
ESAIM: Control, Optimisation and Calculus of Variations August 2003, Vol. 9, 601–619

DOI: 10.1051/cocv:2003029

WEAK LINKING THEOREMS AND SCHRÖDINGER EQUATIONS
WITH CRITICAL SOBOLEV EXPONENT

Martin Schechter1,∗ and Wenming Zou2 ,†

Abstract. In this paper we establish a variant and generalized weak linking theorem, which contains
more delicate result and insures the existence of bounded Palais–Smale sequences of a strongly indefinite
functional. The abstract result will be used to study the semilinear Schrödinger equation −∆u +

V (x)u = K(x)|u|2∗−2u + g(x, u), u ∈ W 1,2(RN ), where N ≥ 4; V, K, g are periodic in xj for 1 ≤ j ≤ N

and 0 is in a gap of the spectrum of −∆ + V ; K > 0. If 0 < g(x, u)u ≤ c|u|2∗ for an appropriate
constant c, we show that this equation has a nontrivial solution.
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1. Introduction

In this article, the aim is to study the following semilinear Schrödinger equation with critical Sobolev exponent
and periodic potential:

−∆u+ V (x)u = K(x)|u|2∗−2u+ g(x, u), u ∈W 1,2(RN ), (S)

where N ≥ 4; 2∗ := 2N/(N − 2) is the critical Sobolev exponent and g is of subcritical growth.
First of all, we recall that the equation

−∆u+ λu = |u|2∗−2u, λ 6= 0, (1.1)

has only the trivial solution u = 0 in W 1,2(RN ) (cf. [4]). Therefore, the existence of nontrivial solution
of (S) is an interesting problem.

Before we state the main result, we introduce the following conditions:
(S1) V,K ∈ C(RN ,R), g ∈ C(RN × R,R), k0 := infx∈RN K(x) > 0;V,K, g are 1-periodic in xj for j =

1, ..., N ;
(S2) 0 6∈ σ(−∆ + V ) and σ(−∆ + V ) ∩ (−∞, 0) 6= ∅, where σ denotes the spectrum in L2(RN );
(S3) K(x0) := maxx∈RN K(x) and K(x)−K(x0) = o(|x − x0|2) as x→ x0 and V (x0) < 0;
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(S4) |g(x, u)| ≤ c0(1+ |u|p−1) for all (x, u) ∈ RN ×R, where c0 > 0 and p ∈ (2, 2∗). Moreover, g(x, u)/|u|2∗−1

→ 0 as u→ 0 uniformly for x ∈ RN ;
(S5) g(x, u)u > 0 for all x ∈ RN and u 6= 0.

The main result is the following:

Theorem 1.1. Assume that (S1–S5) hold. If

k0

mg
≥ N − 2

2
, where mg := max

x∈RN , u∈R\{0}
g(x, u)u
|u|2∗ , (1.2)

then equation (S) has a solution u 6= 0. Particularly, if K(x) ≡ k0 > 0, (S3) can be deleted and the same result
holds.

An equivalent form of Theorem 1.1 is the following:

Corrolary 1.1. Assume that (S1–S5) hold. Then the following Schrödinger equation

−∆u+ V (x)u = K(x)|u|2∗−2u+ βg(x, u), u ∈W 1,2(RN ),

has a nontrivial solution for all β ∈ (0, 2k0/(mg(N − 2))]. If K(x) ≡ k0 > 0, condition (S3) can be omitted and
the same result holds.

Remark 1.1. It is an open problem whether or not the results of the present paper remain true for the case
of N = 3. This problem is also raised by Y.Y. Li in private communications.

Now we make some comments on this problem and the main results. Under the hypotheses on V the spectrum
of −∆ + V in L2(RN ) is purely continuous and bounded below and is the union of disjoint closed intervals (cf.
Th. XIII. 100 of [17] and Th. 4.5.9 of [13]), which makes the problem difficult to be dealt with.

Recently, equation (S) was studied in [6], which also generalized the early results obtained in [7]. In [6], the
assumption

0 ≤ γG(x, u) ≤ ug(x, u) on RN ×R, (1.3)

where γ = 2;G(x, u) :=
∫ u

0 g(x, s)ds, was imposed in order to prove the boundedness of the Palais–Smale
sequence. Obviously, this condition contains the case of g ≡ 0. Condition (1.3) has three disadvantages: the
first is that one has to compute the primitive function G of g; the second is that one has to check the second
inequality of (1.3); the third is that (1.3) does not contain the sublinear (at infinity) case and some asymptotically
linear (at infinity) case. But sometimes, it is either impossible to compute G so that (1.3) can be checked or
the second inequality of (1.3) does not hold.

These cases happen on the following three examples:

(i) g(x, u) :=

{
c|u|2∗ue− sin2 u |u| ≤ 1
c|u|−2/3ue− sin2 u(1 + ln |u|) |u| ≥ 1,

(ii) g(x, u) :=
{
c|u|2∗u |u| ≤ 1
c|u|−2/3u |u| ≥ 1, (sublinear at infinity)

(iii) g(x, u) :=
{
c|u|2∗u |u| ≤ 1
c
2 (u + |u|−2/3u) |u| ≥ 1, (asymptotically linear at infinity).

However, we emphasize that the above examples satisfy the hypotheses of Theorem 1.1 of the present paper for
appropriate c > 0. Moreover, conditions (S4) and (S5) permit the nonlinearity g to be superlinear, asymptotically
linear or sublinear.

Evidently, if we set

m̄g(r) = max
x∈RN , |u|≥r or |u|≤1/r

g(x, u)u
|u|2∗ ,



WEAK LINKING THEOREMS AND SCHRÖDINGER EQUATIONS WITH CRITICAL SOBOLEV EXPONENT 603

then k0/m̄g(r) → ∞ as r → ∞ . It is an open problem whether or not assumption (1.2) can be concealed or
equivalently, Corollary 1.1 holds for all β > 0. On the other hand, it should be mentioned that (1.2) is the price
to pay for relaxing (1.3).

Equation (S) with K(x) ≡ 0, i.e., the nonlinear term is of subcritical growth, has been studied by sev-
eral authors (for example, cf. [1–3, 5, 8, 10–12, 24, 26] and the references cited therein). In those papers, the
Ambrosetti–Rabinowitz condition (1.3) with γ > 2 was needed. In [23], the authors considered the asymptoti-
cally linear case. In [25] (see also [3]), zero is an end point of σ(−∆ + V ). In [14], the author studied a special
case −∆u = Ku5 in R3 (see also [15] for higher dimension case on SN ). Very little is known for (S) with critical
Sobolev exponent and periodic potential.

