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ON A FOURTH ORDER EQUATION IN 3-D
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Abstract. In this article we study the positivity of the 4-th order Paneitz operator for closed
3-manifolds. We prove that the connected sum of two such 3-manifold retains the same positivity
property. We also solve the analogue of the Yamabe equation for such a manifold.
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1. Introduction

In the analytic study of conformal structures in dimensions greater than two, it is fruitful to consider the
family of Q-curvature equations as natural generalization of the Yamabe equation. Since the work of Paneitz [9]
there has been a number of such equations introduced by Branson [2] and Fefferman and Graham [7].

In a series of papers [3, 4] it is demonstrated that solutions of these equations lead to significant results for
nonlinear analysis as well as for conformal geometry in dimension four. A number of authors have investigated
these equations in dimensions higher than four, for example Djadli et al. [6], Hebey and Robert [8] and Ahmedou
et al. [1]. In this paper, we call attention to the validity of the equation in dimension three and begin a
preliminary investigation of the fourth order Paneitz equation in the most favorable situation. Let us recall the
Paneitz operator

P = (−∆)2 + δ

(
5
4
Rg − 4Ric

)
d− 1

2
Q, (1.1)

where

Q = −2|Ric|2 +
23
32
R2 − 1

4
∆R. (1.2)

Under a conformal change of metrics ḡ = u−4g with u > 0, the Paneitz operator enjoys the following conformal
covariance property:

P̄w = u7 P (uw). (1.3)
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In fact the Q-curvatures are related by the nonlinear equation

Pu = −1
2
Qḡu

−7. (1.4)

In this article, we investigate the conformal classes for which the Paneitz operator is positive. In a previous
article [10], we have shown that positivity is preserved under the connected sum operation in dimensions greater
than four. While we do not know if the same property continues to hold in dimension four, we will show here
that it remains true in dimension three.

Theorem 1.1. Let (M, g) and (M ′, g′) be closed 3-manifolds on which the Paneitz operator is positive, then
there exists a conformal structure on the connected sum M#M ′ for which the Paneitz operator is positive.

The basic reason underlying this result is that on the cylinder, the energy integrand

e(u) =
[
(∆u)2 +

(
5
4
Rg − 4Rc

)
(∇u,∇u) − 1

2
Qu2

]
dV (1.5)

for the Paneitz operator becomes positive after integrating over the 2-spheres.
The proof of this result is essentially the same as that for the higher dimensional situation given in [10]. We

take this opportunity to supply a detailed proof of Lemma 3.1 which works in all dimensions and hence clarify
a point in the corresponding argument in [10]. As a corollary, we find a large number of conformal classes with
positive Paneitz operators.

Corollary 1.2. There exist conformal structures on the connected sum of a finite number of copies of S1 × S2

for which the Paneitz operator is positive.

On the other hand, the Paneitz operator on the standard 3-sphere is not positive as its lowest eigenvalue
is negative. Since the 3-sphere is conformally the same as a long cylinder capped off at the ends by spherical
caps, it is somewhat surprising that the operator should pick up a negative eigenvalue. To understand this
situation, it is helpful to remark that contrary to the case of the Yamabe equation, the energy integrand (1.5) is
not pointwise conformally covariant, it is only so after integration by parts. The boundary term thus becomes
important in any gluing construction. Since the class of conformal structures with positive conformal Laplacian
and positive Paneitz operators do not contain the most singular case of the standard 3-sphere, it is possible to
solve the equation to prescribe the Q-curvature in this case.

Theorem 1.3. If (M, g) is a three dimensional closed manifold such that the Paneitz operator P is positive,
then the equation (1.4) has a positive solution with Qḡ being a negative constant.

Our approach to this problem is variational. We consider the functional Q[u] = (
∫

M
u−6dv)1/3

∫
M
Pu · udv.

