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TIME DOMAIN DECOMPOSITION IN FINAL VALUE OPTIMAL CONTROL
OF THE MAXWELL SYSTEM ∗, ∗∗

John E. Lagnese
1

and G. Leugering
2

Abstract. We consider a boundary optimal control problem for the Maxwell system with a final
value cost criterion. We introduce a time domain decomposition procedure for the corresponding
optimality system which leads to a sequence of uncoupled optimality systems of local-in-time optimal
control problems. In the limit full recovery of the coupling conditions is achieved, and, hence, the local
solutions and controls converge to the global ones. The process is inherently parallel and is suitable
for real-time control applications.
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1. Introduction

Problems of optimal control of electromagnetic waves arise in a variety of applications, e.g. in stealth
technology, design and control of antennas, diffraction optics, magnetotellurics and related fields. In many
important cases the objective to be met relates to the final values of both the electric and the magnetic fields
involved. Hence, the problem of exact controllability has attracted considerable interest. See Lagnese [9] as
an early paper and Phung [15] or Belishev and Glasman [2] for more recent ones on this topic. The list of
references is far from being exhaustive. As a more realistic requirement, one typically asks for controls that
bring the final states close to a given target configuration, that is, one wants to achieve optimal controls. While
the papers mentioned focus on the case of constant permeabilities and permittivities, modern applications
require dealing with heterogeneous materials. In addition, in most cases real-time requirements are to be met.
Therefore, in order to obtain adjoint-based gradients and sensitivities in real-time, the large scale (or global)
heterogeneous problem has to be reduced to smaller, more standard ones that can be processed in parallel.
Domain decomposition of the Maxwell system for the purpose of simulation has been considered in e.g. Alonso
and Valli [1] and Santos [16]. Domain decompositions with respect to optimality systems have been investigated
by Lagnese [8]. In this paper we approach the problem of time domain decompositions of the optimality systems.
Time decomposition methods (TDDM) appear to be a promising tool in real-time applications, as the sometimes
long time horizon, which would be prohibitive in terms of numerical calculations, can be split into smaller time
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intervals, even down to the underlying time grid. Thus the problem can be recast into the framework of receding
horizon control problems, or into what has come to be known as instantaneous control problems. An early
reference to the possible utility of TDDM for the wave equation, but with no analysis provided, may be found
in Benamou [3]. The transmission conditions suggested by Benamou contain a Robin-type condition in time
which can be viewed as an approximation to transparent transmission conditions studied by Gander et al. [6].
Nevertheless, TDD-methods have been analyzed in the literature only very recently; see Heinkenschloss [7] and
J.-L. Lions [13]. The common approach is to perform some sort of shooting method. That is to say, at the
break points one restarts the dynamics with initial values that have to be optimized in order to achieve the
correct continuity with respect to the time variable at the break points. While Heinkenschloss formulates the
problem as an equality constrained optimal control problem with a Lagrangian relaxation, which is solved by
a Gauss-Seidel type preconditioning of a GMRES-solve for a Shur-complement-type equation, Lions penalizes
the defect of continuity across the break points. We, instead, mimic an augmented Lagrangian relaxation from
spatial decompositions of elliptic problems, a strategy we have successfully used for wave equations in [10] (see
also the references therein). This procedure leads to a sequence of local-in-time problems on the subintervals,
which, in fact, turn out to be optimality systems for local-in-time optimal control problems. The procedure is
completely parallel. We show convergence of the iteration and provide some useful a posteriori estimates of the
error in the approximation. We emphasize that this novel time domain decomposition method can be combined
with the corresponding spatial domain decomposition method such that the resulting iteration scheme provides
a decomposition into space-time subdomains or, after discretization, even to space-time atoms on the finite
element level.

2. Setting the problem

Let Ω be a bounded, open, connected set in IR3 with piecewise smooth, Lipschitz boundary Γ, and let T > 0.
We consider the Maxwell system{

εE′ − rotH + σE = F

µH ′ + rotE = G in Q := Ω × (0, T )

Hτ − α(ν ∧ E) = J on Σ := Γ × (0, T )

E(0) = φ, H(0) = ψ in Ω.

(2.1)

Here ′ = ∂/∂t, ∧ is the standard vector product operation, ν denotes the exterior pointing unit normal vector
to Γ, Hτ is the tangential component of H , that is,

Hτ = H − (H · ν)ν = ν ∧ (H ∧ ν),

and α ∈ L∞(Γ), α(x) ≥ α0 > 0. Further, ε = (εjk(x)), µ = (µjk(x)) and σ = (σjk(x)) are 3×3 Hermitian
matrices with L∞(Ω) entries such that ε and µ are uniformly positive definite and σ ≥ 0 in Ω. The functions F ,
G ∈ L1(0, T ;L2(Ω)) are given while J is a control input and is taken from the class

U = L2
τ (Σ) := {J | J ∈ L2(0, T ;L2

τ(Γ))}

where L2
τ (Γ) denotes vector valued L2(Γ) functions having a zero normal component.

When J = 0 and α = 1, the boundary condition (2.1)3 is known as the Silver–Müller boundary condition. It is
the first approximation to the so-called transparent boundary condition, which corresponds to the transmission
of electromagnetic waves through the boundary without reflections. In general, when α > 0 on a set on positive
measure in Γ, the boundary condition (2.1)3 is dissipative. That is, if one defines the electromagnetic energy by

E(t) =
∫

Ω

(εE ·E + µH ·H) dx,
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then, in the absence of external inputs F, G, J , the functional E(t) is nonincreasing. Moreover, the boundary
condition (2.1)3 is also regularizing. That is to say, if E(0) <∞, if F, G and J have regularity assumed above,
and if the support of J is contained in the support of α, the solution of (2.1) satisfies E(t) < ∞ for all t ≥ 0.
On the other hand, if α ≡ 0 and J 6≡ 0 then, in general, solutions of (2.1) will have less regularity.

In what follows, function spaces of C-valued functions are denoted by capital Roman letters, while function
spaces of C3-valued functions are denoted by capital script letters. We use α · β to denote the natural scalar
product in C3, i.e., α · β =

∑3
j=1 αjβj , and write 〈·, ·〉 for the natural scalar product in various function spaces

such as L2(Ω) and L2(Ω). A subscript may sometimes be added to avoid confusion. The spaces L2(Ω) and L2(Ω)
denote the usual spaces of Lebesque square integrable C-valued functions and C3-valued functions, respectively,
and, similarly, for the Sobolev spaces Hs(Ω), Hs(Ω). We also denote by L2

ε(Ω) the space L2(Ω) with weight
matrix ε and 〈φ, ψ〉ε := 〈εφ, ψ〉 the scalar product of φ and ψ in that space. With this notation, the energy
space H := L2

ε(Ω) × L2
µ(Ω).

When (φ, ψ) ∈ H, (F,G) ∈ L1(0, T ;H) and J ∈ L2
τ (Σ), it may be proved that the system (2.1) has a unique

solution with regularity (E,H) ∈ C([0, T ];H), ν ∧ E|Σ ∈ L2
τ (Σ) and, moreover, the linear map from the data

to ((E,H), ν ∧ E|Σ) is continuous in the indicated spaces (see, e.g. [11]). Therefore, given (ET , HT ) ∈ H, we
may consider the final value optimal control problem

inf
J∈U

J (J), U := L2
τ (Σ) (2.2)

subject to (2.1), where

J (J) =
1
2

∫
Σ

|J |2dΣ +
z

2
‖(E(T ), H(T ))− (ET , HT )‖2

H (2.3)

with z a positive penalty parameter. Since the cost functional J is convex and in view of the properties of the
map ((φ, ψ), (F,G), J) 7→ (E,H), it is standard theory that there exists a unique optimal control Jopt. It is
shown in the next section that Jopt is given by

Jopt = ν ∧ P |Σ, (2.4)

where (P,Q) is the solution of the backwards running adjoint system{
εP ′ − rotQ− σP = 0
µQ′ + rotP = 0 in Q

Qτ + α(ν ∧ P ) = 0 on Σ{
P (T ) = z(E(T ) − ET )
Q(T ) = z(H(T ) −HT ) in Ω.

(2.5)

The purpose of this paper is to develop a convergent time domain decomposition method (TDDM) to approxi-
mate the solution of the optimality system (2.1, 2.4, 2.5), and to derive certain a posteriori estimate of the error
in the approximation.

Our TDDM is introduced in Section 4, and it is shown that each of the local problems entering into the
algorithm is itself an optimality system. Convergence of the algorithm is established in Section 5. A posteriori
estimates of the error in the approximation in terms of the mismatch of the iterates at the break points are
derived in Section 6.