Without (1.3) with γ ≥ 2, the problem becomes more complicated. The main obstacle is how to get a
bounded Palais–Smale sequence. To get over this road block, we establish a variant and generalized weak
linking theorem. Roughly speaking, let E be a Hilbert space, let N ⊂ E be a separable subspace, and let
Q ⊂ N be a bounded open convex set, with p0 ∈ Q. Let F be a “weak” continuous map of E onto N such
that F |Q = id and that F (u − v) − (F (u) − F (v)) is contained in a fixed finite-dimensional subspace of E
for all u, v ∈ E. Then under suitable hypotheses, ∂Q links F−1(p0) with respect to a suitable restricted class
of deformations of Q̄. We will define a family of C1-functional {Hλ}λ∈[1,2] which is related to problem (S).
Since the spectrum of −∆ + V in L2(RN) is purely continuous, both positive and negative subspaces of the
functional Hλ are infinite-dimensional. Moreover, Hλ is unbounded from both below and above, the so-called
strongly indefinite functional. Furthermore, because of the weaker assumptions (particularly, without (1.3)),
the usual minimax techniques (e.g. [1–7, 10, 11, 14, 15]), can not be used here. However, by using the new weak
linking theorem, we show that {Hλ} has a bounded Palais–Smale sequence for almost every λ ∈ [1, 2]. The
main idea is the Monotonicity Trick due to [10, 11] (see also [21] for an earlier application). Other applications
of this trick can be found in [23, 27, 28, 30–32]. We also give the estimates of the energy, i.e., the energy lies in
[ inf
F−1(p0)

Hλ, sup
Q̄

H1]. By this way, there is no need to impose some strong conditions for proving the boundedness

of Palais–Smale sequences. In other words, we permit much more freedom for the nonlinearity.
The paper is organized as follows: in Section 2, we establish a variant weak linking theorem. In Section 3,

equation (S) will be studied. In Section 4, an Appendix will be given.

2. A variant weak linking theorem

Let E be a Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉 and have an orthogonal decomposition
E = N ⊕ N⊥, where N ⊂ E is a closed and separable subspace. Since N is separable, we can define a new
norm |v|w satisfying |v|w ≤ ‖v‖, ∀v ∈ N and such that the topology induced by this norm is equivalent to the
weak topology of N on bounded subset of N (see Appendix of Sect. 4). For u = v + w ∈ E = N ⊕ N⊥ with
v ∈ N,w ∈ N⊥, we define |u|2w = |v|2w + ‖w‖2, then |u|w ≤ ‖u‖, ∀u ∈ E.

Particularly, if (un = vn +wn) is | · |w-bounded and un
|·|w→ u, then vn ⇀ v weakly in N , wn → w strongly in

N⊥, un ⇀ v + w weakly in E (cf. [9]).
Let Q ⊂ N be a ‖ · ‖-bounded open convex subset, p0 ∈ Q be a fixed point. Let F be a | · |w-continuous map

from E onto N satisfying

• F |Q = id; F maps bounded sets to bounded sets;
• there exists a fixed finite-dimensional subspace E0 of E such that
F (u− v)− (F (u)− F (v)) ⊂ E0, ∀v, u ∈ E;

• F maps finite-dimensional subspaces of E to finite-dimensional subspaces of E.
We use the letter c to denote various positive constants.

A := ∂Q, B := F−1(p0),

where ∂Q denotes the ‖ · ‖-boundary of Q.
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Remark 2.1. There are many examples:
(i) let N = E−, N⊥ = E+, then E = E− ⊕ E+ and let Q := {u ∈ E− : ‖u‖ < R}, p0 = 0 ∈ Q. For any

u = u− ⊕ u+ ∈ E, define F : E 7→ N by Fu := u−, then A := ∂Q, B := F−1(p0) = E+ satisfy the
above conditions;

(ii) let E = E− ⊕ E+, z0 ∈ E+ with ‖z0‖ = 1. For any u ∈ E, we write u = u− ⊕ sz0 ⊕ w+ with
u− ∈ E−, s ∈ R, w+ ∈ (E− ⊕ Rz0)⊥ := E+

1 . Let N := E− ⊕ Rz0. For R > 0, let Q := {u :=
u− + sz0 : s ∈ R+, u− ∈ E−, ‖u‖ < R}, p0 = s0z0 ∈ Q, s0 > 0. Let F : E 7→ N be defined by
Fu := u− + ‖sz0 + w+‖z0, then F,Q, p0 satisfy the above conditions with

B = F−1(s0z0) = {u := sz0 + w+ : s ≥ 0, w+ ∈ E+
1 , ‖sz0 + w+‖ = s0}·

In fact, according to the definition, F |Q = id and F maps bounded sets to bounded sets. On the other hand,
for any u, v ∈ E, we write u = u− + sz0 + w+, v = v− + tz0 + w+

1 , then

F (u) = u− + ‖sz0 + w+‖z0, F (v) = v− + ‖tz0 + w+
1 ‖z0,

F (u− v) = u− − v− + ‖(s− t)z0 + w+ − w+
1 ‖z0,

therefore,

F (u− v)− (F (u)− F (v)) =
(
‖(s− t)z0 + w+ − w+

1 ‖ − ‖sz0 + w+‖+ ‖tz0 + w+
1 ‖
)
z0

⊂ Rz0 := E0 (an 1-dimensional subspace).

For H ∈ C1(E,R), we define

Γ :=
{
h : [0, 1]× Q̄ 7→ E, h is | · |w-continuous. For any (s0, u0) ∈ [0, 1]× Q̄,

there is a | · |w − neighborhood U(s0,u0) such that

{u− h(t, u) : (t, u) ∈ U(s0,u0) ∩ ([0, 1]× Q̄)} ⊂ Efin,

h(0, u) = u,H(h(s, u)) ≤ H(u), ∀u ∈ Q̄
}
,

then Γ 6= ∅ since id ∈ Γ. Here and then, we use Efin to denote various finite-dimensional subspaces of E whose
exact dimensions are irrelevant and depend on (s0, u0).

The variant weak linking theorem is:

Theorem 2.1. The family of C1-functional (Hλ) has the form

Hλ(u) := I(u)− λJ(u), ∀λ ∈ [1, 2].

Assume
(a) J(u) ≥ 0, ∀u ∈ E;H1 := H ;
(b) I(u) →∞ or J(u) →∞ as ‖u‖ → ∞;
(c) Hλ is | · |w-upper semicontinuous; H ′

λ is weakly sequentially continuous on E. Moreover, Hλ maps
bounded sets to bounded sets;

(d) sup
A
Hλ < inf

B
Hλ, ∀λ ∈ [1, 2].

Then for almost all λ ∈ [1, 2], there exists a sequence (un) such that

sup
n
‖un‖ <∞, H ′

λ(un) → 0, Hλ(un) → Cλ;
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where
Cλ := inf

h∈Γ
sup
u∈Q̄

Hλ(h(1, u)) ∈ [inf
B
Hλ, sup

Q̄

H ].

Before proving this theorem, let us make some remarks.