Due to the presence of the negative power nonlinearity, it is not possible to localize the analysis. The analysis
of Q[u] presents a number of features that are distinct from that of the Yamabe quotient. The presence of the
negative exponent term means that the analysis is centered on preventing the conformal factor from touching
zero. Fortunately in the case under consideration, there is compactness in the minimizing sequence of the energy
functional. Thus as a corollary of the proof we obtain an Sobolev type inequality of the form:

0 < Qp[M ] = inf
(∫

M

u−pdv
)2/p ∫

M

Pu · udv, 1 < p <∞. (1.6)

The key fact we need (Lem. 4.3) is motivated by the classification of entire solutions on R3 of the equation
∆2u = −u−7 which appears in [5]. In the case of the standard 3-sphere, it is possible to determine the best
constant in (1.6) for the standard 3-sphere with a negative Q6. However there are other issues to be resolved
in the more general situation. We hope to return to this question on a later occasion.

Finally we outline the paper. In Section 2 we set the notations as well as some elementary examples of
Paneitz operators. In Section 3 we prove Theorem 1.1. In Section 4 we prove Theorem 1.3.
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2. Notations and examples

In this section we compute a few examples of the Paneitz operator.

P = (−∆)2 + δ

(
5
4
Rg − 4Ric

)
d− 1

2
Q, (2.1)

where

Q = −2|Ric|2 +
23
32
R2 − 1

4
∆R. (2.2)

For the cylinder, which is conformally equivalent to the punctured 3-space R3−{0}, we write x = |x| · x
|x| = et ·σ

with |x| = et and σ = x
|x| ∈ S2. The metric is given by g = |dx|2

|x|2 = dt2 +dσ2 where dσ2 the canonical metric on
the 2-sphere. We have R = 2, |Ric|2 = 2, Q = − 9

8 . With the notation ∇T , ∆T denoting gradient and Laplacian
in the directions tangential to the 2-sphere, we find

P = (∂2
t + ∆T )2 − (5/2)∆ + 4∆T +

9
16

· (2.3)

For functions u with compact support on the cylinder, we find upon integrating by parts,∫
Pu · udv =

∫
[|u′′|2 + (5/2)|u′|2 + |∆Tu|2]dv +

∫ [
2|∇Tu′|2 − (3/2)|∇Tu|2 +

9
16
u2

]
dv (2.4)

which is positive after integrating in the 2-sphere direction.
For the standard 3-sphere, we have Rc = 2g, so that R = 6, and Q = 15

8 .

P = (−∆)2 + (1/2)∆ − 15
16

· (2.5)

To determine the base eigenvalue of the operator P , we rewrite the energy integral, using the Bochner formula,∫
S3
Pu · u dv =

∫
S3

{
|∇2u|2 + (3/2)|∇u|2 − 15

16
u2

}
dv. (2.6)

It follows that the base eigenvalue of the operator P is − 15
16 .

3. Connected sum

In this section we show that the positivity of the Paneitz operator is preserved in taking a connected sum
provided the gluing cylinder is sufficiently long and thin. Let (M, g) and (M ′, g′) be compact 3-manifolds whose
fourth order Paneitz operators are positive. Due to the conformal covariance property of the Paneitz operator,
the operator will remain positive when g is replaced by a conformal metric. From continuity consideration, we
may assume that M and M ′ contain sufficiently small balls B and B′ of radius ε in which the metrics g and g′

are conformally flat. By rescaling of the coordinates, we may assume these are balls of unit radius. In forming
a connected sum, it is advantageous to use the cylindrical coordinates for B: x = |x| · x

|x| , where we set |x| = et

and σ = x
|x| . Likewise, for B′ we have x′ = et′ · σ′. We identify (t, σ) with (−L − t′, σ′) for −L ≤ t ≤ 0, and

call L the length parameter. We then glue the metrics together over the common region −L ≤ t ≤ 0. We may
also suppose, using the conformal covariance property of the Paneitz operator that the original metrics g and
g′ agree with the cylinder metric dt2 + dσ2 over the common region −L ≤ t ≤ 0.
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To prove that the conformal structure on the connected sum has a positive Paneitz operator, we proceed by
contradiction. Assume to the contrary, that there is a sequence of length parameters L tending to infinity, for
which the Paneitz operator PL on the connected sum has a nonpositive eigenvalue. We will show that there is a
subsequence of eigenfunctions uL which converges on either M or M ′ to a function v for which

∫
Pv · v dV ≤ 0.

