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CARLEMAN ESTIMATES FOR THE NON-STATIONARY LAMÉ SYSTEM
AND THE APPLICATION TO AN INVERSE PROBLEM
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Abstract. In this paper, we establish Carleman estimates for the two dimensional isotropic non-
stationary Lamé system with the zero Dirichlet boundary conditions. Using this estimate, we prove
the uniqueness and the stability in determining spatially varying density and two Lamé coefficients by
a single measurement of solution over (0, T ) × ω, where T > 0 is a sufficiently large time interval and
a subdomain ω satisfies a non-trapping condition.
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1. Introduction

This paper is concerned with Carleman estimates for the two dimensional non-stationary isotropic Lamé
system with the zero Dirichlet boundary condition and an application to an inverse problem of determining
spatially varying density and the Lamé coefficients by a single interior measurement of the solution. The
Carleman estimate is a weighted L2-estimate of the solution to a partial differential equation and it has been
fundamental for proving the uniqueness in a Cauchy problem for the partial differential equation or the unique
continuation.

More precisely, we consider the two dimensional isotropic non-stationary Lamé system:

(Pu)(x0, x
′) ≡ ρ(x′)∂2

x0
u(x0, x

′) − (Lλ,µu)(x0, x
′) = f(x0, x

′),

x ≡ (x0, x
′) ∈ Q ≡ (0, T )× Ω, (1.1)

where

(Lλ,µv)(x′) ≡ µ(x′)∆v(x′) + (µ(x′) + λ(x′))∇x′divv(x′)

+ (divv(x′))∇x′λ(x′) + (∇x′v + (∇x′v)T )∇x′µ(x′), x′ ∈ Ω. (1.2)

Throughout this paper, Ω ⊂ R2 is a bounded domain whose boundary ∂Ω is of class C3, x0 and x′ = (x1, x2)
denote the time variable and the spatial variable respectively, and u = (u1, u2)T where ·T denotes the transpose
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of matrices, Ek is the identity matrix of the size k × k,

∂xjϕ = ϕxj =
∂ϕ

∂xj
, j = 0, 1, 2.

We set ∇x′v = (∂xk
vj)1≤j,k≤2 for a vector function v = (v1, v2)T and ∇x′φ = (∂x1φ, ∂x2φ)T for a scalar function

φ. Henceforth ∇ means ∇x = (∂x0 , ∂x1 , ∂x2) if we do not specify.
Moreover the coefficients ρ, λ, µ satisfy

ρ, λ, µ ∈ C2(Ω), ρ(x′) > 0, µ(x′) > 0, λ(x′) + µ(x′) > 0 for x′ ∈ Ω. (1.3)

As for more details for the Lamé system, see for example, Chapter III of Duvaut and Lions [11] or Gurtin [14].
The Carleman estimate is an essential technique not only for the unique continuation, but also for solving the

exact controllability and stabilizability (e.g., Bellassoued [2–4], Imanuvilov [17], Imanuvilov and Yamamoto [25],
Kazemi and Klibanov [32], Tataru [44], Zhang [51], and Lasiecka and Triggiani [37] as a related book) and the
inverse problems (e.g., Bukhgeim [6], Bukhgeim and Klibanov [8], Klibanov [35]). Thus the first main purpose
of this paper is to establish Carleman estimates for system (1.1). Our method works, in principle, also for
the three dimensional case but the arguments are more complicated and independent consideration is required.
Thus in this paper, we will exclusively discuss the spatially two dimensional case. In a forthcoming paper, we
will treat the three dimensional case.

Since the pioneering work [9] by Carleman, the theory of inequalities of Carleman’s type has been rapidly
developed and now many general results are available for a single partial differential equation (see [12, 15, 29,
30, 44]), while for strongly coupled systems of partial differential equations, the situation is more complicated
and much less understood. To our best knowledge, the most general result for systems of partial differential
equations is Calderon’s uniqueness theorem (see e.g., [12, 52]). The technique developed by Calderon, reduces
the system of partial differential equations to a system of pseudo-differential operators of the first order:

dU
dx2

= M(x,Dx0 , Dx1)U + F,

where M(x,Dx0 , Dx1) is a matrix pseudo-differential operator. Then by some change of variables U =
S(x,Dx0 , Dx1)Ũ, this matrix pseudo-differential operator M is reduced to S−1MS such that S−1MS con-
sists of blocks of a small size located on the main diagonal and that in each block the principal symbols of all
the operators located below the main diagonal are zero. In order to construct the matrix S, the eigenvalues
and eigenvectors of the matrix M(x, ξ0, ξ1) should be smooth functions of the variables x and ξ0, ξ1 ∈ R1 and
each eigenvalue should not change the multiplicity. This condition is restrictive, especially in the case where we
are looking for a Carleman estimate near boundary, and therefore the choice for a variable x2 is limited. For
example the non-stationary Lamé system does not satisfy this condition, in general. On the other hand, for the
stationary Lamé system, this method works well and produces the unique continuation result from an arbitrary
open subset (see [10]). See also Imanuvilov and Yamamoto [27] as for a Carleman estimate for the stationary
Lamé system.

As long as the non-stationary Lamé system is concerned, it is known that thanks to the special structure
of the system, the functions divu and rotu satisfy scalar wave equations (modulo lower order terms). The
system of partial differential equations for the functions u, divu, rotu, is coupled via only first order terms.
This allows us to apply the Carleman estimate for a scalar hyperbolic equation in the case where the function
u has a compact support (see [13, 16, 19]).

The structure of our proof is in principle similar to Yamamoto [49]. That is, we work mainly with two
hyperbolic equations depending on a parameter s > 0 for the functions zλ+2µ ≡ esφdivu and zµ ≡ esφrotu:
Pλ+2µ(x,D, s)zλ+2µ = (div f)esφ and Pµ(x,D, s)zµ = (rot f)esφ. The main difficulty one should overcome, is
that there are no boundary conditions for these functions. This problem is solved in the following way: outside
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an exceptional set in the contangent bundle T ∗(Q), the operators Pλ+2µ and Pµ can be microlocally factorized
as the product of some function β̃(x) and two pseudo-differential operators of the first order:

Pβ(x,D, s) = β̃P−,β(x,D, s)P+,β(x,D, s),

where β = λ + 2µ or = µ, P±,β = Dx2 − Γ±
β (x,Dx0 , Dx1 , s), and x2 is normal to the boundary ∂Ω. Since the

principal symbol of the operator Γ−
β (x, ξ0, ξ1, s) satisfies the inequality

−Im Γ−
β (x, ξ0, ξ1, s) ≥ C|s|

with a constant C > 0, we have a priori estimates for P+,β(x,D, s)zβ |x2=0 in an L2-space. These estimates and
the zero Dirichlet boundary condition yield the H1-boundary estimates for zβ. The set on which we cannot
factorize both the operators Pβ(x,D, s) into a product of the first order operators, has to be discussed separately.

Next we will prove a Carleman estimate with the H−1(Q) norm of the force f in the right hand side. The
Carleman estimate with right hand side in H−1(Q)-space was proved by Imanuvilov [18], Ruiz [43], for a scalar
hyperbolic equation and by Imanuvilov and Yamamoto [26] for a parabolic equation. In this paper, by a method
in [26], we will derive an H−1(Q)-Carleman estimate (Th. 2.3) for (1.1) from a Carleman estimate (Th. 2.1)
with H1-norm.

Finally we consider an inverse problem of determining the coefficients λ, µ and ρ from one single measurement
of the solution u in (0, T ) × ω, where ω ⊂ Ω is a suitable subdomain and T > 0 is sufficiently large. By our
H−1(Q)-Carleman estimate for the Lamé system, we will establish the uniqueness and the stability result for
the inverse problem.

This paper is composed of nine sections and two appendices. In Section 2, we state Carleman estimates
(Ths. 2.1–2.3) for functions which do not have compact supports but satisfy the zero Dirichlet boundary con-
dition on (0, T ) × ∂Ω. Theorem 2.1 is a Carleman estimate whose right hand side is estimated in H1-space.
Theorems 2.2 and 2.3 are Carleman estimates respectively with right hand sides in L2-space and in H−1-space.
In Section 3, we will apply the H−1-Carleman estimate (Th. 2.3), and prove the uniqueness and the conditional
stability in the inverse problem with a single interior measurement. In Sections 4–8, we prove Theorem 2.1;
In Section 4, we will reduce Theorem 2.1 to Lemma 4.1, and in Section 5, we further localize Lemma 4.1 by
means of pseudo-differential operators. Dividing all the possible cases into three cases, in Sections 6–8, we will
complete the proof of the localized estimate separately in those three cases. Finally Theorems 2.2 and 2.3 are
proved in Section 9.

2. Carleman estimates for the two dimensional non-stationary Lamé system

Let us consider the two dimensional Lamé system

Pu(x0, x
′) ≡ ρ(x′)∂2

x0
u(x0, x

′) − (Lλ,µu)(x0, x
′) = f(x0, x

′) in Q, (2.1)

u|(0,T )×∂Ω = 0, u(T, x′) = ∂x0u(T, x′) = u(0, x′) = ∂x0u(0, x′) = 0, (2.2)

where u = (u1, u2)T , f = (f1, f2)T are vector-valued functions, and the partial differential operator Lλ,µ is
defined by (1.2). The coefficients ρ, λ, µ ∈ C2(Ω) are assumed to satisfy (1.3).

Let ω ⊂ Ω be an arbitrarily fixed subdomain (not necessary connected). Denote by 	n(x′) = (n1(x′), n2(x′))
and 	τ (x′) the outward unit normal vector and a unit tangential vector to ∂Ω at x′ respectively, and set ∂v

∂�n =
∇x′v · 	n and ∂v

∂�τ = ∇x′v · 	τ .
We set

Qω = (0, T )× ω.
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Let ξ = (ξ0, ξ′) = (ξ0, ξ1, ξ2). We set

{
p1(x, ξ) = ρ(x′)ξ20 − µ(x′)(|ξ1|2 + |ξ2|2),
p2(x, ξ) = ρ(x′)ξ20 − (λ(x′) + 2µ(x′))(|ξ1|2 + |ξ2|2)

(2.3)

and ∇ξ = (∂ξ0 , ∂ξ1 , ∂ξ2). For arbitrary smooth functions ϕ(x, ξ) and ψ(x, ξ), we define the Poisson bracket by
the formula

{ϕ, ψ} =
2∑

j=0

(∂ξjϕ)(∂xjψ) − (∂ξjψ)(∂xjϕ).

We set i =
√−1 and 〈a, b〉 =

∑3
k=1 akbk for a = (a1, a2, a3), b = (b1, b2, b3) ∈ C3.

We assume that the density ρ, the Lamé coefficients λ, µ and the domains Ω, ω satisfy the following condition
(cf. [15]).

Condition 2.1. There exists a function ψ ∈ C3(Q) such that |∇′
xψ| 	= 0 on Q \Qω and

{pk, {pk, ψ}}(x, ξ) > 0, ∀k ∈ {1, 2} (2.4)

if (x, ξ) ∈ (Q \Qω) × (R3 \ {0}) satisfies pk(x, ξ) = {pk, ψ}(x, ξ) = 0,

{pk(x, ξ − is∇ψ(x)), pk(x, ξ + is∇ψ(x))}/2is > 0, ∀k ∈ {1, 2} (2.5)

if (x, ξ, s) ∈ (Q \Qω) × (R3 \ {0})× (R \ {0}) satisfies

pk(x, ξ + is∇ψ(x)) = 〈∇ξpk(x, ξ + is∇ψ(x)),∇ψ(x)〉 = 0.

On the lateral boundary, we assume

√
ρ
∣
∣
∣ψx0

∣
∣
∣ <

µ√
λ+ 2µ

∣
∣
∣
∂ψ

∂	τ

∣
∣
∣ +

√
µ
√
λ+ µ√

λ+ 2µ

∣
∣
∣
∂ψ

∂	n

∣
∣
∣, p1(x,∇ψ) < 0, ∀x ∈ (0, T )× ∂Ω,

and
∂ψ

∂	n

∣
∣
∣
(0,T )×(∂Ω\∂ω)

< 0. (2.6)

Let ψ(x) be the weight function in Condition 2.1. Using this function, we introduce the function φ(x) by

φ(x) = eτψ(x), τ > 1, (2.7)

where the parameter τ > 0 will be fixed below. Denote

‖u‖2
B(φ,Q) ≡

∫

Q

(
2∑

|α|=0

s4−2|α||∂αxu|2 + s|∇rotu|2 + s3|rotu|2

+ s|∇divu|2 + s3|divu|2
)

e2sφdx, (2.8)

where α = (α0, α1, α2), αj ∈ N+ ∪ {0}, ∂αx = ∂α0
x0
∂α1
x1
∂α2
x2
.

Now we formulate our Carleman estimates as main results.
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Theorem 2.1. Let f ∈ (H1(Q))2, and let the function ψ satisfy Condition 2.1. Then there exists τ̂ > 0 such
that for any τ > τ̂ , there exists s0 = s0(τ) > 0 such that for any solution u ∈ (H1(Q))2 ∩ L2(0, T ; (H2(Ω)2) to
problem (2.1)–(2.2), the following estimate holds true:

‖u‖2
Y (φ,Q) � ‖u‖2

B(φ,Q) + s

∥
∥
∥
∥

∂u
∂	n

esφ
∥
∥
∥
∥

2

(H1((0,T )×∂Ω))2
+ s

∥
∥
∥
∥

∂2u
∂	n2

esφ
∥
∥
∥
∥

2

(L2((0,T )×∂Ω))2
+ s3

∥
∥
∥
∥

∂u
∂	n

esφ
∥
∥
∥
∥

2

(L2((0,T )×∂Ω))2

≤ C1(s2‖fesφ‖2
(L2(Q))2 + ‖(∇f)esφ‖2

(L2(Q))2 + ‖u‖2
B(φ,Qω)), ∀s ≥ s0(τ), (2.9)

where the constant C1 = C1(τ) > 0 is independent of s.

Remark. In Carleman estimate (2.9), the weights which correspond to rotu and divu are better than the
weights which correspond to ∇u. This is a result of the special structure of the Lamé system which allows us
to decouple into two wave equations for rotu and divu (see (4.1)).

Next we formulate other two Carleman estimates where norms of the function f are taken in (L2(Q))2 and
H−1(Q). In particular, the second of these two Carleman estimate is essential for obtaining our sharp uniqueness
result in the inverse problem.