Remark 2.2. Similar weak linking was developed in [18–20, 29]. In [18–20], conditions “F |N ≡ id” and
“F (v − w) = v − Fw for all v ∈ N,w ∈ E” were stated but not needed. All that was used was F |Q ≡ id and
F (v − w) = v − Fw for all v ∈ Q,w ∈ E. This was noted in [29]. Particularly, we emphasize that because the
monotonicity trick was not used in [18–20,29], the boundedness of Palais–Smale sequence was not a consequence
of the Theorems. Therefore, some compactness conditions were introduced and played an important role. The
results of [18–20,29] can not be used to deal with equation (S).

Remark 2.3. In [12] (see also [26]), some theorems were given which contained only a particular linking and
the boundedness of Palais–Smale sequence is also remained unknown. Therefore, in applications, Ambrosetti–
Rabinowitz type condition (1.3) with γ > 2 is needed. In [12, 26], a τ -topology is specially constructed to
accommodate the splitting of E into subspace and by this, a new degree of Leray–Schauder type is established.
The new degree is also applied in [23, 25, 27, 28].

Proof of Theorem 2.1.

Step 1. We prove that Cλ ∈ [inf
B
Hλ, sup

Q
H ]. Evidently, by the definition of Cλ,

Cλ ≤ sup
u∈Q̄

Hλ(u) ≤ sup
u∈Q̄

H1(u) ≡ sup
u∈Q̄

H(u) <∞.

To show Cλ ≥ infB Hλ for all λ ∈ [1, 2], we have to prove that h(1, Q̄)∩B 6= ∅ for all h ∈ Γ. By hypothesis, the
map Fh : [0, 1]× Q̄ → N is | · |w-continuous. Let K := [0, 1]× Q̄. Then K is | · |w-compact. In fact, since K
is bounded with respect to both norms | · |w and ‖ · ‖, for any (tn, vn) ∈ K, we may assume that vn ⇀ v0
weakly in E and that tn → t0 ∈ [0, 1]. Then v0 ∈ Q̄ since Q̄ is convex. Since on the bounded set Q ⊂ N , the

| · |w-topology is equivalent to the weak topology, then un
|·|w→ v0. So, K is | · |w-compact. By the definition of Γ,

for any (s0, u0) ∈ K, there is a | · |w-neighborhood U(s0,u0) such that

{u− h(t, u) : (t, u) ∈ U(s0,u0) ∩K} ⊂ Efin,

here and then, we use Efin to denote various finite-dimensional subspaces of E whose exact dimensions are
irrelevant. Now, K ⊂ ∪(s,u)∈KU(s,u). Since K is | · |w-compact, K ⊂ ∪j0

i=1U(si,ui), (si, ui) ∈ K. Consequently,

{u− h(t, u) : (t, u) ∈ K} ⊂ Efin.

Hence, by the basic assumptions on F ,

F{u− h(t, u) : (t, u) ∈ K} ⊂ Efin

and
{u− Fh(t, u) : (t, u) ∈ K} ⊂ Efin.

Then we can choose a finite-dimensional subspace Efin such that p0 ∈ Efin and that

Fh : [0, 1]× (Q̄ ∩ Efin) → Efin.

We claim that Fh(t, u) 6= p0 for all u ∈ ∂(Q̄∩Efin) = ∂Q̄∩Efin and t ∈ [0, 1]. By way of negation, if there exist
t0 ∈ [0, 1] and u0 ∈ ∂Q̄ ∩ Efin such that Fh(t0, u0) = p0, i.e., h(t0, u0) ∈ B. It follows that

H1(u0) ≥ H1(h(t0, u0)) ≥ inf
B
H1 > sup

∂Q̄

H1,
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which contradicts the assumption (d). Thus, our claim is true. By the homotopy invariance of Brouwer degree,
we get that

deg(Fh(1, ·), Q ∩ Efin, p0) = deg(Fh(0, ·), Q ∩ Efin, p0)
= deg(id,Q ∩ Efin, p0)
= 1.

Therefore, there exists u0 ∈ Q ∩ Efin such that Fh(1, u0) = p0.

Step 2. Evidently, λ 7→ Cλ is nonincreasing, hence C′λ =
dCλ

dλ
exists for almost every λ ∈ [1, 2]. We consider

those λ ∈ [1, 2] where C′λ exists and use the monotonicity trick (see e.g. [21]).
Let λn ∈ [1, 2] be a strictly increasing sequence such that λn → λ. Then there exists n(λ) large enough such

that
−C′λ − 1 ≤ Cλn − Cλ

λ− λn
≤ −C′λ + 1 for n ≥ n(λ). (2.1)

Step 3. There exists a sequence hn ∈ Γ, k := k(λ) > 0 such that ‖hn(1, u)‖ ≤ k if Hλ(hn(1, u)) ≥ Cλ−(λ−λn).
In fact, by the definition of Cλn , let hn ∈ Γ be such that

sup
u∈Q̄

Hλn(hn(1, u)) ≤ Cλn + (λ− λn). (2.2)

Therefore, if Hλ(hn(1, u)) ≥ Cλ− (λ−λn) for some u ∈ Q̄, then for n ≥ n(λ)(large enough), by (2.1) and (2.2),

J(hn(1, u)) =
Hλn(hn(1, u))−Hλ(hn(1, u))

λ− λn

≤ Cλn − Cλ

λ− λn
+ 2

≤ −C′λ + 3

and

I(hn(1, u)) = Hλn(hn(1, u)) + λnJ(hn(1, u))
≤ Cλn + (λ− λn) + λn(−C′λ + 3)
≤ Cλ − λC′λ + 3λ.

By assumption (b), ‖hn(1, u)‖ ≤ k := k(λ).

Step 4. By step 2 and (2.2)

sup
u∈Q̄

Hλ(hn(1, u)) ≤ sup
u∈Q̄

Hλn(hn(1, u)) ≤ Cλ + (2− C′λ)(λ − λn).

Step 5. For ε > 0, define

Fε(λ) := {u ∈ E : ‖u‖ ≤ k + 4, |Hλ(u)− Cλ| ≤ ε}· (2.3)

Then we claim, for ε small enough, that inf{‖H ′
λ(u)‖ : u ∈ Fε(λ)} = 0. Otherwise, there exists ε0 > 0 such that

‖H ′
λ(u)‖ ≥ ε0 for all u ∈ Fε0 (λ). Let hn ∈ Γ be as in Steps 3, 4 and n be large enough such that λ − λn ≤ ε0

and (2− C′λ)(λ− λn) ≤ ε0. Define

F ∗ε0
(λ) := {u ∈ E : ‖u‖ ≤ k + 4, Cλ − (λ− λn) ≤ Hλ(u) ≤ Cλ + ε0}· (2.4)
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Clearly, F ∗ε0
(λ) ⊂ Fε0(λ). Now, we consider

F ∗(λ) := {u ∈ E : Hλ(u) < Cλ − (λ− λn)} (2.5)

and F ∗ε0
(λ) ∪ F ∗(λ). Since ‖H ′

λ(u)‖ ≥ ε0 for u ∈ F ∗ε0
(λ), we let

hλ(u) :=
2H ′

λ(u)
‖H ′

λ(u)‖2
for u ∈ F ∗ε0

(λ).

