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ON THE OPTIMAL CONTROL OF COEFFICIENTS IN ELLIPTIC PROBLEMS.
APPLICATION TO THE OPTIMIZATION OF THE HEAD SLIDER
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Abstract. We consider an optimal control problem for a class of non-linear elliptic equations. A
result of existence and uniqueness of the state equation is proven under weaker hypotheses than in
the literature. We also prove the existence of an optimal control. Applications to some lubrication
problems and numerical results are given.
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1. Introduction

In order to achieve increased surface density in a magnetic disk file, the head/disk spacing, which is one
of the most critical elements determining the performance of a hard disk drive (HDD), has been continuously
reduced. However, the reduction of the head/disk spacing increases the possibility of contact between head
slider and disk, leading to a catastrophic failure of the head/disk interface (HDI). To obtain a low and stable
flying altitude, it is important to increase the air-bearing stiffness. Finding the gap profile which maximises
the load developed by the bearing leads to a higher bearing stiffness and thus to a more stable slider [11]. The
slider/disk separation is thin enough for the lubrication hypotheses to hold. This leads to the compressible
Reynolds equation [2]: { ∇ · [(u3y + 6Ku2)∇y] = Λ · ∇(uy) x ∈ Ω

y = pa x ∈ ∂Ω
(1.1)

where the air bearing normalized pressure y = y(x) is the unknown of the problem. The normalized film
thickness between the head and the magnetic disk is given by u = u(x) which is the control of the problem.
Ω ⊆ R

2 is the region (with smooth boundary ∂Ω) where the upper (head) and lower (disk) bodies are in
proximity. K > 0 is the so-called Knudsen number, Λ = (Λ1,Λ2) is the bearing number, and pa is a given
function defined on Ω̄.
If we take as a criterion of optimality that of “maximal load” the optimisation problem is

Find u∗ ∈ “an appropriate control set” such that j1(u∗) = min j1(u)
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with

j1(u) = −
∫

Ω

(y(u) − pa)dx

where y(u) denotes the solution of (1.1) corresponding to an arbitrary control u.
This kind of problem also appears in the optimal design of compliant foil journal gas bearing. Using gas as

a lubricant allows to increase life durability and to limit the power loss due to shearing of the hydrodynamic
film, which makes it attractive for high-speed turbomachinery. In particular, compliant gas bearings supply
additional damping and thus increase stability. The counterpart is the lower load capacity with respect to oil
lubricated bearings. So it is important to find the optimal shape of compliant gas bearings which maximises
the load capacity.

Under the hypothesis u ∈ W 1,∞(Ω), Chipot and Luskin [3] have shown the existence and uniqueness of a
weak positive solution of (1.1). In [13] Tello proved the existence for the continuum compressible Reynolds
equation (Eq. (1.1) with K = 0) in the case where u is a piecewise constant function. He also obtained W 1,∞–
regularity of the solution in this case. In [4] Diaz and Tello obtained the same result of regularity for the
incompressible Reynolds equation. In [7] Grigor’ev et al. proved the existence and uniqueness of a positive
solution of the continuum compressible Reynolds equation under hypothesis u ∈ C1,γ .

In the first part of this paper we obtain the existence and uniqueness for (1.1) under the weaker assumption
u ∈ L∞.

Very few examples of sliding bearing optimization can be found in the literature. The first and most famous
one was investigated by Lord Rayleight [10] who found the one-dimensional step bearing which can carry the
largest load for incompressible fluid. Rohde and McAllister [12] numerically computed the best gap profile for a
two-dimensional incompressible gas bearing achieving maximum lift force. In the aforementioned examples the
gap profile obtained was discontinuous. It is well known that the minimization in Sobolev spaces of type W 1,p(Ω)
leads to over-regularization of the control. This brings us to study the problem under weaker hypotheses on u:

• the existence and uniqueness of (1.1) where

u ∈ L∞(Ω), α ≤ u(x) ≤ β a.e. x ∈ Ω with α, β some positive constants;

• the optimisation problem under the supplementary hypothesis that u belongs to an appropriate closed
bounded subset of BV (Ω).

In fact we consider in this paper a general optimal control problem of the form

min
u∈Uad

[j(u) = F (u, y(u))] (O)

subject to 

∇ · {[a(x, u(x))y + b(x, u(x))]∇y} = ∇ · d(x, u(x), y) x ∈ Ω
y = g x ∈ ∂Ω
y ≥ 0 a.e. x in Ω

(P)

where

• Ω ⊆ R
n, n ∈ {1, 2, 3}, an open bounded subset with smooth boundary ∂Ω;

• Uad is the closed bounded set of the space of the functions of bounded variation in Ω defined by

Uad = {u ∈ BV (Ω) ∩ L∞(Ω), α ≤ u ≤ β and TV (u) ≤ c} (1.2)
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with α, β, c some given positive constants, BV (Ω) is the Banach space of bounded variation functions
and TV (u) is the total variation of u (see (4.2));

• F : Uad ×H1 −→ R;
• g : Ω → R;
• a, b : Ω × R → R

n2
;

• d : Ω × R × R
+ → R

n.

In Section 2 we prove the existence and uniqueness of a weak solution y of the following more general problem




∇ ·
{[
ã(x)y + b̃(x)

]
∇y
}

= ∇ · d̃(x, y) x ∈ Ω

y = g x ∈ ∂Ω

y ≥ 0 a.e. x in Ω

(PGEN)

under some weak hypothesis for ã, b̃ : Ω → R
n2

, d̃ : Ω × R
+ → R

n and g.
This will imply the existence and uniqueness of a weak positive solution y(u) of (P) for any u ∈ Uad.
In Section 3 we shall consider the linear elliptic problem

{ −∇ · (A(x)∇y) + ∇ · (B(x)y) = f

y ∈ H1
0 (Ω)

(1.3)

with A : Ω → R
n2

, B : Ω → R
n. We prove existence and uniqueness for A bounded and uniformly elliptic and

B ∈ Lr(Ω) with r > n. This hypotheses are weaker than in the literature [6]. The same kind of results will be
given for a linear elliptic problem in non-conservative form (the term ∇ · (B(x)y) is replaced by B(x) · ∇y).