Remark 2.1. Instead of L2
τ (Σ) one may choose as the control space U those L2

τ (Σ) functions that are supported
in Γ̃ × (0, T ), where Γ̃ is a subset of Γ of positive 2-dimensional measure. The analysis presented below may
easily be adapted to this more general setting with only minor modifications.
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3. The optimality system

The necessary and sufficient condition for optimality is that the directional derivative of J at Jopt in the
direction of Ĵ is equal to zero. Therefore Jopt is the solution of the variational equation∫

Σ

Jopt · Ĵ dΣ + z〈(E(T ) − ET , H(T )−HT ), (Ê(T ), Ĥ(T ))〉H = 0, ∀Ĵ ∈ L2
τ (Σ), (3.1)

where (Ê, Ĥ) is the solution of {
εÊ′ − rot Ĥ + σÊ = 0
µĤ ′ + rot Ê = 0 in Q

Ĥτ − α(ν ∧ Ê) = Ĵ on Σ
Ê(0) = Ĥ(0) = 0 in Ω.

Let (P,Q) be the solution of (2.5). Then (P,Q) ∈ C([0, T ];H) and ν ∧ P |Σ ∈ U . We have

0 =
∫ T

0

{〈εP ′ − rotQ− σP, Ê〉 + 〈µQ′ + rotP, Ĥ〉} dt. (3.2)

By utilizing Green’s formula

〈rotφ, ψ〉 = 〈φ, rotψ〉 +
∫

Γ

(ν ∧ φ) · ψτ dΓ

= 〈φ, rotψ〉 −
∫

Γ

φτ · (ν ∧ ψ)dΓ
(3.3)

we may rewrite (3.2) as

0 = z〈(E(T ) − ET , H(T )−HT ), (Ê(T ), Ĥ(T ))〉H +
∫

Σ

(ν ∧ P ) · Ĵ dΣ, ∀Ĵ ∈ L2
τ (Σ). (3.4)

Thus (2.4) follows from (3.1) and (3.4).

4. Time domain decomposition

We introduce a partition of the time interval [0, T ] by setting

0 = T0 < T1 < · · · < TK < TK+1 = T (4.1)

and thereby decompose [0, T ] into K + 1 subintervals Ik := [Tk, Tk+1], k = 0, . . . ,K. We further introduce
locally defined functions Ek = E|Ik

, Hk = H |Ik
, and so forth. We proceed to decompose the optimality

system (2.1, 2.4, 2.5) into the following local systems defined on Ik, k = 0, . . . ,K:{
εE′

k − rotHk + σEk = Fk

µH ′
k + rotEk = Gk in Qk := Ω × Ik

Hkτ − α(ν ∧ Ek) = ν ∧ Pk on Σk := Γ × Ik,

(4.2)
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εP ′

k − rotQk − σPk = 0
µQ′

k + rotPk = 0 in Qk

Qkτ + α(ν ∧ Pk) = 0 on Σk.

(4.3)

The “initial” values (Ek(Tk), Hk(Tk)) and (Pk(Tk+1), Qk(Tk+1)) for (4.2 4.3) are given through the coupling
conditions

Ek(Tk) = Ek−1(Tk), Hk(Tk) = Hk−1(Tk), k = 1, . . . ,K,

Pk(Tk+1) = Pk+1(Tk+1), Qk(Tk+1) = Qk+1(Tk+1), k = K − 1, . . . , 0,
(4.4)

together with

E0(0) = φ, H0(0) = ψ,

PK(T ) = z(EK(T ) − ET ), QK(T ) = z(HK(T ) −HT ).
(4.5)

We now uncouple the local problems by uncoupling (4.4) through an iteration as follows:{
βEn+1

k (Tk+1) − Pn+1
k (Tk+1) = µn

k,k+1

βHn+1
k (Tk+1) −Qn+1

k (Tk+1) = ηn
k,k+1, k = 0, . . . ,K − 1{

βEn+1
k (Tk) + Pn+1

k (Tk) = µn
k,k−1

−βHn+1
k (Tk) −Qn+1

k (Tk) = ηn
k,k−1, k = 1, . . . ,K,

(4.6)

where β > 0 and

µn
k,k+1 = βEn

k+1(Tk+1) − Pn
k+1(Tk+1)

ηn
k,k+1 = βHn

k+1(Tk+1) −Qn
k+1(Tk+1)

µn
k,k−1 = βEn

k−1(Tk) + Pn
k−1(Tk)

ηn
k,k−1 = −βHn

k−1(Tk) −Qn
k−1(Tk).

(4.7)

It is readily seen that in the limit of (4.6, 4.7) one recovers (4.4), so that (4.6, 4.7) are consistent with (4.4).
For the convenience of the reader we write down the complete set of uncoupled systems:{

ε(En+1
k )′ − rotHn+1

k + σEn+1
k = Fk

µ(Hn+1
k )′ + rotEn+1

k = Gk in Qk{
ε(Pn+1

k )′ − rotQn+1
k − σPn+1

k = 0
µ(Qn+1

k )′ + rotPn+1
k = 0 in Qk

(4.8)

{
Hn+1

kτ − α(ν ∧ En+1
k ) = ν ∧ Pn+1

k

Qn+1
kτ + α(ν ∧ Pn+1

k ) = 0 on Σk

(4.9)

En+1
0 (0) = φ, Hn+1

0 (0) = ψ{
Pn+1

K (T ) = z(En+1
K (T ) − ET )

Qn+1
K (T ) = z(Hn+1

K (T ) −HT ) in Ω

(4.10)

subject to (4.6, 4.7).
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We wish to show that for (µn
k,k+1, η

n
k,k+1) and (µn

k,k−1, η
n
k,k−1) given in H, the local problems are well posed

for k = 0, . . . ,K. To do so we shall show that the local problem with index k is in fact an optimality system
concentrated on the interval Ik, k = 0, . . . ,K.

Proposition 4.1. Assume that (µn
k,k+1, η

n
k,k+1) ∈ H, (µn

k,k−1, η
n
k,k−1) ∈ H. Set

Jk(Jk, hk,k−1, gk,k−1) =
1
2

∫
Σk

|Jk|2dΣ +
1
2β
{
‖βEk(Tk+1) − µn

k,k+1‖2
ε

+ ‖βHk(Tk+1) − ηn
k,k+1‖2

µ + ‖(hk,k−1, gk,k−1)‖2
H
}
, k = 1, . . . ,K − 1, (4.11)

JK(JK , hK,K−1, gK,K−1) =
1
2

∫
ΣK

|JK |2dΣ

+
z

2
‖(EK(T ), HK(T )) − (ET , HT )‖2

H +
1
2β

‖(hK,K−1, gK,K−1)‖2
H, (4.12)

J0(J0) =
1
2

∫
Σ0

|J0|2dΣ +
1
2β
{
‖βE0(T1) − µn

0,1‖2
ε + ‖βH0(T1) − ηn

0,1‖2
µ

}
· (4.13)

For k = 0 . . . ,K, the system (4.8–4.10, 4.6) is the optimality system for the optimal control problem inf
Uk

Jk,

where Uk = L2
τ (Σk) ×H for k = 1, . . . ,K, U0 = L2

τ (Σ0), subject to{
εE′

k − rotHk + σEk = Fk

µH ′
k + rotEk = Gk in Qk

Hkτ − α(ν ∧ Ek) = Jk on Σk

(4.14)

and 
Ek(Tk) =

1
β

(hk,k−1 + µn
k,k−1)

Hk(Tk) = − 1
β

(gk,k−1 + ηn
k,k−1) in Ω, k = 1, . . . ,K,

(4.15)

E0(0) = φ, H0(0) = ψ in Ω. (4.16)

Remark 4.1. In the local optimal control problem infUk
Jk(Jk, hk,k−1, gk,k−1), the control Jk is, in the ter-

minology of J.-L. Lions and O. Pironneau, the effective control and the controls hk,k−1, gk,k−1 are virtual, or
artificial controls; see [12–14].

Proof. We give the proof only for k = 1, . . . ,K − 1 since the proofs in the two remaining cases are similar.
The necessary and sufficient condition that Jk, hk,k−1, gk,k−1 be optimal is that the directional derivative of
Jk at Jk, hk,k−1, gk,k−1 in the direction of Ĵk, ĥk,k−1, ĝk,k−1 be zero. This leads to the variational equation

0 =
∫

Σk

Jk · Ĵk dΣ + 〈βEk(Tk+1) − µn
k,k+1, Êk(Tk+1)〉ε

+ 〈βHk(Tk+1) − ηn
k,k+1, Ĥk(Tk+1)〉µ +

1
β
〈(hk,k−1, gk,k−1), (ĥk,k−1, ĝk,k−1)〉H,

∀(Ĵk, ĥk,k−1, ĝk,k−1) ∈ Uk, (4.17)
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where {
εÊ′

k − rot Ĥk + σÊk = 0
µĤ ′

k + rot Êk = 0 in Qk

Ĥkτ − α(ν ∧ Êk) = Ĵk on Σk

Êk(Tk) =
1
β
ĥk,k−1, Ĥk(Tk) = − 1

β
ĝk,k−1 in Ω.