In addition to Condition 2.1, we assume

∂x0ψ(T, x′) < 0, ∂x0ψ(0, x′) > 0, ∀x′ ∈ Ω. (2.10)

Theorem 2.2. Let f ∈ (L2(Q))2 and let the function ψ satisfy (2.10) and Condition 2.1 and let function φ be
given by (2.7). Then there exists τ̂ > 0 such that for any τ > τ̂ , there exists s0 = s0(τ) > 0 such that for any
solution u ∈ (H1(Q))2 to problem (2.1)–(2.2), the following estimate holds true:

∫

Q

(|∇u|2 + s2|u|2)e2sφdx ≤ C1

(

‖fesφ‖2
(L2(Q))2 +

∫

Qω

(|∇u|2 + s2|u|2)e2sφdx
)

, ∀s ≥ s0(τ), (2.11)

where the constant C1 = C1(τ) > 0 is independent of s.

Theorem 2.3. Let f = f−1 +
∑2

j=0 ∂xj fj with f−1 ∈ (H−1(Q))2 and f0, f1, f2 ∈ (L2(Q))2, and let the function
ψ satisfy (2.10) and Condition 2.1 and let the function φ be given by (2.7). Then there exists τ̂ > 0 such that
for any τ > τ̂ , there exists s0 = s0(τ) > 0 such that for any solution u ∈ (L2(Q))2 to problem (2.1)–(2.2), the
following estimate holds true:

∫

Q

|u|2e2sφdx ≤ C1



‖f−1esφ‖2
(H−1(Q))2 +

2∑

j=0

‖fjesφ‖2
(L2(Q))2 +

∫

Qω

|u|2e2sφdx



 , ∀s ≥ s0(τ), (2.12)

where the constant C1 = C1(τ) > 0 is independent of s.

3. Determination of the density and the Lamé coefficients by a single

measurement

Recall that the differential operator Lλ,µ is defined by (1.2). We assume (1.3) for ρ, λ, µ. By u =
u(λ, µ, ρ,p,q, η)(x), we denote the sufficiently smooth solution to
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ρ(x′)(∂2
x0

u)(x) = (Lλ,µu)(x), x ∈ Q, (3.1)

u(x) = η(x), x ∈ (0, T )× ∂Ω, (3.2)

u(T/2, x′) = p(x′), (∂x0u)(T/2, x′) = q(x′), x′ ∈ Ω, (3.3)

where η, p and q are suitably given functions.
Let ω ⊂ Ω be a suitably given subdomain. We consider

Inverse Problem. Let pj ,qj , ηj , 1 ≤ j ≤ N , be appropriately given. Then determine λ(x′), µ(x′), ρ(x′),
x′ ∈ Ω, by

u(λ, µ, ρ,pj ,qj , ηj)(x), x ∈ Qω ≡ (0, T )× ω. (3.4)

Our formulation of the inverse problem is one with a finite number of observations (i.e., N < ∞). For inverse
problems for the non-stationary Lamé equation by infinitely many boundary observations (i.e., Dirichlet-to-
Neumann map), we refer to Rachele [42], for example. A monograph of Yahkno [48] is concerned with the
inverse problems for the Lamé system.

For the formulation with a finite number of observations, Bukhgeim and Klibanov [8] proposed a remarkable
method based on a Carleman estimate and established the uniqueness for similar inverse problems for scalar
partial differential equations. As works after [8], see:

(1) Baudouin and Puel [5], Bukhgeim [6] for an inverse problem of determining potentials in Schrödinger
equations;

(2) Imanuvilov and Yamamoto [21], Isakov [29, 30], Klibanov [35] for the corresponding inverse problems
for parabolic equations;

(3) Bukhgeim, Cheng, Isakov and Yamamoto [7], Imanuvilov and Yamamoto [22–24], Isakov [28–30], Isakov
and Yamamoto [31], Khăıdarov [33, 34], Klibanov [35], Puel and Yamamoto [40, 41], Yamamoto [50]
for inverse problems of determining potentials, damping coefficients or the principal terms in scalar
hyperbolic equations.

In particular, for inverse hyperbolic equations, we have to assume that the observation subdomain ω should
satisfy a geometric condition and the observation time T has to be sufficiently large, which is a natural conse-
quence of the hyperbolicity of the governing partial differential equations. Such situations are similar for our
inverse problem for the Lamé system.

The Carleman estimate for the non-stationary Lamé equation was obtained for functions with compact
supports, by Eller, Isakov, Nakamura and Tataru [13], Ikehata, Nakamura and Yamamoto [16], Imanuvilov,
Isakov and Yamamoto [19], Isakov [28], and, by the methodology by [8] or [22], several uniqueness results are
available for the inverse problem for Lamé system (3.1)–(3.3): [28] established the uniqueness in determining a
single coefficient ρ(x′), using four measurements (i.e., N = 4).
Later [16] reduced the number of measurements to three (i.e., N = 3) for determining ρ.
Recently [19] proved conditional stability and the uniqueness in the determination of the three functions λ(x′),
µ(x′), ρ(x′), x′ ∈ Ω, with only two measurements (i.e., N = 2).

In all the papers [16,19,28], the authors have to assume that ∂ω ⊃ ∂Ω because the basic Carleman estimates
require that solutions under consideration have compact supports in Q.

In [28] and [16], the key is a Carleman estimate where the right hand side is estimated in an L2-space
with the divergence and the estimate is proved via a system of hyperbolic equations of u and divu with the
same principal terms. On the other hand, in [19], the key is a Carleman estimate with L2-right hand side
where ‖esφdivu‖2

L2(Q) is reduced to ‖uesφ‖2
L2(Q) by means of an H−1-Carleman estimate for a scalar hyperbolic

equation. In [19], as its consequence, we can reduce N to take N = 2 for simultaneous determination of all the
three functions λ, µ, ρ.

In this section, we will further apply a Carleman estimate (Th. 2.3) whose right hand side is estimated in
H−1 space to prove the conditional stability and the uniqueness with a single measurement: N = 1. Thus the
main achievements are
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(1) the reduction of the number of observations, i.e., N = 1. The previous paper [19] requires N = 2;
(2) the relaxation of the assumptions on the observation subdomain ω.

We will be able to prove similar results on the uniqueness and the stability in the three dimensional case on the
basis of the corresponding Carleman estimate, and in a forthcoming paper, we will discuss the details.

In order to formulate our main result, we will introduce notations and an admissible set of unknown param-
eters λ, µ, ρ. Henceforth we set (x′, y′) =

∑2
j=1 xjyj for x′ = (x1, x2) and y′ = (y1, y2). Let a subdomain ω ⊂ Ω

satisfy
∂ω ⊃ {x′ ∈ ∂Ω; ((x′ − y′), 	n(x′)) ≥ 0} ≡ Γ (3.5)

with some y′ 	∈ Ω.

Remark. Under Condition (3.5) on ω, we can prove the observability inequality for the wave equation ∂2
x0

−∆
if the observation time T is larger than 2 supx′∈Ω |x′−y′| (e.g., [39]). If (3.5) holds and T > 0 is sufficiently large,
then ω and T satisfy the geometric optics condition in [1], so that we can prove observability inequalites. On
the other hand, for solving inverse problems, a Carleman estimate is essential and observability inequalities are
not directly applicable. If for other ω and T > 0, we will be able to verify Condition 2.1 similarly to Lemma 3.1
or [24], then we can establish similar results to Theorem 3.1 below. However searches for other ω and T are
omitted here because those are lengthy.

Denote

d =
(

sup
x′∈Ω

|x′ − y′|2 − inf
x′∈Ω

|x′ − y′|2
) 1

2

. (3.6)

Next we define an admissible set of unknown coefficients λ, µ, ρ. Let M0 ≥ 0, 0 < θ0 ≤ 1 and θ1 > 0 be
arbitrarily fixed and let us introduce the conditions on a function β:







β(x′) ≥ θ1 > 0, x′ ∈ Ω,

‖β‖C3(Ω) ≤M0,
(∇x′β(x′),(x′−y′))

2β(x′) ≤ 1 − θ0, x′ ∈ Ω \ ω.
(3.7)

For fixed functions a, b, η on ∂Ω and p, q in Ω, we set

W = WM0,M1,θ0,θ1,a,b =

{

(λ, µ, ρ) ∈ (C3(Ω))3;λ = a, µ = b on ∂Ω,

λ+ 2µ
ρ

,
µ

ρ
satisfy (3.7),

min{µ2(x′), µ(x′)(λ+ µ)(x′)}
ρ(x′)(λ + 2µ)(x′)

≥ θ1 > 0, x′ ∈ Ω, ‖u(λ, µ, ρ,p,q, η)‖W 7,∞(Q) ≤M1

}

(3.8)

where the constant M1 is given.

Remark. The admissible set W is restrictive, but contains sufficiently many (λ, µ, ρ). We here give a subset
of W which suggests that the set W is not very small. Let p,q ∈ C∞(Ω) be given arbitrarily and let us choose
arbitrary positive constants a, b, ρ0. Then, for the Dirichlet boundary data η ∈ C∞([0, T ]× ∂Ω), we assume

(∂2j
x0
η)(T/2, x′) =

(
1
ρ0
La,b

)j

p(x′), (∂2j+1
x0

η)(T/2, x′) =
(

1
ρ0
La,b

)j

q(x′),

x′ ∈ ∂Ω, 0 ≤ j ≤ N0.

Here N0 is a sufficiently large natural number.
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We set

W0 =

{

(λ, µ, ρ) ∈ (C∞(Ω))3;λ = a, µ = b, ρ = ρ0 in a neighbourhood of ∂Ω,

(
λ+ 2µ
ρ

)

(x′) > θ1,

(
µ

ρ

)

(x′) > θ1,
min{µ2(x′), µ(x′)(λ + µ)(x′)}

ρ(x′)(λ + 2µ)(x′)
> θ1, x′ ∈ Ω,

‖ρ‖C∞(Ω), ‖λ‖C∞(Ω), ‖µ‖C∞(Ω) < M0,
∥
∥
∥
∥

ρ

2(λ+ 2µ)
∇
(
λ+ 2µ
ρ

)∥
∥
∥
∥
C(Ω)

,

∥
∥
∥
∥

ρ

2µ
∇
(
µ

ρ

)∥
∥
∥
∥
C(Ω)

<
1 − θ0

supx′∈Ω\ω |x′ − y′|

}

·

The set W0 is not empty and is not “thin”. Then, since the conditions on η yield compatibility conditions of
sufficient orders with p,q at {T/2}×∂Ω for any (λ, µ, ρ) ∈ W0, we can prove by an argument similar to [pp. 1369–
1370, 19] that u(λ, µ, ρ,p,q, η) ∈ C7(Q) and there exists a constant M1 = M1(a, b, ρ0, θ1,M0,p,q, η) > 0 such
that

‖u(λ, µ, ρ,p,q, η)‖C7(Q) ≤M1

for all (λ, µ, ρ) ∈ W0. Therefore we see that W0 is a subset of W = WM0,M1,θ0,θ1,a,b defined by (3.8). Thus,
after a suitable choice of η, we can conclude that the admissible set W can contain sufficiently many elements.

It is rather restrictive that λ+2µ
ρ and µ

ρ should satisfy (3.7), which is one possible sufficient condition for the
pseudoconvexity (i.e., Condition (2.1)). We can relax Condition (3.7) to a more generous condition which can
be related with a necessary condition enabling us to establish a Carleman estimate. See Imanuvilov, Isakov and
Yamamoto [20], where a scalar hyperbolic equation is discussed but the modification to the Lamé system is
straightforward. Such a relaxed condition guarantees that the geodesics which are generated by the hyperbolic
equations defined by (2.3), cannot remain on the level sets given by the weight function φ. In particular, by
[20], we can replace the condition that λ+2µ

ρ and µ
ρ satisfy (3.7) by one that the Hessians

(

∂xj∂xk

(
ρ

µ

) 1
2
)

1≤j,k≤2

,

(

∂xj∂xk

(
ρ

λ+ 2µ

) 1
2
)

1≤j,k≤2

are non-negative and
∣
∣
∣∇

(
ρ
µ

)∣
∣
∣ 	= 0 and

∣
∣
∣∇

(
ρ

λ+2µ

)∣
∣
∣ 	= 0 on Ω.

We choose θ > 0 such that

θ +
M0d√
θ1

√
θ < θ0θ1, θ1 inf

x′∈Ω
|x′ − y′|2 − θd2 > 0. (3.9)

Here we note that since y′ 	∈ Ω, such θ > 0 exists.
Let [·]1 denote the first component of the vector under consideration and let E2 the 2×2 identity matrix. We

note that (Lλ,µp)(x′), etc., are 2-column vectors for 2-column vectors p. Let (λ, µ, ρ) be an arbitrary element
of W .

Now we are ready to state

Theorem 3.1. We assume that

Ω = {(x1, x2); γ0(x2) < x1 < γ1(x2), x2 ∈ I} (3.10)

with some open interval I and γ0, γ1 ∈ C(I). Moreover we assume that the functions p = (p1, p2)T and
q = (q1, q2)T satisfy

det
(

(Lλ,µp)(x′) (divp(x′))E2 (∇x′p(x′) + (∇x′p(x′))T )(x′ − y′)
(Lλ,µq)(x′) (divq(x′))E2 (∇x′q(x′) + (∇x′q(x′))T )(x′ − y′)

)

	= 0, ∀x′ ∈ Ω, (3.11)
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det
(

(Lλ,µp)(x′) ∇x′p(x′) + (∇x′p(x′))T (divp)(x′ − y′)
(Lλ,µq)(x′) ∇x′q(x′) + (∇x′q(x′))T (divq)(x′ − y′)

)

	= 0, ∀x′ ∈ Ω, (3.12)

x1 − y1 	= 0,

[Lλ,µq]1(∂x1p2 + ∂x2p1)(x′) 	= [Lλ,µp]1(∂x1q2 + ∂x2q1)(x
′), ∀x′ ∈ Ω (3.13)

and that

T >
2√
θ
d. (3.14)

Then there exist constants κ = κ(W , ω,Ω, T, λ, µ, ρ) ∈ (0, 1) and C1 = C1(W , ω,Ω, T, λ, µ, ρ) > 0 such that

‖λ̃− λ‖L2(Ω) + ‖µ̃− µ‖L2(Ω) + ‖ρ̃− ρ‖H−1(Ω)

≤C1‖u(λ, µ, ρ,p,q, η) − u(λ̃, µ̃, ρ̃,p,q, η)‖κH4(0,T ;(L2(ω))2)

for any (λ̃, µ̃, ρ̃) ∈ W.