In Section 4, we first prove the existence of a solution of the optimal control problem (O). We then give
optimality conditions in the two dimensional case only.

In Section 5 we give some applications to lubrication problems and finally, in the last section we give some
numerical results.

2. Study of the state equation

2.1. Existence and uniqueness of (PGEN)

We first study the general nonlinear elliptic problem (PGEN). The hypotheses on data are




ã = (ãij)1≤i,j≤n with ãij ∈ L∞(Ω)∑
i,j

ãij(x)ξiξj ≥ γ‖ξ‖2 a.e. x ∈ Ω, ∀ξ ∈ R
n for a given γ > 0. (H̃a)

We set

ā = sup
i,j

‖ãij‖L∞(Ω)



b̃ = (b̃ij)1≤i,j≤n with b̃ij ∈ L∞(Ω)∑
i,j

b̃ij(x)ξiξj ≥ γ‖ξ‖2 a.e. x ∈ Ω, ∀ξ ∈ R
n.

(H̃b)
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We set
b̄ = sup

i,j
‖b̃ij‖L∞(Ω)


d̃ = (d̃i)1≤i≤n with d̃i(·, y) measurable ∀y ≥ 0

d̃i(x, 0) = 0 a.e. x ∈ Ω

|d̃i(x, y2) − d̃i(x, y1)| ≤ d|y2 − y1| a.e. x ∈ Ω∀y1, y2 ≥ 0 for some d > 0

(H̃d)

g ∈ H1(Ω), 0 ≤ g ≤ ḡ a.e. x ∈ Ω for some g ≥ 0. (Hg)
In the following, we consider only positive weak solutions of (PGEN) in the sense:

Definition 2.1. A function y is called a positive weak solution of (PGEN) if y ∈ g +H1
0 (Ω) ∩ L∞(Ω), y(x) ≥

0 a.e. x in Ω and ∫
Ω

(
ã(x)y(x) + b̃(x)

)
∇y · ∇vdx =

∫
Ω

d̃(x, y(x)) · ∇vdx ∀v ∈ H1
0 (Ω). (PVGEN)

2.1.1. Existence

To show that (PVGEN) has a solution by using a fixed point procedure, we set for any positive number R

BR =
{
y ∈ L2(Ω) : 0 ≤ y(x) ≤ R, a.e. x ∈ Ω

}
(2.1)

which is a closed set of L2(Ω) and define the operator

T : BR → H1(Ω) (2.2)

by Ty = z if z ∈ g +H1
0 (Ω) is the unique solution of the variational problem:∫

Ω

(
ã(x)y(x) + b̃(x)

)
∇z · ∇vdx =

∫
Ω

d̃(x, y(x)) · ∇vdx ∀v ∈ H1
0 (Ω). (2.3)

We introduce also the operator S from BR to L2(Ω) defined by Sy = (Ty)+ = max(Ty, 0).
From the hypotheses (H̃a)(H̃b)(H̃d)(Hg), it is clear that the problem (2.3) has a unique solution. In order

to prove that S has a fixed point by the Shauder fixed point theorem we shall state some preliminary lemmas.

Lemma 2.2. Let z = Ty with y arbitrary in BR. We have:

‖∇z‖L2(Ω) ≤ C
√
R (2.4)

z(x) ≤ g +D
√
R a.e. x in Ω (2.5)

where
C and D depend only on (a, b, γ, d, g,Ω).

Proof. Taking v = z − g in (2.3) we obtain∫
Ω

(
ã(x)y + b̃(x)

)
∇z · ∇zdx =

∫
Ω

(
ã(x)y + b̃(x)

)
∇z∇gdx+

∫
Ω

d̃(x, y) · ∇zdx−
∫

Ω

d̃(x, y) · ∇gdx.

Using (H̃a)(H̃b)(H̃d) and (Hg) and since y ∈ BR we have

γ

∫
Ω

(y + 1) |∇z|2dx ≤ max(ā, b̄)
∫

Ω

(y + 1) |∇z||∇g|dx+ d̄

∫
Ω

(y + 1)|∇z|dx+ d̄R

∫
Ω

|∇g|dx. (2.6)
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Now using (1 + y) ≤ √
2
√
R
√

1 + y for R ≥ 1 with the Cauchy-Schwarz inequality we obtain

∫
Ω

(y + 1) |∇z|2dx ≤ C1

√
R

(∫
Ω

(y + 1)|∇z|2dx
) 1

2

+ C2R

where

C1 =
√

2
max(a, b)‖∇g‖L2(Ω) + d|Ω| 12

γ
; C2 =

d‖∇g‖L2(Ω)|Ω| 12
γ

which implies that there exists a constant C depending on the same parameters as C1, C2 such that

(∫
Ω

(y + 1)|∇z|2dx
) 1

2

≤ C
√
R (2.7)

leading to the desired estimate (2.4).
We show now the estimate (2.5). We use the classic L∞ estimates of solutions of elliptic variational equations

given in Kinderlehrer and Stampacchia [9].
For any real constant k ≥ ḡ, we set

A(k) = {x ∈ Ω : z(x) > k}·

Since ψ = (z − k)+ ∈ H1
0 (Ω) we can take v = ψ in (2.3) and obtain:∫

Ω

(
ã(x)y + b̃(x)

)
∇ψ · ∇ψdx =

∫
A(k)

d̃(x, y) · ∇ψdx

from the above equality, (Hg) (Hd), the Cauchy-Schwarz inequality and since y ∈ BR we have

γ

∫
Ω

|∇ψ|2dx ≤ d
√
R|A(k)| 12

(∫
A(k)

y|∇ψ|2dx

) 1
2

≤ d
√
R|A(k)| 12

(∫
Ω

y|∇z|2dx
) 1

2

.

Using also (2.7) we obtain

‖∇ψ‖2
L2(Ω) ≤

Cd

γ
R|A(k)| 12 . (2.8)

On the other hand, for any r with 4 < r ≤ 6, we denote by c2(r) the constant satisfying the following inequality:

‖v‖Lr(Ω) ≤ c2(r)‖∇v‖L2(Ω), ∀v ∈ H1
0 (Ω).