(4.18)

Introduce (Pk, Qk) as the solution of{
εP ′

k − rotQk − σPk = 0
µQ′

k + rotPk = 0 in Qk

Qkτ + α(ν ∧ Pk) = 0 on Σk{
Pk(Tk+1) = βEk(Tk+1) − µn

k,k+1

Qk(Tk+1) = βHk(Tk+1) − ηn
k,k+1 in Ω.

(4.19)

We have

0 =
∫ Tk+1

Tk

{〈εP ′
k − rotQk − σPk, Êk〉 + 〈µQ′

k + rotPk, Ĥk〉} dt (4.20)

= 〈(Pk(t), Qk(t)), (Êk(t), Ĥk(t))〉H
∣∣∣∣Tk+1

t=Tk

+
∫

Σk

[Qkτ · (ν ∧ Êk) + (ν ∧ Pk) · Ĥkτ ]dΣ

where we have used (3.3). By utilizing (4.18) and (4.19) it is seen that (4.20) may be written

0 = 〈(βEk(Tk+1) − µn
k,k+1, βHk(Tk+1) − ηn

k,k+1), (Êk(Tk+1), Ĥk(Tk+1))〉H

−
〈

(Pk(Tk), Qk(Tk)),
(

1
β
ĥk,k−1,−

1
β
ĝk,k−1

)〉
H

+
∫

Σk

(ν ∧ Pk) · Ĵk dΣ.
(4.21)

It now follows from (4.21) and (4.17) that

Jk = ν ∧ Pk|Σk
, hk,k−1 = −Pk(Tk), gk,k−1 = Qk(Tk),

from which the conclusion of Proposition 4.1 follows immediately.

Corollary 4.1. Let (µ0
k,k+1, η

0
k,k+1)|K−1

k=0 and (µ0
k,k−1, η

0
k,k−1)|Kk=1 be given arbitrarily in H. Then the iterative

procedure described by (4.6–4.10) is well defined for n = 0, 1, . . .

5. Convergence of the iterates

We consider the iterative procedure with the basic step given by (4.6–4.10). In fact, we shall consider a
relaxation of the iteration step (4.6, 4.7). Thus we introduce a relaxation parameter ε ∈ [0, 1) and consider the
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iterative step (4.6, 4.7) with under relaxation:

βEn+1
k (Tk+1) − Pn+1

k (Tk+1) = (1 − ε)µn
k,k+1 + ε(βEn

k (Tk+1) − Pn
k (Tk+1))

βHn+1
k (Tk+1) −Qn+1

k (Tk+1) = (1 − ε)ηn
k,k+1 + ε(βHn

k (Tk+1) −Qn
k (Tk+1))

βEn+1
k (Tk) + Pn+1

k (Tk) = (1 − ε)µn
k,k−1 + ε(βEn

k (Tk) + Pn
k (Tk))

−βHn+1
k (Tk) −Qn+1

k (Tk) = (1 − ε)ηn
k,k−1 + ε(−βHn

k (Tk) −Qn
k (Tk)).

(5.1)

We introduce the errors

Ẽn
k = En

k − Ek, H̃n
k = Hn

k −Hk, P̃n
k = Pn

k − Pk, Q̃n
k = Qn

k −Qk.

These satisfy {
ε(Ẽn+1

k )′ − rot H̃n+1
k + σẼn+1

k = 0
µ(H̃n+1

k )′ + rot Ẽn+1
k = 0 in Qk{

ε(P̃n+1
k )′ − rot Q̃n+1

k − σP̃n+1
k = 0

µ(Q̃n+1
k )′ + rot P̃n+1

k = 0 in Qk

(5.2)

{
H̃n+1

kτ − α(ν ∧ Ẽn+1
k ) = ν ∧ P̃n+1

k

Qn+1
kτ + α(ν ∧ Pn+1

k ) = 0 on Σk

(5.3)

Ẽn+1
0 (0) = H̃n+1

0 (0) = 0

P̃n+1
K (T ) = zẼn+1

K (T ), Q̃n+1
K (T ) = zHn+1

K (T ) in Ω
(5.4)

subject to {
βẼn+1

k (Tk+1) − P̃n+1
k (Tk+1) = µ̃n

k,k+1

βH̃n+1
k (Tk+1) − Q̃n+1

k (Tk+1) = η̃n
k,k+1, k = 0, . . . ,K − 1{

βẼn+1
k (Tk) + P̃n+1

k (Tk) = µ̃n
k,k−1

−βH̃n+1
k (Tk) − Q̃n+1

k (Tk) = η̃n
k,k−1, k = 1, . . . ,K

(5.5)

where, for n ≥ 1,

µ̃n
k,k+1 = (1 − ε)(βẼn

k+1(Tk+1) − P̃n
k+1(Tk+1)) + ε(βẼn

k (Tk+1) − P̃n
k (Tk+1))

η̃n
k,k+1 = (1 − ε)(βH̃n

k+1(Tk+1) − Q̃n
k+1(Tk+1)) + ε(βH̃n

k (Tk+1) − Q̃n
k (Tk+1))

µ̃n
k,k−1 = (1 − ε)(βẼn

k−1(Tk) + P̃n
k−1(Tk)) + ε(βẼn

k (Tk) + P̃n
k (Tk))

η̃n
k,k−1 = (1 − ε)(−βH̃n

k−1(Tk) − Q̃n
k−1(Tk)) + ε(−βH̃n

k (Tk) − Q̃n
k (Tk)),

(5.6)

µ̃0
k,k+1 = µ0

k,k+1 − (βE(Tk+1) − P (Tk+1))

η̃0
k,k+1 = η0

k,k+1 − (βH(Tk+1) −Q(Tk+1))

µ̃0
k,k−1 = µ0

k,k−1 − (βE(Tk) + P (Tk))

η̃0
k,k−1 = η0

k,k−1 + (βH(Tk) +Q(Tk)).

(5.7)
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We shall prove the following convergence result:

Theorem 5.1. Let β > 0. Then
(a) for any ε ∈ [0, 1)

ν ∧ P̃n
k |Σk

→ 0 strongly in L2
τ (Σk), k = 0, . . . ,K

(P̃n
K , Q̃

n
K) → 0 in C(IK ;H)

(Ẽn
0 , H̃

n
0 ) → 0 in C(I0;H)

ν ∧ Ẽn
0 |Σ0 → 0 strongly in L2

τ (Σ0).

(b) For any ε ∈ (0, 1) and for k = 0, . . . ,K,

(Ẽn
k , H̃

n
k ) → 0 and (P̃n

k , Q̃
n
k ) → 0 in C(Ik;H)

ν ∧ Ẽn
k |Σk

→ 0 strongly in L2
τ (Σk).

Remark 5.1. Part (a)1,2 states that for any ε ∈ [0, 1) the effective local optimal controls {ν ∧ Pn
k |Σk

}K
k=0

converge strongly to the global optimal control ν ∧ P |Σ, and the deviation ‖(En
K(T ), Hn

K(T )) − (ET , HT )‖H
of the local optimal trajectory (En

K , H
n
K) at time T from the target state (ET , HT ) converges to the deviation

‖(E(T ), H(T ))− (ET , HT )‖H of the global optimal trajectory at time T from the target state. An a posteriori
estimate of the error in the approximation is derived in the next section.

Remark 5.2. When ε = 0 it is possible to show that{
(Ẽn

k , H̃
n
k ) → 0 weakly* in L∞(0, T ;H)

ν ∧ Ẽn
k |Σk

→ 0 weakly in L2
τ (Σk), k = 1, . . . ,K

(P̃n
k , Q̃

n
k ) → 0 weakly* in L∞(0, T ;H), k = 0, . . . ,K − 1

(5.8)

provided the following backwards uniqueness property is valid: if (E,H) satisfies the Maxwell system (2.1)1,2

with F = G = 0 and the boundary condition (2.1)3 with J = 0, and if E(T ) = H(T ) = 0, then E(0) = H(0) = 0.
Whether or not this uniqueness property holds seems to be an open question.

Proof of Theorem 5.1. Although the technical details differ, the proof given below is structurally similar to
proofs given in earlier works such as [3–5], and in papers by the present authors (see, e.g. [8,10] and references
therein), all of which dealt with space domain decomposition of either direct or optimal control problems of one
type or another. A key role in the convergence proofs in all of the papers is played by a fundamental recursion
formula such as (5.22) below.

Set X = H2K with the standard product norm. Let

X = {(µk,k+1, ηk,k+1)K−1
k=0 , (µk,k−1, ηk,k−1)K

k=1} ∈ X

and let (Ek, Hk), (Pk, Qk) be the solution of (4.8–4.10, 4.6) with the superscripts n+1 and n removed and with
zero data

Fk = Gk = 0, φ = ψ = ET = HT = 0. (5.9)

Define the linear mapping T : X 7→ X by

T X =
{
(βEk+1(Tk+1) − Pk+1(Tk+1), βHk+1(Tk+1) −Qk+1(Tk+1))K−1

k=0 ,

(βEk−1(Tk) + Pk−1(Tk),−βHk−1(Tk) −Qk−1(Tk))K
k=1

}
·
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Note that X is a fixed point of T if and only if the transmission conditions (4.4) are satisfied, that is, if and
only if {(Ek, Hk), (Pk, Qk)}K

k=0 is the solution of the global optimality system with vanishing data (5.9). Since,
in this case, the optimal control is obviously Jopt = 0, it follows that the only fixed point of T is X = 0.