As for the corresponding results on the stability for inverse problems for scalar hyperbolic equations, we refer
to [22–24] for example.

Our stability and uniqueness result requires only one measurement: N = 1. For the determination of the three
coefficients by a single measurement, we have to choose initial data which satisfy stronger Conditions (3.11)–
(3.13) than in the case of N ≥ 2. Thus Conditions (3.11)–(3.13) are not generic properties and should be
realized in a non-physical way by us. Moreover, as the following example shows, we can take p and q satisfying
those.

Example of Ω, p, q meeting (3.11)–(3.13). We assume that λ, µ are positive constants and that {(x1, x2) ∈
Ω; x2 = y2} and {(x1, x2) ∈ Ω; x1 = y1} are empty. Noting that the fourth columns of the matrices in (3.11)
and (3.12) have x′ − y′ as factors, we will take quadratic functions in x′. For example, we take

p(x′) =
(

0
(x1 − y1)(x2 − y2)

)

, q(x′) =
(

(x2 − y2)2

0

)

.

Then we can verify that (3.11)–(3.13) are all satisfied.

Remark 3.1. In place of (3.10), let us assume

Ω =
{

(x1, x2); γ̃0(x1) < x2 < γ̃1(x1), x1 ∈ Ĩ
}

(3.10’)

with some open interval Ĩ. Then, after replacing (3.13) by

x2 − y2 	= 0,

[Lλ,µq]2(∂x1p2 + ∂x2p1)(x′) 	= [Lλ,µp]2(∂x1q2 + ∂x2q1)(x
′), x′ ∈ Ω, (3.13’)

the conclusion of Theorem 3.1 holds under Conditions (3.11), (3.12) and (3.14). Moreover in the case when Ω
is a more general smooth domain, we can prove the conditional stability in our inverse problem under other
conditions on ω ⊂ Ω. We will omit the details, for the sake of compact description of the proof.

We set

ψ(x) = |x′ − y′|2 − θ

(

x0 − T

2

)2

, φ(x) = eτψ(x), x = (x0, x
′) ∈ Q. (3.15)
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First we show

Lemma 3.1. Let (λ, µ, ρ) ∈ W, and let us assume (3.9) and (3.14). Then, for sufficiently large τ > 0, the
function ψ given by (3.15) satisfies Conditions 2.1 and (2.10). Therefore the conclusion of Theorem 2.3 holds
and the constants C1(τ), τ̂ and s0(τ) in (2.12) can be taken independently of (λ, µ, ρ) ∈ W.

Proof. Conditions (2.10) and the third condition in (2.6) are directly verified by means of (3.5). Conditions (2.4)
and (2.5) can be verified by the same way as in Imanuvilov and Yamamoto [24], for example. Finally we have
to verify the first and second conditions in (2.6). Without loss of generality, we may assume that T = 2d√

θ
+ ε,

where ε > 0 is sufficiently small. Because if Theorem 3.1 is proved for this value of T , then the conclusion is
true for any T̃ > T . Then, by noting that

(∣
∣
∣
∂ψ

∂	τ

∣
∣
∣

2

+
∣
∣
∣
∂ψ

∂	n

∣
∣
∣

2
) 1

2

= |∇x′ψ|

and that the right hand side of the first inequality in (2.6) is greater than or equal to

min
{

µ(x′)
√

(λ+ 2µ)(x′)
,

√
µ(λ+ µ)(x′)

√
(λ+ 2µ)(x′)

}(∣
∣
∣
∂ψ

∂	τ

∣
∣
∣

2

+
∣
∣
∣
∂ψ

∂	n

∣
∣
∣

2
) 1

2

in terms of (3.8), it suffices to verify

−(θ(x0 − T/2))2 + θ1|x′ − y′|2 > 0

for x ∈ [0, T ]× ∂Ω. In fact, by means of the second inequality in (3.9), we have

4θ1|x′ − y′|2 − 4θ2
(

x0 − T

2

)2

≥ 4θ1 inf
x′∈Ω

|x′ − y′|2 − θ(θT 2)

≥ 4θ1 inf
x′∈Ω

|x′ − y′|2 − θ(2d+ ε
√
θ)2

> 0

because ε > 0 is sufficiently small. The uniformity of the constants C1(τ), τ̂ and s0(τ) follows similarly to [19].
Thus the proof of Lemma 3.1 is complete. �

Next we prove a Carleman estimate for a first order partial differential operator

(P0g)(x′) =
2∑

j=1

p0,j(x′)∂xjg(x
′),

where p0,j ∈ C1(Ω), j = 1, 2.

Lemma 3.2. We assume
2∑

j=1

p0,j(x′)∂xjφ(T/2, x′) > 0, x′ ∈ Ω. (3.16)

Then there exists a constant τ0 > 0 such that for all τ > τ0, there exist s0 = s0(τ) > 0 and C2 = C2(s0, τ0,Ω, ω) >
0 such that ∫

Ω

s2|g|2e2sφ(T/2,x′)dx′ ≤ C2

∫

Ω

|P0g|2e2sφ(T/2,x′)dx′
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for all s > s0 and g ∈ H1(Ω) satisfying

g = 0 on






x′ ∈ ∂Ω;

2∑

j=1

p0,j(x′)nj(x′) ≥ 0






·

Lemma 3.3. We assume
2∑

j=1

p0,j(x′)∂xjφ(T/2, x′) 	= 0, x′ ∈ Ω.

Then the conclusion of Lemma 3.2 is true for all s > s0 and g ∈ H1
0 (Ω).

Proof of Lemma 3.2. For simplicity, we set φ0(x′) = φ(T/2, x′) and w = esφ0g, Q0w = esφ0P0(e−sφ0w). Then

∫

Ω

|P0g|2e2sφ(T/2,x′)dx′ =
∫

Ω

|Q0w|2dx′.

We have
Q0w = P0w − sq0w,

where q0(x′) =
∑2

j=1 p0,j(x′)∂xjφ0(x′). Therefore, by (3.16) and integration by parts, we obtain

‖Q0w‖2
L2(Ω) = ‖P0w‖2

L2(Ω) + s2‖q0w‖2
L2(Ω) − 2s

∫

Ω

2∑

j=1

p0,j(∂xjw)q0wdx′

≥ s2
∫

Ω

q0(x′)2w2(x′)dx′ − s

∫

Ω

2∑

j=1

p0,jq0∂xj(w
2)dx′

≥ C0s
2

∫

Ω

w2(x′)dx′ − s

∫

∂Ω

2∑

j=1

p0,jq0w
2njdS + s

∫

Ω

2∑

j=1

∂xj (p0,jq0)w2dx′

≥ (C2s
2 − C3s)

∫

Ω

w2dx′ − s

∫

∂Ω∩{∑2
j=1 p0,jnj≤0}





2∑

j=1

p0,jnj



 q0w
2dS.

By (3.16), we have q0 > 0 on ∂Ω, so that the right hand side is greater than or equal to (C2s
2 −C3s)

∫

Ω
w2dx′.

Thus by taking s > 0 sufficiently large, the proof of Lemma 3.2 is complete. �
The proof of Lemma 3.3 is similar, thanks to the fact that the integral on ∂Ω vanishes for g ∈ H1

0 (Ω).
Now we proceed to

Proof of Theorem 3.1. The proof is similar to Isakov, Imanuvilov and Yamamoto [19], Imanuvilov and Ya-
mamoto [22–24] and the new ingredient is an H−1-Carleman estimate (Lem. 3.1) . Henceforth, for simplicity,
we set

u = u(λ, µ, ρ,p,q, η), v = u(λ̃, µ̃, ρ̃,p,q, η)

and
y = u− v, f = ρ− ρ̃, g = λ− λ̃, h = µ− µ̃.

In (3.13), without loss of generality, we may assume that

x1 − y1 > 0, (x1, x2) ∈ Ω.
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Then we set

F (x1, x2) =
∫ x1

γ1(x2)

f(ξ, x2)dξ, (x1, x2) ∈ Ω. (3.17)

If x1−y1 < 0 for (x1, x2) ∈ Ω, then it is sufficient to replace (3.17) by F (x1, x2) =
∫ x1

γ0(x2)
f(ξ, x2)dξ, (x1, x2) ∈ Ω.

Then

ρ̃∂2
x0

y = Lλ̃,µ̃y +Gu in Q (3.18)

and

y
(
T

2
, x′

)

= ∂x0y
(
T

2
, x′

)

= 0, x′ ∈ Ω (3.19)

and

y = 0 on (0, T ) × ∂Ω. (3.20)

Here we set

Gu(x) = −∂x1F (x′)∂2
x0

u(x) + (g + h)(x′)∇x′(divu)(x) + h(x′)∆u(x)

+ (divu)(x)∇x′g(x′) + (∇x′u(x) + (∇x′u(x))T )∇x′h(x′). (3.21)

By (3.14), we have the inequality θT 2

4 > d2. Therefore, by (3.6) and Definition (3.15) of the function φ, we have

φ(T/2, x′) ≥ d1, φ(0, x′) = φ(T, x′) < d1, x′ ∈ Ω

with d1 = exp(τ infx′∈Ω |x′ − y′|2). Thus, for given ε > 0, we can choose a sufficiently small δ = δ(ε) > 0 such
that

φ(x) ≥ d1 − ε, x ∈
[
T

2
− δ,

T

2
+ δ

]

× Ω (3.22)

and

φ(x) ≤ d1 − 2ε, x ∈ ([0, 2δ] ∪ [T − 2δ, T ])× Ω. (3.23)

In order to apply Lemma 3.1, it is necessary to introduce a cut-off function χ satisfying 0 ≤ χ ≤ 1, χ ∈ C∞(R)
and

χ =

{

0 on [0, δ] ∪ [T − δ, T ],
1 on [2δ, T − 2δ].

(3.24)

In the sequel, Cj > 0 denote generic constants depending on s0, τ , M0, M1, θ0, θ1, η, Ω, T , y′, ω, χ and p, q,
ε, δ, but independent of s > s0.

Setting z1 = χ∂2
x0

y, z2 = χ∂3
x0

y and z3 = χ∂4
x0

y, we have







ρ̃∂2
x0

z1 = Lλ̃,µ̃z1 + χG(∂2
x0

u) + 2ρ̃(∂x0χ)∂3
x0

y + ρ̃(∂2
x0
χ)∂2

x0
y,

ρ̃∂2
x0

z2 = Lλ̃,µ̃z2 + χG(∂3
x0

u) + 2ρ̃(∂x0χ)∂4
x0

y + ρ̃(∂2
x0
χ)∂3

x0
y,

ρ̃∂2
x0

z3 = Lλ̃,µ̃z3 + χG(∂4
x0

u) + 2ρ̃(∂x0χ)∂5
x0

y + ρ̃(∂2
x0
χ)∂4

x0
y in Q.

(3.25)

Henceforth we set

E =
∫

Qω

(|∂2
x0

y|2 + |∂3
x0

y|2 + |∂4
x0

y|2)e2sφdx.
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Noting that u ∈ W 7,∞(Q), in view of (3.24) and Lemma 3.1, we can apply Theorem 2.3 to (3.25), so that

4∑

j=2

∫

Q

|∂jx0
y|2χ2e2sφdx ≤ C5(‖F esφ‖2

L2(Q) + ‖gesφ‖2
L2(Q) + ‖hesφ‖2

L2(Q))

+ C5

5∑

j=3

‖(∂x0χ)(∂jx0
y)esφ‖2

L2(0,T ;(H−1(Ω))2)

+ C5

4∑

j=2

‖(∂2
x0
χ)(∂jx0

y)esφ‖2
L2(0,T ;(H−1(Ω))2) + C5E

≤ C6(‖F esφ‖2
L2(Q) + ‖gesφ‖2

L2(Q) + ‖hesφ‖2
L2(Q)) + C6e2s(d1−2ε) + C7E (3.26)

for all large s > 0.
On the other hand,

∫

Ω

|(∂2
x0

y)(T/2, x′)|2e2sφ(T/2,x′)dx′

=
∫ T/2

0

∂

∂x0

(∫

Ω

|(∂2
x0

y)(x0, x
′)|2χ(x0)2e2sφdx′

)

dx0

=
∫ T/2

0

∫

Ω

2((∂3
x0

y) · (∂2
x0

y))χ2e2sφdx

+ 2s
∫ T/2

0

∫

Ω

|∂2
x0

y|2χ2(∂x0φ)e2sφdx+
∫ T/2

0

∫

Ω

|∂2
x0

y|2(∂x0(χ
2))e2sφdx

≤ C7

∫

Q

sχ2(|∂3
x0

y|2 + |∂2
x0

y|2)e2sφdx+ C7e2s(d1−2ε).