This will be a contradiction to our assumption.
To make use of the assumption that (M, g) and (M ′, g′) have positive Paneitz operators, we will cap off the

cylinder at various values of t parameter and extend the eigenfunctions into the caps.

Lemma 3.1. Let v be a smooth function in a neighborhood of the unit sphere S2 in R3, let V be the biharmonic
function defined on the unit ball B having the same boundary value and normal derivative as v on S2. Then
there is a constant C such that∫

B

|∆V |2 + |∇V |2 + V 2dx ≤ C

{∫
S2

|∆T v|2 + |∇v|2 + v2dσ
}
· (3.1)

Proof. We begin with the representation formula for V :

V (x) =
∫

S2
(∂n∆)yG(x, y)v(y)dσ(y) −

∫
S2

∆yG(x, y)∂nv(y)dσ(y), (3.2)

where

G(x, y) = − 1
4π

{
|x− y| − |y||x− ȳ| + 1

2
(1 − |x|2)(1 − |y|2)

|y||x− ȳ|
}

(3.3)

and ȳ is the inversion of y in the unit sphere S2 = {y||y| = 1}. Denote by I the second integral in (3.2) and by
II the first integral in (3.2), so that V (x) = I + II. A direct calculation yields for the most singular term for
|y| = 1:

I = − 1
4π

∫
S2

{
(1 − |x|2)2
|x− y|3

}
∂nv(y)dσ(y) (3.4)

and

II =
1
4π

∫
S2

(1 − |x|2)
{

6(|x|2 − y · x)2
|x− y|5 +

2 + 3y · x− 5|x|2
|x− y|3

}
v(y)dσ(y). (3.5)

It will suffice to prove

∫
B

|∆V |2 + V 2dx ≤ C

{∫
S2

|∇2v|2 + |∇v|2 + v2dσ
}
· (3.6)

Let us consider the new function

w(v) =
1
4π

(1 − |x|2)
∫

S2

v

|x− y|3 dσ(y),

for any given continuous function v on S2.
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It is clear from Poisson integral formula, w(v) is a harmonic function in B3. We recall that for harmonic
functions h: ∫

B

h2dx ≤
∫

S2
h2dσ.

Apply this to w, keep in mind that w = v on the unit sphere S2 to get∫
B

w2dx ≤
∫

S2
v2dσ. (3.7)

To bound the first integral, we observe that 1 − |x|2 ≤ 1, thus

|I| ≤ C
1 − |x|2

4π

∫
S2

|∇v(y)|
|x− y|3 dσ(y) ≤ Cw(|∇v|). (3.8)

Similarly,

|the second integral of II| ≤ C
1 − |x|2

4π

∫
S2

|v|
|x− y|3 dσ(y) ≤ Cw(|v|). (3.9)

and now since ||x|2 − x · y| = |x · (x− y)| ≤ |x||x− y|;

|the first integral of II| ≤ C
1 − |x|2

4π

∫
S2

|v|
|x− y|3 dσ(y) ≤ Cw(|v|).

Then we square V and integrate over B and apply (3.7) to find,
∫

B

V 2dx ≤ C

∫
S2

|∇v|2 + v2dσ.

To bound the integral
∫

B |∆V |2dx, we apply the inequality (3.7) to ∆V to obtain

∫
B

|∆V |2dx ≤
∫

S2
|∆V |2dσ.

The desired bound then follows from the following explicit formula [10] for ∆u in terms of the intrinsic
Laplacian ∆T operating on the boundary data φ = ∂nu and ψ = u that can be derived via a calculation
utilizing the spherical harmonics.

