WEAK LINKING THEOREMS AND SCHRÖDINGER EQUATIONS WITH CRITICAL SOBOLEV EXPONENT

Martin Schechter ${ }^{1, *}$ and Wenming Zou ${ }^{2, \dagger}$

Abstract

In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais-Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation $-\Delta u+$ $V(x) u=K(x)|u|^{2^{*}-2} u+g(x, u), u \in W^{1,2}\left(\mathbf{R}^{N}\right)$, where $N \geq 4 ; V, K, g$ are periodic in x_{j} for $1 \leq j \leq N$ and 0 is in a gap of the spectrum of $-\Delta+V ; K>0$. If $0<g(x, u) u \leq c|u|^{2^{*}}$ for an appropriate constant c, we show that this equation has a nontrivial solution.

Mathematics Subject Classification. 35B33, 35J65, 35Q55.
Received October 28, 2002.

1. Introduction

In this article, the aim is to study the following semilinear Schrödinger equation with critical Sobolev exponent and periodic potential:

$$
\begin{equation*}
-\Delta u+V(x) u=K(x)|u|^{2^{*}-2} u+g(x, u), \quad u \in W^{1,2}\left(\mathbf{R}^{N}\right) \tag{S}
\end{equation*}
$$

where $N \geq 4 ; 2^{*}:=2 N /(N-2)$ is the critical Sobolev exponent and g is of subcritical growth.
First of all, we recall that the equation

$$
\begin{equation*}
-\Delta u+\lambda u=|u|^{2^{*}-2} u, \quad \lambda \neq 0 \tag{1.1}
\end{equation*}
$$

has only the trivial solution $u=0$ in $W^{1,2}\left(\mathbf{R}^{N}\right)(c f .[4])$. Therefore, the existence of nontrivial solution of (S) is an interesting problem.

Before we state the main result, we introduce the following conditions:
$\left(\mathbf{S}_{1}\right) V, K \in \mathcal{C}\left(\mathbf{R}^{N}, \mathbf{R}\right), g \in \mathcal{C}\left(\mathbf{R}^{N} \times \mathbf{R}, \mathbf{R}\right), k_{0}:=\inf _{x \in \mathbf{R}^{N}} K(x)>0 ; V, K, g$ are 1-periodic in x_{j} for $j=$ $1, \ldots, N$
$\left(\mathbf{S}_{2}\right) 0 \notin \sigma(-\Delta+V)$ and $\sigma(-\Delta+V) \cap(-\infty, 0) \neq \emptyset$, where σ denotes the spectrum in $L^{2}\left(\mathbf{R}^{N}\right)$;
$\left(\mathbf{S}_{3}\right) K\left(x_{0}\right):=\max _{x \in \mathbf{R}^{N}} K(x)$ and $K(x)-K\left(x_{0}\right)=o\left(\left|x-x_{0}\right|^{2}\right)$ as $x \rightarrow x_{0}$ and $V\left(x_{0}\right)<0$;

[^0]$\left(\mathbf{S}_{4}\right)|g(x, u)| \leq c_{0}\left(1+|u|^{p-1}\right)$ for all $(x, u) \in \mathbf{R}^{N} \times \mathbf{R}$, where $c_{0}>0$ and $p \in\left(2,2^{*}\right)$. Moreover, $g(x, u) /|u|^{2^{*}-1}$ $\rightarrow 0$ as $u \rightarrow 0$ uniformly for $x \in \mathbf{R}^{N}$;
$\left(\mathbf{S}_{5}\right) g(x, u) u>0$ for all $x \in \mathbf{R}^{N}$ and $u \neq 0$.
The main result is the following:
Theorem 1.1. Assume that $\left(\mathrm{S}_{1}-\mathrm{S}_{5}\right)$ hold. If
\[

$$
\begin{equation*}
\frac{k_{0}}{m_{g}} \geq \frac{N-2}{2}, \quad \text { where } \quad m_{g}:=\max _{x \in \mathbf{R}^{N}, u \in \mathbf{R} \backslash\{0\}} \frac{g(x, u) u}{|u|^{2^{*}}}, \tag{1.2}
\end{equation*}
$$

\]

then equation (S) has a solution $u \neq 0$. Particularly, if $K(x) \equiv k_{0}>0,\left(\mathrm{~S}_{3}\right)$ can be deleted and the same result holds.

An equivalent form of Theorem 1.1 is the following:
Corrolary 1.1. Assume that $\left(\mathrm{S}_{1}-\mathrm{S}_{5}\right)$ hold. Then the following Schrödinger equation

$$
-\Delta u+V(x) u=K(x)|u|^{2^{*}-2} u+\beta g(x, u), \quad u \in W^{1,2}\left(\mathbf{R}^{N}\right)
$$

has a nontrivial solution for all $\beta \in\left(0,2 k_{0} /\left(m_{g}(N-2)\right)\right]$. If $K(x) \equiv k_{0}>0$, condition $\left(\mathrm{S}_{3}\right)$ can be omitted and the same result holds.

Remark 1.1. It is an open problem whether or not the results of the present paper remain true for the case of $N=3$. This problem is also raised by Y.Y. Li in private communications.

Now we make some comments on this problem and the main results. Under the hypotheses on V the spectrum of $-\Delta+V$ in $L^{2}\left(\mathbf{R}^{N}\right)$ is purely continuous and bounded below and is the union of disjoint closed intervals ($c f$. Th. XIII. 100 of [17] and Th. 4.5.9 of [13]), which makes the problem difficult to be dealt with.

Recently, equation (S) was studied in [6], which also generalized the early results obtained in [7]. In [6], the assumption

$$
\begin{equation*}
0 \leq \gamma G(x, u) \leq u g(x, u) \text { on } \mathbf{R}^{N} \times \mathbf{R} \tag{1.3}
\end{equation*}
$$

where $\gamma=2 ; G(x, u):=\int_{0}^{u} g(x, s) d s$, was imposed in order to prove the boundedness of the Palais-Smale sequence. Obviously, this condition contains the case of $g \equiv 0$. Condition (1.3) has three disadvantages: the first is that one has to compute the primitive function G of g; the second is that one has to check the second inequality of (1.3); the third is that (1.3) does not contain the sublinear (at infinity) case and some asymptotically linear (at infinity) case. But sometimes, it is either impossible to compute G so that (1.3) can be checked or the second inequality of (1.3) does not hold.

These cases happen on the following three examples:
(i) $g(x, u):= \begin{cases}c|u|^{2^{*}} u \mathrm{e}^{-\sin ^{2} u} & |u| \leq 1 \\ c|u|^{-2 / 3} u \mathrm{e}^{-\sin ^{2} u}(1+\ln |u|) & |u| \geq 1,\end{cases}$
(ii) $g(x, u):=\left\{\begin{array}{ll}c|u|^{2^{*}} u & |u| \leq 1 \\ c|u|^{-2 / 3} u & |u| \geq 1,\end{array} \quad\right.$ (sublinear at infinity)
(iii) $g(x, u):=\left\{\begin{array}{ll}c|u|^{2^{*}} u & |u| \leq 1 \\ \frac{c}{2}\left(u+|u|^{-2 / 3} u\right) & |u| \geq 1,\end{array} \quad\right.$ (asymptotically linear at infinity).

However, we emphasize that the above examples satisfy the hypotheses of Theorem 1.1 of the present paper for appropriate $c>0$. Moreover, conditions $\left(\mathrm{S}_{4}\right)$ and $\left(\mathrm{S}_{5}\right)$ permit the nonlinearity g to be superlinear, asymptotically linear or sublinear.

Evidently, if we set

$$
\bar{m}_{g}(r)=\max _{x \in \mathbf{R}^{N},|u| \geq r \text { or }|u| \leq 1 / r} \frac{g(x, u) u}{|u|^{2^{*}}},
$$

then $k_{0} / \bar{m}_{g}(r) \rightarrow \infty$ as $r \rightarrow \infty$. It is an open problem whether or not assumption (1.2) can be concealed or equivalently, Corollary 1.1 holds for all $\beta>0$. On the other hand, it should be mentioned that (1.2) is the price to pay for relaxing (1.3).

Equation (S) with $K(x) \equiv 0$, i.e., the nonlinear term is of subcritical growth, has been studied by several authors (for example, cf. $[1-3,5,8,10-12,24,26]$ and the references cited therein). In those papers, the Ambrosetti-Rabinowitz condition (1.3) with $\gamma>2$ was needed. In [23], the authors considered the asymptotically linear case. In [25] (see also [3]), zero is an end point of $\sigma(-\Delta+V)$. In [14], the author studied a special case $-\Delta u=K u^{5}$ in \mathbf{R}^{3} (see also [15] for higher dimension case on S^{N}). Very little is known for (S) with critical Sobolev exponent and periodic potential.

Without (1.3) with $\gamma \geq 2$, the problem becomes more complicated. The main obstacle is how to get a bounded Palais-Smale sequence. To get over this road block, we establish a variant and generalized weak linking theorem. Roughly speaking, let E be a Hilbert space, let $N \subset E$ be a separable subspace, and let $Q \subset N$ be a bounded open convex set, with $p_{0} \in Q$. Let F be a "weak" continuous map of E onto N such that $\left.F\right|_{Q}=i d$ and that $F(u-v)-(F(u)-F(v))$ is contained in a fixed finite-dimensional subspace of E for all $u, v \in E$. Then under suitable hypotheses, $\partial Q \operatorname{links} F^{-1}\left(p_{0}\right)$ with respect to a suitable restricted class of deformations of \bar{Q}. We will define a family of \mathcal{C}^{1}-functional $\left\{H_{\lambda}\right\}_{\lambda \in[1,2]}$ which is related to problem (S). Since the spectrum of $-\Delta+V$ in $L^{2}\left(\mathbf{R}^{N}\right)$ is purely continuous, both positive and negative subspaces of the functional H_{λ} are infinite-dimensional. Moreover, H_{λ} is unbounded from both below and above, the so-called strongly indefinite functional. Furthermore, because of the weaker assumptions (particularly, without (1.3)), the usual minimax techniques (e.g. $[1-7,10,11,14,15]$), can not be used here. However, by using the new weak linking theorem, we show that $\left\{H_{\lambda}\right\}$ has a bounded Palais-Smale sequence for almost every $\lambda \in[1,2]$. The main idea is the Monotonicity Trick due to $[10,11]$ (see also [21] for an earlier application). Other applications of this trick can be found in [23,27, 28, 30-32]. We also give the estimates of the energy, i.e., the energy lies in $\left[\inf _{F^{-1}\left(p_{0}\right)} H_{\lambda}, \sup _{\bar{Q}} H_{1}\right]$. By this way, there is no need to impose some strong conditions for proving the boundedness of Palais-Smale sequences. In other words, we permit much more freedom for the nonlinearity.

The paper is organized as follows: in Section 2, we establish a variant weak linking theorem. In Section 3, equation (S) will be studied. In Section 4, an Appendix will be given.

2. A variant weak Linking theorem

Let E be a Hilbert space with norm $\|\cdot\|$ and inner product $\langle\cdot, \cdot\rangle$ and have an orthogonal decomposition $E=N \oplus N^{\perp}$, where $N \subset E$ is a closed and separable subspace. Since N is separable, we can define a new norm $|v|_{w}$ satisfying $|v|_{w} \leq\|v\|, \forall v \in N$ and such that the topology induced by this norm is equivalent to the weak topology of N on bounded subset of N (see Appendix of Sect. 4). For $u=v+w \in E=N \oplus N^{\perp}$ with $v \in N, w \in N^{\perp}$, we define $|u|_{w}^{2}=|v|_{w}^{2}+\|w\|^{2}$, then $|u|_{w} \leq\|u\|, \forall u \in E$.

Particularly, if $\left(u_{n}=v_{n}+w_{n}\right)$ is $|\cdot|_{w}$-bounded and $u_{n} \xrightarrow{|\cdot|_{w}} u$, then $v_{n} \rightharpoonup v$ weakly in $N, w_{n} \rightarrow w$ strongly in $N^{\perp}, u_{n} \rightharpoonup v+w$ weakly in $E(c f .[9])$.