We have for any l ≥ k ≥ ḡ and r > 4 with the help of the above inequality:

(l − k)r|A(l)| =
∫

A(l)

(l − k)rdx

≤
∫

A(l)

(z(x) − k)rdx

=
∫

A(l)

|ψ|rdx

≤ c2(r)r‖∇ψ‖r
L2(Ω).
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From (2.8) we obtain

|A(l)| ≤
[
c2(r)2RCd

γ

]r/2 |A(k)| r
4

(l − k)r
·

Using Lemma B1 of Kinderlehrer-Stampacchia [9], we obtain (2.5) with

D =

√
(c2(r))Cd

γ
|A(ḡ)| r−4

4r 2
r

r−4 . (2.9)

�

Corollary 2.3. For R ≥ R1 =
(

D
2 +

√
D2

4 + ḡ)
)2

we have S(BR) ⊂ BR where D is defined by (2.9).

Proof. The result is obvious from Lemma 2.2 and the fact that Sy ≥ 0 a.e. in Ω. �

Lemma 2.4. T and S are continuous from BR to L2(Ω)

Proof. Let y ∈ BR be fixed and yn ∈ BR a sequence such that yn → y in L2(Ω) for n→ ∞.
Recall that

0 ≤ y(x) ≤ R, 0 ≤ yn(x) ≤ R a.e. x ∈ R.

We set
z = Ty, zn = Tyn.

The sequence zn ∈ g +H1
0 (Ω) satisfies the variational equality

∫
Ω

(
ã(x)yn + b̃(x)

)
∇zn · ∇vdx =

∫
Ω

d̃(x, yn) · ∇vdx ∀v ∈ H1
0 (Ω). (2.10)

Setting v = zn − g in (2.10), we easily obtain

‖zn‖H1(Ω) ≤ C

which implies the existence of z∗ ∈ g + H1
0 (Ω) such that, up to a subsequence, zn converges to z∗ weakly in

H1(Ω) and strongly in L2(Ω). Passing to the limit in (2.10) with v arbitrary in D(Ω) we obtain
∫

Ω

(
ã(x)y + b̃(x)

)
∇z∗ · ∇vdx =

∫
Ω

d̃(x, y) · ∇vdx ∀v ∈ D(Ω).

By a density argument the above equality is still valid for all v ∈ H1
0 (Ω). Using the uniqueness of solution

of (2.3) we have z∗ = z and that the entire sequence converges to z, which shows the continuity of T . The
continuity of S is then a direct consequence of the continuity of the operator v → v+ from L2(Ω) to L2(Ω). �

Lemma 2.5. S(BR) is relatively compact in L2(Ω).

Proof. Let z ∈ T (BR). From (2.4) we have

‖∇(z − g)‖L2(Ω) ≤ C.

From the Poincaré inequality we deduce ‖z‖H1(Ω) ≤ C. Since ‖z+‖H1(Ω) ≤ ‖z‖H1(Ω) we deduce the result. �

Theorem 2.6. There exists a weak positive solution to the problem (PGEN).
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Proof. From Corollary 2.3, Lemmas 2.4, 2.5 and by using the Schauder fixed point theorem, there exists y ∈ BR

a fixed point of S. So there exists z ∈ g+H1
0 (Ω) solution of (2.3) with y = z+. Taking v = z− as a test function

we have ∫
Ω

(
ã(x)z+ + b̃(x)

)
∇z− · ∇z−dx =

∫
z≥0

d̃(x, z+) · ∇z−dx+
∫

z≤0

d̃(x, z+) · ∇z−dx.

From hypothesis d̃(x, 0) = 0, the right hand side of the above equality is equal to 0 which implies that z− = 0,
so y = z is a weak positive solution of (PGEN). �

2.1.2. Uniqueness

Theorem 2.7. We have uniqueness among all weak positive solutions to problem (PGEN). Further, suppose
that yi is a weak solution to (PGEN) corresponding to the boundary data gi, i = 1, 2. If g1 ≥ g2 a.e. in ∂Ω,
then y1 ≥ y2 a.e. on Ω.

Proof. We set w = y2 − y1 which satisfies the problem




w ∈ (g2 − g1) +H1
0 (Ω)∫

Ω

ã(x)(w∇y2 + y1∇w) · ∇vdx+
∫

Ω

b̃(x)∇w∇vdx

=
∫

Ω

(d̃(x, y2) − d̃(x, y1)) · ∇vdx ∀v ∈ H1
0 (Ω).

(2.11)

We remark that w+ ∈ H1
0 (Ω), so we can take as in [6, 8], v = w+

w++ε as a test function in (2.11) with ε > 0.
Remark also that

∇
(

w+

w+ + ε

)
= ε

∇w+

(w+ + ε)2
(2.12)

∇ log
(

1 +
w+

ε

)
=

∇w+

w+ + ε
· (2.13)

Using (2.12), (2.13) and the hypotheses on the data, we obtain the following four inequalities:

∫
Ω

ã(x)y1∇w · ∇vdx = ε

∫
Ω

ã(x)y1
|∇w+|2

(w+ + ε)2
dx ≥ 0

∣∣∣∣
∫

Ω

ã(x)w∇y2∇vdx
∣∣∣∣ ≤ ε

∫
Ω

ã(x)w+ |∇y2| |∇w+|
(w+ + ε)2

dx

≤ εa

∫
Ω

|∇y2|
∣∣∣∣∇ log

(
1 +

w+

ε

)∣∣∣∣ dx
∫

Ω

b̃(x)∇w∇vdx ≥ γ

∫
Ω

∇w+∇ w+

w+ + ε
dx

= εγ

∫
Ω

∣∣∣∣∇ log
(

1 +
w+

ε

)∣∣∣∣
2

dx

∣∣∣∣
∫

Ω

(d̃(x, y2) − d̃(x, y1)) · ∇vdx
∣∣∣∣ ≤ εd̄

∫
Ω

|w| |∇w+|
(w+ + ε)2

dx

≤ εd̄
√
|Ω|‖∇ log

(
1 +

w+

ε

)
‖L2(Ω).
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We then deduce from (2.11)

γ

∥∥∥∥∇ log
(

1 +
w+

ε

)∥∥∥∥
2

L2(Ω)

≤ a‖∇y2‖L2(Ω)‖∇ log
(

1 +
w+

ε

)
‖L2(Ω) + d

√
|Ω|‖∇ log

(
1 +

w+

ε

)
‖L2(Ω).