Then 〈H ′
λ(u), hλ(u)〉 = 2 for u ∈ F ∗ε0

(λ). Since H ′
λ is weakly sequentially continuous, if {un} is ‖ · ‖-bounded

and un
|·|w→ ū, then un ⇀ ū in E, hence

〈H ′
λ(un), hλ(u)〉 → 〈H ′

λ(ū), hλ(u)〉

as n→∞. It follows that 〈H ′
λ(·), hλ(u)〉 is | · |w-continuous on sets bounded in E. Therefore, there is an open

| · |w-neighborhood Nu of u such that

〈H ′
λ(v), hλ(u)〉 > 1 for v ∈ Nu, u ∈ F ∗ε0

(λ).

On the other hand, since Hλ is | · |w-upper semi-continuous, F ∗(λ) is | · |w-open. Consequently,

Nλ := {Nu : u ∈ F ∗ε0
(λ)} ∪ F ∗(λ)

is an open cover of F ∗ε0
(λ)∪F ∗(λ). Now we may find a | · |w-locally finite and | · |w open refinement (Uj)j∈J with

a corresponding | · |w-Lipschitz continuous partition of unity (βj)j∈J . For each j, we can either find uj ∈ F ∗ε0
(λ)

such that Uj ⊂ Nuj , or if such u does not exist, then we have Uj ⊂ F ∗(λ). In the first case we set wj(u) = hλ(uj);
in the second case, wj(u) = 0. Let U∗ = ∪j∈JUj , then U∗ is | · |w -open and F ∗ε0

(λ) ∪ F ∗(λ) ⊂ U∗. Define

Yλ(u) :=
∑
j∈J

βj(u)wj(u), (2.6)

then Yλ : U∗ 7→ E is a vector field which has the following properties:

(1) Yλ is locally Lipschitz continuous in both ‖ · ‖ and | · |w topology;
(2) 〈H ′

λ(u), Yλ(u)〉 ≥ 0, ∀u ∈ U∗;
(3) 〈H ′

λ(u), Yλ(u)〉 ≥ 1, ∀u ∈ F ∗ε0
(λ);

(4) |Yλ(u)|w ≤ ‖Yλ(u)‖ ≤ 2/ε0 for u ∈ U∗ and all λ ∈ [1, 2].

Consider the following initial value problem

dη(t, u)
dt

= −Yλ(η), η(0, u) = u,

for all u ∈ F ∗(λ) ∪ F (λ, ε0), where F ∗(λ) is given by (2.5) and

F (λ, ε0) := {u ∈ E : ‖u‖ ≤ k, Cλ − (λ− λn) ≤ Hλ(u) ≤ Cλ + ε0} ⊂ F ∗ε0
(λ). (2.7)

Then by classical theory of ordinary differential equations and the properties of Yλ, for each u as above, there
exists a unique solution η(t, u) as long as it does not approach the boundary of U∗. Furthermore, t 7→ Hλ(η(t, u))
is nonincreasing.
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Step 6. We prove that η(t, u) is | · |w-continuous for t ∈ [0, 2ε0], u ∈ F (λ, ε0)∪F ∗(λ). For fixed t0 ∈ [0, 2ε0], u0 ∈
F (λ, ε0) ∪ F ∗(λ), we see that

η(t, u)− η(t, u0) = u− u0 +
∫ t

0

(
Yλ(η(s, u0))− Yλ(η(s, u))

)
ds. (2.8)

Since the set Λ := η([0, 2ε0]× {u0}) is compact and | · |w-compact and Yλ is | · |w-locally | · |w-Lipschitz, there
exist r1 > 0, r2 > 0 such that {u ∈ E : infe∈Λ |u − e|w < r1} ⊂ U∗ and |Yλ(u) − Yλ(v)|w ≤ r2|u − v|w for any
u, v ∈ Λ. Suppose that η(s, u) ∈ U∗ for 0 ≤ s ≤ t. Then by (2.8),

|η(t, u)− η(t, u0)|w ≤ |u− u0|w +
∫ t

0

|Yλ(η(s, u0))− Yλ(η(s, u))|wds

≤ |u− u0|w + r2

∫ t

0

|η(s, u0)− η(s, u)|wds.

By the Gronwall inequality (see e.g., Lem. 6.9 of [26]),

|η(t, u)− η(t, u0)|w ≤ |u− u0|wer2t ≤ |u− u0|wer2 .

If |u− u0|w < δ, where 0 < δ < r1e
−r2 , then |η(t, u)− η(t, u0)|w < r1. Therefore, if |t− t0| < δ,

|η(t, u)− η(t0, u0)|w ≤ |η(t, u)− η(t, u0)|w + |η(t, u0)− η(t0, u0)|w
≤ |η(t, u)− η(t, u0)|w +

∣∣∣∣
∫ t

t0

Yλ(η(s, u0))ds
∣∣∣∣
w

≤ δer2 + δc

→ 0 as δ → 0.

Step 7. Consider

η∗(t, u) =
{
hn(2t, u) 0 ≤ t ≤ 1/2
η(4ε0t− 2ε0, hn(1, u)) 1/2 ≤ t ≤ 1.

We prove that η∗ ∈ Γ.

Evidently, for u ∈ Q̄, we have either hn(1, u) ∈ F ∗(λ) or Cλ− (λ−λn) ≤ Hλ(hn(1, u)). For the later case, we
observe that ‖hn(1, u)‖ ≤ k by Step 3 and Hλ(hn(1, u)) ≤ Cλ +ε0 by Step 4, hence, hn(1, u) ∈ F (λ, ε0). In view
of Step 6, η∗ is | · |w-continuous satisfying η∗(0, u) = u and H(η∗(t, u)) ≤ H(u). Now for any (s0, u0) ∈ [0, 1]× Q̄,
since hn ∈ Γ, we first find a | · |w-neighborhood U1

(s0,u0)
such that

{u− hn(s, u) : (s, u) ∈ U1
(s0,u0)

∩ ([0, 1]× Q̄)} ⊂ Efin. (2.9)

Furthermore, it is easy to see that there exists a | · |w-neighborhood U2
(s0,u0) of (s0, u0) such that

{hn(s, u)− hn(2s, u) : (s, u) ∈ U2
(s0,u0) ∩ ([0, 1]× Q̄)} ⊂ Efin. (2.10)

Next, we have to estimate hn(t, u) − η(4ε0t − 2ε0, hn(1, u)) for t ∈ [1/2, 1]. If Hλ(hn(1, u0)) < Cλ − (λ − λn),
then

Hλ(η(t, hn(1, u0))) ≤ Hλ(hn(1, u0)) < Cλ − (λ− λn), for t ∈ [0, 2ε0]. (2.11)