Therefore (3.26) yields

∫

Ω

|(∂2
x0

y)(T/2, x′)|2e2sφ(T/2,x′)dx′ ≤ C8s

∫

Q

(|F |2 + |g|2 + |h|2)e2sφdx+ C8se2s(d1−2ε) + C8sE (3.27)

for all large s > 0. Similarly we can estimate
∫

Ω
|(∂3

x0
y)(T/2, x′)|2e2sφ(T/2,x′)dx′ to obtain

∫

Ω

(|(∂2
x0

y)(T/2, x′)|2 + |(∂3
x0

y)(T/2, x′)|2)e2sφ(T/2,x′)dx′

≤ C9s

∫

Q

(|F |2 + |g|2 + |h|2)e2sφdx+ C9se2s(d1−2ε) + C9sE (3.28)

for all large s > 0.
Now first order partial differential equations satisfied by h, g and F are going to be considered. That is, by

(3.18), (3.19) and u,v ∈W 7,∞(Q), we have

ρ̃∂2
x0

y
(
T

2
, x′

)

= Gu
(
T

2
, x′

)

, ρ̃∂3
x0

y
(
T

2
, x′

)

= G∂x0u
(
T

2
, x′

)

. (3.29)
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Then, setting






− 1
ρLλ,µp =

(

a11

a21

)

, − 1
ρLλ,µq =

(

a12

a22

)

,

divp = b1, divq = b2,

∇x′p + (∇x′p)T =

(

c1 d1

d1 e1

)

, ∇x′q + (∇x′q)T =

(

c2 d2

d2 e2

)

,

ρ̃∂2
x0

y
(
T
2 , x

′)− (g + h)∇x′(divp) − h∆p =

(

G11

G21

)

,

ρ̃∂3
x0

y
(
T
2 , x

′)− (g + h)∇x′(divq) − h∆q =

(

G12

G22

)

,

(3.30)

we rewrite (3.29) as






a11 b1 0
a21 0 b1
a12 b2 0
a22 0 b2











∂x1F
∂x1g
∂x2g



 =







G11 − c1∂x1h− d1∂x2h
G21 − d1∂x1h− e1∂x2h
G12 − c2∂x1h− d2∂x2h
G22 − d2∂x1h− e2∂x2h






. (3.31)

Because linear system (3.31) possesses a solution (∂x1F, ∂x1g, ∂x2g), the coefficient matrix must satisfy

det







a11 b1 0 G11 − c1∂x1h− d1∂x2h
a21 0 b1 G21 − d1∂x1h− e1∂x2h
a12 b2 0 G12 − c2∂x1h− d2∂x2h
a22 0 b2 G22 − d2∂x1h− e2∂x2h







= 0,

that is,

(∂x1h)det







a11 b1 0 c1
a21 0 b1 d1

a12 b2 0 c2
a22 0 b2 d2







+ (∂x2h)det







a11 b1 0 d1

a21 0 b1 e1
a12 b2 0 d2

a22 0 b2 e2







= det







a11 b1 0 G11

a21 0 b1 G21

a12 b2 0 G12

a22 0 b2 G22






, (3.32)

by the linearity of the determinant. Under Condition (3.11), taking into consideration h = µ − µ̃ = 0 on ∂Ω
and considering (3.32) as a first order partial differential operator in h, we apply Lemma 3.3, so that

s2
∫

Ω

|h|2e2sφ(T/2,x′)dx′ ≤ C10

∥
∥
∥
∥
∥
∥
∥
∥

det







a11 b1 0 G11

a21 0 b1 G21

a12 b2 0 G12

a22 0 b2 G22







esφ(T/2,·)

∥
∥
∥
∥
∥
∥
∥
∥

2

L2(Ω)

≤ C11

∫

Ω

(∣
∣
∣
∣∂

2
x0

y
(
T

2
, x′

)∣
∣
∣
∣

2

+
∣
∣
∣
∣∂

3
x0

y
(
T

2
, x′

)∣
∣
∣
∣

2
)

e2sφ(T/2,x′)dx′

+ C11

∫

Ω

(|g|2 + |h|2)e2sφ(T/2,x′)dx′, (3.33)

in view of (3.30). We rewrite (3.29) as






a11 c1 d1

a21 d1 e1
a12 c2 d2

a22 d2 e2











∂x1F
∂x1h
∂x2h



 =







G11 − b1∂x1g
G21 − b1∂x2g
G12 − b2∂x1g
G22 − b2∂x2g
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and, using (3.12), we can similarly deduce

s2
∫

Ω

|g|2e2sφ(T/2,x′)dx′ ≤ C12

∫

Ω

(∣
∣
∣
∣∂

2
x0

y
(
T

2
, x′

)∣
∣
∣
∣

2

+
∣
∣
∣
∣∂

3
x0

y
(
T

2
, x′

)∣
∣
∣
∣

2
)

e2sφ(T/2,x′)dx′

+ C12

∫

Ω

(|g|2 + |h|2)e2sφ(T/2,x′)dx′ (3.34)

for all large s > 0. By (3.33) and (3.34), for sufficiently large s > 0, we have

s2
∫

Ω

(|g|2 + |h|2)e2sφ(T/2,x′)dx′ ≤ C13

∫

Ω

(∣
∣
∣
∣∂

2
x0

y
(
T

2
, x′

)∣
∣
∣
∣

2

+
∣
∣
∣
∣∂

3
x0

y
(
T

2
, x′

)∣
∣
∣
∣

2
)

e2sφ(T/2,x′)dx′. (3.35)

Moreover, eliminating ∂x2h in the first and the third rows in (3.31) and using (3.13), we have

∂x1

(

F +
d2b1 − d1b2
d2a11 − d1a12

g +
d2c1 − d1c2
d2a11 − d1a12

h

)

=
d2G11 − d1G12

d2a11 − d1a12
+ g∂x1

(
d2b1 − d1b2
d2a11 − d1a12

)

+ h∂x1

(
d2c1 − d1c2
d2a11 − d1a12

)

·

By (3.10) and (3.17), if n1(x′) ≥ 0, then x1 = γ1(x2), that is, we have: F (x1, x2) = 0 for n1(x′) ≥ 0. Therefore,
noting g = h = 0 on ∂Ω and setting p0,1 = 1, p0,2 = 0 in Lemma 3.2, we can apply the lemma. Thus, in view
of (3.35) and (3.30), we obtain

s2
∫

Ω

|F |2e2sφ(T/2,x′)dx′ ≤ C14

∫

Ω

(∣
∣
∣
∣∂

2
x0

y
(
T

2
, x′

)∣
∣
∣
∣

2

+
∣
∣
∣
∣∂

3
x0

y
(
T

2
, x′

)∣
∣
∣
∣

2
)

e2sφ(T/2,x′)dx′ (3.36)

for all large s > 0. Consequently, substituting (3.35) and (3.36) into (3.28) and using φ(T/2, x′) ≥ φ(x0, x
′) for

(x0, x
′) ∈ Q, we obtain

∫

Ω

(|F |2 + |g|2 + |h|2)e2sφ(T/2,x′)dx′ ≤ C15T

s

∫

Ω

(|F |2 + |g|2 + |h|2)e2sφ(T/2,x′)dx′ +
C15

s
e2s(d1−2ε) +

C15

s
E

for all large s > 0. Taking s > 0 sufficiently large and noting e2sφ(T/2,x′) ≥ e2sd1 for x′ ∈ Ω, we obtain
∫

Ω

(|F |2 + |g|2 + |h|2)dx′ ≤ C16e−4sε + C17e2sC18E (3.37)

for all large s > s0: a constant which is dependent on τ , but independent of s. Next we take in (3.37) instead
of the constant C17 the constant C17e

2s0C18 . Now this inequality holds true for all s > 0.
Now we choose s > 0 such that

e2sC16E = e−4sε,

that is,

s = − 1
4ε+ 2C16

ln E .
Here we may assume that E < 1 and so s > 0. Then it follows from (3.37) that

∫

Ω

(|F |2 + |g|2 + |h|2)dx′ ≤ 2CE 4ε
4ε+2C .
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By Definition (3.17) of F , we have
∫

Ω

frdx1dx2 =
∫

Ω

(∂x1F )rdx1dx2 =
∫

Ω

F (∂x1r)dx1dx2

for all r ∈ H1
0 (Ω) by integration by parts. Hence we can directly verify that ‖f‖H−1(Ω) ≤ C‖F‖L2(Ω), so that

the proof of Theorem 3.1 is complete. �

4. Proof of Theorem 2.1

Without loss of generality, we may assume that ρ ≡ 1. Otherwise we introduce new coefficients µ1 =
µ/ρ, λ1 = λ/ρ to argue similarly. We can directly verify that the functions rotu ≡ ∂x1u2 − ∂x2u1 and divu
satisfy the equations

∂2
x0

rotu− µ∆rotu = m1, ∂2
x0

divu − (λ+ 2µ)∆divu = m2 inQ, (4.1)

where
m1 = K1rotu +K2divu + K1u + rot f , m2 = K3rotu +K4divu + K2u + div f

and Kj , Kk are first order differential operators with L∞ coefficients.
Thanks to Condition 2.1 on the weight function ψ, there exists τ̂ such that for all τ > τ̂ , the Carleman

estimate for equations (4.1) (see e.g., [45]) yields the inequality

s‖(∇rotu)esφ‖2
(L2(Q))2 + s‖(∇divu)esφ‖2

(L2(Q))2 + s3‖(rotu)esφ‖2
(L2(Q))2 + s3‖(divu)esφ‖2

(L2(Q))2

≤ C1

(

s2‖fesφ‖2
(L2(Q))2 + ‖(∇f)esφ‖2

(L2(Q))2 + s

∥
∥
∥
∥

∂u
∂	n

esφ
∥
∥
∥
∥

2

(H1((0,T )×∂Ω))2

+ s

∥
∥
∥
∥

∂2u
∂	n2

esφ
∥
∥
∥
∥

2

(L2((0,T )×∂Ω))2
+ s3

∥
∥
∥
∥

∂u
∂	n

esφ
∥
∥
∥
∥

2

(L2((0,T )×∂Ω))2
+ ‖u‖2

B(Qω)

)

, ∀s ≥ s0(τ),

(4.2)

where the constant C1 is independent of s.
In order to estimate the H1(Q)-norm of the function u, we need the following proposition.

Proposition 4.1. There exists τ̂ > 1 such that for any τ > τ̂ , there exists s0(τ) such that

∫

Q




1
s

2∑

j,k=1

|∂xj∂xk
u|2 + s|∇x′u|2 + s3|u|2



 e2sφdx

≤ C2

(

‖(rotu)esφ‖2
H1(Q) + ‖(divu)esφ‖2

H1(Q) +
∫

Qω

(s|∇u|2 + s3|u|2)e2sφdx
)

,

∀s ≥ s0(τ), u ∈ (H1
0 (Q))2. (4.3)

Proof of Proposition 4.1. Denote rotu = y and divu = w and let rot∗v =
(
∂v
∂x2

,− ∂v
∂x1

)

. Using a well-known
formula: rot∗rot = −∆x′ + ∇x′div , we obtain

−∆x′u = −rot∗ y −∇x′w in Ω, u|∂Ω = 0.

Then (4.3) follows from the Carleman estimate for an elliptic equations obtained by the first author in [17]. �
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By (4.2) and (4.3), we estimate
∑2

|α|=0,α=(0,α1,α2)
‖(∂αxu)esφ‖2

(L2(Q))2 via the right hand side of inequality (4.2).
Next using this estimate and equation (1.1), we obtain the estimate for the norm ‖(∂2

x0
u)esφ‖2

(L2(Q))2 via the
right hand side of (4.2). Finally we obtain the estimate for ‖(∂x0∂xju)esφ‖2

(L2(Q))2 and s2‖(∂x0u)esφ‖2
(L2(Q))2

by the interpolation argument. Therefore, combining these estimates with (4.2), we have

‖u‖2
Y (φ,Q) ≤ C3

(

s2‖fesφ‖2
(L2(Q))2 + ‖(∇f)esφ‖2

(L2(Q))2

+ s

∥
∥
∥
∥

∂u
∂	n

esφ
∥
∥
∥
∥

2

(H1((0,T )×∂Ω))2
+ s

∥
∥
∥
∥

∂2u
∂	n2

esφ
∥
∥
∥
∥

2

(L2((0,T )×∂Ω))2

+ s3
∥
∥
∥
∥

∂u
∂	n

esφ
∥
∥
∥
∥

2

(L2((0,T )×∂Ω))2
+ ‖u‖2

B(φ,Qω)

)

, ∀s ≥ s0(τ), (4.4)

where the constant C3 is independent of s. Here we recall definition (2.8) of ‖u‖2
B(φ,Qω) and the definition of

‖u‖2
Y (φ,Q) in (2.9).

Now we need to estimate the boundary integrals at the right hand side of (4.4). In order to do that, it
is convenient to use another weight function ϕ such that ϕ|∂Ω = φ|∂Ω and ϕ(x) < φ(x) for all x in small
neighbourhood of (0, T ) × ∂Ω. We introduce the function ϕ by formulae:

ϕ(x) = eτψ̃(x), ψ̃(x) = ψ(x) − ε̂�1(x′) +N�21(x
′),

where ε̂ > 0 is a small positive parameter, N > 0 is a large positive parameter, and �1 ∈ C3(Ω) is a function
such that

�1(x′) > 0, ∀x′ ∈ Ω, �1|∂Ω = 0, ∇x′�1|∂Ω 	= 0.
Denote Ω1/N2 = {x′ ∈ Ω; dist (x′, ∂Ω) ≤ 1

N2 }. Obviously for any fixed ε̂ > 0, there exists N0(ε̂) such that

ϕ(x) < φ(x), ∀x ∈ [0, T ]× Ω1/N2 , N ∈ (N0(ε̂),∞).

Now we will prove the following estimate:

Lemma 4.1. Under conditions of Theorem 2.1, there exist τ̂ > 0 and N0 > 1 such that for all τ > τ̂ , there
exists s0(τ,N) such that

‖u‖2
Y (ϕ,Q) +N

2∑

|α|=0

s4−2|α|‖(∂αxu)esϕ‖2
(L2(Q))2 ≤ C4

(

s2‖fesϕ‖2
(L2(Q))2

+ ‖(∇f)esϕ‖2
(L2(Q))2 + ‖u‖2

B(ϕ,Qω)

)

, ∀s ≥ s0(τ,N), N > N0, suppu ⊂ [0, T ]× Ω1/N2 , (4.5)

where the constant C4 is independent of s and N .