Since log
(

1 + w+

ε

)
∈ H1

0 (Ω), from the Poincaré inequality we deduce:

∫
Ω

∣∣∣∣log
(

1 +
w+

ε

)∣∣∣∣
2

dx ≤ C1 (2.14)

with C1 independent on ε.
We then have w+ = 0 a.e. x ∈ Ω and the proof is complete. �

2.2. Existence and uniqueness of (P)

We suppose that




a = (aij)1≤i,j≤n with aij(·, u) measurable ∀u ∈ R,

aij(x, ·) continuous a.e. x ∈ Ω
|aij(x, u)| ≤ ā a.e. x ∈ Ω, ∀u ∈ R∑
i,j

aij(x, u)ξiξj ≥ γ‖ξ‖2 a.e. x ∈ Ω, ∀u ∈ R ∀ξ ∈ R
n

(Ha)




b = (bij)1≤i,j≤n with bij(·, u) measurable ∀u ∈ R,

bij(x, ·) continuous a.e. x ∈ Ω
|bij(x, u)| ≤ b̄ a.e. x ∈ Ω, ∀u ∈ R∑
i,j

bij(x, u)ξiξj ≥ γ‖ξ‖2 a.e. x ∈ Ω, ∀u ∈ R ∀ξ ∈ R
n

(Hb)



d = (di)1≤i≤n with di(·, u, y) measurable ∀(u, y) ∈ R × R

+,

di(x, ·, ·) continuous a.e. x ∈ Ωdi(x, u, 0) = 0 a.e. x ∈ Ω, ∀u ∈ R

|di(x, u, y2) − d̃i(x, u, y1)| ≤ d|y2 − y1| a.e. x ∈ Ω, ∀u ∈ R∀y1, y2 ≥ 0 for some d > 0.
(Hd)

Corollary 2.8. Under hypotheses (Ha), (Hb), (Hd) and (Hg), there exists a unique weak positive solution to
problem (P) for any u ∈ Uad.

Proof. We apply Theorems 2.6 and 2.7 with ã(x) = a(x, u(x)), b̃(x) = b(x, u(x)) and d̃(x, y) = d(x, u(x), y). �

3. Some new results on some linear elliptic problems

Theorem 3.1. Let A ∈ (L∞(Ω))n2
such that there exists δ > 0 satisfying

n∑
i,j=1

Aij(x)ξiξj ≥ δ‖ξ‖2 ∀x ∈ Ω and ξ ∈ R
n. (3.1)
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Assume B ∈ (Lr(Ω))n with r > n. Then for any f ∈ H−1(Ω), there exists a unique weak solution of the
following linear elliptic problem:

{ −∇ · (A(x)∇y) + ∇ · (B(x)y) = f

y ∈ H1
0 (Ω).

(3.2)

Proof. The proof of the uniqueness is the same as in Theorem 2.7. Let us show the existence.
Let σ > 0 and consider the operator D defined by

D : H1
0 → H−1

v → g = Dv = −∇ · (A(x)∇v) + ∇ · (B(x) · v) + σv.

Since problem (3.2) is equivalent to Dv − σv = f , we shall apply the Fredholm alternative to the operator D.
Let

a(v, w) =
∫

Ω

A(x)∇v · ∇wdx −
∫

Ω

B(x)v · ∇wdx + σ

∫
Ω

vwdx.

We have

a(v, v) ≥ δ‖v‖2
H1

0(Ω) −
∫

Ω

B(x)v · ∇vdx+ σ‖v‖2
L2(Ω).

From the hypothesis we have

∣∣∣∣
∫

Ω

B(x)v · ∇vdx
∣∣∣∣ ≤ ‖B‖Lr(Ω)‖v‖Lr′(Ω)‖∇v‖L2(Ω)

with
1
2

+
1
r

+
1
r′

= 1.

From the Sobolev embedding and interpolation inequalities, there exists s ∈]0, 1[ such that

‖v‖Lr′(Ω) ≤ C‖v‖Hs(Ω)

≤ C‖v‖s
H1(Ω)‖v‖1−s

L2(Ω).

Then from the inequality ab ≤ 1
pa

p + 1
q b

q (with p = 2
1+s and q = 2

1−s) we obtain, for any η > 0

∣∣∣∣
∫

Ω

B(x)v · ∇vdx
∣∣∣∣ ≤ η‖v‖2

H1
0 (Ω) + C(η)‖v‖2

L2(Ω).

Then
a(v, v) ≥ δ‖v‖2

H1
0 (Ω) − η‖v‖2

H1
0 (Ω) − C(η)‖v‖2

L2(Ω) + σ‖v‖2
L2(Ω).

Finally taking η < δ, we can choose σ sufficiently large such that D is invertible. Now the Fredhom alternative
gives the result. �

Theorem 3.2. Let A ∈ (L∞(Ω))n2
such that there exists δ > 0 satisfying

n∑
i,j=1

Aij(x)ξiξj ≥ δ‖ξ‖2 ∀x ∈ Ω and ξ ∈ R
n. (3.3)
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Assume B ∈ (Lr(Ω))n with r > n. Then for any f ∈ H−1(Ω), there exists a unique weak solution of the
following linear elliptic problem: { −∇ · (A(x)∇y) +B(x) · ∇y = f

y ∈ H1
0 (Ω). (3.4)

Proof. We can show exactly as in the above theorem that the Freedholm alternative applies here. So it suffices
to prove the uniqueness which is a simple application of the following lemma. �

Lemma 3.3. With the same hypotheses as in the above theorem, let u in H1(Ω) such that

∫
Ω

A(x)∇v · ∇wdx +
∫

Ω

B(x) · ∇v wdx ≤ 0 ( respectively ≥ 0)

∀w ∈ H1
0 (Ω) with w ≥ 0. (3.5)

Then sup
Ω
v ≤ sup

∂Ω
v+ ( respectively inf

Ω
v ≥ inf

∂Ω
(−v−)).