The significance of the map T is that, if we set

Xn = {(µ̃n−1
k,k+1, η̃

n−1
k,k+1)

K−1
k=0 , (µ̃

n−1
k,k−1, η̃

n−1
k,k−1)

K
k=1} (5.10)

and let {(Ẽn
k , H̃

n
k ), (P̃n

k , Q̃
n
k )}K

k=0 be the solution of (5.2–5.5) with n replaced by n− 1, then

Xn = {(βẼn
k (Tk+1) − P̃n

k (Tk+1), βH̃n
k (Tk+1) − Q̃n

k (Tk+1))K−1
k=0 , (βẼn

k (Tk) + P̃n
k (Tk),−βH̃n

k (Tk) − Q̃n
k (Tk))K

k=1}

T Xn = {(βẼn
k+1(Tk+1) − P̃n

k+1(Tk+1), βH̃n
k+1(Tk+1) − Q̃n

k+1(Tk+1))K−1
k=0 ,

(βẼn
k−1(Tk) + P̃n

k−1(Tk),−βH̃n
k−1(Tk) − Q̃n

k−1(Tk))K
k=1}

and the relaxed iteration step (5.5, 5.6) may be expressed as the relaxed fixed point iteration

Xn+1 = (1 − ε)T Xn + εXn := TεX
n. (5.11)

The following result shows that T is nonexpansive.

Lemma 5.1. For any X ∈ X ,

‖TX‖2
X = ‖X‖2

X − 2Fβ (5.12)

where

Fβ = 2β
K∑

k=0

∫
Σk

|ν ∧ Pk|2 dΣ + 2βz‖(EK(TK+1), HK(TK+1))‖2
H. (5.13)

Proof. We have

‖X‖2
X =

K−1∑
k=0

‖(βEk(Tk+1) − Pk(Tk+1), βHk(Tk+1) −Qk(Tk+1))‖2
H

+
K∑

k=1

‖(βEk(Tk) + Pk(Tk),−βHk(Tk) −Qk(Tk))‖2
H. (5.14)

Let us define

Ek,β(t) = β2(‖Ek(t)‖2
ε + ‖Hk(t)‖2

µ) + ‖Pk(t)‖2
ε + ‖Qk(t)‖2

µ.

One finds after a little calculation that (5.14) may be written

‖X‖2
X =

K−1∑
k=1

[
Ek,β(Tk+1) + Ek,β(Tk)

]
+ E0,β(T1) + EK,β(TK)

−2β
K−1∑
k=0

Re
[
〈Ek(t), Pk(t)〉ε + 〈Hk(t), Qk(t)〉µ

]Tk+1

t=Tk

+2βRe
[
〈EK(TK), PK(TK)〉ε + 〈HK(TK), QK(TK)〉µ

]
. (5.15)



TIME DOMAIN DECOMPOSITION OF THE MAXWELL SYSTEM 785

Form

0 =
∫ Tk+1

Tk

[
〈εE′

k − rotHk + σEk, Pk〉 + 〈µH ′
k + rotEk, Qk〉

]
dt

= 〈(Ek(t), Hk(t)), (Pk(t), Qk(t))〉H|Tk+1
t=Tk

+
∫

Σk

|ν ∧ Pk|2 dΣ,
(5.16)

where we have used (3.3). In particular we have

〈(EK(TK), HK(TK)), (PK(TK), QK(TK))〉H
= 〈(EK(TK+1), HK(TK+1)), (PK(TK+1), QK(TK+1))〉H +

∫
ΣK

|ν ∧ PK |2 dΣ
= z‖(EK(TK+1), HK(TK+1))‖2

H +
∫
ΣK

|ν ∧ PK |2 dΣ. (5.17)

It follows from (5.15–5.17) that

‖X‖2
X = Eβ + Fβ (5.18)

where

Eβ =
K−1∑
k=1

[
Ek,β(Tk+1) + Ek,β(Tk)

]
+ E0,β(T1) + EK,β(TK). (5.19)

A similar calculation yields

‖T X‖2
X =

K−1∑
k=0

‖(βEk+1(Tk+1) − Pk+1(Tk+1), βHk+1(Tk+1) −Qk+1(Tk+1))‖2
H

+
K∑

k=1

‖(βEk−1(Tk) + Pk−1(Tk),−βHk−1(Tk) −Qk−1(Tk))‖2
H

= Eβ + 2β
K−1∑
k=0

Re
[
〈Ek(t), Pk(t)〉ε + 〈Hk(t), Qk(t)〉µ

]Tk+1

t=Tk

− 2βRe
[
〈EK(TK), PK(TK)〉ε + 〈HK(TK), QK(TK)〉µ

]
= Eβ −Fβ.

(5.20)

Thus (5.12) follows from (5.18) and (5.20).
To continue with the proof of Theorem 5.1, we set

En
k,β(t) = β2(‖Ẽn

k (t)‖2
ε + ‖H̃n

k (t)‖2
µ) + ‖P̃n

k (t)‖2
ε + ‖Q̃n

k(t)‖2
µ

En
β =

K−1∑
k=1

[
En

k,β(Tk+1) + En
k,β(Tk)

]
+ En

0,β(T1) + En
K,β(TK)

=
K−1∑
k=0

[
En

k,β(Tk+1) + En
k+1,β(Tk+1)

]
Fn

β = 2β
K∑

k=0

∫
Σk

|ν ∧ P̃n
k |2 dΣ + 2βz‖(Ẽn

K(TK+1), H̃n
K(TK+1))‖2

H.
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From (5.18) and (5.20) we then have

‖Xn||2X = En
β + Fn

β , ‖T Xn‖2
X = En

β −Fn
β . (5.21)

Lemma 5.2. For any ε ∈ [0, 1) we have

En+1
β + Fn+1

β ≤ En
β − (1 − 2ε)Fn

β . (5.22)

Proof. As the relaxed iteration step (5.5, 5.6) may be expressed as the relaxed fixed point iteration (5.11), from
Lemma 5.1 and (5.21) we have

‖Xn+1‖2
X = En+1

β + Fn+1
β (5.23)

= ((1 − ε)2 + ε2)‖Xn‖2
X − 2(1 − ε)2Fn

β + 2ε(1 − ε)Re(T Xn, Xn)X

= ((1 − ε)2 + ε2)En
β − (1 − 2ε)Fn

β + 2ε(1 − ε)Re(T Xn, Xn)X .

From (5.21) and the Cauchy–Schwarz inequality we have

|(T Xn, Xn)X | ≤
√

(En
β )2 − (Fn

β )2 ≤ En
β . (5.24)

Lemma 5.2 follows immediately from (5.23) and (5.24).
By iterating (5.22) down to n = 1 we obtain

En+1
β ≤ E1

β −
n+1∑
p=1

cp(ε)Fp
β , (5.25)

where

cp(ε) = 2(1 − ε), p = 2, . . . , n; c1(ε) = 1 − 2ε, cn+1(ε) = 1.

The crucial inequality (5.25) implies, in particular, that Fn
β → 0 as n→ ∞, hence

ν ∧ P̃n
k |Σk

→ 0 strongly in L2
τ (Σk), k = 0, . . . ,K (5.26)

(Ẽn
K(TK+1), H̃n

K(TK+1)) → 0 strongly in H. (5.27)

From (5.27) and (5.4)2 we then obtain

(P̃n
K(TK+1), Q̃n

K(TK+1)) → 0 strongly in H. (5.28)

Since, for the solution of (2.1) (with F = G = 0) the mapping taking ((φ, ψ), J) to ((E,H), ν∧E|Σ) is continuous
from H×L2

τ (Σ) into L∞(0, T ;H) × L2
τ (Σ), it follows from (5.26) and Ẽn

0 (0) = H̃n
0 (0) = 0, that

(Ẽn
0 , H̃

n
0 ) → 0 strongly in C(I0;H) (5.29)

ν ∧ Ẽn
0 |Σ0 → 0 strongly in L2

τ (Σ0). (5.30)

Similarly, for the solution of (2.5) the mapping from the final data (P (T ), Q(T )) to ((P,Q), ν∧P |Σ) is continuous
H 7→ L∞(0, T ;H) × L2

τ (Σ) so, in particular, we obtain from (5.28)

(P̃n
K , Q̃

n
K) → 0 strongly in C(IK ;H). (5.31)

This proves part (a) of Theorem 5.1.
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To prove part (b) of Theorem 5.1 we invoke the following result:

Proposition 5.1. (Schaefer [17]) Let C be a closed convex set in a uniformly convex Banach space X having a
weakly continuous duality mapping, and let T : C 7→ C be a nonexpansive mapping with at least one fixed point.
Set Tε = εI + (1 − ε)T . Then for any ε ∈ (0, 1) the mapping Tε is asymptotically regular, that is to say,

‖T n+1
ε X − T n

ε X‖X → 0, ∀X ∈ C.