Let $Q \subset N$ be a $\|\cdot\|$-bounded open convex subset, $p_{0} \in Q$ be a fixed point. Let F be a $|\cdot|_{w}$-continuous map from E onto N satisfying

- $\left.F\right|_{Q}=i d ; F$ maps bounded sets to bounded sets;
- there exists a fixed finite-dimensional subspace E_{0} of E such that
$F(u-v)-(F(u)-F(v)) \subset E_{0}, \forall v, u \in E ;$
- F maps finite-dimensional subspaces of E to finite-dimensional subspaces of E.

We use the letter c to denote various positive constants.

$$
A:=\partial Q, \quad B:=F^{-1}\left(p_{0}\right)
$$

where ∂Q denotes the $\|\cdot\|$-boundary of Q.

Remark 2.1. There are many examples:
(i) let $N=E^{-}, N^{\perp}=E^{+}$, then $E=E^{-} \oplus E^{+}$and let $Q:=\left\{u \in E^{-}:\|u\|<R\right\}, p_{0}=0 \in Q$. For any $u=u^{-} \oplus u^{+} \in E$, define $F: E \mapsto N$ by $F u:=u^{-}$, then $A:=\partial Q, B:=F^{-1}\left(p_{0}\right)=E^{+}$satisfy the above conditions;
(ii) let $E=E^{-} \oplus E^{+}, z_{0} \in E^{+}$with $\left\|z_{0}\right\|=1$. For any $u \in E$, we write $u=u^{-} \oplus s z_{0} \oplus w^{+}$with $u^{-} \in E^{-}, s \in \mathbf{R}, w^{+} \in\left(E^{-} \oplus \mathbf{R} z_{0}\right)^{\perp}:=E_{1}^{+}$. Let $N:=E^{-} \oplus \mathbf{R} z_{0}$. For $R>0$, let $Q:=\{u:=$ $\left.u^{-}+s z_{0}: s \in \mathbf{R}^{+}, u^{-} \in E^{-},\|u\|<R\right\}, p_{0}=s_{0} z_{0} \in Q, s_{0}>0$. Let $F: E \mapsto N$ be defined by $F u:=u^{-}+\left\|s z_{0}+w^{+}\right\| z_{0}$, then F, Q, p_{0} satisfy the above conditions with

$$
B=F^{-1}\left(s_{0} z_{0}\right)=\left\{u:=s z_{0}+w^{+}: s \geq 0, w^{+} \in E_{1}^{+},\left\|s z_{0}+w^{+}\right\|=s_{0}\right\}
$$

In fact, according to the definition, $\left.F\right|_{Q}=i d$ and F maps bounded sets to bounded sets. On the other hand, for any $u, v \in E$, we write $u=u^{-}+s z_{0}+w^{+}, v=v^{-}+t z_{0}+w_{1}^{+}$, then

$$
\begin{gathered}
F(u)=u^{-}+\left\|s z_{0}+w^{+}\right\| z_{0}, \quad F(v)=v^{-}+\left\|t z_{0}+w_{1}^{+}\right\| z_{0} \\
F(u-v)=u^{-}-v^{-}+\left\|(s-t) z_{0}+w^{+}-w_{1}^{+}\right\| z_{0}
\end{gathered}
$$

therefore,

$$
\begin{aligned}
F(u-v)-(F(u)-F(v)) & =\left(\left\|(s-t) z_{0}+w^{+}-w_{1}^{+}\right\|-\left\|s z_{0}+w^{+}\right\|+\left\|t z_{0}+w_{1}^{+}\right\|\right) z_{0} \\
& \subset \mathbf{R} z_{0}:=E_{0} \quad \text { (an 1-dimensional subspace) }
\end{aligned}
$$

For $H \in \mathcal{C}^{1}(E, \mathbf{R})$, we define
$\Gamma:=\left\{h:[0,1] \times \bar{Q} \mapsto E, h\right.$ is $|\cdot|_{w}$-continuous. For any $\left(s_{0}, u_{0}\right) \in[0,1] \times \bar{Q}$,
there is a $|\cdot|_{w}-$ neighborhood $U_{\left(s_{0}, u_{0}\right)}$ such that

$$
\begin{aligned}
\left\{u-h(t, u):(t, u) \in U_{\left(s_{0}, u_{0}\right)} \cap([0,1] \times \bar{Q})\right\} \subset E_{\text {fin }} & \\
& h(0, u)=u, H(h(s, u)) \leq H(u), \forall u \in \bar{Q}\},
\end{aligned}
$$

then $\Gamma \neq \emptyset$ since $i d \in \Gamma$. Here and then, we use $E_{\text {fin }}$ to denote various finite-dimensional subspaces of E whose exact dimensions are irrelevant and depend on $\left(s_{0}, u_{0}\right)$.

The variant weak linking theorem is:
Theorem 2.1. The family of \mathcal{C}^{1}-functional $\left(H_{\lambda}\right)$ has the form

$$
H_{\lambda}(u):=I(u)-\lambda J(u), \quad \forall \lambda \in[1,2] .
$$

Assume
(a) $J(u) \geq 0, \forall u \in E ; H_{1}:=H$;
(b) $I(u) \rightarrow \infty$ or $J(u) \rightarrow \infty$ as $\|u\| \rightarrow \infty$;
(c) H_{λ} is $|\cdot|_{w}$-upper semicontinuous; H_{λ}^{\prime} is weakly sequentially continuous on E. Moreover, H_{λ} maps bounded sets to bounded sets;
(d) $\sup _{A} H_{\lambda}<\inf _{B} H_{\lambda}, \forall \lambda \in[1,2]$.

Then for almost all $\lambda \in[1,2]$, there exists a sequence $\left(u_{n}\right)$ such that

$$
\sup _{n}\left\|u_{n}\right\|<\infty, \quad H_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0, \quad H_{\lambda}\left(u_{n}\right) \rightarrow C_{\lambda}
$$

where

$$
C_{\lambda}:=\inf _{h \in \Gamma} \sup _{u \in \bar{Q}} H_{\lambda}(h(1, u)) \in\left[\inf _{B} H_{\lambda}, \sup _{\bar{Q}} H\right] .
$$

Before proving this theorem, let us make some remarks.
Remark 2.2. Similar weak linking was developed in [18-20, 29]. In [18-20], conditions " $\left.F\right|_{N} \equiv i d$ " and $" F(v-w)=v-F w$ for all $v \in N, w \in E$ " were stated but not needed. All that was used was $\left.F\right|_{Q} \equiv i d$ and $F(v-w)=v-F w$ for all $v \in Q, w \in E$. This was noted in [29]. Particularly, we emphasize that because the monotonicity trick was not used in [18-20,29], the boundedness of Palais-Smale sequence was not a consequence of the Theorems. Therefore, some compactness conditions were introduced and played an important role. The results of $[18-20,29]$ can not be used to deal with equation (S).
Remark 2.3. In [12] (see also [26]), some theorems were given which contained only a particular linking and the boundedness of Palais-Smale sequence is also remained unknown. Therefore, in applications, AmbrosettiRabinowitz type condition (1.3) with $\gamma>2$ is needed. In [12, 26], a τ-topology is specially constructed to accommodate the splitting of E into subspace and by this, a new degree of Leray-Schauder type is established. The new degree is also applied in $[23,25,27,28]$.

Proof of Theorem 2.1.
Step 1. We prove that $C_{\lambda} \in\left[\inf _{B} H_{\lambda}, \sup _{Q} H\right]$. Evidently, by the definition of C_{λ},

$$
C_{\lambda} \leq \sup _{u \in \bar{Q}} H_{\lambda}(u) \leq \sup _{u \in \bar{Q}} H_{1}(u) \equiv \sup _{u \in \bar{Q}} H(u)<\infty .
$$

To show $C_{\lambda} \geq \inf _{B} H_{\lambda}$ for all $\lambda \in[1,2]$, we have to prove that $h(1, \bar{Q}) \cap B \neq \emptyset$ for all $h \in \Gamma$. By hypothesis, the $\operatorname{map} F h:[0,1] \times \bar{Q} \rightarrow N$ is $|\cdot|_{w}$-continuous. Let $K:=[0,1] \times \bar{Q}$. Then K is $|\cdot|_{w}$-compact. In fact, since K is bounded with respect to both norms $|\cdot|_{w}$ and $\|\cdot\|$, for any $\left(t_{n}, v_{n}\right) \in K$, we may assume that $v_{n} \rightharpoonup v_{0}$ weakly in E and that $t_{n} \rightarrow t_{0} \in[0,1]$. Then $v_{0} \in \bar{Q}$ since \bar{Q} is convex. Since on the bounded set $Q \subset N$, the $|\cdot|_{w}$-topology is equivalent to the weak topology, then $u_{n} \xrightarrow{|\cdot|_{w}} v_{0}$. So, K is $|\cdot|_{w}$-compact. By the definition of Γ, for any $\left(s_{0}, u_{0}\right) \in K$, there is a $|\cdot|_{w}$-neighborhood $U_{\left(s_{0}, u_{0}\right)}$ such that

$$
\left\{u-h(t, u):(t, u) \in U_{\left(s_{0}, u_{0}\right)} \cap K\right\} \subset E_{\mathrm{fin}},
$$

here and then, we use $E_{\text {fin }}$ to denote various finite-dimensional subspaces of E whose exact dimensions are irrelevant. Now, $K \subset \cup_{(s, u) \in K} U_{(s, u)}$. Since K is $|\cdot|_{w \text {-compact, }} K \subset \cup_{i=1}^{j_{0}} U_{\left(s_{i}, u_{i}\right)},\left(s_{i}, u_{i}\right) \in K$. Consequently,

$$
\{u-h(t, u):(t, u) \in K\} \subset E_{\mathrm{fin}}
$$

Hence, by the basic assumptions on F,

$$
F\{u-h(t, u):(t, u) \in K\} \subset E_{\mathrm{fin}}
$$

and

$$
\{u-F h(t, u):(t, u) \in K\} \subset E_{\mathrm{fin}} .
$$

Then we can choose a finite-dimensional subspace $E_{\text {fin }}$ such that $p_{0} \in E_{\text {fin }}$ and that

$$
F h:[0,1] \times\left(\bar{Q} \cap E_{\mathrm{fin}}\right) \rightarrow E_{\mathrm{fin}} .
$$

We claim that $F h(t, u) \neq p_{0}$ for all $u \in \partial\left(\bar{Q} \cap E_{\text {fin }}\right)=\partial \bar{Q} \cap E_{\text {fin }}$ and $t \in[0,1]$. By way of negation, if there exist $t_{0} \in[0,1]$ and $u_{0} \in \partial \bar{Q} \cap E_{\text {fin }}$ such that $F h\left(t_{0}, u_{0}\right)=p_{0}$, i.e., $h\left(t_{0}, u_{0}\right) \in B$. It follows that

$$
H_{1}\left(u_{0}\right) \geq H_{1}\left(h\left(t_{0}, u_{0}\right)\right) \geq \inf _{B} H_{1}>\sup _{\partial \bar{Q}} H_{1},
$$

which contradicts the assumption (d). Thus, our claim is true. By the homotopy invariance of Brouwer degree, we get that

$$
\begin{aligned}
\operatorname{deg}\left(F h(1, \cdot), Q \cap E_{\mathrm{fin}}, p_{0}\right) & =\operatorname{deg}\left(F h(0, \cdot), Q \cap E_{\mathrm{fin}}, p_{0}\right) \\
& =\operatorname{deg}\left(i d, Q \cap E_{\mathrm{fin}}, p_{0}\right) \\
& =1
\end{aligned}
$$

Therefore, there exists $u_{0} \in Q \cap E_{\text {fin }}$ such that $F h\left(1, u_{0}\right)=p_{0}$.
Step 2. Evidently, $\lambda \mapsto C_{\lambda}$ is nonincreasing, hence $C_{\lambda}^{\prime}=\frac{d C_{\lambda}}{d \lambda}$ exists for almost every $\lambda \in[1,2]$. We consider those $\lambda \in[1,2]$ where C_{λ}^{\prime} exists and use the monotonicity trick (see e.g. [21]).

