)dz

)
ds

(5.52)

c0(t) ≡ 0, (5.53)

where

c0(t) :=

∫ 1

0

v(t, x)dx , cn(t) :=
√

2

∫ 1

0

v(t, x) cos(nπx)dx , for n = 1, 2, . . . (5.54)

Next, we recognize that the solution v : R+ × [0, 1] → R of the evolution equation (3.8) with (3.9), initial
condition v0 = u′0, where u0 ∈ H1(0, 1) with u0(0) = u0(1) = 0 satisfies the following equation:

v[t] = v1[t] + v2[t], for all t ≥ 0, (5.55)

where the above equality should be seen as an equality of functions in L2(0, 1) with

v1(t, x) :=

∞∑
n=1

ψn(x) exp
(
−
(
pn2π2 + q

)
t
)
cn(0) (5.56)

v2(t, x) :=
√

2

∞∑
n=1

ψn(x)

∫ t

0

exp
(
−
(
pn2π2 + q

)
(t− s)

)(
f(s, 0)− (−1)

n
f(s, 1) +

∫ 1

0

f ′(s, z) cos(nπz)dz

)
ds

(5.57)
for (t, x) ∈ R+ × (0, 1). Next, we estimate each component of v : R+ × [0, 1]→ R separately.

(1) Estimate for v1 : R+ × [0, 1]→ R.
Since the eigenfunctions {ψn}∞n=0 of the SL operator A′ : D′ → L2(0, 1) defined by (A′f)(x) = −p f ′′(x) +
q f(x), for all f ∈ D′ and x ∈ (0, 1) with D′ ⊆ H2(0, 1) being the set of all functions f : [0, 1] → R for
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which f ′(0) = f ′(1) = 0, form an orthonormal basis of L2(0, 1), it follows that Parseval’s identity holds,
i.e.,

‖v1[t]‖22 =

∞∑
n=1

A2
n(t), for all t ≥ 0, (5.58)

where (5.56) implies for all t ≥ 0 and n = 1, 2, . . . that

An(t) = exp
(
−
(
pn2π2 + q

)
t
)
cn(0). (5.59)

Using (5.58), (5.59), and the fact that v0 = u′0, we get for all t ≥ 0:

‖v1[t]‖2 ≤ exp
(
−
(
pn2π2 + q

)
t
)
‖u′0‖2 . (5.60)

(2) Estimate for v2 : R+ × [0, 1]→ R.
Using integration by parts, we obtain from (5.57) for all t ≥ 0 and n = 1, 2, . . .:

Bn(t) = nπ

∫ t

0

exp
(
−(pn2π2 + q) (t− s)

)
fn(s)ds, (5.61)

where Bn(t) :=
√

2
∫ 1

0
v2(t, z) cos(nπz)dz, fn(t) :=

√
2
∫ 1

0
f(t, z) sin(nπz)dz. Since {ψn}∞n=0, {φn}∞n=1 are

orthonormal bases of L2(0, 1), it follows that Parseval’s identity holds, i.e.,

‖v2[t]‖22 =

∞∑
n=1

B2
n(t), for all t ≥ 0 (5.62)

‖f [t]‖22 =

∞∑
n=1

f2n(t), for all t ≥ 0. (5.63)

It follows from (5.61) that the following inequality holds for all σ ∈ [0, pπ2 + q), t ≥ 0 and n = 1, 2, . . .:

|Bn(t)| ≤ nπ
∫ t
0

exp
(
−
(
pn2π2 + q

)
(t− s)

)
|fn(s)|ds

≤ nπ
∫ t
0

exp
(
−
(
pn2π2 + q − σ

)
(t− s)

)
|fn(s)| exp (−σ(t− s)) ds.

(5.64)

Using the Cauchy–Schwarz inequality and (5.64), we obtain for all σ ∈ [0, pπ2 + q), t ≥ 0 and n = 1, 2, . . .:

|Bn(t)| ≤ nπ√
pn2π2 + q − σ

(∫ t

0

exp
(
−
(
pn2π2 + q − σ

)
(t− s)

)
|fn(s)|2 exp (−2σ(t− s)) ds

)1/2

which directly implies

|Bn(t)|2 ≤ n2π2

pn2π2 + q − σ

∫ t

0

exp
(
−
(
pn2π2 + q − σ

)
(t− s)