The proof of Lemma 4.1 is given in Sections 5–8. Now, using the result of this lemma, we finish the proof
of Theorem 2.1. Let us fix the parameter N such that (4.5) holds true. We take δ̃ ∈ (

0, 1
N2

)
sufficiently small

such that
φ(x) > ϕ(x), ∀x ∈ Ωδ̃ \ Ωδ̃/2. (4.6)

We consider a cut off function θ̃ ∈ C3(Ωδ̃) such that θ̃|Ω
δ̃
2

= 1 and θ̃|Ω
δ̃
\Ω 3δ̃

4

= 0. The function θ̃u satisfies the

equation

P (θ̃u) = θ̃f + [P, θ̃]u, u|(0,T )×∂Ω = 0, u(0, ·) = ux0(0, ·) = u(T, ·) = ux0(T, ·) = 0.
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Applying Carleman estimate (4.5) to this equation, we obtain

s

∥
∥
∥
∥

∂u
∂	n

esφ
∥
∥
∥
∥

2

(H1((0,T )×∂Ω))2
+ s

∥
∥
∥
∥

∂2u
∂	n2

esφ
∥
∥
∥
∥

2

(L2((0,T )×∂Ω))2
+ s3

∥
∥
∥
∥

∂u
∂	n

esφ
∥
∥
∥
∥

2

(L2((0,T )×∂Ω))2

≤ C8(s2‖fesϕ‖2
(L2(Q))2 + ‖(∇f)esϕ‖2

(L2(Q))2 + s2‖[P, θ̃]uesϕ‖2
(L2(Q))2

+ ‖∇([P, θ̃]u)esϕ‖2
(L2(Q))2 + ‖u‖2

B(φ,Qω)), ∀s ≥ s0(τ). (4.7)

Since the supports of the coefficients of the commutator [P, θ̃] are in Ωδ̃ \ Ωδ̃/2 by (4.6), we have

s2‖[P, θ̃]uesϕ‖2
(L2(Q))2 + ‖∇([P, θ̃]u)esϕ‖2

(L2(Q))2 + ‖u‖2
B(ϕ,Qω)

≤ C9





2∑

|α|=0

s3−2|α|‖(∂αxu)esφ‖2
(L2(Q))2 + ‖u‖2

B(φ,Qω)



 . (4.8)

Combining (4.7) and (4.8), we obtain

s

∥
∥
∥
∥

∂u
∂	n

esφ
∥
∥
∥
∥

2

(H1((0,T )×∂Ω))2
+ s

∥
∥
∥
∥

∂2u
∂	n2

esφ
∥
∥
∥
∥

2

(L2((0,T )×∂Ω))2
+ s3

∥
∥
∥
∥

∂u
∂	n

esφ
∥
∥
∥
∥

2

(L2((0,T )×∂Ω))2

≤ C10

(

s2‖fesϕ‖2
(L2(Q))2 + ‖(∇f)esϕ‖2

(L2(Q))2 +
2∑

|α|=0

s3−2|α|‖(∂αxu)esφ‖2
(L2(Q))2 + ‖u‖2

B(φ,Qω)

)

, ∀s ≥ s0(τ).

(4.9)

Finally we will estimate the surface integrals at the right hand side of (4.4) by the right hand side of (4.9). In
the new inequality, the term

2∑

|α|=0

s3−2|α|‖(∂αxu)esφ‖2
(L2(Q))2

which appears at the right hand side, can be absorbed by ‖u‖2
Y (φ,Q). Thus the proof of Theorem 2.1 is complete.

�

5. Proof of Lemma 4.1

In this section, we will prove Lemma 4.1. Following the standard technique, we reduce the proof of estimate
(4.5) to subelliptic estimate (5.13) for the operator Pσ. Next show that we can act microlocally in this case.
Namely we reduce estimate (5.13) to estimate (5.15). In the situation with the Lamé system this reduction is
not trivial, since we have the subelliptic estimate with loss of one derivative. This difficulty is overcome with
the help of the second large parameter N inserted into the function ϕ. Finally we formulate several lemmata
on factorization of pseudo-differential operators, a priori estimates of Cauchy problem for pseudo-differential
operators, and Carleman estimate for a second order scalar hyperbolic equation, which are used in Sections 6–8.

Proof of Lemma 4.1. First we note that, thanks to the large parameter N , it suffices to prove (4.5) only locally
by assuming

suppu ⊂ Bδ ∩ ([0, T ]× Ω1/N2),
where Bδ is the ball of the radius δ > 0 centered at some point y∗. In the case of Bδ ∩ ((0, T )×∂Ω) = ∅, we can
prove (4.5) in a usual way for a function with compact support (see e.g., [15]). Without loss of generality, we
may assume that y∗ = (y∗0 , 0, 0). Moreover the parameter δ > 0 can be chosen arbitrarily small. Assume that
near (0, 0), the boundary ∂Ω is locally given by the equation x2 − �(x1) = 0. Furthermore, since the function
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ũ = Ou(x0,O−1x′) satisfies system (2.1) and (2.2) with f̃ = Of(x0,O−1x′) for any orthogonal matrix O, we
may assume that

�′(0) ≡ d�
dx1

(0) = 0. (5.1)

Making the change of variables y1 = x1 and y2 = x2 − �(x1), we reduce equation (2.1) to the form







P1u = ∂2u1
∂y2

0
− µ

(
∂2u1
∂y2

1
− 2�′(y1) ∂2u1

∂y1∂y2
+ (1 + |�′(y1)|2)∂2u1

∂y2
2

)

+ µ�
′′
(y1)∂u1

∂y2

−(λ+ µ) ∂
∂y1

(

divu− ∂u1
∂y2

�′
)

+ (λ+ µ) ∂
∂y2

(

divu− ∂u1
∂y2

�′
)

�′ + K̃1u = f1,

P2u = ∂2u2
∂y2

0
− µ

(
∂2u2
∂y2

1
− 2�′(y1) ∂2u2

∂y1∂y2
+ (1 + |�′(y1)|2)∂2u2

∂y2
2

)

+ µ�
′′
(y1)∂u2

∂y2

−(λ+ µ) ∂
∂y2

(

divu− ∂u1
∂y2

�′
)

+ K̃2u = f2,

(5.2)

where we use the same notations u, f after the change of variables and K̃1, K̃2 are partial differential operators
of the first order. We set P = (P1,P2) and

z1 =
∂u2

∂y1
− ∂u2

∂y2
�′(y1) − ∂u1

∂y2
, z2 =

∂u1

∂y1
+
∂u2

∂y2
− ∂u1

∂y2
�′(y1).

After the change of variables, equations (4.1) have the form

Pµz1 =
∂2z1
∂y2

0

− µ

(
∂2z1
∂y2

1

− 2�′(y1)
∂2z1
∂y1∂y2

+ (1 + |�′(y1)|2)∂
2z1
∂y2

2

)

+ µ�
′′
(y1)

∂z1
∂y2

= m1 in GN � R
2 ×

[

0,
κ̂

N2

]

, (5.3)

Pλ+2µz2 =
∂2z2
∂y2

0

− (λ+ 2µ)
(
∂2z2
∂y2

1

− 2�′(y1)
∂2z2
∂y1∂y2

+ (1 + |�′(y1)|2)∂
2z2
∂y2

2

)

+ (λ+ 2µ)�
′′
(y1)

∂z2
∂y2

= m2 in GN . (5.4)

Here we use the same notations m1,m2 after the change of variables and the constant κ̂ > 0 is chosen sufficiently
large such that the image of ([0, T ]× Ω1/N2) ∩Bδ(y∗) belongs to GN . Henceforth we write (z1, z2) = R(y,D)u,
where

D = (Dy0 , Dy1 , Dy2), Dyj =
1
i
∂yj , j = 0, 1, 2, etc.,

and c denotes the complex conjugate of c ∈ C.
Now we claim that in order to prove Lemma 4.1, it suffices to establish the following estimate for the function

w = (w1, w2) = esϕ(z1, z2) = esϕR(y,D)u:

‖w‖2
∗ ≡ s‖w‖2

(H1(GN ))2 + s3‖w‖2
(L2(GN ))2 + s

∥
∥
∥
∥

∂w
∂y2

∥
∥
∥
∥

2

(L2(∂GN ))2
+ s‖w‖2

(H1(∂GN ))2

+ s3‖w‖2
(L2(∂GN ))2 ≤ C5(‖Puesϕ‖2

(H1(GN ))2 + s2‖Puesϕ‖2
(L2(GN ))2 + s‖g‖2

(L2(∂GN ))2

+
2∑

|α|=0

s4−2|α|‖(∂αy′u)esϕ‖2
(L2(GN ))2), ∀s ≥ s0(τ,N), (5.5)
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for all u ∈ (H2(GN ))2 satisfying u|∂GN = 0 and suppu ⊂ Bδ ∩ GN . Obviously the function w satisfies the
boundary condition

∂w1

∂y2
=
λ+ 2µ
µ

∂w2

∂y1
+ sϕy2(y

∗)w1 − s
λ+ 2µ
µ

ϕy1(y
∗)w2 + g1, on ∂GN , (5.6)

∂w2

∂y2
= − µ

λ+ 2µ
∂w1

∂y1
+ sϕy2(y

∗)w2 + s
µ

λ+ 2µ
ϕy1(y

∗)w1 + g2, on ∂GN , (5.7)

where the function g = (g1, g2) satisfies the estimate

s‖g‖2
(L2(∂GN ))2 ≤ ε(δ)

(

s

∥
∥
∥
∥

∂w
∂y2

∥
∥
∥
∥

2

(L2(∂GN ))2
+ s‖w‖2

(H1(∂GN ))2 + s3‖w‖2
(L2(∂GN ))2

)

+C6s‖Puesϕ‖2
(L2(∂GN ))2 , (5.8)

and limδ→0 ε(δ) = 0.
Boundary Conditions (5.6) and (5.7) with property (5.8) follow from equation (5.2) and the zero Dirichlet

boundary condition for u.
In order to deduce (4.5) from estimate (5.5), it suffices to show

‖u‖2
Y (ϕ,GN ) ≤ C7(‖w‖2

∗ + ‖Puesϕ‖2
(H1(GN ))2 + s2‖Puesϕ‖2

(L2(GN ))2), ∀s ≥ s0(τ,N). (5.9)

For the proof of (5.9), we need

Proposition 5.1. There exist τ̂ > 1 and N0 > 1 such that for any τ > τ̂ and N > N0(τ), there exists s0(τ,N)
such that

N

∫

GN




1
sϕ

2∑

j,k=1

|∂yj∂yk
u|2 + sϕ|∂yju|2 + s3ϕ3|u|2



 e2sϕdy

≤ C8(‖z1 esϕ‖2
H1(GN ) + ‖z2esϕ‖2

H1(GN )), ∀u ∈ (H1
0 (GN ))2, suppu ⊂ Bδ ∩ GN , ∀s ≥ s0(τ,N),

where the constant C8 is independent of N.

We give the proof of Proposition 5.1 in Appendix I.
Thanks to Proposition 5.1 and equations (5.2), we obtain

N‖(∂2
y0u)esϕ‖2

(L2(GN ))2 +
2∑

|α|=0,α=(0,α1,α2)

Ns4−2|α|‖(∂αy′u)esϕ‖2
(L2(GN ))2

≤ C9(‖w‖2
∗ +N‖Puesϕ‖2

(L2(GN ))2) ∀s ≥ s0(τ,N). (5.10)

By (5.5) and (5.8)–(5.10), we obtain

N‖(∂2
y0u)esϕ‖2

(L2(GN ))2 +
2∑

|α|=0,α=(0,α1,α2)

Ns4−2|α|‖(∂αy′u)esϕ‖2
(L2(GN ))2 + ‖u‖2

Y (ϕ,GN )

≤ C10(‖∇(Pu)esϕ‖2
(L2(GN ))2 + s2‖Puesϕ‖2

(L2(GN ))2) ∀s ≥ max{s0(τ,N), N}· (5.11)

Finally, combining (5.11) with the estimates

s2‖(∂y0u)esϕ‖2
(L2(GN ))2 ≤ C11

(

‖(∂2
y0u)esϕ‖2

(L2(GN ))2 + s4‖uesϕ‖2
(L2(GN ))2

)
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and

‖(∂y0∂yk
u)esϕ‖2

(L2(GN ))2 ≤ C11

2∑

j=0

‖(∂2
yj

u)esϕ‖2
(L2(GN ))2 , k ∈ {1, 2},

we obtain (5.9).
Now we will proceed to the proof of (5.5). We set Pµ,s = e|s|ϕPµe−|s|ϕ and Pλ+2µ,s = e|s|ϕPλ+2µe−|s|ϕ. By

p(y, ξ0, ξ1, ξ2) and pβ(y, ξ0, ξ1, ξ2) with β = µ or λ+2µ, we denote the principal symbols of the operators P and
Pβ respectively. In order to prove Carleman estimate (5.5), it is convenient for us to introduce a new variable σ
and consider s as a dual variable to σ. Following [46], Chapter 14, we consider the pseudo-differential operators
defined by

Pβ(y,Dσ, Dy0 , Dy1 , Dy2)v =
∫

R3
pβ(y, ξ0 + i|s|ϕy0 , ξ1 + i|s|ϕy1 , Dy2 + i|s|ϕy2)v̂(s, ξ0, ξ1, y2)ei(<y

′,ξ′>+σs)dσdξ′,

Pσ(y,Dσ, Dy0 , Dy1 , Dy2)v =
∫

R3
p(y, ξ0 + i|s|ϕy0 , ξ1 + i|s|ϕy1 , Dy2 + i|s|ϕy2)v̂(s, ξ0, ξ1, y2)ei(<y

′,ξ′>+σs)dσdξ′,

where ξ′ = (ξ0, ξ1), y′ = (y0, y1) and v̂(s, ξ0, ξ1, y2) is the Fourier transform of v(σ, y0, y1, y2) with respect to
σ, y0, y1. Let v(σ, y) = (v1(σ, y), v2(σ, y)) be a function with the domain Q = R3 × R1

+. Henceforth Fσ denotes
the Fourier transform with respect to the variable σ. Let h(s) = (1+s2)

1
4 , Σ = ∂Q. Moreover we set g = (g1, g2),

Rs(y,D)U = e|s|ϕR(y,D)e−|s|ϕU , (5.12)

and 





B1w � −∂w1

∂y2
+
λ+ 2µ
µ

∂w2

∂y1
+ |s|ϕy2(y∗)w1 − |s|λ+ 2µ

µ
ϕy1(y∗)w2,

B2w � −∂w2

∂y2
− µ

λ+ 2µ
∂w1

∂y1
+ |s|ϕy2(y∗)w2 + |s| µ

λ+ 2µ
ϕy1(y∗)w1 on Σ

for w = (w1, w2), provided that the right hand sides are well-defined.
Then we claim that in order to prove (5.5), it suffices to establish the following estimate

|||v|||2 �
1∑

j=0

‖h(Dσ)3−2jv‖2
L2(R1;(Hj(GN ))2) + ‖h(Dσ)3−2jv‖2

(Hj(Σ))2 +
∥
∥
∥
∥h(Dσ)

∂v
∂y2

∥
∥
∥
∥

2

(L2(Σ))2

≤C12

(

‖Pσ(y,D)F−1
σ U‖2

(H1(Q))2 + ‖h(Dσ)F−1
σ g‖2

(L2(Σ))2 + ‖F−1
σ U‖2

(H2(Q))2

)

, (5.13)

if U and v satisfy suppU ⊂ R1×(Bδ∩GN ), suppF−1
σ U ⊂ (−σ0, σ0)×(Bδ∩GN ) with arbitrarily small parameter

σ0 > 0, and
{

Rs(y,D)U = Fσv, U|Σ = 0
B1(Fσv) = g1, B2(Fσv) = g2 on Σ.