It follows from Proposition 5.1 that ‖Xn+1 −Xn‖X → 0 or, equivalently,

‖T Xn −Xn‖X → 0 (5.32)

since Xn+1 −Xn = (1 − ε)(T Xn −Xn). We have

T Xn −Xn =
{(
β(Ẽn

k+1(Tk+1) − Ẽn
k (Tk+1)) − (P̃n

k+1(Tk+1) − P̃n
k (Tk+1)),

β(H̃n
k+1(Tk+1) − H̃n

k (Tk+1)) − (Q̃n
k+1(Tk+1) − Q̃n

k (Tk+1))
)K−1

k=0
,(

β(Ẽn
k−1(Tk) − Ẽn

k (Tk)) + (P̃n
k−1(Tk) − P̃n

k (Tk)),

− β(H̃n
k−1(Tk) − H̃n

k (Tk)) − (Q̃n
k−1(Tk) − Q̃n

k (Tk))
)K

k=1

}
·

A straightforward calculation shows that

‖T Xn −Xn‖2
X = 2

K−1∑
k=0

{
β2‖(Ẽn

k+1(Tk+1) − Ẽn
k (Tk+1), H̃n

k+1(Tk+1) − H̃n
k (Tk+1))‖2

H

+ ‖(P̃n
k+1(Tk+1) − P̃n

k (Tk+1), Q̃n
k+1(Tk+1) − Q̃n

k (Tk+1))‖2
H
}
·

(5.33)

Therefore, for k = 0, . . . ,K − 1,

‖(Ẽn
k+1(Tk+1) − Ẽn

k (Tk+1), H̃n
k+1(Tk+1) − H̃n

k (Tk+1))‖H → 0 (5.34)

‖(P̃n
k+1(Tk+1) − P̃n

k (Tk+1), Q̃n
k+1(Tk+1) − Q̃n

k (Tk+1))‖H → 0. (5.35)

By what has already been proved we have

(P̃n
K , Q̃

n
K) → 0 in C(IK ;H)

so that, in particular,

‖(P̃n
K(TK), Q̃n

K(TK))‖H → 0.

It then follows from (5.35) with k = K − 1 that

‖(P̃n
K−1(TK), Q̃n

K−1(TK))‖H → 0,

from which follows that

(P̃n
K−1, Q̃

n
K−1) → 0 in C(IK−1;H)

and, in particular, that

‖(P̃n
K−1(TK−1), Q̃n

K−1(TK−1))‖H → 0.
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We may now repeat the argument to conclude that

(P̃n
k , Q̃

n
k) → 0 in C(Ik;H), k = K,K − 1, . . . , 0.

In a similar way, since we have already proved that

(Ẽn
0 , H̃

n
0 ) → 0 in C(I0;H)

we have

‖(Ẽn
0 (T1), H̃n

0 (T1))‖H → 0.

Use of (5.34) with k = 0 gives

‖(Ẽn
1 (T1), H̃n

1 (T1))‖H → 0,

hence

(Ẽn
1 , H̃

n
1 ) → 0 in C(I1;H)

ν ∧ Ẽn
1 |Σ1 → 0 strongly in L2

τ (Σ1),

and so forth. This completes the proof of Theorem 5.1.

6. A POSTERIORI estimates

The purpose of this section is to derive a posteriori estimates of the difference between the solutions of the
local optimality systems and the solution of the global optimality system in terms of the mismatch of the n-th
iterates, or of successive iterates, across the interfaces t = Tk, k = 1, . . . ,K.

We introduce the error at the n-th iteration, en, by

en := max
0≤k≤K

‖(Ẽn
k , H̃

n
k )‖2

L∞(Ik;H) + max
0≤k≤K

‖(P̃n
k , Q̃

n
k)‖2

L∞(Ik;H)

+
K∑

k=0

∫
Σk

{
α
(
|ν ∧ Ẽn

k |2 + |ν ∧ P̃n
k |2
)

+
1
α

(
|H̃n

kτ |2 + |Q̃n
kτ |2

)}
dΣ

and further define

en
k (t) = ‖(Ẽn

k (t), H̃n
k (t))‖2

H +
∫ t

Tk

∫
Γ

(
α|ν ∧ Ẽn

k |2 +
1
α
|H̃n

kτ |2
)

dΓdt

+‖(P̃n
k (t), Q̃n

k (t))‖2
H +

∫ Tk+1

t

∫
Γ

(
α|ν ∧ P̃n

k |2 +
1
α
|Q̃n

kτ |2
)

dΓdt,

en,n+1 = max
0≤k≤K

‖en
k + en+1

k ‖L∞(0,T ),

which is a measure of the cumulative errors at the n-th and (n+ 1)-st iterations combined. In what follows we
shall obtain a posteriori estimates of en and en,n+1 in terms of the quantities

En
k,k+1(Tk+1) = ‖(En

k (Tk+1) − En
k+1(Tk+1), Hn

k (Tk+1) −Hn
k+1(Tk+1))‖2

H
+‖(Pn

k (Tk+1) − Pn
k+1(Tk+1), Qn

k (Tk+1) −Qn
k+1(Tk+1))‖2

H
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and

En,n+1
k,k+1 (Tk+1) = ‖En

k (Tk+1) − En+1
k+1 (Tk+1), Hn

k (Tk+1) −Hn+1
k+1 (Tk+1))‖2

H
+‖(Pn

k (Tk+1) − Pn+1
k+1 (Tk+1), Qn

k (Tk+1) −Qn+1
k+1(Tk+1))‖2

H,

which are, respectively, measures of the mismatch of the n-th iterates, and of successive iterates, across the
break point t = Tk+1. The main results of this section are the following error estimates.

Theorem 6.1. Let ε ∈ [0, 1). Then

en ≤ C
√

En
β + Fn

β

{
K−1∑
k=0

En
k,k+1(Tk+1)

}1/2

(6.1)

where

C =
√

2max(1, 1/β)
(
2 + max(‖α−1‖L∞(Γ), κ)

)
.

Theorem 6.2. Let ε ∈ [0, 1/2). Then

en,n+1 ≤ Cε

√
En+1

β + En
β

{
K−1∑
k=0

(
En,n+1

k,k+1 (Tk+1) + En,n+1
k+1,k (Tk+1)

)}1/2

(6.2)

where

Cε =
√

2max(1, 1/β)
(
2 + (1 − 2ε)−1 max(‖α−1‖L∞(Γ), κ)

)
. (6.3)

It shall be shown below that En
β +Fn

β ≤ C̃ with a constant C̃ that is explicitly computable in terms of β, K and
the input data to the global and local optimal control problems. We therefore have the following corollaries:

Corollary 6.1. Let ε ∈ [0, 1). There is an explicitly computable constant C, depending only on β, K and the
input data to the global and local optimal control problems, such that

en ≤ C

{
K−1∑
k=0

En
k,k+1(Tk+1)

}1/2

. (6.4)

Corollary 6.2. Let ε ∈ [0, 1/2). There is an explicitly computable constant Cε, depending only on ε, β, K and
the input data to the global and local optimal control problems, such that

en,n+1 ≤ Cε

{
K−1∑
k=0

(
En,n+1

k,k+1 (Tk+1) + En,n+1
k+1,k (Tk+1)

)}1/2

. (6.5)

Remark 6.1. The constant C, which is independent of ε, and Cε will be calculated in the proofs of
Corollaries 6.1 and 6.2. The estimate (6.4) says that if the n-th iterates are nearly equal across the inter-
faces t = Tk+1, k = 0, . . . ,K − 1, then the error at the n iteration is nearly zero. It thus provides a stopping
criterion for the algorithm in terms of the mismatch of the n iterates at the break points. Similarly, equation (6.5)
provides a stopping criterion in terms of the differences of successive iterates at the break points.

Remark 6.2. The above error estimates are further important for future work on adaptive finite element
discretizations. The errors bewteen the global solution and the local solutions to the discretized subsystems



790 J.E. LAGNESE AND G. LEUGERING

will be given in terms of the residuals with respect to solving the system equations at a given iteration and the
estimates above. It will be possible to decide, based on a posteriori information, which of the errors is dominant,
and whether a refinement of the discretization in one of the subsystems will be necessary. This will also be
true for similar estimates on the spatial domain decomposition. Thus, the ultimate goal will be to develop
space-time adaptive schemes based on error estimates of the type given above.