∆u = 2

(√
−∆T +

1
4

+ 1

)
φ+

{
2∆T −

(√
−∆T +

1
4
− 1

2

)}
ψ. (3.10)

This finishes the proof of Lemma 3.1. �

To apply Lemma 3.1, we split the manifold M into M0 = M −B and B, and likewise M ′ into M ′
0 = M ′−B′

and B′ so that M#N = M0∪M ′
0∪ [0, L]×S2. When we cap off M0∪ [0, t]×S2 by attaching B to the boundary

{t} × S2 we view the resulting manifold as conformally the same as M , and we extend the boundary data of
the eigenfunction uL to a biharmonic function on B. (More precisely, in switching over to a conformal metric,
we need to use the conformal covariance property of the operators to transform the relevant boundary data.)
We denote the resulting function on M by vL. Coming from the other end, we view M ′ as M ′

0 ∪ [t, L]×S2, and
extend the boundary data of the function uL to M ′ and denote the resulting function on M ′ by v′L.
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To account for the energy of the several functions we have

E(u) =
∫
PuudV =

∫
e(u)dV

where

e(u) = |∆u|2 +
5
4
R|∇u|2 − 4Rc(∇u,∇u)− 1

2
Qu2. (3.11)

The positivity assumption on M and Lemma 3.1 imply

∫
M0

e(u)dV +
∫ t

0

∫
S2
e(u(s, σ))dσds + Cn

∫
S2
e(u(t, σ))dσ > 0. (3.12)

Similarly,

∫
M ′

0

e(u)dV +
∫ L

t

∫
S2
e(u(s, σ))dσds + Cn

∫
S2
e(u(t, σ))dσ > 0. (3.13)

The nonpositivity assumption on M#N implies that

∫
M0

e(u)dV +
∫

M ′
0

e(u)dV +
∫ L

0

∫
S2
e(u(s, σ))dσds ≤ 0. (3.14)

Since on the tube [0, L]×S2 the energy integral
∫

S2 e(u(s, σ))dσ is positive for each 0 < s < L, we observe that
at least one of the numbers:

∫
M0

e(u)dv and
∫

M ′
0
e(u)dv is negative. Hence there are numbers 0 < t0 ≤ t1 < L

so that ∫
M0

e(u)dV +
∫ t1

0

∫
S2
e(u(s, σ))dσds = 0 (3.15)

and ∫
M ′

0

e(u)dV +
∫ L

t0

∫
S2
e(u(s, σ))dσds = 0. (3.16)

In case the lowest eigenvalue of the Paneitz on M#M ′ is zero, and u the corresponding eigenfunction, we have
t0 = t1. Since

−
∫ t1

t0

∫
S2
e(u(s, σ))dσds =

∫
M0

e(u)dV +
∫

M ′
0

e(u)dV +
∫ L

0

∫
S2
e(u(s, σ))dσds.

We can rewrite (3.12) and (3.13) by using (3.15) and (3.16) as

Cn

∫
S2
e(u(t, σ))dσ >

∫ t1

t

∫
S2
e(u(s, σ))dσds for 0 ≤ t ≤ t1, (3.17)

and

Cn

∫
S2
e(u(t, σ))dσ >

∫ t

t0

∫
S2
e(u(s, σ))dσds for t0 ≤ t ≤ L. (3.18)
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Consequently, we find

2Cn

∫
S2
e(u(t, σ))dσ ≥

∫ t1

t0

∫
S2
e(u(s, σ))dσds for t0 ≤ t ≤ t1.

Upon integration we find
2Cn ≥ (t1 − t0).

Hence the middle interval is bounded independent of L. So as L tends to infinity we have at least one of t1 and
L− t0 tends to infinity. Further, on one of these long tubes, equations (3.17) or (3.18) implies exponential decay
of the energy on the t slices. A subsequence of the eigenfunctions uL then converges uniformly on compact
subsets of M0 ∪ [0,∞) × S2 or M ′

0 ∪ [0,∞) × S2 to an eigenfunction u∞ which has exponential decay in the
tube. The conformal transform of this function to ũ∞ on M or M ′ is then a function with W 2,2 norm bounded
but satisfies the condition ∫

e(ũ∞)dV ≤ 0.

This is a contradiction to our assumption. Thus we have proved the Theorem 1.1.