We set
Fσv = w.

Then
(B1w, B2w) = (g1, g2) ≡ g. (5.14)

This fact can be proved exactly in the same way as in [46], Chapter 14, Section 2.
Consider the finite covering of the unit sphere S2 ≡ {(s, ξ0, ξ1); s2 + ξ20 + ξ21 = 1}: S2 ⊂ ∪ζ∗∈S2{ζ = (s, ξ0, ξ1) ∈
S2; |ζ − ζ∗| < δ1} and the partition of unity χν(ζ):

∑K(δ1)
ν=1 χν(ζ) = 1 for any ζ ∈ S2 and suppχν ⊂ {ζ ∈

S2; |ζ − ζ∗ν | < δ1}.
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We extend the function χν on the set |ζ| > 1 as the homogeneous function of the order zero in such a way
that

suppχν ⊂ O(δ1) ≡
{

ζ;
∣
∣
∣
∣

ζ

|ζ| − ζ∗
∣
∣
∣
∣ < δ1

}

,

and continue χν on the set |ζ| < 1 up to a C∞ function.
We set D′ = (Dσ, Dy0 , Dy1), and consider the pseudo-differential operator χν(D′) and the function χν(D′)v.

Obviously equalities (5.14) hold true with w and g replaced by wν = 1√
2π

∫ +∞
−∞ χν(D′)ve−isσdσ and gν =

1√
2π

∫ +∞
−∞ χν(D′)F−1

σ ge−isσdσ.
Moreover we claim that instead of (5.13), it suffices to prove the following estimate

|||χν(D′)v||| ≤ C13

(‖Pσχν(D′)F−1
σ U‖(H1(Q))2 + ‖h(Dσ)χν(D′)F−1

σ g‖(L2(Σ))2 + ‖F−1
σ U‖(H2(Q))2

)
, (5.15)

where

Rs(y,D′)U = Fσv, U|Σ = 0, suppF−1
σ U ⊂ (−σ0, σ0) × (Bδ ∩ GN ),

B1(w1,ν , w2,ν) = g1,ν, B2(w1,ν , w2,ν) = g2,ν (5.16)

and C13 is independent of N. In fact, assume that estimate (5.15) is already proved. Then

|||v|||2 ≤
K(δ1)∑

ν=1

|||χν(D′)v|||2

≤ C14

K∑

ν=1

(

‖Pσ(y,D)χνF−1
σ U‖2

(H1(Q))2 + ‖h(s)gν‖2
(L2(Σ))2 + ‖χν(D′)F−1

σ U‖2
(H2(Q))2

)

≤ C15

K∑

ν=1

(

‖χν(D′)Pσ(y,D)F−1
σ U‖2

(H1(Q))2 + ‖[χν(D′),Pσ(y,D′)]F−1
σ U‖2

(H1(Q))2

+‖h(s)gν‖2
(L2(Σ))2 + ‖χν(D′)F−1

σ U‖2
(H1(Q))2

)

≤ C16

(

‖Pσ(y,D)F−1
σ U‖2

(H1(Q))2 + ‖h(s)g‖2
(L2(Σ))2 + ‖F−1

σ U‖2
(H2(Q))2

)

,

where K = K(δ1) and C16 are independent of N .
Estimate (5.15) follows from Lemmas 6.1, 7.1 and 8.1 which are proved in Sections 6–8. �
Now we formulate some results and introduce some definitions which will be used in the proof of estimate

(5.15).
The principal symbol of the operator Pβ,s has the form

pβ(y, s, ξ0, ξ1) = −(ξ0 + i|s|ϕy0)2 +β[(ξ1 + i|s|ϕy1)2−2�′(ξ1 + i|s|ϕy1)(ξ2 + i|s|ϕy2)+(ξ2 + i|s|ϕy2)2|G|2], (5.17)

where |G|2 = 1 + (�′(y1))2. The roots of this polynomial with respect to the variable ξ2, are

Γ±
β (y, s, ξ0, ξ1) = −i|s|ϕy2(y) + α±

β (y, s, ξ0, ξ1), (5.18)

α±
β (y, s, ξ0, ξ1) =

(ξ1 + i|s|ϕy1(y))�′(y1)
|G|2 ±

√

rβ(y, s, ξ0, ξ1), (5.19)

rβ(y, ζ) =
((ξ0 + i|s|ϕy0(y))2 − β(ξ1 + i|s|ϕy1(y))2)|G|2 + β(ξ1 + i|s|ϕy1)2(�′)2

β|G|4 , (5.20)

where the function √
rβ is defined below.
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Denote γ = (y∗, ζ∗) = (y∗, s∗, ξ∗0 , ξ
∗
1).

Proposition 5.2. Suppose that |rβ(γ)| ≥ 2δ̂ > 0. Then there exists δ0 = δ0(δ̂) > 0 such that for all δ, δ1 ∈ (0, δ0),
there exists a constant C20 > 0, independent of s, such that for one of the roots of polynomial (5.17), which we
denote by Γ−

β , we have

−Im Γ−
β (y, s, ξ0, ξ1) ≥ C20|s|, ∀(y, s, ξ0, ξ1) ∈ Bδ ×O(δ1). (5.21)

Proof of Proposition 5.2. If Im
√
rβ(γ) 	= 0, then statement (5.21) is trivial. So it suffices to consider the case

Im
√
rβ(γ) = 0. Let θ ∈ (

0, 1
8

)
be a constant. Obviously there exists δ̃(θ) such that for all δ, δ1 ∈ (0, δ̃(θ)),

Re rβ(y, ζ) ≥ (1 − 2θ)|rβ(y, ζ)|, ∀(y, s, ξ0, ξ1) ∈ Bδ ×O(δ1).

Then
|Im rβ(y, ζ)| ≤ 2θ

1 − 2θ
Re rβ(y, ζ), ∀(y, s, ξ0, ξ1) ∈ Bδ ×O(δ1).

We denote b(y, ζ) = Im rβ(y, ζ) and a(y, ζ) = Re rβ(y, ζ) with ζ = (s, ξ0, ξ1). First, if Im
√
rβ(γ) = 0, then we

have a(γ) > 0 and b(γ) = 0. In that case we define the function
√
rβ(y, ζ) by the infinite series

(1 + x)
1
2 =

∞∑

n=0

cnx
n, |x| < 1,

where cn =
1
2 ( 1

2−1)( 1
2−2)...( 1

2−(n−1))
n! ·

That is, assuming that | ba | < 2θ
1−2θ <

1
2 for all (y, s, ξ0, ξ1) ∈ Bδ ×O(δ1), we set

√

rβ(y, ζ) =
√
a

∞∑

n=0

cn

(
ib

a

)n

=
√
a+

i

2
|s|

(
b

|s|√a
)

− |s|
(
b

a

)
b

|s|√a
∞∑

n=0

cn+2

(
ib

a

)n

· (5.22)

The first term in infinite series (5.22) is real, and the absolute value of the third term is
∣
∣
∣|s| b

|s|√a

∣
∣
∣O(θ). The

function b
|s|√a is a continuous homogeneous function of the order zero in the variable ζ.

If b(γ)

|s∗|
√
a(γ)

≤ 0, then we take Γ−
β (y, ζ) = −i|s| ∂ϕ∂y2 + α−

β (y, ζ) where α−
β (y, ζ) equals the right hand side of

(5.22) plus (ξ1 + i|s|ϕy1)�′(y1)/|G|2. Otherwise Γ−
β (y, ζ) = −i|s| ∂ϕ∂y2 + α+

β (y, ζ) where α+
β (y, ζ) equals the right

hand side of (5.22) multiplied by −1 plus (ξ1 + i|s|ϕy1)�′(y1)/|G|2.
For b

|s∗|√a (γ) ≤ 0, we obtain that b
|s|√a (γ)− 1

2ϕy2(y) < 0 for all (y, s, ξ0, ξ1) ∈ Bδ×O(δ1) and for b
|s∗|√a (γ) ≥ 0

we obtain that − b
|s|√a (γ)− 1

2ϕy2(y) < 0 for all (y, s, ξ0, ξ1) ∈ Bδ×O(δ1). These inequalities imply (5.21) provided
that δ1 is taken sufficiently small. The proof of Proposition 5.2 is finished. �

Under some conditions, we can see that the operator Pβ can be factorized as a product of two first order
pseudo-differential operators:

Proposition 5.3. Let β ∈ {µ, λ+2µ} and |rβ(y, ζ)| ≥ δ̂ > 0 for all (y, ζ) ∈ Bδ×O(2δ1). Then we can factorize
the operator Pβ as the product of two first order pseudo-differential operators:

Pβχν(D′)V = β|G|2(Dy2 − Γ−
β (y,D′))(Dy2 − Γ+

β (y,D′))χν(D′)V + TβV, (5.23)

where suppV ⊂ Bδ ∩ GN and Tβ is a continuous operator:

Tβ : L2(0, 1;H1(R3)) → L2(0, 1;L2(R3)).
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Let us consider the equation

(Dy2 − Γ−
β (y,D′))χν(D′)V = q, V |y2= κ̂

N2
= 0, suppV ⊂ Bδ ∩ GN .

For the solutions to this problem, we have an a priori estimate:

Proposition 5.4. Let β ∈ {µ, λ+ 2µ} and |rβ(y, ζ)| ≥ δ̂ > 0 for all (y, ζ) ∈ Bδ ×O(2δ1). Then there exists a
constant C22 > 0, which is independent of N , such that

‖h(Dσ)χν(D′)V |y2=0‖L2(R3) ≤ C22‖q‖L2(Q). (5.24)

Proof of Proposition 5.4. Taking the scalar product of q and h2(Dσ)χν(D′)V for fixed y2, we obtain

2Re (q(y2), h2(Dσ)χν(D′)V (y2))L2(Σ)e2κ̃y2 =
∂

∂y2

(

e2κ̃y2‖h(Dσ)χν(D′)V (y2)‖2
L2(Σ)

)

− 2Re (iΓ−
β (y,D′)χν(D′)V + κ̃χν(D′)V, h2(Dσ)χν(D′)V )L2(Σ)e2κ̃y2 .

By (5.21) and Proposition 2.4.A in [47], for sufficiently large positive κ̃, we have

Re (iΓ−
β (y,D′)h−2(Dσ)h2(Dσ)χν(D′)V + κ̃χν(D′)V, h2(Dσ)χν(D′)V )L2(Σ) ≥ C23‖h2(Dσ)χν(D′)V ‖2

L2(Σ).

Thus

2Re (q(y2), h2(Dσ)χν(D′)V (y2))L2(Σ)e2κ̃y2

≤ ∂

∂y2

(

e2κ̃y2‖h(Dσ)χν(D′)V (y2)‖2
L2(Σ)

)

− C23‖h2(Dσ)χν(D′)V (y2)‖2
L2(Σ)e

2κ̃y2 ,

and (5.24) follows from Gronwall’s inequality. �

Let w̃(s, y) satisfy a scalar second order hyperbolic equation

Pβ,sw̃ = q in GN , ∂w̃

∂y2
|y2=1 = w̃|y2=1 = 0, supp w̃ ⊂ R

1 × (Bδ ∩ GN )

for almost all s ∈ R1. Let P ∗
β,s be the formally adjoint operator to Pβ,s, where β ∈ {µ, λ+ 2µ}. Set

L+,β =
Pβ,s + P ∗

β,s

2
, L−,β =

Pβ,s − P ∗
β,s

2
·

One can easily check that the principal part operator L−,β is given by formula

L−,βw̃ = −2|s|ϕy0
∂w̃

∂y0
+ β

(

2|s|ϕy1
∂w̃

∂y1
− 2|s|�′(y1)

(

ϕy2
∂w̃

∂y1
+ ϕy1

∂w̃

∂y2

)

+ 2|s|(1 + (�′(y1))2)ϕy2
∂w̃

∂y2

)

·

Obviously L+,βw̃ + L−,βw̃ = q. For almost all s ∈ R1, the following equality holds true:

Bβ + ‖L−,βw̃‖2
L2(GN ) + ‖L+,βw̃‖2

L2(GN ) + Re
∫

GN

([L+,β, L−,β]w̃, w̃)dy = ‖q‖2
L2(GN ), (5.25)



LAMÉ SYSTEM 25

where

Bβ = Re
∫

∂GN

p̃β(y,∇ϕ,−	e3)(|s|p̃β(y,∇w̃)−|s|3p̃β(y,∇ϕ,∇ϕ)w̃2)dy0dy1+Re
∫

∂GN

p̃β(y,∇w̃,−	e3)L−,βw̃dy0dy1,

(5.26)
	e3 = (0, 0, 1) and

p̃β(y, ξ, ξ̃) = ξ0ξ̃0 − β(ξ1ξ̃1 − �′(y1)(ξ1ξ̃2 + ξ2ξ̃1) + (1 + |�′(y1)|2)ξ2ξ̃2).

We note that φyk
|Σ = ϕyk

|Σ for k ∈ {0, 1} and ϕy2 |Σ = (φy2 − ε̂τ(∂y2�1)φ)|Σ. Therefore on Σ the function ∇ϕ
is independent of N and |∇φ(y) − ∇ϕ(y)| ≤ C25ε̂ for all y ∈ Σ where C25 > 0 is independent of ε̂ and N . In
particular, taking ε̂ sufficiently small, we have (2.6) for the function ϕ. It is convenient for us to rewrite (5.26)
in the form

Bβ = B
(1)
β +B

(2)
β ,

B
(1)
β ≡ Re

∫

y2=0

2|s|β ∂w̃
∂y2

(

β
∂w̃

∂y1
ϕy1(y∗) + β

∂w̃

∂y2
ϕy2(y∗) −

∂w̃

∂y0
ϕy0(y∗)

)

dy0dy1

+
∫

y2=0

|s|βϕy2(y∗)
{∣
∣
∣
∣

∂w̃

∂y0

∣
∣
∣
∣

2

− β

(∣
∣
∣
∣

∂w̃

∂y1

∣
∣
∣
∣

2

+
∣
∣
∣
∣

∂w̃

∂y2

∣
∣
∣
∣

2
)

− |s|2(ϕ2
y0(y

∗) − β(ϕ2
y1(y

∗) + ϕ2
y2(y

∗)))|w̃|2
}

dy0dy1.