Let $\lambda_{n} \in[1,2]$ be a strictly increasing sequence such that $\lambda_{n} \rightarrow \lambda$. Then there exists $n(\lambda)$ large enough such that

$$
\begin{equation*}
-C_{\lambda}^{\prime}-1 \leq \frac{C_{\lambda_{n}}-C_{\lambda}}{\lambda-\lambda_{n}} \leq-C_{\lambda}^{\prime}+1 \quad \text { for } \quad n \geq n(\lambda) \tag{2.1}
\end{equation*}
$$

Step 3. There exists a sequence $h_{n} \in \Gamma, k:=k(\lambda)>0$ such that $\left\|h_{n}(1, u)\right\| \leq k$ if $H_{\lambda}\left(h_{n}(1, u)\right) \geq C_{\lambda}-\left(\lambda-\lambda_{n}\right)$. In fact, by the definition of $C_{\lambda_{n}}$, let $h_{n} \in \Gamma$ be such that

$$
\begin{equation*}
\sup _{u \in \bar{Q}} H_{\lambda_{n}}\left(h_{n}(1, u)\right) \leq C_{\lambda_{n}}+\left(\lambda-\lambda_{n}\right) . \tag{2.2}
\end{equation*}
$$

Therefore, if $H_{\lambda}\left(h_{n}(1, u)\right) \geq C_{\lambda}-\left(\lambda-\lambda_{n}\right)$ for some $u \in \bar{Q}$, then for $n \geq n(\lambda)$ (large enough), by (2.1) and (2.2),

$$
\begin{aligned}
J\left(h_{n}(1, u)\right) & =\frac{H_{\lambda_{n}}\left(h_{n}(1, u)\right)-H_{\lambda}\left(h_{n}(1, u)\right)}{\lambda-\lambda_{n}} \\
& \leq \frac{C_{\lambda_{n}}-C_{\lambda}}{\lambda-\lambda_{n}}+2 \\
& \leq-C_{\lambda}^{\prime}+3
\end{aligned}
$$

and

$$
\begin{aligned}
I\left(h_{n}(1, u)\right) & =H_{\lambda_{n}}\left(h_{n}(1, u)\right)+\lambda_{n} J\left(h_{n}(1, u)\right) \\
& \leq C_{\lambda_{n}}+\left(\lambda-\lambda_{n}\right)+\lambda_{n}\left(-C_{\lambda}^{\prime}+3\right) \\
& \leq C_{\lambda}-\lambda C_{\lambda}^{\prime}+3 \lambda .
\end{aligned}
$$

By assumption (b), $\left\|h_{n}(1, u)\right\| \leq k:=k(\lambda)$.
Step 4. By step 2 and (2.2)

$$
\sup _{u \in \bar{Q}} H_{\lambda}\left(h_{n}(1, u)\right) \leq \sup _{u \in \bar{Q}} H_{\lambda_{n}}\left(h_{n}(1, u)\right) \leq C_{\lambda}+\left(2-C_{\lambda}^{\prime}\right)\left(\lambda-\lambda_{n}\right) .
$$

Step 5. For $\varepsilon>0$, define

$$
\begin{equation*}
F_{\varepsilon}(\lambda):=\left\{u \in E:\|u\| \leq k+4,\left|H_{\lambda}(u)-C_{\lambda}\right| \leq \varepsilon\right\} \tag{2.3}
\end{equation*}
$$

Then we claim, for ε small enough, that $\inf \left\{\left\|H_{\lambda}^{\prime}(u)\right\|: u \in F_{\varepsilon}(\lambda)\right\}=0$. Otherwise, there exists $\varepsilon_{0}>0$ such that $\left\|H_{\lambda}^{\prime}(u)\right\| \geq \varepsilon_{0}$ for all $u \in F_{\varepsilon_{0}}(\lambda)$. Let $h_{n} \in \Gamma$ be as in Steps 3,4 and n be large enough such that $\lambda-\lambda_{n} \leq \varepsilon_{0}$ and $\left(2-C_{\lambda}^{\prime}\right)\left(\lambda-\lambda_{n}\right) \leq \varepsilon_{0}$. Define

$$
\begin{equation*}
F_{\varepsilon_{0}}^{*}(\lambda):=\left\{u \in E:\|u\| \leq k+4, C_{\lambda}-\left(\lambda-\lambda_{n}\right) \leq H_{\lambda}(u) \leq C_{\lambda}+\varepsilon_{0}\right\} \tag{2.4}
\end{equation*}
$$

Clearly, $F_{\varepsilon_{0}}^{*}(\lambda) \subset F_{\varepsilon_{0}}(\lambda)$. Now, we consider

$$
\begin{equation*}
F^{*}(\lambda):=\left\{u \in E: H_{\lambda}(u)<C_{\lambda}-\left(\lambda-\lambda_{n}\right)\right\} \tag{2.5}
\end{equation*}
$$

and $F_{\varepsilon_{0}}^{*}(\lambda) \cup F^{*}(\lambda)$. Since $\left\|H_{\lambda}^{\prime}(u)\right\| \geq \varepsilon_{0}$ for $u \in F_{\varepsilon_{0}}^{*}(\lambda)$, we let

$$
h_{\lambda}(u):=\frac{2 H_{\lambda}^{\prime}(u)}{\left\|H_{\lambda}^{\prime}(u)\right\|^{2}} \quad \text { for } u \in F_{\varepsilon_{0}}^{*}(\lambda)
$$

Then $\left\langle H_{\lambda}^{\prime}(u), h_{\lambda}(u)\right\rangle=2$ for $u \in F_{\varepsilon_{0}}^{*}(\lambda)$. Since H_{λ}^{\prime} is weakly sequentially continuous, if $\left\{u_{n}\right\}$ is $\|\cdot\|$-bounded and $u_{n} \xrightarrow{|\cdot|_{w}} \bar{u}$, then $u_{n} \rightharpoonup \bar{u}$ in E, hence

$$
\left\langle H_{\lambda}^{\prime}\left(u_{n}\right), h_{\lambda}(u)\right\rangle \rightarrow\left\langle H_{\lambda}^{\prime}(\bar{u}), h_{\lambda}(u)\right\rangle
$$

as $n \rightarrow \infty$. It follows that $\left\langle H_{\lambda}^{\prime}(\cdot), h_{\lambda}(u)\right\rangle$ is $|\cdot|_{w}$-continuous on sets bounded in E. Therefore, there is an open $|\cdot|{ }_{w}$-neighborhood \mathcal{N}_{u} of u such that

$$
\left\langle H_{\lambda}^{\prime}(v), h_{\lambda}(u)\right\rangle>1 \quad \text { for } v \in \mathcal{N}_{u}, u \in F_{\varepsilon_{0}}^{*}(\lambda)
$$

On the other hand, since H_{λ} is $|\cdot|_{w}$-upper semi-continuous, $F^{*}(\lambda)$ is $|\cdot|_{w \text {-open. Consequently, }}$

$$
\mathcal{N}_{\lambda}:=\left\{\mathcal{N}_{u}: u \in F_{\varepsilon_{0}}^{*}(\lambda)\right\} \cup F^{*}(\lambda)
$$

is an open cover of $F_{\varepsilon_{0}}^{*}(\lambda) \cup F^{*}(\lambda)$. Now we may find a $|\cdot|_{w}$-locally finite and $|\cdot|_{w}$ open refinement $\left(\mathcal{U}_{j}\right)_{j \in J}$ with a corresponding $|\cdot|_{w}$-Lipschitz continuous partition of unity $\left(\beta_{j}\right)_{j \in J}$. For each j, we can either find $u_{j} \in F_{\varepsilon_{0}}^{*}(\lambda)$ such that $\mathcal{U}_{j} \subset \mathcal{N}_{u_{j}}$, or if such u does not exist, then we have $\mathcal{U}_{j} \subset F^{*}(\lambda)$. In the first case we set $w_{j}(u)=h_{\lambda}\left(u_{j}\right)$; in the second case, $w_{j}(u)=0$. Let $U^{*}=\cup_{j \in J} \mathcal{U}_{j}$, then U^{*} is $|\cdot|_{w}$-open and $F_{\varepsilon_{0}}^{*}(\lambda) \cup F^{*}(\lambda) \subset U^{*}$. Define

$$
\begin{equation*}
Y_{\lambda}(u):=\sum_{j \in J} \beta_{j}(u) w_{j}(u) \tag{2.6}
\end{equation*}
$$

then $Y_{\lambda}: U^{*} \mapsto E$ is a vector field which has the following properties:
(1) Y_{λ} is locally Lipschitz continuous in both $\|\cdot\|$ and $|\cdot|_{w}$ topology;
(2) $\left\langle H_{\lambda}^{\prime}(u), Y_{\lambda}(u)\right\rangle \geq 0, \forall u \in U^{*}$;
(3) $\left\langle H_{\lambda}^{\prime}(u), Y_{\lambda}(u)\right\rangle \geq 1, \forall u \in F_{\varepsilon_{0}}^{*}(\lambda)$;
(4) $\left|Y_{\lambda}(u)\right|_{w} \leq\left\|Y_{\lambda}(u)\right\| \leq 2 / \varepsilon_{0}$ for $u \in U^{*}$ and all $\lambda \in[1,2]$.

Consider the following initial value problem

$$
\frac{\mathrm{d} \eta(t, u)}{\mathrm{d} t}=-Y_{\lambda}(\eta), \quad \eta(0, u)=u
$$

for all $u \in F^{*}(\lambda) \cup F\left(\lambda, \varepsilon_{0}\right)$, where $F^{*}(\lambda)$ is given by (2.5) and

$$
\begin{equation*}
F\left(\lambda, \varepsilon_{0}\right):=\left\{u \in E:\|u\| \leq k, C_{\lambda}-\left(\lambda-\lambda_{n}\right) \leq H_{\lambda}(u) \leq C_{\lambda}+\varepsilon_{0}\right\} \subset F_{\varepsilon_{0}}^{*}(\lambda) \tag{2.7}
\end{equation*}
$$

Then by classical theory of ordinary differential equations and the properties of Y_{λ}, for each u as above, there exists a unique solution $\eta(t, u)$ as long as it does not approach the boundary of U^{*}. Furthermore, $t \mapsto H_{\lambda}(\eta(t, u))$ is nonincreasing.