Theorem 6.1 is a consequence of the following two lemmas:

Lemma 6.1. Let ε ∈ [0, 1). Then

Fn
β ≤

√
2 max(1, β)(En

β + Fn
β )1/2

{
K−1∑
k=0

En
k,k+1(Tk+1)

}1/2

. (6.6)

Lemma 6.2. Let ε ∈ [0, 1). Then

en ≤ 2
√

2 max(1, 1/β)
√
En

β

{
K−1∑
k=0

En
k,k+1(Tk+1)

}1/2

+
1
β
Fn

β max(‖α−1‖L∞(Γ), z). (6.7)

Similarly, Theorem 6.2 follows immediately from the following two results:

Lemma 6.3. Let ε ∈ [0, 1). Then

Fn+1
β + (1 − 2ε)Fn

β ≤
√

2max(1, β)
√
En+1

β + En
β

{
K−1∑
k=0

(
En,n+1

k,k+1 (Tk+1) + En,n+1
k+1,k (Tk+1)

)}1/2

. (6.8)

Lemma 6.4. We have

en,n+1 ≤ 1
β

max(‖α−1‖L∞(Γ), z)
(
Fn+1

β + Fn
β

)
+
√

2max(1, 1/β)
√
En+1

β + En
β

{
K−1∑
k=0

(
En,n+1

k,k+1 (Tk+1) + En,n+1
k+1,k (Tk+1)

)}1/2

. (6.9)

Proof of Lemma 6.1. We start with the fundamental recursion (5.22), which we write as

2(1 − ε)Fn
β ≤ (En

β + Fn
β ) − (En+1

β + Fn+1
β ). (6.10)

From (5.21) the right side of (6.10) may be written

‖Xn‖2
X − ‖Xn+1‖2

X ≤ ‖Xn −Xn+1‖X
(
‖Xn‖X + ‖Xn+1‖X

)
≤ 2(1 − ε)‖Xn − T Xn‖X‖Xn‖X

(6.11)

since {‖Xn‖X} is a nonincreasing sequence. Since

Ẽn
k+1(Tk+1) − Ẽn

k (Tk+1) = En
k+1(Tk+1) − En

k (Tk+1)
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and, similarly, for the other components, it follows from (6.10, 6.11) and (5.33) that

Fn
β ≤

√
2‖Xn‖X max(1, β)

{
K−1∑
k=0

En
k,k+1(Tk+1)

}1/2

,

which is the conclusion of Lemma 6.1.

Proof of Lemma 6.2. The starting point is the following identity for the solution of (2.1) with F = G = 0,
which may be proved by standard energy methods (see [11]):

‖(E(t), H(t))‖2
H + 2

∫ t

0

∫
Ω

σE · E dxdt+
∫ t

0

∫
Γ

(
α|ν ∧E|2 +

1
α
|Hτ |2

)
dΓdt = ‖(φ, ψ)‖2

H

+
∫ t

0

∫
Γ

1
α
|J |2dΓdt. (6.12)

This identity is valid for 0 ≤ t ≤ T , (φ, ψ) ∈ H and J ∈ L2
τ (Σ). We apply (6.12) to the solution (Ẽn

k , H̃
n
k ) on

the interval Ik to obtain

‖(Ẽn
k (t), H̃n

k (t))‖2
H +

∫ t

Tk

∫
Γ

(
α|ν ∧ Ẽn

k |2 +
1
α
|H̃n

kτ |2
)
dΓdt ≤ ‖(Ẽn

k (Tk), H̃n
k (Tk))‖2

H

+
∫ t

Tk

∫
Γ

1
α
|ν ∧ P̃n

k |2dΓdt, (6.13)

valid for Tk ≤ t ≤ Tk+1 and k = 0, . . . ,K. We write the first term on the right side of (6.13) as

‖(Ẽn
k (Tk), H̃n

k (Tk))‖2
H − ‖(Ẽn

k−1(Tk), H̃n
k−1(Tk))‖2

H + ‖(Ẽn
k−1(Tk), H̃n

k−1(Tk))‖2
H (6.14)

and then use (6.12) again to estimate the last term as follows:

‖(Ẽn
k−1(Tk), H̃n

k−1(Tk))‖2
H ≤ −

∫ Tk

Tk−1

∫
Γ

(
α|ν ∧ Ẽn

k−1|2 +
1
α
|H̃n

k−1,τ |2
)
dΓdt

+‖(Ẽn
k−1(Tk−1), H̃n

k−1(Tk−1))‖2
H +

∫ Tk

Tk−1

∫
Γ

1
α
|ν ∧ P̃n

k−1|2dΓdt. (6.15)

From (6.13–6.15) we then obtain

‖(Ẽn
k (t), H̃n

k (t))‖2
H +

∫ Tk

Tk−1

∫
Γ

(
α|ν ∧ Ẽn

k−1|2 +
1
α
|H̃n

k−1,τ |2
)
dΓdt+

∫ t

Tk

∫
Γ

(
α|ν ∧ Ẽn

k |2 +
1
α
|H̃n

kτ |2
)
dΓdt

≤
(
‖(Ẽn

k (Tk), H̃n
k (Tk))‖2

H − ‖(Ẽn
k−1(Tk), H̃n

k−1(Tk))‖2
H
)

+ ‖(Ẽn
k−1(Tk−1), H̃n

k−1(Tk−1))‖2
H

+
∫ Tk

Tk−1

∫
Γ

1
α
|ν ∧ P̃n

k−1|2dΓdt+
∫ t

Tk

∫
Γ

1
α
|ν ∧ P̃n

k |2dΓdt. (6.16)
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We now repeat the argument, using (6.14–6.16) with k replaced by k − 1, and so forth down to k = 0. Since
Ẽn

0 (0) = H̃n
0 (0) = 0 we end up with

‖(Ẽn
k (t), H̃n

k (t))‖2
H +

k−1∑
m=0

∫ Tm+1

Tm

∫
Γ

(
α|ν ∧ Ẽn

m|2 +
1
α
|H̃n

mτ |2
)
dΓdt+

∫ t

Tk

∫
Γ

(
α|ν ∧ Ẽn

k |2 +
1
α
|H̃n

kτ |2
)
dΓdt

≤
k−1∑
m=0

(
‖(Ẽn

m+1(Tm+1), H̃n
m+1(Tm+1))‖2

H − ‖(Ẽn
m(Tm+1), H̃n

m(Tm+1))‖2
H
)

+
k−1∑
m=0

∫ Tm+1

Tm

∫
Γ

1
α
|ν ∧ P̃n

m|2dΓdt+
∫ t

Tk

∫
Γ

1
α
|ν ∧ P̃n

k |2dΓdt. (6.17)

This estimate is valid for t ∈ Ik and k = 0, . . . ,K.
By the Cauchy–Schwarz inequality we have

k−1∑
m=0

(
‖(Ẽn

m+1(Tm+1), H̃n
m+1(Tm+1))‖2

H − ‖(Ẽn
m(Tm+1), H̃n

m(Tm+1))‖2
H
)

≤
√

2

{
k−1∑
m=0

‖(En
m+1(Tm+1), Hn

m+1(Tm+1)) − (En
m(Tm+1), Hn

m(Tm+1))‖2
H

}1/2

×
{

k−1∑
m=0

(
‖(Ẽn

m+1(Tm+1), H̃n
m+1(Tm+1))‖2

H + ‖(Ẽn
m(Tm+1), H̃n

m(Tm+1))‖2
H
)}1/2

. (6.18)

It follows that

max
0≤k≤K

‖(Ẽn
k , H̃

n
k )‖2

L∞(Ik;H) ≤
√

2

{
K−1∑
k=0

‖(En
k+1(Tk+1), Hn

k+1(Tk+1)) − (En
k (Tk+1), Hn

k (Tk+1))‖2
H

}1/2

×
{

K−1∑
k=0

(
‖(Ẽn

k+1(Tk+1), H̃n
k+1(Tk+1))‖2

H + ‖(Ẽn
k (Tk+1), H̃n

k (Tk+1))‖2
H
)}1/2

+
K∑

k=0

∫
Σk

1
α
|ν ∧ P̃n

k |2dΣ (6.19)

and that

K∑
k=0

∫
Σk

(
α|ν ∧ Ẽn

k |2 +
1
α
|H̃n

kτ |2
)
dΣ

≤
√

2

{
K−1∑
k=0

‖(En
k+1(Tk+1), Hn

k+1(Tk+1)) − (En
k (Tk+1), Hn

k (Tk+1))‖2
H

}1/2

×
{

K−1∑
k=0

(
‖(Ẽn

k+1(Tk+1), H̃n
k+1(Tk+1))‖2

H + ‖(Ẽn
k (Tk+1), H̃n

k (Tk+1))‖2
H
)}1/2

+
K∑

k=0

∫
Σk

1
α
|ν ∧ P̃n

k |2dΣ. (6.20)
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We estimate the solutions (P̃n
k , Q̃

n
k ) in a similar manner, starting with the estimate

‖(P̃n
k (t), Q̃n

k (t))‖2
H +

∫ Tk+1

t

∫
Γ

(
α|ν ∧ P̃n

k |2 +
1
α
|Q̃n

kτ |2
)

dΓdt ≤ ‖(P̃n
k (Tk+1), Q̃n

k (Tk+1))‖2
H, t ∈ Ik. (6.21)