)
|fn(s)|2 exp (−2σ(t− s)) ds. (5.65)
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Equation (5.63) implies that ‖f [t]‖22 ≥ f2n(t) for all t ≥ 0 and n = 1, 2, . . .. Combining the previous inequality
with (5.65) we obtain for all σ ∈ [0, pπ2 + q), t ≥ 0 and n = 1, 2, . . .:

|Bn(t)|2 ≤ n2π2

pn2π2 + q − σ

∫ t

0

exp
(
−
(
pn2π2 + q − σ

)
(t− s)

)
‖f [s]‖22 exp (−2σ(t− s)) ds (5.66)

from which we get for all σ ∈ [0, pπ2 + q), t > 0 and n = 1, 2, . . .:

|Bn(t)|2 ≤ n2π2

(pn2π2 + q − σ)2
sup

0<s<t

(
‖f [s]‖22 exp (−2σ(t− s))

)
.

The above inequality in conjunction with (5.62) gives for all σ ∈ [0, pπ2 + q), t > 0:

‖v2[t]‖2 ≤

( ∞∑
n=1

n2π2

(pn2π2 + q − σ)2

)
sup

0<s<t

(
‖f [s]‖2 exp (−2σ(t− s))

)
≤

( ∞∑
n=1

(
pn2π2 + q

pn2π2 + q − σ

)2
n2π2

(pn2π2 + q)2

)
sup

0<s<t

(
‖f [s]‖2 exp (−2σ(t− s))

)
≤
(

pπ2 + q

pπ2 + q − σ

)2
( ∞∑
n=1

n2π2

(pn2π2 + q)2

)
sup

0<s<t

(
‖f [s]‖2 exp (−2σ(t− s))

)
which combined with (5.51) directly implies that

‖v2[t]‖ ≤
(

pπ2 + q

pπ2 + q − σ

)
p−1h(p/q) sup

0<s<t
(‖f [s]‖ exp (−σ(t− s))) . (5.67)

Equation (5.55) implies that

‖v[t]‖ ≤ ‖v1[t]‖+ ‖v2[t]‖ , for all t ≥ 0. (5.68)

Using (3.10), (5.68), (5.67), and (5.60) we get estimate (3.2). The proof is complete.

The proof of Theorem 3.3 requires Proposition 3.6 and the following technical proposition, which we prove
next.

Proposition 5.1. Let T > 0, p > 0, a1, a2, b1, b2 be real constants with |a1| + |a2| > 0, |b1| + |b2| > 0 and let
q ∈ C0([0, 1]), β ∈ C0

(
[0, 1]2

)
be given functions. Let u : [0, T ]× [0, 1]→ R be a function for which the mapping

[0, T ] 3 t→ u[t] ∈ L2(0, 1) is continuous and for which there exists a finite set { τi ∈ (0, T ) , i = 0, 1, 2, . . . , N }
such that u ∈ C1(I × [0, 1]), where I = (0, T )\ { τi ∈ (0, T ) , i = 0, 1, 2, . . . , N }. Finally, suppose that u[0] ≡ 0,
u[t] ∈ C2([0, 1]) for all t ∈ I and that

∂ u

∂ t
(t, x) = p

∂2 u

∂ x2
(t, x)− q(x)u(t, x) +

∫ x

0

β(x, s)u(t, s)ds, for x ∈ (0, 1) and t ∈ I (5.69)

b2
∂ u

∂ x
(t, 0) + b1u(t, 0) = a2

∂ u

∂ x
(t, 1) + a1u(t, 1) = 0, for t ∈ I. (5.70)

Then u[t] ≡ 0 for all t ∈ [0, T ].
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Proof. Let k ∈ C2 ([0, 1]; (0,+∞)) be a positive function that satisfies

− k′(1)

2k(1)
≤
{
a1/a2 if a2 6= 0
+∞ if a2 = 0

, − k
′(0)

2k(0)
≥
{
b1/b2 if b2 6= 0
−∞ if b2 = 0.

(5.71)

Consider the mapping

V (t) =
1

2

∫ 1

0

k(x)u2(t, x)dx, for t ∈ [0, T ]. (5.72)

Notice that continuity of the mapping [0, T ] 3 t→ u[t] ∈ L2(0, 1) implies continuity of the mapping [0, T ] 3
t→ V (t) ∈ R. The fact that u ∈ C1(I × [0, 1]) implies that V (t) is C1 on I and satisfies

V̇ (t) =

∫ 1

0

k(x)u(t, x)
∂ u

∂ t
(t, x)dx, for t ∈ I. (5.73)