Then

|B(2)
β | ≤ ε0

(

|s|
∥
∥
∥
∥

∂w̃

∂y2

∥
∥
∥
∥

2

L2(∂GN )

+ |s|‖w̃‖2
H1(∂GN ) + |s|3‖w̃‖2

L2(∂GN )

)

, (5.27)

where ε0 = ε0(δ) → 0 as |δ| → 0. It is known (see e.g., [18]) that there exists a parameter τ̂ > 1 such that for
any τ > τ̂ , there exists s0(τ) such that

‖L−,βw̃‖2
L2(GN ) + ‖L+,βw̃‖2

L2(GN ) + Re
∫

GN

(

[L+,β, L−,β]w̃, w̃
)

dy

+ C′
26|s|‖w̃‖L2(∂GN )‖∂y2w̃‖L2(∂GN ) ≥ C26

(

|s|‖w̃‖2
H1(GN ) + |s|3‖w̃‖2

L2(GN )

)

, ∀|s| ≥ s0(τ), (5.28)

where C26 > 0 is independent of s. We also claim that the constant C26 is independent of N. The proof of
estimate (5.28) is given in Appendix II.

Set
Ξβ =

∫ ∞

−∞
Bβds, Ξ

(j)
β =

∫ ∞

−∞
B

(j)
β ds, j = 1, 2.

Therefore, integrating (5.28) with respect to s in R1, we have

C27(‖h(s)w̃‖2
H1(Q) + ‖h3(s)w̃‖2

L2(Q)) +Ξβ ≤ C26|s|
∫ ∞

−∞
‖w̃‖L2(∂GN )‖∂y2w̃‖L2(∂GN )ds

+ ‖q‖2
L2(Q) + ‖w̃‖2

H1(Q), ∀|s| ≥ s0(τ) (5.29)

with some constant C27 > 0 and by (5.27)

|Ξ(2)

β̃
| + |s|

∫ ∞

−∞
‖w̃‖L2(∂GN )‖∂y2w̃‖L2(∂GN )ds ≤ ε(δ)

∥
∥
∥
∥

(
∂w̃

∂y2
, w̃

)∥
∥
∥
∥

2

X

, (5.30)
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where we set
∥
∥
∥
∥

(
∂w̃

∂y2
, w̃

)∥
∥
∥
∥

2

X

=
∥
∥
∥
∥h(s)

∂w̃

∂y2

∥
∥
∥
∥

2

L2(Σ)

+ ‖h(s)w̃‖2
L2(R1;H1(R2)) + ‖h3(s)w̃‖2

L2(Σ)

and the parameter ε(δ) → +0 as δ → +0.
We set

w1,ν = Fσχν(D′)v1, w2,ν = Fσχν(D′)v2.

Later we will need to apply (5.29) and (5.30) to the functions w1,ν and w2,ν , since we would like to take the
advantage of (5.23). However it is directly impossible because the condition suppχν(D′)v ⊂ Bδ × R1 does not
hold true, in general. On the other hand, using the fact that

∫

R2\B2δ

∫

R1
h4(s)

∑

|α|≤2

|Dαwj,ν |2dy0dy1ds ≤ C28‖v‖2
(H1(Q))2 ,

we can modify (5.29) and (5.30):

C29(‖h(s)wj(β),ν‖2
H1(Q) + ‖h3(s)wj(β),ν‖2

L2(Q)) +Ξβ

≤‖Pβ,swj(β),ν‖2
L2(Q) + C30‖v‖2

(H1(Q))2 + C30|s|
∫ ∞

−∞
‖wj(β),ν‖L2(∂GN )‖∂y2wj(β),ν‖L2(∂GN )ds, (5.31)

where C29 > 0 is independent of s,N and we set j(β) = 1 if β = µ and j(β) = 2 if β = λ+ 2µ, and

|Ξ(2)
β | + |s|

∫ ∞

−∞
‖wj(β),ν‖L2(∂GN )‖∂y2wj(β),ν‖L2(∂GN )ds ≤ ε

∥
∥
∥
∥

(
∂wj(β),ν

∂y2
, wj(β),ν

)∥
∥
∥
∥

2

X

+ C31‖v‖2
(H1(Q))2 . (5.32)

Now we will prove (5.15) separately in the cases: rµ(γ) = 0 (Sect. 6), rλ+2µ(γ) = 0 (Sect. 7) and rµ(γ) 	= 0,
rλ+2µ(γ) 	= 0 (Sect. 8).

6. The case rµ(γ) = 0

In this section, we treat the case where rµ(γ) = 0 with γ = (y∗, ζ∗) ≡ (y∗, s∗, ξ∗0 , ξ
∗
1) ∈ Σ × S2. Let χν be a

member of the partition of unity such that

suppχν ⊂ O(δ1) ≡
{

ζ = (s, ζ0, ζ1);
∣
∣
∣
∣

ζ

|ζ| − ζ∗
∣
∣
∣
∣ < δ1

}

·

We note that by (5.31) and (5.32), there exist C1 > 0 and C2 > 0 such that

C1

(

‖h(s)w1,ν‖2
H1(Q) + ‖h3(s)w1,ν‖2

L2(Q)

)

+Ξ(1)
µ

≤ C2

(

‖Pµv1,ν‖2
L2(Q) + ‖w1,ν‖2

H1(Q)

)

+ ε(δ)
∥
∥
∥
∥

(
∂w1,ν

∂y2
, w1,ν

)∥
∥
∥
∥

2

X

, (6.1)
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and the parameter ε can be taken sufficiently small, if we decrease δ. Note that Ξ(1)
µ can be written in the form

Ξ(1)
µ =

∫

Σ

(

|s|µ2ϕy2(y
∗)
∣
∣
∣
∣

∂w1,ν

∂y2

∣
∣
∣
∣

2

+ |s|3µ2ϕ3
y2(y

∗)|w1,ν |2
)

dΣ

+ Re
∫

Σ

2|s|µ∂w1,ν

∂y2

(

µϕy1(y∗)
∂w1,ν

∂y1
− ϕy0(y∗)

∂w1,ν

∂y0

)

dΣ

+
∫

Σ

|s|µϕy2(y∗)(ξ20 − µξ21 − s2ϕ2
y0(y

∗) + s2µϕ2
y1(y

∗))|v̂1,ν |2dΣ

≡ J1 + J2 + J3. (6.2)

Let us introduce the set M by formula

M =

{

ζ = (s, ξ0, ξ1) ∈ S
2;
µ

2
ϕy2(y

∗)Ĉs2 > 4µ2
ϕ2
y1(y

∗)
|ϕy2(y∗)|

ξ21 + 4
ϕ2
y0(y

∗)
|ϕy2(y∗)|

ξ20 + 2µ2ϕy2(y
∗)(|ξ0|2 + |ξ1|2)

}

, (6.3)

where Ĉ = −pµ(y∗,∇ϕ(y∗)). By (2.6), it follows that Ĉ is positive.
Next we introduce the set M̃ by the formula

M̃ =

{

ζ = (s, ξ0, ξ1) ∈ S
2;
µ

4
ϕy2(y

∗)Ĉs2 < 4µ2
ϕ2
y1(y

∗)
|ϕy2(y∗)|

ξ21 + 4
ϕ2
y0(y

∗)
|ϕy2(y∗)|

ξ20 + 2µ2ϕy2(y
∗)(|ξ0|2 + |ξ1|2)

}

·

Then we can see that S2 ⊂ M ∪ M̃. Therefore, taking the parameter δ1 sufficiently small, we obtain either
O(δ1) ⊂ M or O(δ1) ⊂ M̃ . The main purpose of this section is the proof of the following lemma.

Lemma 6.1. If γ = (y∗, ζ∗) is a point on Σ×S
2 such that rµ(γ) = 0 and suppχν ⊂ O(δ1) ⊂ M̃, then estimate

(5.15) holds true. If γ = (y∗, ζ∗) ∈ M, then estimate (5.15) holds true also.

Proof. We consider two cases.
Case A. Assume that supp v̂ν ⊂ O(δ1) ⊂ M.

Applying the Cauchy-Bunyakovskii inequality and using (6.3) and (2.6), we see that there exists a constant
C3 > 0 such that

Ξ(1)
µ ≥

∫

Σ

(

|s|µ2ϕy2(y
∗)
∣
∣
∣
∣

∂w1,ν

∂y2

∣
∣
∣
∣

2

− |s|3µϕy2(y∗)pµ(y∗,∇ϕ(y∗))|w1,ν |2
)

dΣ

−
∫

Σ

(

1
2
|s|µ2ϕy2(y

∗)
∣
∣
∣
∣

∂w1,ν

∂y2

∣
∣
∣
∣

2

+ 4|s|µ2
ϕ2
y1(y

∗)
|ϕy2(y∗)|

∣
∣
∣
∣

∂w1,ν

∂y1

∣
∣
∣
∣

2

+ 4|s| ϕ
2
y0(y

∗)
|ϕy2(y∗)|

∣
∣
∣
∣

∂w1,ν

∂y0

∣
∣
∣
∣

2
)

dΣ

−
∫

Σ

|s|µ2ϕy2(y
∗)ξ21 |v̂1,ν |2dΣ

≥ C3

∫

Σ

(

1
2
|s|µ2ϕy2(y

∗)
∣
∣
∣
∣

∂w1,ν

∂y2

∣
∣
∣
∣

2

+ |s|
∣
∣
∣
∣

∂w1,ν

∂y1

∣
∣
∣
∣

2

+ |s|
∣
∣
∣
∣

∂w1,ν

∂y0

∣
∣
∣
∣

2

+
1
2
|s|3µϕy2(y∗)Ĉ|w1,ν |2

)

dΣ. (6.4)

Similary we have

Ξ
(1)
λ+2µ ≥ C4

∫

Σ

{

|s|
(∣
∣
∣
∣

∂w2,ν

∂y2

∣
∣
∣
∣

2

+
∣
∣
∣
∣

∂w2,ν

∂y1

∣
∣
∣
∣

2

+
∣
∣
∣
∣

∂w2,ν

∂y0

∣
∣
∣
∣

2
)

+ |s|3|w2,ν |2
}

dΣ. (6.5)
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Combining (6.4) and (6.5), we obtain

Ξ(1)
µ +Ξ

(1)
λ+2µ ≥ C5

∥
∥
∥
∥

(
∂wν
∂y2

, wν

)∥
∥
∥
∥

2

X

. (6.6)

If we apply (5.31) with β = λ+ 2µ, then (6.1), (6.4) and (6.6) imply (5.15).
Case B. Assume that supp v̂ν ⊂ M̃.

By (5.18)–(5.20), there exists C6 > 0 such that

|ξ20 − s2ϕ2
y0(y

∗) − µξ21 + µs2ϕ2
y1(y

∗)| + |ξ0sϕy0(y∗) − µsξ1ϕy1(y
∗)|
≤ δ1C6(|ξ1|2 + |ξ0|2 + s2), ∀ζ ∈ O(δ1). (6.7)

Now we suppose that the parameter δ1 is sufficiently small such that there exists a constant C7 > 0 such that

|ξ0|2 ≤ C7(|ξ1|2 + s2), ∀ζ ∈ O(δ1). (6.8)

Then, by (6.7), we have

|J3| ≤ δ1µϕy2(y
∗)
∥
∥
∥
∥

(
∂w1,ν

∂y2
, w1,ν

)∥
∥
∥
∥

2

X

. (6.9)

Moreover we claim that there exists δ0 > 0 such that if δ1 ∈ (0, δ0), then there exists C8 > 0 such that

|ξ0| ≤ C8|ξ1|, ∀ζ ∈ O(δ1). (6.10)

Our proof is by contradiction. Suppose that (6.10) is not true. Then for the sequence δ1(n) = 1
n , there exists

a sequence (ξ0(n), ξ1(n)) → (ξ∗0 , ξ∗1) such that ξ1(n)/ξ0(n) → 0. Hence for ζ∗ we have rµ(y∗, ζ∗) = 0, and
ξ∗1 = 0, ξ∗0 	= 0 by the definition of the set M̃. Therefore s∗ϕy0(y∗) = 0. If s∗ = 0, then we obtain (ξ∗0 )2 = 0
and if ϕy0(y∗) = 0, then (ξ∗0)2 + µϕ2

y1(y
∗)(s∗)2 = 0 by (5.19), (5.20). Therefore in the both cases, we have the

equality ξ∗0 = 0 which leads us to a contradiction.
Note that if rλ+2µ(γ) = 0, then

ϕy0(y
∗) = 0, ϕy1(y

∗) = 0, ξ∗0 = ξ∗1 = 0, s∗ = 1

and the conic neighbourhood of ζ∗ is in the set M provided that the parameter δ1 is chosen sufficiently small.
Therefore if γ ∈ M̃ and rµ(γ) = 0, then we have rλ+2µ(γ) 	= 0 and by Proposition 5.4, decomposition (5.23)
holds true. We set V +

λ+2µ = (Dy2 − Γ+
λ+2µ(y,D

′))v2,ν . Then

Pλ+2µv2,ν = (λ+ 2µ)|G|2(Dy2 − Γ−
λ+2µ(y,D

′))V +
λ+2µ + Tλ+2µv2,ν ,

where Tλ+2µ ∈ L(H1(Q), L2(Q)). This decomposition and Proposition 5.4 immediately imply

‖h(Dσ)(Dy2 − Γ+
λ+2µ(y,D

′))v2,ν |y2=0‖L2(Σ) ≤ C9(‖Pλ+2µ,sw2,ν‖L2(Q) + ‖v‖(H1(Q))2). (6.11)

Now we need again obtain the estimate of Ξ(1)
µ . We start from the term J2. By (5.16), we have

J2 = Re
∫

Σ

2|s|(λ+ 2µ)
(
∂w2,ν

∂y1
− |s|ϕy1(y∗)w2,ν

)

×
(

µ
∂w1,ν

∂y1
ϕy1(y∗) −

∂w1,ν

∂y0
ϕy0(y∗)

)

dΣ

+ Re
∫

Σ

2|s|µ(|s|ϕy2(y∗)w1,ν − g1,ν)
(

µ
∂w1,ν

∂y1
ϕy1(y∗) −

∂w1,ν

∂y0
ϕy0(y∗)

)

dΣ (6.12)
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and denoting

α̃+
λ+2µ(y

′, D) = α+
λ+2µ(y

′, D) + i|Dσ|(ϕy2 − ϕy2(y
∗)),

− µ

λ+ 2µ

(
∂v1,ν
∂y1

− |Dσ|ϕy1(y∗)v1,ν
)