The term on the right side is written

‖(P̃n
k (Tk+1), Q̃n

k (Tk+1))‖2
H − ‖(P̃n

k+1(Tk+1), Q̃n
k+1(Tk+1))‖2

H
+ ‖(P̃n

k+1(Tk+1), Q̃n
k+1(Tk+1))‖2

H ≤ ‖(P̃n
k (Tk+1), Q̃n

k (Tk+1))‖2
H

− ‖(P̃n
k+1(Tk+1), Q̃n

k+1(Tk+1))‖2
H

+ ‖(P̃n
k+1(Tk+2), Q̃n

k+1(Tk+2))‖2
H

−
∫ Tk+2

Tk+1

∫
Γ

(
α|ν ∧ P̃n

k+1|2 +
1
α
|Q̃n

k+1,τ |2
)

dΓdt. (6.22)

From (6.21) and (6.22) we thus obtain

‖(P̃n
k (t), Q̃n

k (t))‖2
H +

∫ Tk+1

t

∫
Γ

(
α|ν ∧ P̃n

k |2 +
1
α
|Q̃n

kτ |2
)
dΓdt

+
∫ Tk+2

Tk+1

∫
Γ

(
α|ν ∧ P̃n

k+1|2 +
1
α
|Q̃n

k+1,τ |2
)
dΓdt ≤ ‖(P̃n

k (Tk+1), Q̃n
k (Tk+1))‖2

H

− ‖(P̃n
k+1(Tk+1), Q̃n

k+1(Tk+1))‖2
H

+ ‖(P̃n
k+1(Tk+2), Q̃n

k+1(Tk+2))‖2
H.

Iterating the argument leads finally to

‖(P̃n
k (t), Q̃n

k (t))‖2
H +

∫ Tk+1

t

∫
Γ

(
α|ν ∧ P̃n

k |2 +
1
α
|Q̃n

kτ |2
)

dΓdt

+
K∑

m=k+1

∫ Tm+1

Tm

∫
Γ

(
α|ν ∧ P̃n

m|2 +
1
α
|Q̃n

mτ |2
)
dΓdt

≤
K−1∑
m=k

(
‖(P̃n

m(Tm+1), Q̃n
m(Tm+1))‖2

H − ‖(P̃n
m+1(Tm+1), Q̃n

m+1(Tm+1))‖2
H
)

+ κ2‖(Ẽn
K(T ), H̃n

K(T ))‖2
H (6.23)

since (P̃n
K(T ), Q̃n

K(T )) = κ(Ẽn
K(T ), H̃n

K(T )). It follows that

max
0≤k≤K

‖(P̃n
k , Q̃

n
k )‖2

L∞(Ik;H) ≤
√

2

{
K−1∑
k=0

‖(Pn
k (Tk+1), Qn

k (Tk+1)) − (Pn
k+1(Tk+1), Qn

k+1(Tk+1))‖2
H

}1/2

×
{

K−1∑
k=0

(
‖(P̃n

k (Tk+1), Q̃n
k (Tk+1))‖2

H + ‖(P̃n
k+1(Tk+1), Q̃n

k+1(Tk+1))‖2
H
)}1/2

+κ2‖(Ẽn
K(T ), H̃n

K(T ))‖2
H (6.24)
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and that

K∑
k=0

∫
Σk

(
α|ν ∧ P̃n

k |2 +
1
α
|Q̃n

kτ |2
)

dΣ ≤
√

2

{
K−1∑
k=0

‖(Pn
k (Tk+1), Qn

k (Tk+1)) − (Pn
k+1(Tk+1), Qn

k+1(Tk+1))‖2
H

}1/2

×
{

K−1∑
k=0

(
‖(P̃n

k (Tk+1), Q̃n
k (Tk+1))‖2

H + ‖(P̃n
k+1(Tk+1), Q̃n

k+1(Tk+1))‖2
H
)}1/2

+ κ2‖(Ẽn
K(T ), H̃n

K(T ))‖2
H. (6.25)

We therefore obtain from (6.19, 6.20, 6.24) and (6.25)

en ≤ 2
√

2

{
K−1∑
k=0

‖(En
k+1(Tk+1), Hn

k+1(Tk+1)) − (En
k (Tk+1), Hn

k (Tk+1))‖2
H

}1/2

×
{

K−1∑
k=0

(
‖(Ẽn

k+1(Tk+1), H̃n
k+1(Tk+1))‖2

H + ‖(Ẽn
k (Tk+1), H̃n

k (Tk+1))‖2
H
)}1/2

+2
√

2

{
K−1∑
k=0

‖(Pn
k (Tk+1), Qn

k (Tk+1)) − (Pn
k+1(Tk+1), Qn

k+1(Tk+1))‖2
H

}1/2

×
{

K−1∑
k=0

(
‖(P̃n

k (Tk+1), Q̃n
k (Tk+1))‖2

H + ‖(P̃n
k+1(Tk+1), Q̃n

k+1(Tk+1))‖2
H
)}1/2

+2
K∑

k=0

∫
Σk

1
α
|ν ∧ P̃n

k |2dΣ + 2κ2‖(Ẽn
K(T ), H̃n

K(T ))‖2
H. (6.26)

By applying the Cauchy–Schwarz ineqality once again and recalling the definitions of En
β and En

k,k+1(Tk+1) we
obtain

en ≤ 2
√

2 max(1, 1/β)
√
En

β

{
K−1∑
k=0

En
k,k+1(Tk+1)

}1/2

+ 2
K∑

k=0

∫
Σk

1
α
|ν ∧ P̃n

k |2dΣ + 2κ2‖(Ẽn
K(T ), H̃n

K(T ))‖2
H.

(6.27)

From the definition of Fn
β we obtain

2
K∑

k=0

∫
Σk

1
α
|ν ∧ P̃n

k |2dΣ + 2κ2‖(Ẽn
K(T ), H̃n

K(T ))‖2
H ≤ 1

β
max(‖α−1‖L∞(Γ), κ)Fn

β . (6.28)

Lemma 6.2 follows from (6.27) and (6.28).

Proof of Lemma 6.3. We start with our fundamental recursion which we now write as

Fn+1
β + (1 − 2ε)Fn

β ≤ En
β − En+1

β . (6.29)
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We proceed to estimate

En
β − En+1

β =
K−1∑
k=0

{[
En

k,β(Tk+1) − En+1
k+1,β(Tk+1)

]
+
[
En

k+1,β(Tk+1) − En+1
k,β (Tk+1)

]}
· (6.30)

We have

En
k,β(Tk+1) − En+1

k+1,β(Tk+1) = β2
(
‖(Ẽn

k (Tk+1), H̃n
k (Tk+1))‖H − ‖(Ẽn+1

k+1 (Tk+1), H̃n+1
k+1 (Tk+1))‖H

)
×
(
‖(Ẽn

k (Tk+1), H̃n
k (Tk+1))‖H + ‖(Ẽn+1

k+1 (Tk+1), H̃n+1
k+1 (Tk+1))‖H

)
+
(
‖(P̃n

k (Tk+1), Q̃n
k (Tk+1))‖H − ‖(P̃n+1

k+1 (Tk+1), Q̃n+1
k+1(Tk+1))‖H

)
×
(
‖(P̃n

k (Tk+1), Q̃n
k (Tk+1))‖H + ‖(P̃n+1

k+1 (Tk+1), Q̃n+1
k+1(Tk+1))‖H

)
.

Therefore by the Cauchy–Schwarz inequality we obtain

K−1∑
k=0

(
En

k,β(Tk+1) − En+1
k+1,β(Tk+1)

)
≤

√
2

{
K−1∑
k=0

[
β2‖(En

k (Tk+1) − En+1
k+1 (Tk+1), Hn

k (Tk+1) −Hn+1
k+1 (Tk+1))‖2

H

+ ‖(Pn
k (Tk+1) − Pn+1

k+1 (Tk+1), Qn
k (Tk+1) −Qn+1

k+1(Tk+1))‖2
H
]}1/2

×
{

K−1∑
k=0

[
β2
(
‖(Ẽn

k (Tk+1), H̃n
k (Tk+1))‖2

H + ‖(Ẽn+1
k+1 (Tk+1), H̃n+1

k+1 (Tk+1))‖2
H
)

+ ‖(P̃n
k (Tk+1), Q̃n

k (Tk+1))‖2
H + ‖(P̃n+1

k+1 (Tk+1), Q̃n+1
k+1 (Tk+1))‖2

H
]}1/2

≤
√

2max(1, β)

{
K−1∑
k=0

En,n+1
k,k+1 (Tk+1)

}1/2{K−1∑
k=0

Bn,n+1
k,k+1 (Tk+1)

}1/2

, (6.31)

where

Bn,n+1
k,k+1 (Tk+1) = β2

(
‖(Ẽn

k (Tk+1), H̃n
k (Tk+1))‖2

H + ‖(Ẽn+1
k+1 (Tk+1), H̃n+1

k+1 (Tk+1))‖2
H
)

+‖(P̃n
k (Tk+1), Q̃n

k (Tk+1))‖2
H + ‖(P̃n+1

k+1 (Tk+1), Q̃n+1
k+1(Tk+1))‖2

H.