Using (5.73), (5.69), (5.70), and (5.72) the Cauchy–Schwarz inequality, repeated integration by parts and
(5.71), we obtain for all t ∈ I:

V̇ (t) = p
∫ 1

0
k(x)u(t, x)∂

2 u
∂ x2 (t, x)dx−

∫ 1

0
k(x)q(x)u2(t, x)dx+

∫ 1

0
k(x)u(t, x)

(∫ x
0
β(x, s)u(t, s)ds

)
dz

≤ max
0≤x≤1

(−q(x))
∫ 1

0
k(x)u2(t, x)dx+ pk(1)

(
∂ u
∂ x (t, 1)− k′(1)

2k(1)u(t, 1)
)
u(t, 1)

−pk(0)
(
∂ u
∂ x (t, 0)− k′(0)

2k(0)u(t, 0)
)
u(t, 0) + p

2

∫ 1

0
k′′(x)u2(t, x)dx

−p
∫ 1

0
k(x)

(
∂ u
∂ x (t, x)

)2
dx+

(∫ 1

0
k(x)u2(t, x)dx

)1/2 (∫ 1

0
k(x)

(∫ x
0
k(s)u2(t, s)ds

) (∫ x
0
β2(x,s)
k(s) ds

)
dx
)1/2

≤
(

max
0≤x≤1

(−q(x)) + max
0≤x≤1

(
pk′′(x)
2k(x)

)
+
(∫ 1

0
k(x)

(∫ x
0
β2(x,s)
k(s) ds

)
dx
)1/2)∫ 1

0
k(x)u2(t, x)dx

+pk(1)
(
∂ u
∂ x (t, 1)− k′(1)

2k(1)u(t, 1)
)
u(t, 1)− pk(0)

(
∂ u
∂ x (t, 0)− k′(0)

2k(0)u(t, 0)
)
u(t, 0)

≤ 2

(
max
0≤x≤1

(−q(x)) + max
0≤x≤1

(
pk′′(x)
2k(x)

)
+
(∫ 1

0
k(x)

(∫ x
0
β2(x,s)
k(s) ds

)
dx
)1/2)

V (t).

It follows that there exists a constant L > 0 such that V̇ (t) ≤ LV (t) for all t ∈ I. Continuity of the mapping
[0, T ] 3 t → V (t) ∈ R in conjunction with the differential inequality V̇ (t) ≤ LV (t) for t ∈ I and the fact that
u[0] ≡ 0 implies that

V (t) ≤ L
∫ t

0

V (s)ds , for all t ∈ [0, T ]. (5.74)

Using Gronwall’s inequality Lemma and (5.74), we get V (t) ≤ 0, for all t ∈ [0, T ], which combined with
definition (5.72) gives u[t] ≡ 0 for all t ∈ [0, T ]. The proof is complete.

Proof of Proposition 3.6. Since (f, 0, d1) ∈ Φ(A;u0) it follows from Definition 2.1 that there exist an increas-
ing sequence of times { τi ≥ 0 , i = 0, 1, 2, . . . } with τ0 = 0, lim

i→+∞
(τi) = +∞ and a unique function u :

R+ × [0, 1] → R for which the mapping R+ 3 t → u[t] ∈ L2(0, 1) is continuous, with u ∈ C1(I × [0, 1]) satis-
fying u[t] ∈ C2([0, 1]) for all t > 0, lim

t→τ−i
(u(t, x)) = u(τi, x), lim

t→τ−i

(
∂ u
∂ t (t, x)

)
= −(Au[τi])(x) + lim

t→τ−i
(f(t, x)),

lim
t→τ−i

(
∂ u
∂ x (t, x)

)
= ∂ u

∂ x (τi, x), u(0, x) = u0(x) for all x ∈ [0, 1], and equations (2.6) and (2.7) hold, where

I = R+\ { τi ≥ 0 , i = 0, 1, 2, . . . }.
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It follows from the above regularity properties, that the function ω(t, x) := −
(
q′(x)− 2a21px