4. Proof of Theorem 1.3

We will consider the variational problem to minimize the functional

F6(u) =
(∫

M

u−6dv
)1/3 ∫

M

Pu · u dv. (4.1)

The critical points of the functional F6 satisfy the equation (1.4) with Qḡ given by a constant. The functional F6

is invariant under scaling, and more generally, invariant under the action induced by conformal transformations T
of the manifold M . To break this natural symmetry, we will consider the more general functional

Fp(u) =
(∫

M

|u|−pdv
)2/p ∫

M

Pu · u dv (4.2)

for every p ≥ 6 over the space H2,2(M).
For simplicity, we denote

Hp =
{
u ∈ H2,2(M) :

∫
M

|u|−pdv = 1
}

(4.3)

and assume that
∫

M
dv = 1.

Lemma 4.1. There exists a positive smooth function which minimizes the functional Fp(u) over Hp if p > 6.

Proof. Since P is positive, there exists a positive constant λ > 0 such that for every u ∈ Hp,∫
M

Pu · u dv ≥ λ

∫
M

u2dv. (4.4)
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Thus Fp(u) has a lower bound over Hp (nonnegative). Let {uk} be a minimizing sequence of Fp(u) over Hp.
First of all, since uk ∈ Hp,

∫
M |uk|−pdv = 1. Thus for every k,

∫
M

u2
kdv ≤ 1

λ

∫
M

Puk · uk dv =
1
λ
Fp(uk) ≤ C, (4.5)

for some constant C since {uk} is a minimizing sequence.
From Fp(uk) ≤ C and the definition of the Paneitz operator, we have the following estimates:∫

M

(∆uk)2dv = Fp(uk) − 5
4

∫
M

R|∇uk|2dv + 4
∫

M

Ric(∇uk,∇uk)dv +
1
2

∫
M

Qu2
kdv

≤
[
5
4

max |R| + 4 max |Ric|
]∫

M

|∇uk|2 +
1
2

max |Q|
∫

M

u2
kdv + C

≤ 1
2

∫
M

(∆uk)2dv + C1

∫
M

u2
kdv + C.

Clearly from this and (4.5), we conclude that {uk} is a bounded sequence in H2,2(M). Thus it is standard that
there exists a subsequence, still denoted by {uk}, such that uk weakly converges to some function up ∈ H2,2(M).
As a consequence, uk converges to up strongly in H1,2(M) and almost everywhere on M .

Now let α = p
3 − 1 > 1. It follows from

∫
M (∆uk)2dv ≤ C,

∫
M |∇uk|2dv ≤ C and Sobolev’s inequality that

∫
M

|∇uk|6dv ≤ C. (4.6)

Hence by Hölder inequality, we have

∫
M

∣∣∣∣∇
(

1
|uk|α

)∣∣∣∣
2

dv = α2

∫
M

|∇|uk||2
|uk|2(α+1)

≤
(∫

M

|∇uk|6dv
)1/3

·
(∫

M

|uk|−3(α+1)dv
)2/3

. (4.7)

Now the choice of α implies 3(α+ 1) = p. Thus we conclude from the fact that
∫

M |uk|−pdv = 1 that

∫
M

∣∣∣∣∇ 1
|uk|α

∣∣∣∣
2

dv ≤ C (4.8)

with C depending only on the upper bound of Fp and the geometry of g.
Also it follows from Hölder inequality that∫

M

(|uk|−α)2dv ≤ C (4.9)

for some constant C, again depending only on the same data as above.
The estimates (4.8) and (4.9) show that {|uk|−α} is a bounded sequence in H1,2(M). Thus there is a

subsequence, again denoted by {uk} such that |uk|−α weakly converges to ū−α
p in H1,2(M). However this

implies the convergence holds almost everywhere on M . As we have shown that uk also converges to up almost
everywhere, |up| = ūp almost everywhere on M .