Step 6. We prove that $\eta(t, u)$ is $|\cdot|_{w}$-continuous for $t \in\left[0,2 \varepsilon_{0}\right], u \in F\left(\lambda, \varepsilon_{0}\right) \cup F^{*}(\lambda)$. For fixed $t_{0} \in\left[0,2 \varepsilon_{0}\right], u_{0} \in$ $F\left(\lambda, \varepsilon_{0}\right) \cup F^{*}(\lambda)$, we see that

$$
\begin{equation*}
\eta(t, u)-\eta\left(t, u_{0}\right)=u-u_{0}+\int_{0}^{t}\left(Y_{\lambda}\left(\eta\left(s, u_{0}\right)\right)-Y_{\lambda}(\eta(s, u))\right) \mathrm{d} s \tag{2.8}
\end{equation*}
$$

Since the set $\Lambda:=\eta\left(\left[0,2 \varepsilon_{0}\right] \times\left\{u_{0}\right\}\right)$ is compact and $|\cdot|_{w}$-compact and Y_{λ} is $|\cdot|_{w}$-locally $|\cdot|_{w}$-Lipschitz, there exist $r_{1}>0, r_{2}>0$ such that $\left\{u \in E: \inf _{e \in \Lambda}|u-e|_{w}<r_{1}\right\} \subset U^{*}$ and $\left|Y_{\lambda}(u)-Y_{\lambda}(v)\right|_{w} \leq r_{2}|u-v|_{w}$ for any $u, v \in \Lambda$. Suppose that $\eta(s, u) \in U^{*}$ for $0 \leq s \leq t$. Then by (2.8),

$$
\begin{aligned}
\left|\eta(t, u)-\eta\left(t, u_{0}\right)\right|_{w} & \leq\left|u-u_{0}\right|_{w}+\int_{0}^{t}\left|Y_{\lambda}\left(\eta\left(s, u_{0}\right)\right)-Y_{\lambda}(\eta(s, u))\right|_{w} \mathrm{~d} s \\
& \leq\left|u-u_{0}\right|_{w}+r_{2} \int_{0}^{t}\left|\eta\left(s, u_{0}\right)-\eta(s, u)\right|_{w} \mathrm{~d} s
\end{aligned}
$$

By the Gronwall inequality (see e.g., Lem. 6.9 of [26]),

$$
\left|\eta(t, u)-\eta\left(t, u_{0}\right)\right|_{w} \leq\left|u-u_{0}\right|_{w} \mathrm{e}^{r_{2} t} \leq\left|u-u_{0}\right|_{w} \mathrm{e}^{r_{2}} .
$$

If $\left|u-u_{0}\right|_{w}<\delta$, where $0<\delta<r_{1} e^{-r_{2}}$, then $\left|\eta(t, u)-\eta\left(t, u_{0}\right)\right|_{w}<r_{1}$. Therefore, if $\left|t-t_{0}\right|<\delta$,

$$
\begin{aligned}
\left|\eta(t, u)-\eta\left(t_{0}, u_{0}\right)\right|_{w} & \leq\left|\eta(t, u)-\eta\left(t, u_{0}\right)\right|_{w}+\left|\eta\left(t, u_{0}\right)-\eta\left(t_{0}, u_{0}\right)\right|_{w} \\
& \leq\left|\eta(t, u)-\eta\left(t, u_{0}\right)\right|_{w}+\left|\int_{t_{0}}^{t} Y_{\lambda}\left(\eta\left(s, u_{0}\right)\right) \mathrm{d} s\right|_{w} \\
& \leq \delta \mathrm{e}^{r_{2}}+\delta c \\
& \rightarrow 0 \quad \text { as } \delta \rightarrow 0 .
\end{aligned}
$$

Step 7. Consider

$$
\eta^{*}(t, u)= \begin{cases}h_{n}(2 t, u) & 0 \leq t \leq 1 / 2 \\ \eta\left(4 \varepsilon_{0} t-2 \varepsilon_{0}, h_{n}(1, u)\right) & 1 / 2 \leq t \leq 1\end{cases}
$$

We prove that $\eta^{*} \in \Gamma$.
Evidently, for $u \in \bar{Q}$, we have either $h_{n}(1, u) \in F^{*}(\lambda)$ or $C_{\lambda}-\left(\lambda-\lambda_{n}\right) \leq H_{\lambda}\left(h_{n}(1, u)\right)$. For the later case, we observe that $\left\|h_{n}(1, u)\right\| \leq k$ by Step 3 and $H_{\lambda}\left(h_{n}(1, u)\right) \leq C_{\lambda}+\varepsilon_{0}$ by Step 4 , hence, $h_{n}(1, u) \in F\left(\lambda, \varepsilon_{0}\right)$. In view of Step $6, \eta^{*}$ is $|\cdot|_{w^{\prime}}$-continuous satisfying $\eta^{*}(0, u)=u$ and $H\left(\eta^{*}(t, u)\right) \leq H(u)$. Now for any $\left(s_{0}, u_{0}\right) \in[0,1] \times \bar{Q}$, since $h_{n} \in \Gamma$, we first find a $|\cdot|_{w}$-neighborhood $U_{\left(s_{0}, u_{0}\right)}^{1}$ such that

$$
\begin{equation*}
\left\{u-h_{n}(s, u):(s, u) \in U_{\left(s_{0}, u_{0}\right)}^{1} \cap([0,1] \times \bar{Q})\right\} \subset E_{\text {fin }} \tag{2.9}
\end{equation*}
$$

Furthermore, it is easy to see that there exists a $|\cdot|_{w}$-neighborhood $U_{\left(s_{0}, u_{0}\right)}^{2}$ of $\left(s_{0}, u_{0}\right)$ such that

$$
\begin{equation*}
\left\{h_{n}(s, u)-h_{n}(2 s, u):(s, u) \in U_{\left(s_{0}, u_{0}\right)}^{2} \cap([0,1] \times \bar{Q})\right\} \subset E_{\mathrm{fin}} . \tag{2.10}
\end{equation*}
$$

Next, we have to estimate $h_{n}(t, u)-\eta\left(4 \varepsilon_{0} t-2 \varepsilon_{0}, h_{n}(1, u)\right)$ for $t \in[1 / 2,1]$. If $H_{\lambda}\left(h_{n}\left(1, u_{0}\right)\right)<C_{\lambda}-\left(\lambda-\lambda_{n}\right)$, then

$$
\begin{equation*}
H_{\lambda}\left(\eta\left(t, h_{n}\left(1, u_{0}\right)\right)\right) \leq H_{\lambda}\left(h_{n}\left(1, u_{0}\right)\right)<C_{\lambda}-\left(\lambda-\lambda_{n}\right), \quad \text { for } t \in\left[0,2 \varepsilon_{0}\right] \tag{2.11}
\end{equation*}
$$

Particularly, $\eta\left(t, h_{n}\left(1, u_{0}\right)\right) \in F^{*}(\lambda)$ (see (2.5)).

If $H_{\lambda}\left(h_{n}\left(1, u_{0}\right)\right) \geq C_{\lambda}-\left(\lambda-\lambda_{n}\right)$, then by Step $3,\left\|h_{n}\left(1, u_{0}\right)\right\| \leq k$ and by Step 4 ,

$$
\begin{equation*}
h_{n}\left(1, u_{0}\right) \in F\left(\lambda, \varepsilon_{0}\right) \subset F_{\varepsilon_{0}}^{*}(\lambda) \tag{2.12}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left\|\eta\left(t, h_{n}\left(1, u_{0}\right)\right)-h_{n}\left(1, u_{0}\right)\right\| & =\left\|\int_{0}^{t} \mathrm{~d} \eta\left(s, h_{n}\left(1, u_{0}\right)\right)\right\| \\
& \leq \int_{0}^{t}\left\|Y_{\lambda}\left(\eta\left(s, h_{n}\left(1, u_{0}\right)\right)\right)\right\| \mathrm{d} s \\
& \leq \frac{2 t}{\varepsilon_{0}}
\end{aligned}
$$

hence

$$
\begin{equation*}
\left\|\eta\left(t, h_{n}\left(1, u_{0}\right)\right)\right\| \leq\left\|h_{n}\left(1, u_{0}\right)\right\|+\frac{2 t}{\varepsilon_{0}} \leq k+4, \quad \text { for } t \in\left[0,2 \varepsilon_{0}\right] \tag{2.13}
\end{equation*}
$$

Further, by Step $4, H_{\lambda}\left(\eta\left(t, h_{n}\left(1, u_{0}\right)\right) \leq H_{\lambda}\left(h_{n}\left(1, u_{0}\right)\right) \leq C_{\lambda}+\varepsilon_{0}\right.$. Therefore, for this case,

$$
\begin{equation*}
\eta\left(t, h_{n}\left(1, u_{0}\right)\right) \in F_{\varepsilon_{0}}^{*}(\lambda) \cup F^{*}(\lambda), \quad t \in\left[0,2 \varepsilon_{0}\right] . \tag{2.14}
\end{equation*}
$$

Consider $\Lambda_{1}:=\left\{\eta\left(\left[0,2 \varepsilon_{0}\right], h_{n}\left(1, u_{0}\right)\right)\right\}$, which is $|\cdot|_{w}$-compact and contained in U^{*} of Step 5 because of (2.11) and (2.14). Moreover, there are $r_{3}>0, r_{4}>0$ such that

- $\Lambda_{2}:=\left\{u \in E:\left|u-\Lambda_{1}\right|_{w}<r_{3}\right\} \subset U^{*} ;$
- $\left|Y_{\lambda}(u)-Y_{\lambda}(v)\right|_{w} \leq r_{4}|u-v|_{w}, \quad \forall u, v \in \Lambda_{2} ;$
- $Y_{\lambda}\left(\Lambda_{2}\right) \subset E_{\text {fin }}$.

Evidently, by the $|\cdot|_{w}$ continuity of Y_{λ}, η, and h_{n}, there exists a $|\cdot|_{w}$-neighborhood $U_{\left(s_{0}, u_{0}\right)}^{3}$ such that

$$
\begin{equation*}
\eta\left(t, h_{n}(1, u)\right) \subset \Lambda_{2} \tag{2.15}
\end{equation*}
$$

for $t \in\left[0,2 \varepsilon_{0}\right]$ and $u \in U_{\left(s_{0}, u_{0}\right)}^{3}$. For $t \in[1 / 2,1]$, note that

$$
\begin{aligned}
& h_{n}(t, u)-\eta\left(4 \varepsilon_{0} t-2 \varepsilon_{0}, h_{n}(1, u)\right) \\
& =h_{n}(t, u)-h_{n}(1, u)+\int_{0}^{4 \varepsilon_{0} t-2 \varepsilon_{0}} Y_{\lambda}\left(\eta\left(s, h_{n}(1, u)\right)\right) \mathrm{d} s
\end{aligned}
$$

we conclude by (2.15) that

$$
\begin{equation*}
\left\{h_{n}(t, u)-\eta\left(4 \varepsilon_{0} t-2 \varepsilon_{0}, h_{n}(1, u)\right):(t, u) \in U_{\left(s_{0}, u_{0}\right)}^{3} \cap([1 / 2,1] \times \bar{Q})\right\} \subset E_{\text {fin }} \tag{2.16}
\end{equation*}
$$

According to the definition of η^{*},

$$
\begin{gathered}
u-\eta^{*}(t, u)=u-h_{n}(t, u)+h_{n}(t, u)-h_{n}(2 t, u), \quad t \in[0,1 / 2] \\
u-\eta^{*}(t, u)=u-h_{n}(t, u)+h_{n}(t, u)-\eta\left(4 \varepsilon_{0} t-2 \varepsilon_{0}, h_{n}(1, u)\right), \quad t \in[1 / 2,1] .
\end{gathered}
$$

Therefore, by combining $(2.9,2.10)$ and (2.16), we obtain that

$$
\left\{u-\eta^{*}(t, u):(t, u) \in \tilde{U}_{\left(s_{0}, u_{0}\right)}^{*} \cap([0,1] \times \bar{Q})\right\} \subset E_{\text {fin }}
$$

which implies that $\eta^{*} \in \Gamma$, where $\tilde{U}_{\left(s_{0}, u_{0}\right)}^{*}=U_{\left(s_{0}, u_{0}\right)}^{1} \cap U_{\left(s_{0}, u_{0}\right)}^{2}$ or $\tilde{U}_{\left(s_{0}, u_{0}\right)}^{*}=U_{\left(s_{0}, u_{0}\right)}^{1} \cap U_{\left(s_{0}, u_{0}\right)}^{3}$

Step 8. We will get a contradiction in this step.
Case 1: if $H_{\lambda}\left(h_{n}(1, u)\right)<C_{\lambda}-\left(\lambda-\lambda_{n}\right)$ for some $u \in \bar{Q}$, then $h_{n}(1, u) \in F^{*}(\lambda)$ (see (2.5)) and

$$
\begin{equation*}
H_{\lambda}\left(\eta^{*}(1, u)\right)=H_{\lambda}\left(\eta\left(2 \varepsilon_{0}, h_{n}(1, u)\right) \leq H_{\lambda}\left(h_{n}(1, u)\right)\right)<C_{\lambda}-\left(\lambda-\lambda_{n}\right) \tag{2.17}
\end{equation*}
$$