Particularly, η(t, hn(1, u0)) ∈ F ∗(λ) (see (2.5)).
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If Hλ(hn(1, u0)) ≥ Cλ − (λ− λn), then by Step 3, ‖hn(1, u0)‖ ≤ k and by Step 4,

hn(1, u0) ∈ F (λ, ε0) ⊂ F ∗ε0
(λ). (2.12)

Since

‖η(t, hn(1, u0))− hn(1, u0)‖ = ‖
∫ t

0

dη(s, hn(1, u0))‖

≤
∫ t

0

‖Yλ(η(s, hn(1, u0)))‖ds

≤ 2t
ε0
,

hence
‖η(t, hn(1, u0))‖ ≤ ‖hn(1, u0)‖ +

2t
ε0

≤ k + 4, for t ∈ [0, 2ε0]. (2.13)

Further, by Step 4, Hλ(η(t, hn(1, u0)) ≤ Hλ(hn(1, u0)) ≤ Cλ + ε0. Therefore, for this case,

η(t, hn(1, u0)) ∈ F ∗ε0
(λ) ∪ F ∗(λ), t ∈ [0, 2ε0]. (2.14)

Consider Λ1 := {η([0, 2ε0], hn(1, u0))}, which is | · |w-compact and contained in U∗ of Step 5 because of (2.11)
and (2.14). Moreover, there are r3 > 0, r4 > 0 such that

• Λ2 := {u ∈ E : |u− Λ1|w < r3} ⊂ U∗;

• |Yλ(u)− Yλ(v)|w ≤ r4|u− v|w, ∀u, v ∈ Λ2;

• Yλ(Λ2) ⊂ Efin.

Evidently, by the | · |w continuity of Yλ, η, and hn, there exists a | · |w-neighborhood U3
(s0,u0) such that

η(t, hn(1, u)) ⊂ Λ2 (2.15)

for t ∈ [0, 2ε0] and u ∈ U3
(s0,u0)

. For t ∈ [1/2, 1], note that

hn(t, u)− η(4ε0t− 2ε0, hn(1, u))

= hn(t, u)− hn(1, u) +
∫ 4ε0t−2ε0

0

Yλ(η(s, hn(1, u)))ds,

we conclude by (2.15) that

{hn(t, u)− η(4ε0t− 2ε0, hn(1, u)) : (t, u) ∈ U3
(s0,u0) ∩ ([1/2, 1]× Q̄)} ⊂ Efin. (2.16)

According to the definition of η∗,

u− η∗(t, u) = u− hn(t, u) + hn(t, u)− hn(2t, u), t ∈ [0, 1/2];

u− η∗(t, u) = u− hn(t, u) + hn(t, u)− η(4ε0t− 2ε0, hn(1, u)), t ∈ [1/2, 1].
Therefore, by combining (2.9, 2.10) and (2.16), we obtain that

{u− η∗(t, u) : (t, u) ∈ Ũ∗(s0,u0)
∩ ([0, 1]× Q̄)} ⊂ Efin,

which implies that η∗ ∈ Γ, where Ũ∗(s0,u0)
= U1

(s0,u0)
∩ U2

(s0,u0)
or Ũ∗(s0,u0)

= U1
(s0,u0) ∩ U3

(s0,u0)



610 M. SCHECHTER AND W. ZOU

Step 8. We will get a contradiction in this step.
Case 1: if Hλ(hn(1, u)) < Cλ − (λ− λn) for some u ∈ Q̄, then hn(1, u) ∈ F ∗(λ) (see (2.5)) and

Hλ(η∗(1, u)) = Hλ(η(2ε0, hn(1, u)) ≤ Hλ(hn(1, u))) < Cλ − (λ− λn). (2.17)

Case 2: if Hλ(hn(1, u)) ≥ Cλ − (λ− λn) for some u ∈ Q̄, then by Step 3 and Step 4, ‖hn(1, u)‖ ≤ k and
supu∈Q̄Hλ(hn(1, u)) ≤ Cλ + ε0. Then, hn(1, u) ∈ F ∗ε0

(λ). Assume that Hλ(η∗(1, u)) ≥ Cλ − (λ − λn),
then for 0 ≤ t ≤ 2ε0, we have,

Cλ − (λ− λn) ≤ Hλ(η∗(1, u))
= Hλ(η(2ε0, hn(1, u)))
≤ Hλ(η(t, hn(1, u)))
≤ Hλ(η(0, hn(1, u)))
= Hλ(hn(1, u))
≤ Cλ + ε0. (2.18)

Furthermore, for any t ∈ [0, 2ε0], by Property (4) of Yλ (see (2.6)),

‖η(t, hn(1, u))− hn(1, u)‖ =
∥∥∥∥
∫ t

0

dη(s, hn(1, u))
ds

ds
∥∥∥∥

≤
∫ t

0

‖Yλ(η(s, hn(1, u))‖ds
≤ 2t/ε0,

it follows that
‖η(t, hn(1, u))‖ ≤ 2t/ε0 + ‖hn(1, u)‖ ≤ k + 4 for t ∈ [0, 2ε0]. (2.19)

Hence, equations (2.18) and (2.19) imply that η(t, hn(1, u)) ∈ F ∗ε0
(λ) for t ∈ [0, 2ε0]. Since on F ∗ε0

(λ),
〈H ′

λ(u), Yλ(u)〉 > 1, then

Hλ(η(2ε0, hn(1, u)))−Hλ(hn(1, u))) =
∫ 2ε0

0

d
dt
Hλ(η(t, hn(1, u)))dt

= −
∫ 2ε0

0

〈H ′
λ(η(t, hn(1, u))), Yλ(η(t, hn(1, u)))〉dt

≤ −2ε0.

Therefore, by Step 4,

Hλ(η(2ε0, hn(1, u))) ≤ Hλ(hn(1, u))− 2ε0
≤ Cλ − ε0

≤ Cλ − (λ− λn). (2.20)

Combining (2.17) and (2.20), we find

Hλ(η∗(1, u)) = Hλ(η(2ε0, hn(1, u))) ≤ Cλ − (λ− λn)

for any (t, u) ∈ [0, 1]× Q̄, which contradicts the definition of Cλ. �
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3. Schrödinger equation

Let E := W 1,2(RN ). It is well known that there is a one-to-one correspondence between solutions of (S) and
critical points of the C1(E,R)-functional

H(u) :=
1
2

∫
RN

(|∇u|2 + V (x)u2)dx − 1
2∗

∫
RN

K(x)|u|2∗dx−
∫
RN

G(x, u)dx. (3.1)

Let (E(λ))λ∈R be the spectral family of −∆+V in L2(RN ). Let E− := E(0)L2∩E and E+ := (id−E(0))L2∩E,
then the quadratic form

∫
RN (|∇u|2 + V u2)dx is positive definite on E+ and negative definite on E− (cf. [22]).