Now let s = 3p
p−3 . The fact that p > 6 implies s < 6. Thus by the Rellich–Kondrachov compactness theorem,

we get

1 = lim
k→∞

∫
M

(|uk|−α)sdv =
∫

M

(|up|−α)sdv. (4.10)
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Since α and s are chosen so that α · s = p, we conclude that up ∈ Hp. Thus up is a critical point of Fp over Hp.
Hence it weakly satisfies the equation

Pup = λp|up|−pu−1
p , (4.11)

where λp is the minimum value of Fp over Hp. Since up is not identically zero and P is positive, λp is positive.
Since

||up||H2,2 ≤ lim infk→∞||uk||H2,2 ,

||up||H2,2 ≤ C.
We will use the equation to improve the regularity of the solution up. We begin with the |∇up| is in L6(M)

by Sobolev’s embedding. Thus by the estimate (4.7), we know that if α = α0 = (p− 3)/3 > 1, then |∇|up|−α|
is in L2(M). It follows that |up|−α is in L6(M). Notice that 6α = 2(p − 3) > p if p > 6. Then in (4.7), we
choose α = α1 = 2α0 − 1, then by Sobolev’s Embedding, we conclude that |up|−α1 is in L6(M). Repeating this
process, define

αn+1 = 2αn − 1 = 2n(α0 − 1) + 1,
to find that for any n ≥ 0, |up|−αn is in L6(M). It is clear that αn goes to infinity as n goes to infinity. Hence
we can choose n such that 6αn ≥ 2(p+ 1).

What we have shown in previous paragraph is that the right hand side of equation (4.11) is in L2(M). Then
it follows that (|∆2u|)2 is integrable. Thus ∆up is a continuous function on M and bounded on M in absolute
value. It follows from

∆
(

1
up

)
= −∆up

u2
p

+ 2
|∇up|2
u3

p

, (4.12)

that ∆(u−1
p ) is in L2(M). Hence u−1

p is a continuous function on M . Thus up can never take zero value.
Without loss of generality, we can assume that up > 0, since otherwise we can take −up as our solution. It will
follow easily that up is a C∞ smooth function. Therefore we have completed the proof of Lemma 4.1.

Lemma 4.2. Let λp = minu∈Hp Fp(u) for p ≥ 6. Then

lim
p→6

λp = λ6. (4.13)

Proof. Since
λ6 = infu∈H6F6(u),

let {ui} be a sequence in H6 such that
F6(ui) → λ6

as i→ ∞. For each fixed i, we have
λp ≤ Fp(ui) → F6(ui),

as p→ 6. It follows that
limp→6λp ≤ λ6.

On the other hand, by Hölder inequality, we have

F6(up) = Fp(up) ·
||u−1

p ||26
||u−1

p ||2p
≤ Fp(up)

(∫
M

dv
)2(1− 6

p )

.

Thus it follows that

λ6 ≤ λp

(∫
M

dv
)2(1− 6

p )

.
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Hence, we get

λ6 ≤ limp→6λp

(∫
M

dv
)2(1− 6

p )

= limp→6λp.

Therefore

lim
p→6

λp = λ6.

This finishes the proof of Lemma 4.2.
�

Lemma 4.3. There exists no C4 function v satisfying

(1)
∫
R3 v

−6dv <∞;
(2) v ≥ 1 and v(0) = 1;
(3)

∫
R3(∆v)2dv <∞;

(4) ∆2v = v−7.

Proof. It follows from conditions (1) and (2) that for any q ≥ 6,

∫
R3
v−qdv <∞.

Define

w(x) =
1
4π

∫
R3

v−7(y)
|x− y|dy.