Case 2: if $H_{\lambda}\left(h_{n}(1, u)\right) \geq C_{\lambda}-\left(\lambda-\lambda_{n}\right)$ for some $u \in \bar{Q}$, then by Step 3 and Step $4,\left\|h_{n}(1, u)\right\| \leq k$ and $\sup _{u \in \bar{Q}} H_{\lambda}\left(h_{n}(1, u)\right) \leq C_{\lambda}+\varepsilon_{0}$. Then, $h_{n}(1, u) \in F_{\varepsilon_{0}}^{*}(\lambda)$. Assume that $H_{\lambda}\left(\eta^{*}(1, u)\right) \geq C_{\lambda}-\left(\lambda-\lambda_{n}\right)$, then for $0 \leq t \leq 2 \varepsilon_{0}$, we have,

$$
\begin{align*}
C_{\lambda}-\left(\lambda-\lambda_{n}\right) & \leq H_{\lambda}\left(\eta^{*}(1, u)\right) \\
& =H_{\lambda}\left(\eta\left(2 \varepsilon_{0}, h_{n}(1, u)\right)\right) \\
& \leq H_{\lambda}\left(\eta\left(t, h_{n}(1, u)\right)\right) \\
& \leq H_{\lambda}\left(\eta\left(0, h_{n}(1, u)\right)\right) \\
& =H_{\lambda}\left(h_{n}(1, u)\right) \\
& \leq C_{\lambda}+\varepsilon_{0} . \tag{2.18}
\end{align*}
$$

Furthermore, for any $t \in\left[0,2 \varepsilon_{0}\right]$, by Property (4) of Y_{λ} (see (2.6)),

$$
\begin{aligned}
\left\|\eta\left(t, h_{n}(1, u)\right)-h_{n}(1, u)\right\| & =\left\|\int_{0}^{t} \frac{\mathrm{~d} \eta\left(s, h_{n}(1, u)\right)}{\mathrm{d} s} \mathrm{~d} s\right\| \\
& \leq \int_{0}^{t} \| Y_{\lambda}\left(\eta\left(s, h_{n}(1, u)\right) \| \mathrm{d} s\right. \\
& \leq 2 t / \varepsilon_{0}
\end{aligned}
$$

it follows that

$$
\begin{equation*}
\left\|\eta\left(t, h_{n}(1, u)\right)\right\| \leq 2 t / \varepsilon_{0}+\left\|h_{n}(1, u)\right\| \leq k+4 \quad \text { for } t \in\left[0,2 \varepsilon_{0}\right] \tag{2.19}
\end{equation*}
$$

Hence, equations (2.18) and (2.19) imply that $\eta\left(t, h_{n}(1, u)\right) \in F_{\varepsilon_{0}}^{*}(\lambda)$ for $t \in\left[0,2 \varepsilon_{0}\right]$. Since on $F_{\varepsilon_{0}}^{*}(\lambda)$, $\left\langle H_{\lambda}^{\prime}(u), Y_{\lambda}(u)\right\rangle>1$, then

$$
\begin{aligned}
\left.H_{\lambda}\left(\eta\left(2 \varepsilon_{0}, h_{n}(1, u)\right)\right)-H_{\lambda}\left(h_{n}(1, u)\right)\right) & =\int_{0}^{2 \varepsilon_{0}} \frac{\mathrm{~d}}{\mathrm{~d} t} H_{\lambda}\left(\eta\left(t, h_{n}(1, u)\right)\right) \mathrm{d} t \\
& =-\int_{0}^{2 \varepsilon_{0}}\left\langle H_{\lambda}^{\prime}\left(\eta\left(t, h_{n}(1, u)\right)\right), Y_{\lambda}\left(\eta\left(t, h_{n}(1, u)\right)\right)\right\rangle \mathrm{d} t \\
& \leq-2 \varepsilon_{0}
\end{aligned}
$$

Therefore, by Step 4,

$$
\begin{align*}
H_{\lambda}\left(\eta\left(2 \varepsilon_{0}, h_{n}(1, u)\right)\right) & \leq H_{\lambda}\left(h_{n}(1, u)\right)-2 \varepsilon_{0} \\
& \leq C_{\lambda}-\varepsilon_{0} \\
& \leq C_{\lambda}-\left(\lambda-\lambda_{n}\right) . \tag{2.20}
\end{align*}
$$

Combining (2.17) and (2.20), we find

$$
H_{\lambda}\left(\eta^{*}(1, u)\right)=H_{\lambda}\left(\eta\left(2 \varepsilon_{0}, h_{n}(1, u)\right)\right) \leq C_{\lambda}-\left(\lambda-\lambda_{n}\right)
$$

for any $(t, u) \in[0,1] \times \bar{Q}$, which contradicts the definition of C_{λ}.

3. Schrödinger equation

Let $E:=W^{1,2}\left(\mathbf{R}^{N}\right)$. It is well known that there is a one-to-one correspondence between solutions of (S) and critical points of the $\mathcal{C}^{1}(E, \mathbf{R})$-functional

$$
\begin{equation*}
H(u):=\frac{1}{2} \int_{\mathbf{R}^{N}}\left(|\nabla u|^{2}+V(x) u^{2}\right) \mathrm{d} x-\frac{1}{2^{*}} \int_{\mathbf{R}^{N}} K(x)|u|^{2^{*}} \mathrm{~d} x-\int_{\mathbf{R}^{N}} G(x, u) \mathrm{d} x \tag{3.1}
\end{equation*}
$$

Let $(E(\lambda))_{\lambda \in \mathbf{R}}$ be the spectral family of $-\Delta+V$ in $L^{2}\left(\mathbf{R}^{N}\right)$. Let $E^{-}:=E(0) L^{2} \cap E$ and $E^{+}:=(i d-E(0)) L^{2} \cap E$, then the quadratic form $\int_{\mathbf{R}^{N}}\left(|\nabla u|^{2}+V u^{2}\right) \mathrm{d} x$ is positive definite on E^{+}and negative definite on $E^{-}(c f .[22])$. By introducing a new inner product $\langle\cdot, \cdot\rangle$ in E, the corresponding norm $\|\cdot\|$ is equivalent to $\|\cdot\|_{1,2}$, the usual norm of $W^{1,2}\left(\mathbf{R}^{N}\right)$. Moreover, $\int_{\mathbf{R}^{N}}\left(|\nabla u|^{2}+V u^{2}\right) \mathrm{d} x=\left\|u^{+}\right\|^{2}-\left\|u^{-}\right\|^{2}$, where $u^{ \pm} \in E^{ \pm}$. Then functional (3.1) can be rewritten as

$$
\begin{equation*}
H(u)=\frac{1}{2}\left\|u^{+}\right\|^{2}-\frac{1}{2}\left\|u^{-}\right\|^{2}-\frac{1}{2^{*}} \int_{\mathbf{R}^{N}} K(x)|u|^{2^{*}} \mathrm{~d} x-\int_{\mathbf{R}^{N}} G(x, u) \mathrm{d} x \tag{3.2}
\end{equation*}
$$

In order to use Theorem 2.1, we consider the family of functional defined by

$$
\begin{equation*}
H_{\lambda}(u)=\frac{1}{2}\left\|u^{+}\right\|^{2}-\lambda\left(\frac{1}{2}\left\|u^{-}\right\|^{2}+\frac{1}{2^{*}} \int_{\mathbf{R}^{N}} K(x)|u|^{2^{*}} \mathrm{~d} x+\int_{\mathbf{R}^{N}} G(x, u) \mathrm{d} x\right) \tag{3.3}
\end{equation*}
$$

for $\lambda \in[1,2]$.
Lemma 3.1. H_{λ} is $|\cdot|_{w}$-upper semicontinuous. H_{λ}^{\prime} is weakly sequentially continuous.
Proof. Noting that $u_{n}:=u_{n}^{-}+u_{n}^{+} \xrightarrow{|\cdot|_{w}} u$ implies that $u_{n} \rightharpoonup u$ weakly in E and $u_{n}^{+} \rightarrow u^{+}$strongly in E, then the proof is the same as that in [23] (see also [6,12]). The second conclusion is due to [6].

Let

$$
\varphi_{\varepsilon}(x):=\frac{c_{N} \psi(x) \varepsilon^{(N-2) / 2}}{\left(\varepsilon^{2}+|x|^{2}\right)^{(N-2) / 2}}
$$

where $c_{N}=(N(N-2))^{(N-2) / 4}, \varepsilon>0$ and $\psi \in \mathcal{C}_{0}^{\infty}\left(\mathbf{R}^{N},[0,1]\right)$ with $\psi(x)=1$ if $|x| \leq r / 2 ; \psi(x)=0$ if $|x| \geq r, r$ small enough (cf. e.g. pp. 35 and 52 of [26]). Write $\varphi_{\varepsilon}=\varphi_{\varepsilon}^{+}+\varphi_{\varepsilon}^{-}$with $\varphi_{\varepsilon}^{+} \in E^{+}, \varphi_{\varepsilon}^{-} \in E^{-}$. Then

$$
\left.\left\|\varphi_{\varepsilon}^{-}\right\| \rightarrow 0,\left\|\varphi_{\varepsilon}^{+}\right\|_{2^{*}}^{2^{*}} \rightarrow S^{N / 2} \quad \text { as } \varepsilon \rightarrow 0 \text { (cf. Prop. } 4.2 \text { of }[6]\right)
$$

where

$$
S:=\inf _{u \in E \backslash\{0\}} \frac{\|\nabla u\|_{2}^{2}}{\|u\|_{2^{*}}^{2}}
$$

The following lemma can be found in Proposition 4.2 of [6].
Lemma 3.2. Set

$$
\begin{equation*}
I_{1}(u):=\frac{1}{2}\left\|u^{+}\right\|^{2}-\frac{1}{2}\left\|u^{-}\right\|^{2}-\frac{1}{2^{*}} \int_{\mathbf{R}^{N}} K(x)|u|^{2^{*}} \mathrm{~d} x, \quad u \in E, \tag{3.4}
\end{equation*}
$$

then

$$
\sup _{Z_{\varepsilon}} I_{1}<c^{*}:=\frac{S^{N / 2}}{N\|K\|_{\infty}^{(N-2) / 2}}
$$

for ε small enough, where $Z_{\varepsilon}:=E^{-} \oplus \mathbf{R} \varphi_{\varepsilon}^{+}$.
To carry forward, we prepare an auxiliary results.

Lemma 3.3. Assume that $g(x, u) / u \rightarrow 0$ as $|u| \rightarrow 0$ uniformly for $x \in \mathbf{R}^{N}$ and that g is of subcritical Sobolev exponent growth. If a bounded sequence $\left(w_{n}\right) \subset E$ and $\lambda_{n} \in[1,2]$ satisfy

$$
\lambda_{n} \rightarrow \lambda, \quad H_{\lambda_{n}}^{\prime}\left(w_{n}\right) \rightarrow 0, \quad H_{\lambda_{n}}\left(w_{n}\right) \rightarrow c(\lambda)
$$

where $0<c(\lambda)<c_{\lambda}^{*}:=\frac{S^{N / 2}}{N\|\lambda K\|_{\infty}^{(N-2) / 2}}$, then $\left(w_{n}\right)$ is nonvanishing, i.e., there exist $r, \eta>0$ and a sequence $\left(y_{n}\right) \subset \mathbf{R}^{N}$, a sequence of open ball $\left(B\left(y_{n}, r\right)\right)$ centered at y_{n} with radius r, such that

$$
\limsup _{n \rightarrow \infty} \int_{B\left(y_{n}, r\right)} w_{n}^{2} \mathrm{~d} x \geq \eta
$$

Proof. The idea is essentially due to Proposition 4.1 of [6]. We give the sketch for the reader's convenience.
If $\left(w_{n}\right)$ is not nonvanishing, then $w_{n} \rightarrow 0$ in $L^{r}\left(\mathbf{R}^{N}\right)$ for $2<r<2^{*}$ by Lions' lemma ([16], Lem 1.21). By standard arguments,

$$
\begin{equation*}
\int_{\mathbf{R}^{N}} g\left(x, w_{n}\right) v_{n} \mathrm{~d} x \rightarrow 0 \quad \text { and } \int_{\mathbf{R}^{N}} G\left(x, w_{n}\right) \mathrm{d} x \rightarrow 0 \tag{3.5}
\end{equation*}
$$

whenever $\left(v_{n}\right) \subset E$ is bounded. Hence

$$
\begin{equation*}
H_{\lambda_{n}}\left(w_{n}\right)-\frac{1}{2}\left\langle H_{\lambda_{n}}^{\prime}\left(w_{n}\right), w_{n}\right\rangle=\frac{\lambda_{n}}{N} \int_{\mathbf{R}^{N}} K(x)\left|w_{n}\right|^{2^{*}} \mathrm{~d} x+o(1) \rightarrow c(\lambda) \tag{3.6}
\end{equation*}
$$