Proof. It suffices to prove the part “≤0”. The other part is a classic consequence of the equality inf v =
− sup(−v). Following the proof of Theorem 8.1 of Gilbarg and Trudinger [6] we suppose that l = sup

∂Ω
v+ < sup

Ω
v

and choose k to satisfy l ≤ k ≤ supΩ v. We set w = (v − k)+.
From (3.5) we deduce

δ‖∇w‖2
L2(Ω) ≤ −

∫
Ω

B(x) · ∇w wdx. (3.6)

As in the proof of Theorem 3.1 we can show that for any η > 0,
∣∣∣∣
∫

Ω

B(x)w · ∇wdx
∣∣∣∣ ≤ Cη‖w‖2

H1
0 (Ω) + C(η)‖w‖2

L2(Ω). (3.7)

From (3.6) and (3.7), we deduce that there exists a constant C independent of k such that

‖w‖H1
0(Ω) ≤ C‖w‖2

L2(Ω). (3.8)

The rest of the proof is the same as in Theorem 8.1 of Gilbarg and Trudinger [6]. �

4. Study of the optimal control problem

Let us denote by BV (Ω) the space of functions of bounded variations in Ω [5]:

BV (Ω) = {v ∈ L1(Ω), TV (v) < +∞} (4.1)

with

TV (v) = sup
{∫

Ω

v∇ · ϕdx/ϕ ∈ (C∞
0 (Ω))2, ‖ϕ‖L∞(Ω) ≤ 1

}
(4.2)

where, for ϕ = (ϕ1, ϕ2), ‖ϕ‖L∞(Ω) = max(‖ϕ1‖L∞(Ω), ‖ϕ2‖L∞(Ω)).
BV (Ω) is a Banach space with the following norm:

‖v‖BV (Ω) = ‖v‖L1(Ω) + TV (v). (4.3)

The next properties of BV (Ω) can be found in [5].



112 I. CIUPERCA, M. EL ALAOUI TALIBI AND M. JAI

Proposition 4.1.

(i) If (un)n∈N ⊂ BV (Ω) and un → u in L1(Ω), then

TV (u) ≤ lim inf TV (un); (4.4)

(ii) for every u ∈ BV (Ω) ∩ Lr(Ω), r ∈ [1,+∞), there exists a sequence (un)n∈N ⊂ C∞(Ω̄) such that
limn→∞

∫
Ω |u− un|rdx = 0 and lim

n→∞ TV (un) = TV (u);

(iii) for every bounded sequence (un)n∈N ⊂ BV (Ω) there exists a subsequence, still denoted un, and a function
u ∈ BV (Ω) such that un → u in L1(Ω).

4.1. Existence of an optimal control

In addition to hypotheses (Ha), (Hb), (Hd) and (Hg) we need the following hypotheses on F :

F is continuous from Uad ×H1(Ω) to R. (HF )

Proposition 4.2. If (un)n∈N ⊂ Uad and un → u in L1(Ω), then u ∈ Uad and un → u in Lr(Ω), for any
r ∈ [1,+∞[.

Proof. As un converges to u in L1(Ω) and α ≤ un ≤ β, we have α ≤ u ≤ β, a.e. in Ω, and from Proposition 4.1 (i)
we have

TV (u) ≤ c.

Then u ∈ Uad. Moreover, for any r ∈ [1,+∞[, the following estimate:

‖un − u‖r
Lr(Ω) ≤ (β − α)r−1‖un − u‖L1(Ω)

shows that un → u in Lr(Ω). �

Corollary 4.3. Uad is a compact subset of Lr(Ω) for any r ∈ [1,+∞[.

Proof. Let un be a sequence of Uad, then un is bounded BV (Ω). Then the corollary is a consequence of
Propositions 4.2 and 4.1 (iii). �

In the following, we denote by y(u) the positive weak solution y of (P) corresponding to a given control u.
We now give the main result of this section.

Theorem 4.4. The problem (O) has at least one solution.

Proof. Let (un)n∈N ⊂ Uad a minimizing sequence and yn = y(un) such that

F (un, yn) → F ∗ = inf
u∈Uad

F (u, y(u)). (4.5)

From Corollary 4.3, there exists a subsequence, still denoted un, and a function u∗ ∈ Uad such that:

un → u∗ strongly in L1(Ω), in L2(Ω) and L∞(Ω) − weak-*. (4.6)

Let yn = y(un) ∈ g +H1
0 (Ω) ∩ L∞(Ω) solution of

∫
Ω

(a(x, un)yn + b(x, un))∇yn · ∇vdx =
∫

Ω

d(x, un, yn) · ∇vdx ∀v ∈ H1
0 (Ω). (4.7)
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From Lemma 2.2 we have

‖yn‖H1(Ω) ≤ C(a, b, γ, d, g,Ω) (4.8)

‖yn‖L∞(Ω) ≤ C(a, b, γ, d, g,Ω). (4.9)

Then there exists y ∈ g +H1
0 (Ω) ∩ L∞(Ω) such that

yn → y weakly in H1(Ω) and strongly in L2(Ω). (4.10)

Since un → u∗ in L1(Ω), on a subsequence still denoted by un, we have

un(x) → u∗(x) a.e. x ∈ Ω.

From (Hb) and the Lebesgue theorem we deduce

b(x, un) → b(x, u∗) in Lr(Ω) ∀r ∈ [1,+∞[. (4.11)

In the same manner we obtain

a(x, un) → a(x, u∗) in Lr(Ω) ∀r ∈ [1,+∞[. (4.12)

Since y ∈ L∞(Ω), we also obtain using (Hd)

d(x, un, y) → d(x, u∗, y) in Lr(Ω) ∀r ∈ [1,+∞[. (4.13)

From (4.11) we easily obtain∫
Ω

b(x, un)∇yn · ∇ϕdx→
∫

Ω

b(x, u∗)∇y · ∇ϕdx ∀ϕ ∈ D(Ω). (4.14)

We have ∫
Ω

a(x, un)yn∇yn · ∇ϕdx −
∫

Ω

a(x, u∗)y∇y · ∇ϕdx = En
1 + En

2 + En
3 (4.15)

with

En
1 =

∫
Ω

(a(x, un) − a(x, u∗))yn∇yn · ∇ϕdx

En
2 =

∫
Ω

a(x, u∗)(yn − y)∇yn · ∇ϕdx

En
3 =

∫
Ω

a(x, u∗)y∇(yn − y) · ∇ϕdx.