Then for any q > 1, w(x) is in Lq(R3) and

∆w + v−7 = 0. (4.14)

For any r > 0 and x ∈ R3, integrate condition (4) over the ball Br(x) to get

∫
Br(x)

v−7dx =
∫

Br(x)

∆2vdx = r2
∂

∂r

[
r−2

∫
∂Br(x)

∆vdσ

]
. (4.15)

Multiply r−2 on both sides of (4.15) and integral from 0 to r to have

∫ r

0

t−2

∫
Bt(x)

v−7dydt = r−2

∫
∂Br(x)

∆vdσ − ω3(∆v)(x). (4.16)

Now multiply r2 on both sides of (4.16)and integrate the resulting equation from 0 to r to get

∫ r

0

s2

[∫ s

0

t−2

∫
Bt(x)

v−7dydt

]
ds =

∫
Br(x)

∆vdx − ω3(∆v)(x)r3/3

= r2
∂

∂r

[
r−2

∫
∂Br(x)

vdσ

]
− ω3(∆v)(x)r3/3. (4.17)
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Finally multiply both sides of (4.17) by r−2 and integrate the resulting equation from 0 to R to get

g(R) :=
∫ R

0

r−2

{∫ r

0

s2

[∫ s

0

t−2

∫
Bt(x)

v−7dydt

]
ds

}
dr

= R−2

∫
∂BR(x)

vdσ − ω3v(x) − ω3(R2/6)(∆v)(x). (4.18)

This is known as the mean value property for biharmonic function. By using L’Hospital’s rule, we can see that

lim
R→∞

g(R)
R2

exists and is less than a constant independent of x. Hence we can conclude that

∆v(x) + C ≥ 0 (4.19)

for all x ∈ R3.
Notice that condition (4) and equation (4.14) imply that

∆(∆v + w) = 0. (4.20)

Clearly w is nonnegative and by equation (4.19), we see that w + ∆v is bounded from below, hence Liouville’s
theorem implies that w + ∆v is a constant:

∆v = C − w. (4.21)

As pointed out earlier, w is in Lq(R3) for every q > 1. Thus as |x| → ∞, w(x) → 0. This, together with the
condition (3), we can see that the constant C must be zero.

It follows from the definition of w that ∆v is nonpositive. Notice that

∆
(

1
v

)
= −∆v

v2
+ 2

|∇v|2
v3

≥ 0.

It follows that 1
v must be a constant. Clearly this, together with condition (1), implies that v must be everywhere

infinity, which is a contradiction to condition (2).
We have completed the proof of Lemma 4.3. �

Lemma 4.4. Let {up} be the positive smooth function found in Lemma 4.1 for every p > 6. Then there is a
positive constant c0, independent of p such that

up ≥ c0 > 0.

Proof. Assume such a c0 does not exist. Thus there exists a subsequence pk → 6, uk = upk
, zk ∈ M such that

uk(zk) = min uk := mk → 0. Since M is compact, there exists a point z0 such that zk → z0 as k → ∞. Take a
normal coordinate at z0. In this coordinate,

gij(x) = δij +O(|x|2), detgij(x) = 1 +O(|x|2). (4.22)

Now let xk be the coordinate of zk. Then as k → ∞, xk → 0. Notice that uk satisfies

∆2uk − δ

[
5
4
Rg − 4Ric

]
duk − 1

2
Quk = λku

−(p+1)
k , (4.23)
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where
∆ =

1√
detg

∂i

(√
detggij∂j

)
and λk = λpk

.
Suppose this equation holds on the ball |x| < 1. Define

vk(x) = m−1
k uk(δkx+ xk), (4.24)

where δk = m
(pk+2)/4
k → 0 as k → ∞. Thus vk is well defined on the ball Bρk

(0) where ρk = (1− |xk|)/δk → ∞
as k → ∞. Denote

√
(detg)(δkx+ xk) by bk and gij(δkx+xk) by aij

k . In terms of vk, they satisfy the equation:

1
bk

∂

∂xi

{
bka

ij
k

∂

∂xj

[
1
bk

∂

∂xl

(
bka

lm
k

∂vk

∂xm

)]}
= m−1

k δ4k(∆2uk)(δkx+ xk)

= m−1
k δ4k

[
δ

(
5
4
Rg − 4Ric

)
duk +

1
2
Quk + λku

−(p+1)
k

]

= −δ2k
1
bk

∂

∂xi

[
(bka

ij
k )
(

5
4
R(δkx+ xk)glj(δkx+ xk)

− 4Rlj(δkx+ xk)) alm
k

∂

∂xm
(vk)