For any $\delta>0$, we choose $\mu>\|V\|_{\infty}(1+\delta) / \delta$. Write $w_{n}=w_{n}^{+}+w_{n}^{-} \in E^{+} \oplus E^{-}$, and let $w_{n}^{+}=\tilde{w}_{n}+\tilde{z}_{n}$, with $\tilde{w}_{n} \in E(\mu) L^{2}, \tilde{z}_{n} \in(i d-E(\mu)) L^{2}$, where $(E(\lambda))_{\lambda \in \mathbf{R}}$ is the spectral family of $-\Delta+V$ in L^{2}. By Proposition 2.4 of $[6], \tilde{w}_{n} \in E$ and

$$
\begin{equation*}
\left\|w_{n}^{-}\right\|_{q} \leq c\left\|w_{n}^{-}\right\|_{2} \leq c\left\|w_{n}\right\| \quad \text { and } \quad\left\|\tilde{w}_{n}\right\|_{q} \leq c\left\|\tilde{w}_{n}\right\|_{2} \leq c\left\|w_{n}\right\| \tag{3.7}
\end{equation*}
$$

where $q=2 N /(N-4)$ if $N>4$ and q may be chosen arbitrarily large if $N=4$. Therefore,

$$
\begin{aligned}
\lambda_{n}\left\|w_{n}^{-}\right\|^{2} & =-\left\langle H_{\lambda_{n}}^{\prime}\left(w_{n}\right), w_{n}^{-}\right\rangle-\lambda_{n} \int_{\mathbf{R}^{N}} K(x)\left|w_{n}\right|^{2^{*}-2} w_{n} w_{n}^{-} \mathrm{d} x-\lambda_{n} \int_{\mathbf{R}^{N}} g\left(x, w_{n}\right) w_{n}^{-} \mathrm{d} x \\
& \leq 2\|K\|_{\infty}\left\|w_{n}\right\|_{r}^{2^{*}-1}\left\|w_{n}^{-}\right\|_{q}+o(1) \\
& \rightarrow 0
\end{aligned}
$$

where r satisfies $\left(2^{*}-1\right) / r+1 / q=1$, hence $2<r<2^{*}$. By the same reasoning,

$$
\begin{equation*}
\left\|\tilde{w}_{n}\right\| \rightarrow 0, \quad \text { hence }, \quad w_{n}-\tilde{z}_{n} \rightarrow 0 \tag{3.8}
\end{equation*}
$$

It follows that

$$
\begin{align*}
\left\|\tilde{z}_{n}\right\|^{2} & =\int_{\mathbf{R}^{N}}\left(\left|\nabla \tilde{z}_{n}\right|^{2}+V \tilde{z}_{n}^{2}\right) \mathrm{d} x \\
& =\lambda_{n} \int_{\mathbf{R}^{N}} K(x)\left|w_{n}\right|^{2^{*}-2} w_{n} \tilde{z}_{n} \mathrm{~d} x+o(1) \\
& =\lambda_{n} \int_{\mathbf{R}^{N}} K(x)\left|w_{n}\right|^{2^{*}} \mathrm{~d} x \tag{3.9}
\end{align*}
$$

On the other hand, by (4.6) of [6], for any $\delta>0$ and $\mu>\|V\|_{\infty}(1+\delta) / \delta$, we have that

$$
\begin{equation*}
(1-\delta) \int_{\mathbf{R}^{N}}\left|\nabla \tilde{z}_{n}\right|^{2} \mathrm{~d} x \leq \int_{\mathbf{R}^{N}}\left(\left|\nabla \tilde{z}_{n}\right|^{2}+V \tilde{z}_{n}^{2}\right) \mathrm{d} x \tag{3.10}
\end{equation*}
$$

By (3.9, 3.8) and (3.10), we have that

$$
\begin{aligned}
\left(\lambda \int_{\mathbf{R}^{N}} K(x)\left|w_{n}\right|^{2^{*}} \mathrm{~d} x\right)^{2 / 2^{*}} & \leq\left(\lambda\|K\|_{\infty}\right)^{2 / 2^{*}}\left\|w_{n}\right\|_{2^{*}}^{2} \\
& =\left(\lambda\|K\|_{\infty}\right)^{2 / 2^{*}}\left\|\tilde{z}_{n}\right\|_{2^{*}}^{2}+o(1) \\
& \leq\left(\lambda\|K\|_{\infty}\right)^{2 / 2^{*}}\left\|\nabla \tilde{z}_{n}\right\|_{2}^{2} / S+o(1) \\
& \leq \frac{\left(\lambda\|K\|_{\infty}\right)^{2 / 2^{*}}}{S(1-\delta)} \lambda \int_{\mathbf{R}^{N}} K(x)\left|w_{n}\right|^{2^{*}} \mathrm{~d} x+o(1) .
\end{aligned}
$$

If we let $n \rightarrow \infty$ and use (3.6), it follows that

$$
(N c(\lambda))^{2 / 2^{*}} \leq \frac{\left(\lambda\|K\|_{\infty}\right)^{2 / 2^{*}}}{S(1-\delta)} N c(\lambda)
$$

which implies that either $c(\lambda)=0$ or $c(\lambda) \geq(1-\delta)^{N / 2} c_{\lambda}^{*}$. Either way, we get a contradiction since δ is chosen arbitrarily.

Choose $z_{0}:=\varphi_{\varepsilon}^{+} /\left\|\varphi_{\varepsilon}^{+}\right\| \in E^{+}$. For $R>0$, set $Q:=\left\{u=u^{-}+s z_{0}:\|u\|<R, u^{-} \in E^{-}, s \in \mathbf{R}^{+}\right\}$. Let $p_{0}=s_{0} z_{0} \in Q, s_{0}>0$. For any $u \in E$, we write $u=u^{-}+s z_{0}+w$ with $u^{-} \in E^{-}, w \in\left(E^{-} \oplus \mathbf{R} z_{0}\right)^{\perp}, s \in \mathbf{R}$. Consider a map $F: E \rightarrow E^{-} \oplus \mathbf{R} z_{0}$ defined by

$$
F\left(u^{-}+s z_{0}+w\right)=u^{-}+\left\|s z_{0}+w\right\| z_{0}
$$

Let $B:=F^{-1}\left(p_{0}\right)$, then

$$
B=\left\{u=s z_{0}+w: w \in\left(E^{-} \oplus \mathbf{R} z_{0}\right)^{\perp},\|u\|=s_{0}\right\}
$$

It is easy to check that F, p_{0}, B satisfy the basic assumptions in Section 2. By hypotheses $\left(\mathrm{S}_{4}\right)$ and $\left(\mathrm{S}_{5}\right)$, the proof of the next lemma is trivial.

Lemma 3.4. There exist $R>0, s_{0}>0$, such that

$$
\inf _{B} H_{\lambda}>0, \quad \sup _{\partial \bar{Q}} H_{\lambda} \leq 0, \quad \text { for all } \lambda \in[1,2]
$$

Lemma 3.5. For almost all $\lambda \in[1,2]$, there exists $\left\{u_{n}\right\} \in E$ such that

$$
\sup _{n}\left\|u_{n}\right\|<\infty, \quad H_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0 \quad \text { and } \quad H_{\lambda}\left(u_{n}\right) \rightarrow C_{\lambda}
$$

where $C_{\lambda} \in\left[\inf _{B} H_{\lambda}, \sup _{\bar{Q}} H\right]$. Furthermore, there exists $\delta_{0}>0$ small enough such that, for almost all $\lambda \in\left[1,1+\delta_{0}\right]$, there exists $u_{\lambda} \neq 0$ such that

$$
H_{\lambda}^{\prime}\left(u_{\lambda}\right)=0, \quad H_{\lambda}\left(u_{\lambda}\right) \leq \sup _{\bar{Q}} H
$$

Proof. The first conclusion follows immediately from Lemmas 3.1, 3.4, 3.5 and Theorem 2.1. Now we prove the second conclusion. Since $g(x, u) u \geq 0$ and $\bar{Q} \subset Z_{\varepsilon}$, we get that

$$
\begin{equation*}
0<C_{\lambda} \leq \sup _{\bar{Q}} H \leq \sup _{Z_{\varepsilon}} I_{1}<c^{*} \tag{3.11}
\end{equation*}
$$

where I_{1}, c^{*} and Z_{ε} come from Lemma 3.2. Therefore, there exists $\delta_{0}>0$ such that $0<C_{\lambda}<c_{\lambda}^{*}$ for almost all $\lambda \in\left[1,1+\delta_{0}\right]$, where c_{λ}^{*} comes from Lemma 3.3. For those λ, by Lemma 3.3, $\left\{u_{n}\right\}$ is nonvanishing, that is,
there exist $y_{n} \in \mathbf{R}^{N}, \alpha>0, R_{1}>0$ such that

$$
\limsup _{n \rightarrow \infty} \int_{B\left(y_{n}, R_{1}\right)}\left|u_{n}\right|^{2} \mathrm{~d} x \geq \alpha>0
$$

We find $\bar{y}_{n} \in \mathbf{Z}^{N}$ such that

$$
\limsup _{n \rightarrow \infty} \int_{B\left(0,2 R_{1}\right)}\left|v_{n}\right|^{2} \mathrm{~d} x \geq \alpha>0
$$

where $v_{n}(x):=u_{n}\left(x+\bar{y}_{n}\right)$. By the periodicity of V, K and $g,\left\{v_{n}\right\}$ is still bounded and

$$
\lim _{n \rightarrow \infty} H_{\lambda}\left(v_{n}\right) \in\left[\inf _{B} H_{\lambda}, \sup _{\bar{Q}} H\right], \quad \lim _{n \rightarrow \infty} H_{\lambda}^{\prime}\left(v_{n}\right)=0
$$

We may suppose that $v_{n} \rightharpoonup u_{\lambda}$. Since E is embedded compactly in $L_{\mathrm{loc}}^{t}\left(\mathbf{R}^{N}\right)$ for $2 \leq t<2^{*}$, then

$$
0<\alpha \leq \lim _{n \rightarrow \infty} \int_{B\left(0,2 R_{1}\right)}\left|v_{n}\right|^{2} \mathrm{~d} x=\int_{B\left(0,2 R_{1}\right)}\left|u_{\lambda}\right|^{2} \mathrm{~d} x \leq\left|u_{\lambda}\right|_{2}^{2}
$$

therefore, $u_{\lambda} \neq 0$. Since H_{λ}^{\prime} is weakly sequentially continuous, $H_{\lambda}^{\prime}\left(u_{\lambda}\right)=0$. Finally, by Fatou's lemma,

$$
\begin{aligned}
H_{\lambda}\left(u_{\lambda}\right) & =H_{\lambda}\left(u_{\lambda}\right)-\frac{1}{2}\left\langle H_{\lambda}^{\prime}\left(u_{\lambda}\right), u_{\lambda}\right\rangle \\
& =\lambda \int_{\mathbf{R}^{N}}\left(\frac{1}{2}\left(K(x)\left|u_{\lambda}\right|^{2^{*}}+g\left(x, u_{\lambda}\right) u_{\lambda}\right)-\frac{1}{2^{*}} K(x)\left|u_{\lambda}\right|^{2^{*}}-G\left(x, u_{\lambda}\right)\right) \mathrm{d} x \\
& =\lambda \int_{\mathbf{R}^{N}} \lim _{n \rightarrow \infty}\left(\frac{1}{2}\left(K(x)\left|v_{n}\right|^{2^{*}}+g\left(x, v_{n}\right) v_{n}\right)-\frac{1}{2^{*}} K(x)\left|v_{n}\right|^{2^{*}}-G\left(x, v_{n}\right)\right) \mathrm{d} x \\
& \leq \lim _{n \rightarrow \infty}\left(H_{\lambda}\left(v_{n}\right)-\frac{1}{2}\left\langle H_{\lambda}^{\prime}\left(v_{n}\right), v_{n}\right\rangle\right) \\
& \leq \lim _{n \rightarrow \infty} H_{\lambda}\left(v_{n}\right) \\
& \leq \sup _{\bar{Q}} H
\end{aligned}
$$