From (4.8) and (4.9) there exists a constant C independent of n such that

‖yn∇yn · ∇ϕ‖L2(Ω) ≤ C

and from (4.12), we deduce
En

1 → 0.
The L2 strong convergence of yn to y and the estimate ‖a(x, u∗)∇yn · ∇ϕ‖L2(Ω) ≤ C lead to

En
2 → 0.
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The weak convergence of yn to y in H1(Ω) gives En
3 → 0, so

∫
Ω

a(x, hn)yn∇yn · ∇ϕdx→
∫

Ω

a(x, h∗)y∇y · ∇ϕdx. (4.16)

We now write ∫
Ω

(d(x, un, yn) − d(x, u∗, y)) · ∇ϕdx =
∫

Ω

(d(x, un, yn) − d(x, un, y)) · ∇ϕdx

+
∫

Ω

(d(x, un, y) − d(x, u∗, y)) · ∇ϕdx.

From (Hd), the strong convergence of yn to y in L2(Ω) and (4.13) we deduce
∫

Ω

d(x, un, yn) · ∇ϕdx→
∫

Ω

d(x, u∗, y) · ∇ϕdx. (4.17)

Passing to the limit in (4.7) and using (4.14), (4.16) and (4.17) we obtain
∫

Ω

(a(x, h∗)y + b(x, h∗))∇y · ∇ϕdx =
∫

Ω

d(x, h∗, y) · ∇ϕdx ∀ϕ ∈ D(Ω). (4.18)

From the density of D(Ω) in H1
0 (Ω) the formulation (4.18) is still valid for all ϕ ∈ H1

0 (Ω); the uniqueness result
(Th. 2.7) gives y = y(u∗). From the continuity of F we have

F (un, yn) → F (u∗, y) (4.19)

which ends the proof. �

4.2. Optimality conditions

We give a preliminary result which is a consequence of Theorem 4.2 p. 38 of [1].

Lemma 4.5. Let A ∈ (L∞(Ω))n2
such that there exists δ > 0 satisfying

n∑
i,j=1

Aij(x)ξiξj ≥ δ‖ξ‖2 ∀x ∈ Ω and ξ ∈ R
n.

Then there exists r∗ = r∗(δ, Ā) > 2, where Ā = maxi,j ‖Aij‖L∞(Ω), satisfying the following property:
For any f ∈ (Lr∗

(Ω))2 the unique solution u of the problem

{ ∇ · (A∇y) = ∇ · f in Ω

y ∈ H1
0 (Ω)

(4.20)

belongs to W 1,r∗
0 (Ω) and satisfy

‖y‖
W 1,r∗

0 (Ω)
≤ c1‖f‖(Lr∗(Ω))2 (4.21)

with c1 ≥ 0 depending only on δ and Ā.

Remark 4.6. We apply the above lemma for the problem (P) with A = a(x, u)y + b(x, u), δ = γ and
Ā = āR+ b̄. So, there exists s = s(a, b, γ, d, g,Ω) > 2 such that, if g ∈W 1,s(Ω) then y ∈W 1,s(Ω).
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In this section we consider the bidimensional case (n = 2), since we need the Sobolev embedding W 1,s(Ω) ⊂
L∞(Ω) for any s > 2. We also need the following supplementary assumptions on the data:

There exist α̃ and β̃ with 0 < α̃ < α and β̃ > β such that
• a and b are derivable in u and

|∂ua(x, u)| + |∂ub(x, u)| ≤ C ∀x ∈ Ω, ∀u ∈ [α̃, β̃]; (4.22)

• ∂ua and ∂ub are uniformly continuous on u on [α̃, β̃], uniformly in x in the following sense: for any
ε > 0, there exists δ > 0 such that, if |u1 − u2| < δ we have

|∂ua(x, u1) − ∂ua(x, u2)| < ε (resp. |∂ub(x, u1) − ∂ub(x, u2)| < ε) ∀x ∈ Ω, u1, u2 ∈ [α̃, β̃]; (4.23)

(For example the product between a L∞ function in x and a uniformly continuous function in u satisfy
such a condition.)

• The function d is derivable in y and u with ∂yd continuous in y and ∂ud continuous in u and:

|∂yd(x, u, y)| + |∂ud(x, u, y)| ≤ C ∀x ∈ Ω, ∀u ∈ [α̃, β̃], ∀y ≥ 0; (4.24)

•
F is differentiable on Uad ×H1(Ω); (4.25)

• g ∈ W 1,s(Ω) with s given in Remark 4.6.

Proposition 4.7. The mapping u → y(u) is continuously differentiable from Uad to W 1,s(Ω).

Proof. To obtain the result we use the implicit function theorem. We first need to plunge Uad in an appropriate
open set. To do that, let us consider c̃ > c and set

Ũ = {u ∈ BV (Ω) ∩ L∞(Ω), α̃ < u < β̃ and TV (u) < c̃}· (4.26)

We now set
D = int(Ũ) (the interior of Ũ in the topology of BV (Ω) ∩ L∞(Ω)). (4.27)

It is easy to see that Uad ⊂ D. We now define the mapping

G : W 1,s
0 (Ω) ×D −→ W−1,s(Ω)

(ȳ, u) −→ −div[(a(x, u)(g + ȳ) + b(x, u))∇(g + ȳ)] + div[d(x, u, g + ȳ)]
(4.28)

where s is given by Remark 4.6.
We first show that G is differentiable in ȳ. Since W 1,s