By introducing a new inner product 〈·, ·〉 in E, the corresponding norm ‖ · ‖ is equivalent to ‖ · ‖1,2, the usual
norm of W 1,2(RN ). Moreover,

∫
RN (|∇u|2 + V u2)dx = ‖u+‖2 − ‖u−‖2, where u± ∈ E±. Then functional (3.1)

can be rewritten as

H(u) =
1
2
‖u+‖2 − 1

2
‖u−‖2 − 1

2∗

∫
RN

K(x)|u|2∗dx−
∫
RN

G(x, u)dx. (3.2)

In order to use Theorem 2.1, we consider the family of functional defined by

Hλ(u) =
1
2
‖u+‖2 − λ

(
1
2
‖u−‖2 +

1
2∗

∫
RN

K(x)|u|2∗dx+
∫
RN

G(x, u)dx
)

(3.3)

for λ ∈ [1, 2].

Lemma 3.1. Hλ is | · |w-upper semicontinuous. H ′
λ is weakly sequentially continuous.

Proof. Noting that un := u−n + u+
n

|·|w→ u implies that un ⇀ u weakly in E and u+
n → u+ strongly in E, then

the proof is the same as that in [23] (see also [6, 12]). The second conclusion is due to [6]. �
Let

ϕε(x) :=
cNψ(x)ε(N−2)/2

(ε2 + |x|2)(N−2)/2
,

where cN = (N(N − 2))(N−2)/4, ε > 0 and ψ ∈ C∞0 (RN , [0, 1]) with ψ(x) = 1 if |x| ≤ r/2; ψ(x) = 0 if |x| ≥ r, r
small enough (cf. e.g. pp. 35 and 52 of [26]). Write ϕε = ϕ+

ε + ϕ−ε with ϕ+
ε ∈ E+, ϕ−ε ∈ E−. Then

‖ϕ−ε ‖ → 0, ‖ϕ+
ε ‖2∗

2∗ → SN/2 as ε→ 0 (cf. Prop. 4.2 of [6]),

where

S := inf
u∈E\{0}

‖∇u‖2
2

‖u‖2
2∗
·

The following lemma can be found in Proposition 4.2 of [6].

Lemma 3.2. Set

I1(u) :=
1
2
‖u+‖2 − 1

2
‖u−‖2 − 1

2∗

∫
RN

K(x)|u|2∗dx, u ∈ E, (3.4)

then

sup
Zε

I1 < c∗ :=
SN/2

N‖K‖(N−2)/2
∞

,

for ε small enough, where Zε := E− ⊕Rϕ+
ε .

To carry forward, we prepare an auxiliary results.
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Lemma 3.3. Assume that g(x, u)/u→ 0 as |u| → 0 uniformly for x ∈ RN and that g is of subcritical Sobolev
exponent growth. If a bounded sequence (wn) ⊂ E and λn ∈ [1, 2] satisfy

λn → λ, H ′
λn

(wn) → 0, Hλn(wn) → c(λ),

where 0 < c(λ) < c∗λ :=
SN/2

N‖λK‖(N−2)/2
∞

, then (wn) is nonvanishing, i.e., there exist r, η > 0 and a sequence

(yn) ⊂ RN , a sequence of open ball (B(yn, r)) centered at yn with radius r, such that

lim sup
n→∞

∫
B(yn,r)

w2
ndx ≥ η.

Proof. The idea is essentially due to Proposition 4.1 of [6]. We give the sketch for the reader’s convenience.
If (wn) is not nonvanishing, then wn → 0 in Lr(RN ) for 2 < r < 2∗ by Lions’ lemma ([16], Lem 1.21). By

standard arguments, ∫
RN

g(x,wn)vndx→ 0 and
∫
RN

G(x,wn)dx→ 0 (3.5)

whenever (vn) ⊂ E is bounded. Hence

Hλn(wn)− 1
2
〈H ′

λn
(wn), wn〉 =

λn

N

∫
RN

K(x)|wn|2∗dx+ o(1) → c(λ). (3.6)

For any δ > 0, we choose µ > ‖V ‖∞(1 + δ)/δ. Write wn = w+
n + w−n ∈ E+ ⊕ E−, and let w+

n = w̃n + z̃n, with
w̃n ∈ E(µ)L2, z̃n ∈ (id−E(µ))L2, where (E(λ))λ∈R is the spectral family of −∆+V in L2. By Proposition 2.4
of [6], w̃n ∈ E and

‖w−n ‖q ≤ c‖w−n ‖2 ≤ c‖wn‖ and ‖w̃n‖q ≤ c‖w̃n‖2 ≤ c‖wn‖, (3.7)
where q = 2N/(N − 4) if N > 4 and q may be chosen arbitrarily large if N = 4. Therefore,

λn‖w−n ‖2 = −〈H ′
λn

(wn), w−n 〉 − λn

∫
RN

K(x)|wn|2∗−2wnw
−
n dx− λn

∫
RN

g(x,wn)w−n dx

≤ 2‖K‖∞‖wn‖2∗−1
r ‖w−n ‖q + o(1)

→ 0,

where r satisfies (2∗ − 1)/r + 1/q = 1, hence 2 < r < 2∗. By the same reasoning,

‖w̃n‖ → 0, hence, wn − z̃n → 0. (3.8)

It follows that

‖z̃n‖2 =
∫
RN

(|∇z̃n|2 + V z̃2
n)dx

= λn

∫
RN

K(x)|wn|2∗−2wnz̃ndx+ o(1)

= λn

∫
RN

K(x)|wn|2∗dx (3.9)

On the other hand, by (4.6) of [6], for any δ > 0 and µ > ‖V ‖∞(1 + δ)/δ, we have that

(1− δ)
∫
RN

|∇z̃n|2dx ≤
∫
RN

(|∇z̃n|2 + V z̃2
n)dx. (3.10)
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By (3.9, 3.8) and (3.10), we have that

(
λ

∫
RN

K(x)|wn|2∗dx
)2/2∗

≤ (λ‖K‖∞)2/2∗‖wn‖2
2∗

= (λ‖K‖∞)2/2∗‖z̃n‖2
2∗ + o(1)

≤ (λ‖K‖∞)2/2∗‖∇z̃n‖2
2/S + o(1)

≤ (λ‖K‖∞)2/2∗

S(1− δ)
λ

∫
RN

K(x)|wn|2∗dx+ o(1).

If we let n→∞ and use (3.6), it follows that

(Nc(λ))2/2∗ ≤ (λ‖K‖∞)2/2∗

S(1− δ)
Nc(λ),

which implies that either c(λ) = 0 or c(λ) ≥ (1− δ)N/2c∗λ. Either way, we get a contradiction since δ is chosen
arbitrarily. �

Choose z0 := ϕ+
ε /‖ϕ+

ε ‖ ∈ E+. For R > 0, set Q := {u = u− + sz0 : ‖u‖ < R, u− ∈ E−, s ∈ R+}. Let
p0 = s0z0 ∈ Q, s0 > 0. For any u ∈ E, we write u = u− + sz0 + w with u− ∈ E−, w ∈ (E− ⊕Rz0)⊥, s ∈ R.
Consider a map F : E → E− ⊕Rz0 defined by

F (u− + sz0 + w) = u− + ‖sz0 + w‖z0.