Lemma 3.6. There exist $\lambda_{n} \in\left[1,1+\delta_{0}\right]$ with $\lambda_{n} \rightarrow 1$, and $z_{n} \in E \backslash\{0\}$ such that

$$
H_{\lambda_{n}}^{\prime}\left(z_{n}\right)=0, \quad H_{\lambda_{n}}\left(z_{n}\right) \leq \sup _{\bar{Q}} H
$$

Proof. It is an immediately consequence of Lemma 3.5.
Lemma 3.7. $\left\{z_{n}\right\}$ is bounded.
Proof. Let $g_{1}(x, u):=K(x)|u|^{2^{*}-2} u+g(x, u)$ and $G_{1}(x, u):=\int_{0}^{u} g_{1}(x, s) \mathrm{d} s$. Then by the assumption $\left(\mathrm{S}_{4}\right)$, we see that

$$
\lim _{u \rightarrow 0} \frac{g_{1}(x, u) u}{G_{1}(x, u)}=2^{*} \quad \text { uniformly for } x \in \mathbf{R}^{N}
$$

Let $\varepsilon_{1}>0$ be such that $2^{*}-\varepsilon_{1}>2$. Hence, there exists $R_{1}>0$ such that

$$
\begin{equation*}
g_{1}(x, u) u \geq\left(2^{*}-\varepsilon_{1}\right) G_{1}(x, u), \quad \text { for } x \in \mathbf{R}^{N},|u| \leq R_{1} \tag{3.12}
\end{equation*}
$$

On the other hand, since $g(x, u)$ is of subcritical growth,

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{g_{1}(x, u) u-2 G_{1}(x, u)}{|u|^{2^{*}}}=\left(1-\frac{2}{2^{*}}\right) K(x) \geq c>0 \tag{3.13}
\end{equation*}
$$

uniformly for $x \in \mathbf{R}^{N}$. Furthermore, condition (1.2) implies that

$$
0<g(x, u) u \leq \frac{2}{N-2} k_{0}|u|^{2^{*}} \quad \text { for all } x \in \mathbf{R}^{N}, u \neq 0
$$

hence

$$
\begin{equation*}
g_{1}(x, u) u-2 G_{1}(x, u)>0 \quad \text { for all } x \in \mathbf{R}^{N}, u \neq 0 \tag{3.14}
\end{equation*}
$$

Therefore (3.13) and (3.14) imply that there exists c small enough, such that

$$
\begin{equation*}
g_{1}(x, u) u-2 G_{1}(x, u) \geq c|u|^{2^{*}} \quad \text { for all } x \in \mathbf{R}^{N},|u| \geq R_{1} . \tag{3.15}
\end{equation*}
$$

Recall that $H_{\lambda_{n}}\left(z_{n}\right) \leq \sup _{\bar{Q}} H$ and $H_{\lambda_{n}}^{\prime}\left(z_{n}\right)=0$, then

$$
\begin{align*}
\left(\frac{1}{2}-\frac{1}{2^{*}-\varepsilon_{1}}\right)\left(\left\|z_{n}^{+}\right\|^{2}-\lambda_{n}\left\|z_{n}^{-}\right\|^{2}\right)+\lambda_{n}\left(\frac{1}{2^{*}-\varepsilon_{1}}\right. & \left.-\frac{1}{2^{*}}\right) \int_{\mathbf{R}^{N}} K(x)\left|z_{n}\right|^{2^{*}} \mathrm{~d} x \\
& +\lambda_{n} \int_{\mathbf{R}^{N}}\left(\frac{1}{2^{*}-\varepsilon_{1}} g\left(x, z_{n}\right) z_{n}-G\left(x, z_{n}\right)\right) \mathrm{d} x \leq \sup _{\bar{Q}} H \tag{3.16}
\end{align*}
$$

By $(3.12,3.14)$ and (3.16),

$$
\begin{align*}
\left(\frac{1}{2}-\frac{1}{2^{*}-\varepsilon_{1}}\right)\left(\left\|z_{n}^{+}\right\|^{2}-\lambda_{n}\left\|z_{n}^{-}\right\|^{2}\right) & \leq c+c\left(\int_{\left|z_{n}\right| \leq R_{1}}+\int_{\left|z_{n}\right| \geq R_{1}}\right)\left(G_{1}\left(x, z_{n}\right)-\frac{1}{2^{*}-\varepsilon_{1}} g_{1}\left(x, z_{n}\right) z_{n}\right) \mathrm{d} x \\
& \leq c+c \int_{\left|z_{n}\right| \geq R_{1}}\left(G_{1}\left(x, z_{n}\right)-\frac{1}{2^{*}-\varepsilon_{1}} g_{1}\left(x, z_{n}\right) z_{n}\right) \mathrm{d} x \\
& \leq c+c \int_{\left|z_{n}\right| \geq R_{1}}\left(\frac{1}{2} g_{1}\left(x, z_{n}\right) z_{n}-\frac{1}{2^{*}-\varepsilon_{1}} g_{1}\left(x, z_{n}\right) z_{n}\right) \mathrm{d} x \\
& =c+c \int_{\left|z_{n}\right| \geq R_{1}} g_{1}\left(x, z_{n}\right) z_{n} \mathrm{~d} x \tag{3.17}
\end{align*}
$$

Since, by $\left(\mathrm{S}_{4}\right),|g(x, z) z| \leq c|z|^{2^{*}}$ for all $(x, z) \in \mathbf{R}^{N} \times \mathbf{R}$, (3.17) implies that

$$
\begin{align*}
\left\|z_{n}^{+}\right\|^{2}-\lambda_{n}\left\|z_{n}^{-}\right\|^{2} & \leq c+c \int_{\left|z_{n}\right| \geq R_{1}} g_{1}\left(x, z_{n}\right) z_{n} \mathrm{~d} x \\
& \leq c+c \int_{\left|z_{n}\right| \geq R_{1}}\left(K(x)\left|z_{n}\right|^{2^{*}}+g\left(x, z_{n}\right) z_{n}\right) \mathrm{d} x \\
& \leq c+c \int_{\left|z_{n}\right| \geq R_{1}}\left|z_{n}\right|^{2^{*}} \mathrm{~d} x \tag{3.18}
\end{align*}
$$

However (3.14) and (3.15) imply that

$$
\begin{align*}
\sup _{\bar{Q}} H & \geq H_{\lambda_{n}}\left(z_{n}\right)-\frac{1}{2}\left\langle H_{\lambda_{n}}^{\prime}\left(z_{n}\right), z_{n}\right\rangle \\
& =\int_{\mathbf{R}^{N}}\left(\frac{1}{2} g_{1}\left(x, z_{n}\right) z_{n}-G_{1}\left(x, z_{n}\right)\right) \mathrm{d} x \\
& \geq \int_{\left|z_{n}\right| \geq R_{1}}\left(\frac{1}{2} g_{1}\left(x, z_{n}\right) z_{n}-G_{1}\left(x, z_{n}\right)\right) \mathrm{d} x \\
& \geq c \int_{\left|z_{n}\right| \geq R_{1}}\left|z_{n}\right|^{2^{*}} \mathrm{~d} x \tag{3.19}
\end{align*}
$$

Then, combining (3.18) and (3.19), we obtain that

$$
\begin{equation*}
\left\|z_{n}^{+}\right\|^{2}-\lambda_{n}\left\|z_{n}^{-}\right\|^{2} \leq c \tag{3.20}
\end{equation*}
$$

Noting that $\left\langle H_{\lambda_{n}}^{\prime}\left(z_{n}\right), z_{n}\right\rangle=0$, we see that

$$
\begin{align*}
\left\|z_{n}^{+}\right\|^{2}-\lambda_{n}\left\|z_{n}^{-}\right\|^{2} & =\lambda_{n} \int_{\mathbf{R}^{N}}\left(K(x)\left|z_{n}\right|^{2^{*}}+g\left(x, z_{n}\right) z_{n}\right) \mathrm{d} x \\
& \geq c \int_{\mathbf{R}^{N}}\left|z_{n}\right|^{2^{*}} \mathrm{~d} x \tag{3.21}
\end{align*}
$$

So, by (3.20) and (3.21), $\int_{\mathbf{R}^{N}}\left|z_{n}\right|^{2^{*}} \mathrm{~d} x \leq c$. Noting that $\left\langle H_{\lambda_{n}}^{\prime}\left(z_{n}\right), z_{n}^{+}\right\rangle=0$ and (S_{4}), we obtain, by Hölder's inequality and (3.21), that

$$
\begin{aligned}
\left\|z_{n}^{+}\right\|^{2} & =\lambda_{n} \int_{\mathbf{R}^{N}} K(x)\left|z_{n}\right|^{2^{*}-2} z_{n} z_{n}^{+} \mathrm{d} x+\lambda_{n} \int_{\mathbf{R}^{N}} g\left(x, z_{n}\right) z_{n}^{+} \mathrm{d} x \\
& \leq c \int_{\mathbf{R}^{N}}\left|z_{n}\right|^{2^{*}-1}\left|z_{n}^{+}\right| \\
& \leq c\left\|z_{n}\right\|_{2^{*}}^{2^{*-1}}\left\|z_{n}^{+}\right\|_{2^{*}} \\
& \leq c\left\|z_{n}^{+}\right\|
\end{aligned}
$$

Therefore $\left\|z_{n}^{+}\right\| \leq c$, and hence, $\left\|z_{n}^{-}\right\| \leq c$ by (3.21).
Lemma 3.8. $\left\{z_{n}\right\}$ is nonvanishing.
Proof. Since $\left(z_{n}\right)$ is bounded, we may assume that

$$
\begin{equation*}
H_{\lambda_{n}}\left(z_{n}\right) \rightarrow c_{1} \leq \sup _{\bar{Q}} H<c^{*}(c f .(3.11)) \tag{3.22}
\end{equation*}
$$

If $\left\{z_{n}\right\}$ is not nonvanishing (i.e., is vanishing), then it follows from Lions' lemma (cf. [16], Lem. 1.21) that $z_{n} \rightarrow 0$ in L^{r} whenever $2<r<2^{*}$. The assumption (S_{4}) implies that

$$
\begin{equation*}
\int_{\mathbf{R}^{N}} g\left(x, z_{n}\right) z_{n} \mathrm{~d} x \rightarrow 0, \quad \int_{\mathbf{R}^{N}} G\left(x, z_{n}\right) \mathrm{d} x \rightarrow 0 \tag{3.23}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
H_{\lambda_{n}}\left(z_{n}\right)-\frac{1}{2}\left\langle H_{\lambda_{n}}^{\prime}\left(z_{n}\right), z_{n}\right\rangle=\frac{\lambda_{n}}{N} \int_{\mathbf{R}^{N}} K(x)\left|z_{n}\right|^{2^{*}} \mathrm{~d} x+o(1) \rightarrow c_{1} \tag{3.24}
\end{equation*}
$$

Since $K(x)>0, c_{1} \geq 0$.
Case 1: If $c_{1}>0$, then by (3.22) and Lemma 3.3, z_{n} is nonvanishing.
Case 2: If $c_{1}=0$, then (3.24) implies that

$$
\begin{equation*}
\int_{\mathbf{R}^{N}}\left|z_{n}\right|^{2^{*}} \mathrm{~d} x \rightarrow 0 \tag{3.25}
\end{equation*}
$$