0 (Ω) ↪→ L∞(Ω) it is clear that the application

ȳ ∈W 1,s
0 (Ω) → −div[(a(x, u)(g + ȳ) + b(x, u))∇(g + ȳ)] ∈ W−1,s(Ω) (4.29)

is differentiable. Let us now show that the application

ȳ ∈W 1,s
0 (Ω) → d(x, u, g + ȳ) ∈ Ls(Ω) (4.30)

is differentiable, which will imply the differentiability of G in ȳ. We have

‖d(x, u, ȳ + g + h) − d(x, u, ȳ + g) − ∂yd(x, u, ȳ + g)h‖Ls(Ω)

≤ ‖∂yd(x, u, ȳ + g + ψ(x)h) − ∂yd(x, u, ȳ + g)‖Ls(Ω) × ‖h‖L∞(Ω) (4.31)

with ψ(x) ∈ [0, 1], ∀x ∈ Ω.
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From hypotheses (4.24) and using the Lebesgue convergence theorem we obtain the differentiability. We
have, for all (ȳ, u) ∈W 1,s

0 (Ω) ×D and z ∈W 1,s
0 (Ω):

∂G

∂ȳ
(ȳ, u)(z) = −div[a(x, u)∇(g + ȳ)z] + ∇[∂yd(x, u, g + ȳ)z] − div[(a(x, u)(g + ȳ) + b)∇z]. (4.32)

Using hypotheses (4.22), (4.23), (4.24) and by similar arguments we show that the application

(ȳ, u) ∈ W 1,s
0 (Ω) ×D → ∂G

∂ȳ
(ȳ, u) ∈ L(W 1,s

0 (Ω),W−1,s(Ω))

is continuous.
Now it remains to show the differentiability of G in u and the continuity of the differential. We show it only

for the most difficult term:
u ∈ D → b(x, u)∇(g + ȳ) ∈ Ls(Ω). (4.33)

We have

‖[b(x, u+h)−b(x, u)−∂ub(x, u)h]∇(g+ȳ)‖Ls(Ω) ≤ ‖[∂ub(x, u+ψ(x)h)−∂ub(x, u)]h‖L∞(Ω)‖(g+ȳ)‖W 1,s(Ω) (4.34)

with ψ(x) ∈ [0, 1], ∀x ∈ Ω.
Using Hypotheses (4.23) we deduce the differentiability. By similar calculations we show the differentiability

of the other terms and the continuity of the differential.
So G is continuously differentiable.
Finally, we have to show that for any u ∈ Uad

∂G
∂ȳ (y(u)− g, u) is an isomorphism from W 1,s

0 (Ω) to W−1,s(Ω).
Since W−1,s(Ω) ⊂ H−1(Ω), we can apply Theorem 3.1 with n = 2, r = s, A = a(x, u)y(u) + b(x, u) (remark
that y(u) ≥ 0) and B = −a(x, u)∇y(u) + ∂yd(x, u, y(u)) which ends the proof. �
Theorem 4.8. Let u∗ be a solution of problem (O). Then there exists z ∈ H1

0 (Ω) such that the following
optimality system is satisfied:

∇ · [(a(x, u∗)y(u∗) + b(x, u∗))∇y(u∗)] = ∇ · d(x, u∗, y(u∗)) x ∈ Ω, y(u∗) ∈ g +H1
0 (Ω)

−∇ · [(a(x, u∗)y(u∗) + b(x, u∗))∇z] + (a(x, u∗)∇y(u∗) − ∂yd(x, u∗, y(u∗))) · ∇z

= −∂F
∂y

(u∗, y(u∗)) x ∈ Ω, z ∈ H1
0 (Ω) (4.35)

dj
du

(u∗) · (u− u∗) ≥ 0, ∀u ∈ Uad (4.36)

where

dj
du

(u∗) · v =
∫

Ω

v
[
∂ua(x, u∗)y(u∗) + ∂ub(x, u∗)

]
∇y(u∗) · ∇zdx

−
∫

Ω

v∂ud(x, u∗, y(u∗)) · ∇z + ∂uF (u∗, y(u∗)).vdx ∀v ∈ BV (Ω) ∩ L∞(Ω). (4.37)

Proof. Let j : Uad → R, j(u) = F (u, y(u)). We now classically define the Lagrangian �L by:

�L(u, y, z) = F (u, y) +
∫

Ω

(a(x, u)y + b(x, u))∇y · ∇zdx−
∫

Ω

d(x, u, y) · ∇zdx

∀u ∈ Uad, y ∈W 1,s(Ω), z ∈ H1
0 (Ω). (4.38)
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It is clear that j(u) = �L(u, y(u), z) ∀u ∈ Uad, z ∈ H1
0 (Ω). From hypothesis (4.22)–(4.25), �L is differentiable

with respect to (u, y). Since u → y(u) is differentiable from Proposition 4.7, we deduce the differentiability of j.
Since u∗ is a minimum of j on Uad, we classically have (4.36). We also have

dj
du

(u∗) · v = ∂u �L(u∗, y(u∗), z) · v + ∂y �L(u∗, y(u∗), z) · ψ

with ψ = dy
du (u∗) · v, which gives

dj
du

(u∗) · v = ∂uF (u∗, y(u∗)) · v

+
∫

Ω

v
[
∂ua(x, u∗)y(u∗) + ∂ub(x, u∗)

]
∇y(u∗) · ∇zdx

−
∫

Ω

v∂ud(x, u∗, y(u∗)) · ∇z + ∂yF (u∗, y(u∗)) · ψdx

+
∫

Ω

[a(x, u∗)y(u∗) + b(x, u∗)]∇z · ∇ψdx

+
∫

Ω

[a(x, u∗)∇y(u∗) − ∂yd(x, u∗, y(u∗))] · ∇z ψdx. (4.39)

We now remark that, due to Theorem 3.2 with n = 2 and r = s, the equation (4.35) has a unique solution
z ∈ H1

0 (Ω). Since y(u∗) = g + ȳ(u∗), with ȳ(u∗) ∈ W 1,s
0 (Ω) (see proof of Prop. 4.7) we have ψ ∈ W 1,s

0 (Ω).
Taking z, the solution of the adjoint problem (4.35) with ψ as a test function in its variational formulation, in
(4.39), we obtain (4.37). �

5. Application to lubrication problems

In this section we consider the lubrication problem (1.1). We suppose that u ∈ Uad as given in (1.2). It is
clear that this problem is a particular case of problem (P) and all hypotheses on data of (P) are satisfied here.
So there exists a unique positive weak solution of (1.1) denoted also by y(u).