Let B := F−1(p0), then
B = {u = sz0 + w : w ∈ (E− ⊕Rz0)⊥, ‖u‖ = s0}·

It is easy to check that F, p0, B satisfy the basic assumptions in Section 2. By hypotheses (S4) and (S5), the
proof of the next lemma is trivial.

Lemma 3.4. There exist R > 0, s0 > 0, such that

inf
B
Hλ > 0, sup

∂Q̄

Hλ ≤ 0, for all λ ∈ [1, 2].

Lemma 3.5. For almost all λ ∈ [1, 2], there exists {un} ∈ E such that

sup
n
‖un‖ <∞, H ′

λ(un) → 0 and Hλ(un) → Cλ,

where Cλ ∈ [inf
B
Hλ, sup

Q̄

H ]. Furthermore, there exists δ0 > 0 small enough such that, for almost all λ ∈ [1, 1+δ0],

there exists uλ 6= 0 such that
H ′

λ(uλ) = 0, Hλ(uλ) ≤ sup
Q̄

H.

Proof. The first conclusion follows immediately from Lemmas 3.1, 3.4, 3.5 and Theorem 2.1. Now we prove the
second conclusion. Since g(x, u)u ≥ 0 and Q̄ ⊂ Zε, we get that

0 < Cλ ≤ sup
Q̄

H ≤ sup
Zε

I1 < c∗, (3.11)

where I1, c∗ and Zε come from Lemma 3.2. Therefore, there exists δ0 > 0 such that 0 < Cλ < c∗λ for almost
all λ ∈ [1, 1 + δ0], where c∗λ comes from Lemma 3.3. For those λ, by Lemma 3.3, {un} is nonvanishing, that is,
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there exist yn ∈ RN , α > 0, R1 > 0 such that

lim sup
n→∞

∫
B(yn,R1)

|un|2dx ≥ α > 0.

We find ȳn ∈ ZN such that

lim sup
n→∞

∫
B(0,2R1)

|vn|2dx ≥ α > 0,

where vn(x) := un(x+ ȳn). By the periodicity of V,K and g, {vn} is still bounded and

lim
n→∞Hλ(vn) ∈

[
inf
B
Hλ, sup

Q̄

H

]
, lim

n→∞H ′
λ(vn) = 0.

We may suppose that vn ⇀ uλ. Since E is embedded compactly in Lt
loc(R

N ) for 2 ≤ t < 2∗, then

0 < α ≤ lim
n→∞

∫
B(0,2R1)

|vn|2dx =
∫

B(0,2R1)

|uλ|2dx ≤ |uλ|22,

therefore, uλ 6= 0. Since H ′
λ is weakly sequentially continuous, H ′

λ(uλ) = 0. Finally, by Fatou’s lemma,

Hλ(uλ) = Hλ(uλ)− 1
2
〈H ′

λ(uλ), uλ〉

= λ

∫
RN

(
1
2
(K(x)|uλ|2∗ + g(x, uλ)uλ)− 1

2∗
K(x)|uλ|2∗ −G(x, uλ)

)
dx

= λ

∫
RN

lim
n→∞

(
1
2
(K(x)|vn|2∗ + g(x, vn)vn)− 1

2∗
K(x)|vn|2∗ −G(x, vn)

)
dx

≤ lim
n→∞

(
Hλ(vn)− 1

2
〈H ′

λ(vn), vn〉
)

≤ lim
n→∞Hλ(vn)

≤ sup
Q̄

H.

�
Lemma 3.6. There exist λn ∈ [1, 1 + δ0] with λn → 1, and zn ∈ E\{0} such that

H ′
λn

(zn) = 0, Hλn(zn) ≤ sup
Q̄

H.

Proof. It is an immediately consequence of Lemma 3.5. �
Lemma 3.7. {zn} is bounded.

Proof. Let g1(x, u) := K(x)|u|2∗−2u + g(x, u) and G1(x, u) :=
∫ u

0
g1(x, s)ds. Then by the assumption (S4), we

see that

lim
u→0

g1(x, u)u
G1(x, u)

= 2∗ uniformly for x ∈ RN .

Let ε1 > 0 be such that 2∗ − ε1 > 2. Hence, there exists R1 > 0 such that

g1(x, u)u ≥ (2∗ − ε1)G1(x, u), for x ∈ RN , |u| ≤ R1. (3.12)
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On the other hand, since g(x, u) is of subcritical growth,

lim
u→∞

g1(x, u)u − 2G1(x, u)
|u|2∗ = (1− 2

2∗
)K(x) ≥ c > 0 (3.13)

uniformly for x ∈ RN . Furthermore, condition (1.2) implies that

0 < g(x, u)u ≤ 2
N − 2

k0|u|2∗ for all x ∈ RN , u 6= 0,

hence

g1(x, u)u− 2G1(x, u) > 0 for all x ∈ RN , u 6= 0. (3.14)

Therefore (3.13) and (3.14) imply that there exists c small enough, such that

g1(x, u)u− 2G1(x, u) ≥ c|u|2∗ for all x ∈ RN , |u| ≥ R1. (3.15)

Recall that Hλn(zn) ≤ sup
Q̄

H and H ′
λn

(zn) = 0, then

(
1
2
− 1

2∗ − ε1

)(‖z+
n ‖2 − λn‖z−n ‖2

)
+ λn

(
1

2∗ − ε1
− 1

2∗

)∫
RN

K(x)|zn|2∗dx

+ λn

∫
RN

(
1

2∗ − ε1
g(x, zn)zn −G(x, zn)

)
dx ≤ sup

Q̄

H. (3.16)

By (3.12, 3.14) and (3.16),

(
1
2
− 1

2∗ − ε1

)(‖z+
n ‖2 − λn‖z−n ‖2

) ≤ c+ c

(∫
|zn|≤R1

+
∫
|zn|≥R1

)(
G1(x, zn)− 1

2∗ − ε1
g1(x, zn)zn

)
dx

≤ c+ c

∫
|zn|≥R1

(
G1(x, zn)− 1

2∗ − ε1
g1(x, zn)zn

)
dx

≤ c+ c

∫
|zn|≥R1

(
1
2
g1(x, zn)zn − 1

2∗ − ε1
g1(x, zn)zn

)
dx

= c+ c

∫
|zn|≥R1

g1(x, zn)zndx. (3.17)

Since, by (S4), |g(x, z)z| ≤ c|z|2∗ for all (x, z) ∈ RN ×R, (3.17) implies that

‖z+
n ‖2 − λn‖z−n ‖2 ≤ c+ c

∫
|zn|≥R1

g1(x, zn)zndx

≤ c+ c

∫
|zn|≥R1

(
K(x)|zn|2∗ + g(x, zn)zn

)
dx

≤ c+ c

∫
|zn|≥R1

|zn|2∗dx. (3.18)
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However (3.14) and (3.15) imply that

sup
Q̄

H ≥ Hλn(zn)− 1
2
〈H ′

λn
(zn), zn〉

=
∫
RN

(
1
2
g1(x, zn)zn −G1(x, zn)