Similarly

K−1∑
k=0

(
En

k+1,β(Tk+1) − En+1
k,β (Tk+1)

)
≤

√
2max(1, β)

{
K−1∑
k=0

En,n+1
k+1,k (Tk+1)

}1/2{K−1∑
k=0

Bn,n+1
k+1,k (Tk+1)

}1/2

, (6.32)

It follows from (6.30–6.32) that

En
β − En+1

β ≤
√

2max(1, β)

{
K−1∑
k=0

(
Bn,n+1

k,k+1 (Tk+1) + Bn,n+1
k+1,k (Tk+1)

)}1/2

×
{

K−1∑
k=0

(
En,n+1

k,k+1 (Tk+1) + En,n+1
k+1,k (Tk+1)

)}1/2

· (6.33)
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The proof is completed by noting that

K−1∑
k=0

(
Bn,n+1

k,k+1 (Tk+1) +Bn,n+1
k+1,k (Tk+1)

)
= En+1

β + En
β . (6.34)

Proof of Lemma 6.4. From (6.17, 6.23) and (6.28) we have

en+1
k (t) + en

k (t) ≤
k−1∑
m=0

(
‖(Ẽn+1

m+1(Tm+1), H̃n+1
m+1(Tm+1))‖2

H − ‖(Ẽn
m(Tm+1), H̃n

m(Tm+1))‖2
H

+‖(Ẽn
m+1(Tm+1), H̃n

m+1(Tm+1))‖2
H − ‖(Ẽn+1

m (Tm+1), H̃n+1
m (Tm+1))‖2

H
)

+
K−1∑
m=k

(
‖(P̃n+1

m (Tm+1), Q̃n+1
m (Tm+1))‖2

H − ‖(P̃n
m+1(Tm+1), Q̃n

m+1(Tm+1))‖2
H

+‖(P̃n
m(Tm+1), Q̃n

m(Tm+1))‖2
H − ‖(P̃n+1

m+1(Tm+1), Q̃n+1
m+1(Tm+1))‖2

H
)

+
1
β

max(‖α−1‖L∞(Γ), κ)(Fn+1 + Fn
β ). (6.35)

The sums on the right are estimated as in (6.18), resulting in

max
0≤k≤K

‖en+1
k + en

k‖L∞(0,T ) ≤
√

2

{
K−1∑
k=0

(
‖(En+1

k+1 (Tk+1), Hn+1
k+1 (Tk+1)) − (En

k (Tk+1), Hn
k (Tk+1))‖2

H

+‖(En
k+1(Tk+1), Hn

k+1(Tk+1)) − (En+1
k (Tk+1), Hn+1

k (Tk+1))‖2
H
)}1/2

×
{

K−1∑
k=0

(
‖(Ẽn+1

k+1 (Tk+1), H̃n+1
k+1 (Tk+1))‖2

H + ‖(Ẽn
k (Tk+1), H̃n

k (Tk+1))‖2
H

+‖(Ẽn
k+1(Tk+1), H̃n

k+1(Tk+1))‖2
H + ‖(Ẽn+1

k (Tk+1), H̃n+1
k (Tk+1))‖2

H
)}1/2

+
√

2

{
K−1∑
k=0

(
‖(Pn+1

k (Tk+1), Qn+1
k (Tk+1)) − (Pn

k+1(Tk+1), Qn
k+1(Tk+1))‖2

H

+‖(Pn
k (Tk+1), Qn

k (Tk+1)) − (Pn+1
k+1 (Tk+1), Qn+1

k+1(Tk+1))‖2
H
)}1/2

×
{

K−1∑
k=0

(
‖P̃n+1

k (Tk+1), Q̃n+1
k (Tk+1))‖2

H + ‖(P̃n
k+1(Tk+1), Q̃n

k+1(Tk+1))‖2
H

+‖P̃n
k (Tk+1), Q̃n

k (Tk+1))‖2
H + ‖(P̃n+1

k+1 (Tk+1), Q̃n+1
k+1(Tk+1))‖2

H

}1/2

+
1
β

max(‖α−1‖L∞(Γ), κ)(Fn+1 + Fn
β ).

After one more application of the Cauchy–Schwarz inequality we obtain the conclusion of Lemma 6.4.
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Proof of Corollary 6.1. One has the rough estimate

En
β + Fn

β ≤ E1
β + F1

β .

We proceed to estimate E1
β + F1

β . From (5.21) and (5.10) we have

E1
β + F1

β =
K−1∑
k=0

(
‖(µ̃0

k,k+1, η̃
0
k,k+1)‖2

H + ‖(µ̃0
k+1,k, η̃

0
k+1,k)‖2

H
)
. (6.36)

By (5.7) the right side of (6.36) is bounded above by

2
K−1∑
k=0

(
‖(µ0

k,k+1, η
0
k,k+1)‖2

H + ‖(µ0
k+1,k, η

0
k+1,k)‖2

H
)

+ 2
K−1∑
k=0

(
β2‖(E(Tk+1), H(Tk+1))‖2

H

+ ‖(P (Tk+1), Q(Tk+1))‖2
H
)
. (6.37)

We have the following a priori estimate for the solution of (2.1), which can be proved by standard multiplier
methods (see [11])

(1 − δ)‖(E,H)‖2
L∞(0,T ;H) ≤ ‖(φ, ψ)‖2

H +
∫

Σ

1
α
|J |2dΣ +

1
δ
‖(ε−1F, µ−1G)‖2

L1(0,T ;H), 0 < δ < 1. (6.38)

Thus for every k = 0, . . . ,K − 1 we have

‖(E(Tk+1), H(Tk+1))‖2
H ≤ 2‖(φ, ψ)‖2

H + 2
∫

Σ

1
α
|ν ∧ P |2dΣ + 4‖(ε−1F, µ−1G)‖2

L1(0,T ;H).

In addition, from (6.12),

‖(P (Tk+1), Q(Tk+1))‖2
H ≤ z2‖(E(T ) − ET , H(T ) −HT )‖2

H.

Thus the right side of (6.37) is bounded above by

2
K−1∑
k=0

(
‖(µ0

k,k+1, η
0
k,k+1)‖2

H + ‖(µ0
k+1,k, η

0
k+1,k)‖2

H
)

+ 2K

{
2β2‖(φ, ψ)‖2

H + 4β2‖(ε−1F, µ−1G)‖2
L1(0,T ;H)

+ max(2β2‖α−1‖L∞(Γ), z)

(∫
Σ

|ν ∧ P |2dΣ + z‖(E(T )− ET , H(T )−HT )‖2
H

)}
· (6.39)

Since J (ν ∧ P |Σ) ≤ J (0), we have∫
Σ

|ν ∧ P |2dΣ + z‖(E(T )− ET , H(T ) −HT )‖2
H ≤ z‖(Ê(T ) − ET , Ĥ(T ) −HT )‖2

H,

where (Ê, Ĥ) is the solution of (2.1) corresponding to J = 0. Therefore

‖(Ê(T ), Ĥ(T ))‖2
H ≤ 2‖(φ, ψ)‖2

H + 4‖(ε−1F, µ−1G)‖2
L1(0,T ;H),
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hence ∫
Σ

|ν ∧ P |2dΣ + z‖(E(T )− ET , H(T )−HT )‖2
H ≤ 2z

(
2‖(φ, ψ)‖2

H + 4‖(ε−1F, µ−1G)‖2
L1(0,T ;H)

+‖(ET , HT )‖2
H
)
. (6.40)

It follows from (6.36–6.40) that

(E1
β + F1

β) ≤ (Cβ)2 (6.41)

where

Cβ =
√

2

{
K−1∑
k=0

(
‖(µ0

k,k+1, η
0
k,k+1)‖2

H + ‖(µ0
k+1,k, η

0
k+1,k)‖2

H
)

+ 2
(
Kβ2 + zmax(β2‖α−1‖L∞(Γ), z)

)(
‖(φ, ψ)‖2

H

+2‖(ε−1F, µ−1G)‖2
L1(0,T ;H)

)
+ zmax(β2‖α−1‖L∞(Γ), z)‖(ET , HT )‖2

H
)}1/2

. (6.42)

We therefore obtain (6.4) with

C = Cβ

√
2max(1, 1/β)

(
2 + max(‖α−1‖L∞(Γ), z)

)
. (6.43)

Proof of Corollary 6.2. Since
√

En+1
β + En

β ≤
√

2
√
E1

β + F1
β , Corollary 6.2 follows immediately from (6.41),

where

Cε := 2Cβ max(1, 1/β)
(
2 + (1 − 2ε)−1 max(‖α−1‖L∞(Γ), z)

)
, (6.44)

where Cβ is given by (6.42).
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