]

+
1
2
Q(δkx+ xk)δ4kvk + λkv

−(p+1)
k . (4.25)

On the other hand, the left hand side of the equation (4.25) can be written as

1
bk

∂

∂xα

[
b2ka

αβ
k

∂

∂xβ

(
1
bk

)
aγη

k

∂

∂xη
vk + aαβ

k

∂

∂xβ

∂

∂xη
(aγη

k bk)
∂

∂xη
vk + bka

αβ
k aγη

k

∂

∂xβ

∂

∂xγ

∂

∂xη
vk

]
. (4.26)

Now first we notice that

aij
k = gij(δkx+ xk) → δij ; (4.27)

bk =
√

detg(δkx+ xk) → 1; (4.28)

1
2
Q(δkx+ xk)δ4k → 0, (4.29)

as k → ∞ where the convergence is C1 uniform on any bounded set in R3.
Also notice that in (4.26), b2ka

αβ
k aγη

k ∂β(b−1
k ) and aαβ

k ∂β∂η(aγη
k bk) converge to 0 in C1 norm uniformly.

Now since vk(x) ≥ vk(0) = 1, by Lq and Schauder estimates for vk from equation (4.25), we will be able to
conclude that for any R > 0, there exist C(R) > 0 and k(R) > 0 such that

||vk||C4,α(B̄k) ≤ C(R), for any k ≥ k(R). (4.30)

Take a sequence Rn → ∞. By the diagonal procedure, we can get a subsequence such that vn → v ∈ C4(R3).
This convergence is C4 convergent on every B̄Rn . Then from equation (4.25), we get that v satisfies the equation

∆2v = λ6v
−7. (4.31)
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Without loss of generality, we can assume λ6 = 1 since it is positive and multiplying v by suitable constant will
reduce the general case to this case.

Now by changing variables, we have∫
|x|<(1/2)δ−1

k

v−pk

k bkdx =
∫

B1/2(xk)

u−pk

k

√
detgdx ·m(pk−6)/4

k ≤ ||u−1
k ||pk

pk
m

(pk−6)/4
k = m

(pk−6)/4
k . (4.32)

Since m(pk−6)/4
k < 1 when k large and v−pk

k bk uniformly converges to v−6 on any bounded set. Thus by Fatou’s
lemma, we conclude that ∫

R3
v−6dx ≤ 1. (4.33)

Now since P is positive, it follows from equation for uk that∫
M

u2
kdv ≤ λpk

λ

∫
M

u−pk

k dv. (4.34)

It implies that ∫
M

(∆uk)2dv ≤ C, (4.35)

for some constant independent of k.
Thus, similar to the argument for (4.33), it is not hard to see that∫

R3
(∆v)2dx <∞. (4.36)

Since every vk ≥ 1, thus v ≥ 1. Now Lemma 4.3 implies that such v does not exist. Thus we get a contradiction
which allows us to conclude the proof of Lemma 4.4.

Proof of Theorem 1.3. By Lemma 4.4, all solutions we have found in Lemma 4.1 are uniformly bounded from
below as well as from above since ∆up are uniformally bounded in L2. Thus the argument we have used
in Lemma 4.1 will show that up is uniformly bounded in Ck,α for any positive integer and any real number
0 < α < 1. Therefore there exists a subsequence {upk

} such that upk
→ u ∈ C∞(M) as k → ∞ and u > 0 will

satisfy

Pu = λ6u
−7. (4.37)

This finishes the proof of Theorem 1.3. �
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[7] C. Fefferman and R. Graham, Conformal Invariants, in Élie Cartan et les Mathématiques d’aujourd’hui. Asterisque (1985)

95-116.
[8] E. Hebey and F. Robert, Coercivity and Struwe’s compactness for Paneitz type operators with constant coefficients. Preprint.
[9] S. Paneitz, A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds. Preprint (1983).

[10] X. Xu and P. Yang, Positivity of Paneitz operators. Discrete Continuous Dynam. Syst. 7 (2001) 329-342.