)
dx

≥
∫
|zn|≥R1

(
1
2
g1(x, zn)zn −G1(x, zn)

)
dx

≥ c

∫
|zn|≥R1

|zn|2∗dx. (3.19)

Then, combining (3.18) and (3.19), we obtain that

‖z+
n ‖2 − λn‖z−n ‖2 ≤ c. (3.20)

Noting that 〈H ′
λn

(zn), zn〉 = 0, we see that

‖z+
n ‖2 − λn‖z−n ‖2 = λn

∫
RN

(
K(x)|zn|2∗ + g(x, zn)zn

)
dx

≥ c

∫
RN

|zn|2∗dx. (3.21)

So, by (3.20) and (3.21),
∫
RN |zn|2∗dx ≤ c. Noting that 〈H ′

λn
(zn), z+

n 〉 = 0 and (S4), we obtain, by Hölder’s
inequality and (3.21), that

‖z+
n ‖2 = λn

∫
RN

K(x)|zn|2∗−2znz
+
n dx+ λn

∫
RN

g(x, zn)z+
n dx

≤ c

∫
RN

|zn|2∗−1|z+
n |

≤ c‖zn‖2∗−1

2∗ ‖z+
n ‖2∗

≤ c‖z+
n ‖.

Therefore ‖z+
n ‖ ≤ c, and hence, ‖z−n ‖ ≤ c by (3.21). �

Lemma 3.8. {zn} is nonvanishing.

Proof. Since (zn) is bounded, we may assume that

Hλn(zn) → c1 ≤ sup
Q̄

H < c∗ (cf. (3.11)). (3.22)

If {zn} is not nonvanishing (i.e., is vanishing), then it follows from Lions’ lemma (cf. [16], Lem. 1.21) that
zn → 0 in Lr whenever 2 < r < 2∗. The assumption (S4) implies that∫

RN

g(x, zn)zndx→ 0,
∫
RN

G(x, zn)dx→ 0, (3.23)

and consequently

Hλn(zn)− 1
2
〈H ′

λn
(zn), zn〉 =

λn

N

∫
RN

K(x)|zn|2∗dx+ o(1) → c1. (3.24)
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Since K(x) > 0, c1 ≥ 0.
Case 1: If c1 > 0, then by (3.22) and Lemma 3.3, zn is nonvanishing.
Case 2: If c1 = 0, then (3.24) implies that∫

RN

|zn|2∗dx→ 0. (3.25)

Since H ′
λn

(zn) = 0, for any ε > 0, by (S4), we have that

‖z+
n ‖2 = λn

∫
RN

(
K(x)|zn|2∗−2znz

+
n + g(x, zn)z+

n

)
dx

≤ c

∫
RN

|zn|2∗−1|z+
n |dx+ ε‖zn‖‖z+

n ‖+ c‖zn‖p−1
p ‖z+

n ‖

≤ c‖zn‖2∗−1‖z+
n ‖+ ε‖zn‖2 + ε‖z+

n ‖2 + ‖z−n + z+
n ‖p−1‖z+

n ‖.

Since ‖z−n ‖ ≤ ‖z+
n ‖ (see (3.21)) and ε is arbitrary,

c‖z+
n ‖2 ≤ c‖z+

n ‖p + c‖z+
n ‖2∗ ,

which implies that ‖z+
n ‖ ≥ c > 0. But, H ′

λn
(zn) = 0, and (S4) implies that

‖z+
n ‖2 = λn

∫
RN

(
K(x)|zn|2∗−2znz

+
n + g(x, zn)z+

n

)
dx

≤ c‖zn‖2∗−1
2∗ ‖z+

n ‖2∗ + εc‖zn‖‖z+
n ‖+ c‖zn‖p−1

p ‖z+
n ‖.

By the vanishing of {zn} and (3.25), ‖z+
n ‖ → 0, a contradiction. Therefore, {zn} is nonvanishing. �

Proof of Theorem 1.1. Since {zn} is nonvanishing, there exist r > 0, α > 0 and yn ∈ RN such that

lim sup
n→∞

∫
B(yn,r)

z2
ndx ≥ α. (3.26)

We may assume that yn ∈ ZN by taking a large r if necessary. Now set z̃n(x) := zn(x + yn), since Hλ is
invariant with respect to the translation of x by elements of ZN (i.e., Hλ(u(·)) = Hλ(u(· + y)) whenever
y ∈ ZN ), ‖zn‖ = ‖z̃n‖, Hλn(zn) = Hλn(z̃n). Without loss of generality, we may suppose, up to a subsequence,
that z̃n ⇀ z∗, then (3.26) implies that z∗ 6= 0 and H ′

1(z
∗) = 0, i.e., H ′(z∗) = 0. �

4. Appendix

In this Appendix, we give the proof of the existence of the new norm | · |w satisfying |v|w ≤ ‖v‖, ∀v ∈ N and
such that the topology induced by this norm is equivalent to the weak topology of N on bounded subset of N ,
more details can be found in [9].

Let {ek} be an orthonormal basis for N . Define

|v|w =
∞∑

k=1

|(v, ek)|
2k

, v ∈ N.

Then |v|w is a norm on N and satisfies |v|w ≤ ‖v‖, v ∈ N . If vj → v weakly in N , then there is a C > 0 such
that

‖vj‖, ‖v‖ ≤ C, ∀j > 0.
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For any ε > 0, there existK > 0,M > 0, such that 1/2K < ε/(4C) and |(vj−v, ek)| < ε/2 for 1 ≤ k ≤ K, j > M.
Therefore,

|vj − v|w =
∞∑

k=1

|vj − v, ek)|
2k

≤
K∑

k=1

ε/2
2k

+
∞∑

k=K+1

2C
2k

≤ ε

2

∞∑
k=1

1
2k

+
2C
2K

∞∑
k=1

1
2k

≤ ε

2
+
ε

2
·

Therefore, vj → v weakly in N implies |vj − v|w → 0.

Conversely, let ‖vj‖, ‖v‖ ≤ C for all j > 0 and |vj−v|w → 0. Let ε > 0 be given. If h =
∞∑

k=1

αkek ∈ N, take K

so large that ‖hK‖ < ε/(4C), where hK =
∞∑

k=K+1

αkek. Take M so large that |vj − v|w < ε/(2 max
1≤k≤K

2k|αk|) for

all j > M . Then

|(vj − v, h− hK)| = |
K∑

k=1

αk(vj − v, ek)| ≤ max
1≤k≤K

2k|αk|
K∑

k=1

|(vj − v, ek)|
2k

< ε/2

for j > M . Also, |(vj − v, hK)| ≤ 2C‖hK‖ < ε/2. Therefore,

|(vj − v, h)| < ε, ∀j > M,

that is, vj → v weakly in N . �
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