5.1. Optimization of the head slider for maximum load

To increase the performance of magnetic disk devices we need to find the shape of the head which gives the
maximum load in order to increase the film stiffness [11]. In this case the fluctuations on the flight induced by
the roughness of the disk are highly reduced. The aim of this section is then to search an optimal shape for the
head under criterion “Maximal load”, i.e.

Find u∗ ∈ Uad such that j1(u∗) = min
u∈Uad

j1(u)

where
j1(u) = −

∫
Ω

(y(u) − pa)dx.

This optimisation problem is a particular case of (O) with F (u, y) = − ∫
Ω

(y − pa)dx. From Theorems 4.4
and 4.8 there exists an optimal solution u∗ and an adjoint z satisfying

∇ · [(u∗3y(u∗) + 6Ku∗2)∇y(u∗)] = Λ · ∇(u∗y(u∗)) x ∈ Ω, y(u∗) ∈ 1 +H1
0 (Ω)

−∇ · [(u∗3y(u∗) + 6Ku∗2)∇z] + (u∗3∇y(u∗) − Λu∗) · ∇z = 1 x ∈ Ω, z ∈ H1
0 (Ω)

dj1
du

(u∗) · (u− u∗) ≥ 0, ∀u ∈ Uad
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where

dj1
du

(u∗) · v =
∫

Ω

v
(
3u∗2y(u∗) + 12Ku∗

)∇y(u∗) · ∇z dx−
∫

Ω

vy(u∗)Λ · ∇z dx.

5.2. Optimization of the head slider for minimum drag forces

Another criterion of optimality is to minimize the drag forces in the direction of the fluid motion. One of the
main objectives in reducing the drag forces here is to maintain the flatness of the PFPE layer which is usually
on the disk in order to make the start-stop phases easier. So the problem is

Find u∗ ∈ Uad such that j2(u∗) = min
u∈Uad

j2(u)

where

j2(u) =
(∫

Ω

(
1
u
− 3u

Λ1

∂y(u)
∂x1

)
dx
)2

.

This is also a particular case of problem (O) for which we can apply the general results.
For this problem the optimal solution is given by:

∇ · [(u∗3y(u∗) + 6Ku∗2)∇y(u∗)] = Λ · ∇(u∗y(u∗)) x ∈ Ω, y(u∗) ∈ 1 +H1
0 (Ω)

−∇ · [(u∗3y(u∗) + 6Ku∗2)∇z] + (u∗3∇y(u∗) − Λu∗) · ∇z = − 6
Λ1

∂u

∂x1

∫
Ω

(
1
u
− 3u

Λ1

∂y(u)
∂x1

)
dx z ∈ H1

0 (Ω)

dj2
du

(u∗) · (u− u∗) ≥ 0, ∀u ∈ Uad

where

dj2
du

(u∗) · v =
∫

Ω

v
(
3u∗2y(u∗) + 12Ku∗

)∇y(u∗) · ∇z dx−
∫

Ω

vy(u∗)Λ · ∇z dx

+
∫

Ω

(
− 1
u2

− 3
Λ1

∂y(u)
∂x1

)
vdx

∫
Ω

(
1
u
− 3u

Λ1

∂y(u)
∂x1

)
dx. (5.1)

Remark 5.1. In practical situations we look for a compromise of both criterion: maximizing the load and
minimizing the drag forces. We can take for example:

Find u∗ ∈ Uad such that j3(u∗) = min
u∈Uad

j3(u)

where

j3(u) = µj1(u) + (1 − µ)j2(u) µ ∈ [0, 1].

The choice of µ depends on the importance of criterion j1 and j2 (a smaller µ corresponds to a smaller importance
of the load).
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Figure 1. Optimal control and corresponding pressure profile. Λ = 100, K = 1, β = 10, c = 1000.

6. Numerical results

In this section we find numerically an optimal head shape which maximizes the load (Sect. 5.1) in the one
dimensional case. So the state equation becomes

d
dx

(
(u3y + 6Ku2)

dy
dx

)
= Λ

d
dx

(uy) (6.1)

y(0) = y(1) = 1. (6.2)

We consider a regular subdivision of [0, 1] (xi = ih, i = 0, ..., n+ 1 : h = 1
n+1 ).

An approximation of the function u ∈ Uad is of the form:

un(x) =
n+1∑
i=1

uiχi(x) (6.3)

where χi is the characteristic function of Ii = [xi−1, xi].
Remark that

TV (un) =
n∑

i=1

|ui+1 − ui|. (6.4)

We solve problem (6.1) using the P1 finite elements and fixed point iterations. We then solve the corresponding
adjoint problem (4.35) and we evaluate j1 and its gradient. We then use the procedure DONLP2 from Netlib
library to minimize j1.

We observe in Figures 1 and 2 that increasing Λ leads to an increasing of the entrance point (u∗(0)). Actually
the number Λ is very high due to the very thin film thickness. In order to avoid a large entrance point we take
a smaller β for which we obtain a saturated optimal shape (see Fig. 3).

The above results are obtained with a high value of the bound on the total variation (c = 1000). The same
result is obtained for greater value of c so that the solution is not depending of the value. For smaller value of
c (see Fig. 4), the constraint due to the total variation is saturated and the optimal solution is different.
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Figure 2. Optimal control and
corresponding pressure profile. Λ =
200, K = 1, β = 10, c = 1000.
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Figure 3. Optimal control and
corresponding pressure profile. Λ =
200, K = 1, β = 5, c = 1000.
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Figure 4. Optimal control and
corresponding pressure profile. Λ =
100, K = 1, β = 10, c = 2.

An interesting and open problem could be to prove the existence of an optimal control by considering the
new admissible control set: Uad = {u ∈ L∞(Ω), α ≤ u ≤ β}.
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