Since $H_{\lambda_{n}}^{\prime}\left(z_{n}\right)=0$, for any $\varepsilon>0$, by $\left(\mathrm{S}_{4}\right)$, we have that

$$
\begin{aligned}
\left\|z_{n}^{+}\right\|^{2} & =\lambda_{n} \int_{\mathbf{R}^{N}}\left(K(x)\left|z_{n}\right|^{2^{*}-2} z_{n} z_{n}^{+}+g\left(x, z_{n}\right) z_{n}^{+}\right) \mathrm{d} x \\
& \leq c \int_{\mathbf{R}^{N}}\left|z_{n}\right|^{2^{*}-1}\left|z_{n}^{+}\right| \mathrm{d} x+\varepsilon\left\|z_{n}\right\|\left\|z_{n}^{+}\right\|+c\left\|z_{n}\right\|_{p}^{p-1}\left\|z_{n}^{+}\right\| \\
& \leq c\left\|z_{n}\right\|^{2^{*}-1}\left\|z_{n}^{+}\right\|+\varepsilon\left\|z_{n}\right\|^{2}+\varepsilon\left\|z_{n}^{+}\right\|^{2}+\left\|z_{n}^{-}+z_{n}^{+}\right\|^{p-1}\left\|z_{n}^{+}\right\|
\end{aligned}
$$

Since $\left\|z_{n}^{-}\right\| \leq\left\|z_{n}^{+}\right\|$(see (3.21)) and ε is arbitrary,

$$
c\left\|z_{n}^{+}\right\|^{2} \leq c\left\|z_{n}^{+}\right\|^{p}+c\left\|z_{n}^{+}\right\|^{2^{*}}
$$

which implies that $\left\|z_{n}^{+}\right\| \geq c>0$. But, $H_{\lambda_{n}}^{\prime}\left(z_{n}\right)=0$, and (S_{4}) implies that

$$
\begin{aligned}
\left\|z_{n}^{+}\right\|^{2} & =\lambda_{n} \int_{\mathbf{R}^{N}}\left(K(x)\left|z_{n}\right|^{2^{*}-2} z_{n} z_{n}^{+}+g\left(x, z_{n}\right) z_{n}^{+}\right) \mathrm{d} x \\
& \leq c\left\|z_{n}\right\|_{2^{*}}^{2^{*}}\left\|z_{n}^{+}\right\|_{2^{*}}+\varepsilon c\left\|z_{n}\right\|\left\|z_{n}^{+}\right\|+c\left\|z_{n}\right\|_{p}^{p-1}\left\|z_{n}^{+}\right\| .
\end{aligned}
$$

By the vanishing of $\left\{z_{n}\right\}$ and (3.25), $\left\|z_{n}^{+}\right\| \rightarrow 0$, a contradiction. Therefore, $\left\{z_{n}\right\}$ is nonvanishing.
Proof of Theorem 1.1. Since $\left\{z_{n}\right\}$ is nonvanishing, there exist $r>0, \alpha>0$ and $y_{n} \in \mathbf{R}^{N}$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{B\left(y_{n}, r\right)} z_{n}^{2} \mathrm{~d} x \geq \alpha \tag{3.26}
\end{equation*}
$$

We may assume that $y_{n} \in \mathbf{Z}^{N}$ by taking a large r if necessary. Now set $\tilde{z}_{n}(x):=z_{n}\left(x+y_{n}\right)$, since H_{λ} is invariant with respect to the translation of x by elements of $\mathbf{Z}^{N}\left(\right.$ i.e., $H_{\lambda}(u(\cdot))=H_{\lambda}(u(\cdot+y))$ whenever $\left.y \in \mathbf{Z}^{N}\right),\left\|z_{n}\right\|=\left\|\tilde{z}_{n}\right\|, H_{\lambda_{n}}\left(z_{n}\right)=H_{\lambda_{n}}\left(\tilde{z}_{n}\right)$. Without loss of generality, we may suppose, up to a subsequence, that $\tilde{z}_{n} \rightharpoonup z^{*}$, then (3.26) implies that $z^{*} \neq 0$ and $H_{1}^{\prime}\left(z^{*}\right)=0$, i.e., $H^{\prime}\left(z^{*}\right)=0$.

4. Appendix

In this Appendix, we give the proof of the existence of the new norm $|\cdot|_{w}$ satisfying $|v|_{w} \leq\|v\|, \forall v \in N$ and such that the topology induced by this norm is equivalent to the weak topology of N on bounded subset of N, more details can be found in [9].

Let $\left\{e_{k}\right\}$ be an orthonormal basis for N. Define

$$
|v|_{w}=\sum_{k=1}^{\infty} \frac{\left|\left(v, e_{k}\right)\right|}{2^{k}}, \quad v \in N
$$

Then $|v|_{w}$ is a norm on N and satisfies $|v|_{w} \leq\|v\|, \quad v \in N$. If $v_{j} \rightarrow v$ weakly in N, then there is a $C>0$ such that

$$
\left\|v_{j}\right\|,\|v\| \leq C, \quad \forall j>0
$$

For any $\varepsilon>0$, there exist $K>0, M>0$, such that $1 / 2^{K}<\varepsilon /(4 C)$ and $\left|\left(v_{j}-v, e_{k}\right)\right|<\varepsilon / 2$ for $1 \leq k \leq K, j>M$. Therefore,

$$
\begin{aligned}
\left|v_{j}-v\right|_{w} & =\sum_{k=1}^{\infty} \frac{\left.\mid v_{j}-v, e_{k}\right) \mid}{2^{k}} \\
& \leq \sum_{k=1}^{K} \frac{\varepsilon / 2}{2^{k}}+\sum_{k=K+1}^{\infty} \frac{2 C}{2^{k}} \\
& \leq \frac{\varepsilon}{2} \sum_{k=1}^{\infty} \frac{1}{2^{k}}+\frac{2 C}{2^{K}} \sum_{k=1}^{\infty} \frac{1}{2^{k}} \\
& \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2} .
\end{aligned}
$$

Therefore, $v_{j} \rightarrow v$ weakly in N implies $\left|v_{j}-v\right|_{w} \rightarrow 0$.
Conversely, let $\left\|v_{j}\right\|,\|v\| \leq C$ for all $j>0$ and $\left|v_{j}-v\right|_{w} \rightarrow 0$. Let $\varepsilon>0$ be given. If $h=\sum_{k=1}^{\infty} \alpha_{k} e_{k} \in N$, take K so large that $\left\|h_{K}\right\|<\varepsilon /(4 C)$, where $h_{K}=\sum_{k=K+1}^{\infty} \alpha_{k} e_{k}$. Take M so large that $\left|v_{j}-v\right|_{w}<\varepsilon /\left(2 \max _{1 \leq k \leq K} 2^{k}\left|\alpha_{k}\right|\right)$ for all $j>M$. Then

$$
\begin{aligned}
\left|\left(v_{j}-v, h-h_{K}\right)\right|=\left|\sum_{k=1}^{K} \alpha_{k}\left(v_{j}-v, e_{k}\right)\right| & \leq \max _{1 \leq k \leq K} 2^{k}\left|\alpha_{k}\right| \sum_{k=1}^{K} \frac{\left|\left(v_{j}-v, e_{k}\right)\right|}{2^{k}} \\
& <\varepsilon / 2
\end{aligned}
$$

for $j>M$. Also, $\left|\left(v_{j}-v, h_{K}\right)\right| \leq 2 C\left\|h_{K}\right\|<\varepsilon / 2$. Therefore,

$$
\left|\left(v_{j}-v, h\right)\right|<\varepsilon, \quad \forall j>M
$$

that is, $v_{j} \rightarrow v$ weakly in N.

References

[1] S. Alama and Y.Y. Li, Existence of solutions for semilinear elliptic equations with indefinite linear part. J. Differential Equations 96 (1992) 89-115.
[2] S. Alama and Y.Y. Li, On "multibump" bound states for certain semilinear elliptic equations. Indiana J. Math. 41 (1992) 983-1026.
[3] T. Bartsch and Y. Ding, On a nonlinear Schrödinger equation with periodic potential. Math. Ann. 313 (1999) 15-37.
[4] V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u+a(x) u=u^{(N+2) /(N-2)}$ in \mathbf{R}^{N}. J. Funct. Anal. 88 (1990) 90-117.
[5] B. Buffoni, L. Jeanjean and C.A. Stuart, Existence of nontrivial solutions to a strongly indefinite semilinear equation. Proc. Amer. Math. Soc. 119 (1993) 179-186.
[6] J. Chabrowski and A. Szulkin, On a semilinear Schrödinger equation with critical Sobolev exponent. Preprint of Stockholm University.
[7] J. Chabrowski and J. Yang, On Schrödinger equation with periodic potential and critical Sobolev exponent. Topol. Meth. Nonl. Anal. 12 (1998) 245-261.
[8] V. Coti-Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on \mathbf{R}^{N}. Comm. Pure Appl. Math. 45 (1992) 1217-1269.
[9] N. Dunford and J.T. Schwartz, Linear Operators. Part I. Interscience (1967).
[10] L. Jeanjean, Solutions in spectral gaps for a nonlinear equation of Schrödinger type. J. Differential Equations 112 (1994) 53-80.
[11] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on \mathbf{R}^{N}. Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 787-809.
[12] W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation. Adv. Differential Equations 3 (1998) 441-472.
[13] P. Kuchment, Floquet Theory for Partial Differential Equations. Birkhäuser, Basel (1993).
[14] Y.Y. Li, On $-\Delta u=K(x) u^{5}$ in \mathbf{R}^{3}. Comm. Pure Appl. Math. 46 (1993) 303-340.
[15] Y.Y. Li, Prescribing scalar curvature on S^{n} and related problems. Part I. J. Differential Equations 120 (1995) 319-410.
[16] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 223-283.
[17] M. Reed and B. Simon, Methods of modern mathematical physics, Vol. IV. Academic Press (1978).
[18] M. Schechter, Critical point theory with weak-to-weak linking. Comm. Pure Appl. Math. 51 (1998) 1247-1254.
[19] M. Schechter, Ratationally invariant periodic solutions of semilinear wave equations. Preprint of the Department of Mathematics, University of California (1998).
[20] M. Schechter, Linking Methods in Critical Point Theory. Birkhäuser, Boston (1999).
[21] M. Struwe, The existence of surfaces of constant mean curvature with free boundaries. Acta Math. 160 (1988) 19-64.
[22] C.A. Stuart, Bifurcation into Spectral Gaps. Bull. Belg. Math. Soc. Suppl. (1995).
[23] A. Szulkin and W. Zou, Homoclinic orbits for asymptotically linear Hamiltonian systems. J. Funct. Anal. 187 (2001) 25-41.
[24] C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation. Comm. Partial Differential Equations 21 (1996) 1431-1449.
[25] M. Willem and W. Zou, On a semilinear Dirichlet problem and a nonlinear Schrödinger equation with periodic potential. Indiana Univ. Math. J. 52 (2003) 109-132.
[26] M. Willem, Minimax Theorems. Birkhäuser, Boston (1996).
[27] W. Zou, Solitary Waves of the Generalized Kadomtsev-Petviashvili Equations. Appl. Math. Lett. 15 (2002) 35-39.
[28] W. Zou, Variant Fountain Theorems and their Applications. Manuscripta Math. 104 (2001) 343-358.
[29] M. Schechter, Some recent results in critical point theory. Pan Amer. Math. J. 12 (2002) 1-19.
[30] M. Schechter and W. Zou, Homoclinic Orbits for Schrödinger Systems. Michigan Math. J. 51 (2003) 59-71.
[31] M. Schechter and W. Zou, Superlinear Problem. Pacific J. Math. (accepted).
[32] W. Zou and S. Li, New Linking Theorem and Elliptic Systems with Nonlinear Boundary Condition. Nonl. Anal. TMA 52 (2003) 1797-1820.

[^0]: Keywords and phrases. Linking, Schrödinger equations, critical Sobolev exponent.
 ${ }^{1}$ Department of Mathematics, University of California, Irvine, CA 92697-3875, USA; e-mail: mschecht@math.uci.edu

 * Supported in part by a NSF grant.
 ${ }^{2}$ Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China; e-mail: wzou@math.tsinghua.edu.cn
 \dagger Supported by NSFC grant (GP10001019). This work was finished when W. Zou was visiting the University of California at Irvine during 2001-2004. He thanks all the members of the Math Department of UCI for offering this position.
 © EDP Sciences, SMAI 2003