)
u(t, x) for

(t, x) ∈ R+ × [0, 1] satisfies (ω, 0, 0) ∈ Φ(A′; 0). Since (f̃ , d̃0, d1) ∈ Φ(A′, Pu0), where f̃ [t] = Pf [t], d̃0(t) =
−p−1f(t, 0) for t ≥ 0, it follows that (f̃ +ω, d̃0, d1) ∈ Φ(A′, Pu0). Notice that the SL operator A′ : D′ → L2(0, 1)
defined by (3.4) and (3.5) satisfies assumption (H). Consequently, there exists an increasing sequence of times
{ τ ′i ≥ 0 , i = 0, 1, 2, . . . } with τ ′0 = 0, lim

i→+∞
(τ ′i) = +∞ (possibly different from { τi ≥ 0 , i = 0, 1, 2, . . . }) and

a unique function v : R+ × [0, 1] → R for which the mapping R+ 3 t → v[t] ∈ L2(0, 1) is continuous, with
v ∈ C1(I ′ × [0, 1]) satisfying v[t] ∈ C2([0, 1]) for all t > 0, v[0] = v0 = Pu0, and

∂ v

∂ t
(t, x) = p

∂2 v

∂ x2
(t, x)− (q(x) + 2a1p) v(t, x) + (Pf [t])(x) + ω(t, x), (5.75)

for all (t, x) ∈ I ′ × (0, 1),

∂ v

∂ x
(t, 0) + p−1f(t, 0) = v(t, 1)− d1(t) = 0, for all t ∈ I ′, (5.76)

where I ′ = R+\ { τ ′i ≥ 0 , i = 0, 1, 2, . . . }.
Define

ũ(t, x) :=

∫ x

0

exp
(
−a1

2
(x2 − s2)

)
v(t, s)ds, for (t, x) ∈ R+ × [0, 1]. (5.77)

Using repeated integration by parts, (5.75)–(5.77) and the facts that v(0, x) = v0(x) = u′0(x) + a1xu0(x),
u0(0) = 0, we show that:

∂ ũ

∂ t
(t, x) = p

∂2 ũ

∂ x2
(t, x)− q(x)ũ(t, x) +

∫ x

0

exp
(
−a1

2
(x2 − s2)

) (
q′(s)− 2a21ps

)
(ũ(t, s)− u(t, s)) ds+ f(t, x),

(5.78)
for all (t, x) ∈ I ′ × (0, 1) and

ũ(t, 0) =
∂ ũ

∂ x
(t, 1) + a1ũ(t, 1)− d1(t) = 0, for all t ∈ I ′ (5.79)

v(t, x) =
∂ ũ

∂ x
(t, x) + a1xũ(t, x), for all (t, x) ∈ (0,+∞)× [0, 1] (5.80)

ũ(0, x) = u0(x), for all x ∈ [0, 1]. (5.81)

Notice that definition (5.77) and continuity of the mapping R+ 3 t→ v[t] ∈ L2(0, 1) implies that the mapping
R+ 3 t → ũ[t] ∈ L2(0, 1) is continuous. Applying Proposition 5.1 to the function ū = ũ − u and using (2.6),
(2.7), (5.78), (5.79), and (5.81) we get u[t] = ũ[t] for t ≥ 0. Equation (3.14) is a direct consequence of (5.80),
the fact that u[t] = ũ[t] for t ≥ 0 and the fact that v(0, x) = v0(x) = u′0(x) + a1xu0(x).

The proof is complete.

We are now in a position to prove Theorem 3.3.

Proof of Theorem 3.3. Theorem 2.4 implies that for every u0 ∈ L2(0, 1), (f, 0, d1) ∈ Φ(A;u0) the unique solution
u : R+ × [0, 1] → R of the evolution equation (2.4) with (2.5) and initial condition u0 ∈ H1(0, 1) satisfies the
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following estimate for all σ ∈ [0, λ1) and t > 0:

‖u[t]‖ ≤ exp (−σ t) ‖u0‖+
λ1

λ1 − σ
C1 sup

0<s<t
(|d1(s)| exp (−σ(t− s))) +

1

λ1 − σ
sup

0<s<t
(‖f [s]‖ exp (−σ(t− s))) ,

(5.82)
where

C0 := ‖ũ‖ , C1 :=
1√
a21 + 1

‖ū‖ (5.83)

ũ ∈ C2([0, 1]) is the unique solution of the boundary value problem pũ′′(x) − q(x)ũ(x) = 0 for x ∈ [0, 1] with
ũ(0) = 1, a1ũ(1) + ũ′(1) = 0 and ū ∈ C2([0, 1]) is the unique solution of the boundary value problem pū′′(x)−
q(x)ū(x) = 0 for x ∈ [0, 1] with ū(0) = 0 and a1ū(1) + ū′(1) =

√
a21 + 1.

Let 0 < µ1 < µ2 < · · · < µn < · · ·with lim
n→∞

(µn) = +∞ be the eigenvalues of the SL operator A′. Then it

follows from Proposition 3.6 and Theorem 2.4 that the unique solution v : R+ × [0, 1] → R of the evolution
equation (3.12) with (3.13) and initial condition v0(x) = u′0(x) + a1xu0(x) for x ∈ [0, 1] satisfies the following
estimate for all σ ∈ [0, µ1) and t > 0:

‖v[t]‖2 ≤ exp (−σ t) ‖v0‖2 +
1

µ1 − σ
sup

0<s<t
(‖Pf [s] + ω[s]‖2 exp (−σ(t− s)))

+
µ1

µ1 − σ

(
C̃0p

−1 sup
0<s<t

(|f(s, 0)| exp (−σ(t− s))) + C̃1 sup
0<s<t

(|d1(s)| exp (−σ(t− s)))
)
, (5.84)

where ω(t, x) := −
(
q′(x)− 2a21px

)
u(t, x) for (t, x) ∈ R+ × [0, 1] and

C̃0 := ‖ṽ‖ , C̃1 := ‖v̄‖ , (5.85)

ṽ ∈ C2([0, 1]) is the unique solution of the boundary value problem pṽ′′(x)− (q(x) + 2a1p) ṽ(x) = 0 for x ∈ [0, 1]
with ṽ′(0) = 1, ṽ(1) = 0 and v̄ ∈ C2([0, 1]) is the unique solution of the boundary value problem pv̄′′(x) −
(q(x) + 2a1p) v̄(x) = 0 for x ∈ [0, 1] with v̄′(0) = 0 and v̄(1) = 1. Using (3.14) and the facts that v[0] = v0 = Pu0,
ω(t, x) := −

(
q′(x)− 2a21px

)
u(t, x), (Pf [t])(x) = f ′(t, x) + a1x f(t, x) for (t, x) ∈ R+ × [0, 1], we obtain the

following inequalities:

‖Pf [t] + ω[t]‖2 ≤ max
0≤z≤1

(∣∣q′(z)− 2a21pz
∣∣) ‖u[t]‖2 + ‖f ′[t]‖2 + |a1| ‖f [t]‖2 , for all t > 0 (5.86)

‖u′[t]‖ ≤ ‖v[t]‖+ |a1| ‖u[t]‖ , for all t > 0 (5.87)

‖v0‖ ≤ ‖u′0‖+ |a1| ‖u0‖ . (5.88)

It follows from (5.82), (5.84), (5.86), (5.87), and (5.88) that the following inequalities hold for σ ∈
[0,min (µ1, λ1)) and t > 0:

‖u′[t]‖ ≤ exp (−σ t) ‖u′0‖+ exp (−σ t)

2 |a1|+
max
0≤x≤1

(∣∣q′(x)− 2a21px
∣∣)

µ1 − σ

 ‖u0‖
+

µ1

µ1 − σ
C̃0p

−1 sup
0<s<t

(|f(s, 0)| exp (−σ(t− s)))
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+

 µ1

µ1 − σ
C̃1 +

λ1
λ1 − σ

C1

 max
0≤x≤1

(∣∣q′(x)− 2a21px
∣∣)

µ1 − σ
+ |a1|

 sup
0<s<t

(|d1(s)| exp (−σ(t− s)))

+
1

µ1 − σ
sup

0<s<t
(‖f ′[s]‖ exp (−σ(t− s)))

+

 |a1|
µ1 − σ

+
|a1|

λ1 − σ
+ λ1

max
0≤x≤1

(∣∣q′(x)− 2a21px
∣∣)

(µ1 − σ)(λ1 − σ)

 sup
0<s<t

(‖f [s]‖ exp (−σ(t− s))) . (5.89)

Estimates (3.6) and (3.7) are consequences of (5.82) and (5.89). The proof is complete.

6. Conclusions

In this work ISS estimates were derived for the solutions of 1-D linear parabolic PDEs with disturbances at
both boundaries and distributed disturbances. The decay estimates were expressed in the L2 and H1 norms of
the solution and discontinuous disturbances are allowed. The obtained estimates do not require knowledge of
the eigenvalues and the eigenfunctions of the corresponding SL operator and can be applied in a straightforward
way for the stability analysis of parabolic PDEs with nonlocal terms.

Future work may include the study of necessary conditions for ISS in the H1 norm of the state. While
Theorem 3.1 provides necessary and sufficient conditions for ISS, this is not the case with Theorem 3.3, where
only sufficient conditions for ISS are provided. Finally, novel results will be needed for the derivation of ISS
estimates in the H2 norm of the state.
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