− iα̃+
λ+2µ(y,D

′)v2,ν = iV +
λ+2µ(·, 0) − µ

λ+ 2µ
F−1
σ g2,ν. (6.13)

Here and henceforth |Dσ| is the pseudo-differential operator with the symbol |s|.
First assume that s∗ = 0. Then we can see by |s∗|2 + |ξ∗0 |2 + |ξ∗1 |2 = 1 that |α̃+

λ+2µ(γ)| = |rλ+2µ(γ)| 	= 0.
Therefore, by Proposition 5.2.A from [47], p. 105, there exists a parametrix of the operator α̃+

λ+2µ(y,D
′) which

we denote by (α̃+
λ+2µ(y,D

′))−1. From (6.13) we obtain

v2,ν = −1
i
(α̃+
λ+2µ(y,D

′))−1

(

µ

λ+ 2µ

(
∂v1,ν
∂y1

− |Dσ|ϕy1(y∗)v1,ν
)

+ iV +
λ+2µ(·, 0) − µ

λ+ 2µ
F−1
σ g2,ν

)

+ T0v2,ν ,

(6.14)
where T0 ∈ L(L2(Σ), H1(Σ)). Using (6.14), we transform (6.12) to obtain

J2 = Re
∫

Σ

−2|Dσ|µ
i

(
∂

∂y1
− |Dσ|ϕy1(y∗)

)

(α̃+
λ+2µ(y,D′))−1

(
∂v1,ν
∂y1

− |Dσ|ϕy1(y∗)v1,ν
)(

µ
∂v1,ν
∂y1

ϕy1(y∗) −
∂v1,ν
∂y0

ϕy0(y∗)
)

dΣ + κ3, (6.15)

where

κ3 = Re
∫

Σ

2|Dσ|µ(|Dσ|ϕy2(y∗)v1,ν + F−1
σ g1,ν)

(

µ
∂v1,ν
∂y1

ϕy1(y∗) −
∂v1,ν
∂y0

ϕy0(y∗)
)

dΣ

+ Re
∫

Σ

2|Dσ|(λ+ 2µ)
(

∂

∂y1
− |s|ϕy1(y∗)

)

×
[

− 1
i
(α̃+
λ+2µ(y,D

′))−1

(

iV +
λ+2µ(·, 0) − µ

λ+ 2µ
F−1
σ g2,ν

)

+ T0v2,ν

]

×
(

µ
∂v1,ν
∂y1

ϕy1(y∗) −
∂v1,ν
∂y0

ϕy0(y∗)
)

dΣ.

Then we have

|κ3| ≤ ε

∥
∥
∥
∥

(
∂wν

∂y2
,wν

)∥
∥
∥
∥

2

X

+ C10

(

‖h(s)g‖2
(L2(Σ))2 + ‖Pλ+2µ,sw2,ν‖2

L2(Q)

)

(6.16)

and ε can be chosen arbitrarily small by taking δ small enough.
Let us consider the pseudo-differential operator

b(y,D′) ≡ 1
i

(
∂

∂y1
− |s|ϕy1(y∗)

)

(α̃+
λ+2µ(y,D

′))−1.

By (6.7), for the principal symbol of this operator, we have

b(y∗, ζ) =
1
i
(iξ1 − |s|ϕy1(y∗))(α̃+

λ+2µ(y∗, ζ))−1

≡ −sign(ξ∗1 )

√
(
λ+ µ

λ+ 2µ

)

(y∗)
(iξ1 − |s|ϕy1(y∗))
ξ1 + i|s|ϕy1(y∗)

+ b̃(y∗, ζ)

=
1
i

√
(
λ+ µ

λ+ 2µ

)

(y∗) + b̃(y∗, ζ), (6.17)
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where b̃(y∗, ξ∗) = 0. Therefore the operator b(y,D′) can be represented in the form

b(y,D′) =
1
i

√

λ+ µ

λ+ 2µ
(y) + b̃(y,D′),

where b̃(y,D′) ∈ L(L2(Σ), L2(Σ)) and

‖b̃(y,D′)‖L(L2(Σ),L2(Σ)) ≤ ε. (6.18)

Using (6.17) in (6.15), we obtain

J2 = Re
∫

Σ

−2|Dσ|µ
(

sign(ξ∗1 )
i

√
(
λ+ µ

λ+ 2µ

)

(y∗) + b̃(y,D′)

)(
∂v1,ν
∂y1

− |Dσ|ϕy1(y∗)v1,ν
)

×
(

µ
∂v1,ν
∂y1

ϕy1(y∗) −
∂v1,ν
∂y0

ϕy0(y∗)
)

dΣ + κ3

= Re
∫

Σ

−2|Dσ|µ
(

b̃(y,D′) +
sign(ξ∗1)

i

√
(
λ+ µ

λ+ 2µ

)

(y∗)
)(∂v1,ν

∂y1
− |Dσ|ϕy1(y∗)v1,ν

)

×
(

µ
∂v1,ν
∂y1

ϕy1(y∗) −
∂v1,ν
∂y0

ϕy0(y∗)
)

dΣ + Reκ3.

By (6.7), (6.16) and (6.18), taking the parameters δ, δ1 sufficiently small, we obtain

|J2| ≤ ε(δ, δ1)
∥
∥
∥
∥

(
∂wν

∂y2
,wν

)∥
∥
∥
∥

2

X

+ C11(‖h(s)g‖2
(L2(Σ))2 + ‖Pλ+2µ,sw2,ν‖2

L2(Q) + ‖v‖2
(H1(Q))2), (6.19)

and ε(δ, δ1) → 0 as |δ| + |δ1| → 0.
Next assume that s∗ 	= 0. Then by (6.7) we have

|µ(y∗)ϕy1(y
∗)ξ1 − ϕy0(y

∗)ξ0| ≤ Cδ1|ζ|, ∀ζ ∈ O(δ1)

and (6.19) follows immediately. Therefore, for any s∗ ∈ R1, by (6.1), (6.2), (6.9) and (6.19), we have

∫

Σ

(

h2(s)µ2ϕy2(y
∗)
∣
∣
∣
∣

∂w1,ν

∂y2

∣
∣
∣
∣

2

+ h6(s)µ2ϕ3
y2(y

∗)|w1,ν |2
)

dΣ + C12(‖h(s)w1,ν‖2
H1(Q) + ‖h3(s)w1,ν‖2

L2(Q))

≤ C13(‖Pλ+2µ,sw2,ν‖2
L2(Q) + ‖h(s)g‖2

(L2(Σ))2 + ‖v‖2
(H1(Q))2) + ε

∥
∥
∥
∥

(
∂wν

∂y2
,wν

)∥
∥
∥
∥

2

X

. (6.20)

From (5.16), we obtain

∫

Σ

(

|s|
∣
∣
∣
∣

∂w2,ν

∂y1

∣
∣
∣
∣

2

+ |s|3µ2ϕ2
y1(y

∗)|w2,ν |2
)

dΣ

≤ C14

∫

Σ

(

|s|µ2ϕy2(y
∗)
∣
∣
∣
∣

∂w1,ν

∂y2

∣
∣
∣
∣

2

+ |s|3µ2ϕ3
y2(y

∗)|w1,ν |2
)

dΣ + C14‖h(s)gν‖2
(L2(Σ))2 . (6.21)
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Using (6.10), (6.21) and the definition of the set M̃, we obtain

∫

Σ

(

h2(s)
∣
∣
∣
∣

∂w2,ν

∂y1

∣
∣
∣
∣

2

+ h2(s)
∣
∣
∣
∣

∂w2,ν

∂y0

∣
∣
∣
∣

2

+ h6(s)|w2,ν |2
)

dΣ

≤ C15

{∫

Σ

(

|s|µ2ϕy2(y
∗)
∣
∣
∣
∣

∂w1,ν

∂y2

∣
∣
∣
∣

2

+ |s|3µ2ϕ3
y2(y

∗)|w1,ν |2
)

dΣ + ε(σ0)
∥
∥
∥
∥

(
∂wν

∂y2
,wν

)∥
∥
∥
∥

2

X

+ ‖h(s)gν‖2
(L2(Σ))2

}

·
(6.22)

From (6.11) and (6.22), we have

∫

Σ

h2(s)
∣
∣
∣
∣

∂w2,ν

∂y2

∣
∣
∣
∣

2

dΣ

≤ C16

{∫

Σ

(

h2(s)
∣
∣
∣
∣

∂w2,ν

∂y1

∣
∣
∣
∣

2

+ h2(s)
∣
∣
∣
∣

∂w2,ν

∂y0

∣
∣
∣
∣

2

+ h6(s)|w2,ν |2
)

dΣ

+ ‖V +
λ+2µ(·, 0)‖2

L2(Σ) + ε(σ0)
∥
∥
∥
∥

(
∂wν

∂y2
,wν

)∥
∥
∥
∥

2

X

+ ‖h(s)gν‖2
(L2(Σ))2

}

≤ C17

{∫

Σ

(

h2(s)
∣
∣
∣
∣

∂w1,ν

∂y2

∣
∣
∣
∣

2

+ h6(s)|w1,ν |2
)

dΣ + ‖h(s)gν‖2
(L2(Σ))2

+ ‖v‖2
(H1(Q))2 + ‖Pλ+2µ,sw2,ν‖2

L2(Q) + ε(σ0)
∥
∥
∥
∥

(
∂wν

∂y2
,wν

)∥
∥
∥
∥

2

X

}

· (6.23)

Finally (5.16), (6.10), (6.20) and (6.23) imply

∫

Σ

h2(s)

(∣
∣
∣
∣

∂w1,ν

∂y1

∣
∣
∣
∣

2

+
∣
∣
∣
∣

∂w1,ν

∂y0

∣
∣
∣
∣

2
)

dΣ

≤ C18

{∫

Σ

(

h2(s)
∣
∣
∣
∣

∂w1,ν

∂y2

∣
∣
∣
∣

2

+ h6(s)|w1,ν |2
)

dΣ + ‖h(s)gν‖2
(L2(Σ))2

+ ‖v‖2
(H1(Q))2 + ‖Pλ+2µ,sw2,ν‖2

L2(Q) + ε(σ0)
∥
∥
∥
∥

(
∂wν

∂y2
,wν

)∥
∥
∥
∥

2

X

)

. (6.24)

Inequalities (6.1), (6.20)–(6.24) imply

∥
∥
∥
∥

(
∂wν

∂y2
,wν

)∥
∥
∥
∥

2

X

+ ‖h(s)w1,ν‖2
H1(Q) + ‖h3(s)w1,ν‖2

L2(Q) ≤ ε

∥
∥
∥
∥

(
∂wν

∂y2
,wν

)∥
∥
∥
∥

2

X

+ C19

(

‖v‖2
(H1(Q))2 + ‖h(s)gν‖2

(L2(Σ))2 + ‖Pµ,sw2,ν‖2
L2(Q) + ‖Pλ+2µ,sw2,ν‖2

L2(Q)

)

.

From this inequality and (5.31), (5.32) with β = λ + 2µ, we obtain (5.15). Thus the proof of Lemma 6.1 is
complete. �
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7. The case rλ+2µ(γ) = 0

In this section, we will prove

Lemma 7.1. Let γ = (y∗, ζ∗) be a point on Σ × S2 such that rλ+2µ(γ) = 0. If suppχν ⊂ O(δ1) ⊂ M̃, then
estimate (5.15) holds true.

Proof. We note that if rµ(γ) = 0, then s∗ 	= 0 and ξ∗0 = ξ∗1 = ϕy0(y∗) = ϕy1(y∗) = 0. Consequently ζ∗ ∈ M
and this case was treated in the previous section. Therefore, taking the parameters δ and δ1 sufficiently small,
we may assume that there exists a constant Ĉ > 0 such that

|rµ(y, ζ)| ≥ Ĉ|ζ|2, ∀(y, ζ) ∈ Bδ ×O(δ1), |ζ| ≥ 1.

By (5.19) and (5.20), there exist δ0 > 0 and C1 > 0 such that for all δ1 ∈ (0, δ0) we have

|ξ0|2 ≤ C1(ξ21 + s2), ∀ζ ∈ O(δ1). (7.1)

We consider the following three cases.
Case A. Assume that s∗ = 0 and

µ(y∗)ϕy2(y
∗) >

|µ(y∗)ϕy1(y
∗)ξ∗1 − ϕy0(y

∗)ξ∗0 |
√

λ+µ
µ (y∗)|ξ∗1 |

·

In that case, there exists a constant C2 > 0 such that

−Im Γ±
µ (y, ζ) ≥ C2|s|, ∀(y, ζ) ∈ Bδ ×O(δ1),

provided that |δ| + |δ1| is sufficiently small. Since s∗ = 0, we may assume that for some constant C3 > 0,

|ξ0|2 + s2 ≤ C3ξ
2
1 , ∀ζ ∈ O(δ1), (7.2)

taking a sufficiently small δ1. We set V ±
µ = (Dy2 − Γ±

µ (y,D′))v1,ν . Then, by Proposition 5.3,

Pµv1,ν = |G|2µ(Dy2 − Γ∓
µ (y,D′))V ±

µ + T±
µ v1,ν , (7.3)

where T±
µ ∈ L(H1(Q), L2(Q)). This decomposition and Proposition 5.4 imply

‖h(Dσ)(Dy2 − Γ±
µ (y,D′))v1,ν |y2=0‖L2(Σ) ≤ C4(‖Pµv1,ν‖L2(Q) + ‖v‖(H1(Q))2). (7.4)

We have
−V +

µ (·, 0) + V −
µ (·, 0) = (α+

µ (y,D′) − α−
µ (y,D′))v1,ν on Σ. (7.5)

Since α+
µ (y∗, ζ∗) − α−

µ (y∗, ζ∗) = 2
√
rµ(y∗, ζ∗) 	= 0, by (7.4), (7.5) and G̊arding’s inequality, we have

∫

Σ

(

h2(s)

(∣
∣
∣
∣

∂w1,ν

∂y1

∣
∣
∣
∣

2

+
∣
∣
∣
∣

∂w1,ν

∂y0

∣
∣
∣
∣

2
)

+ h6(s)|w1,ν |2
)

dΣ ≤ C5(‖Pµ,sw1,ν‖2
L2(Q) + ‖v‖2

(H1(Q))2). (7.6)

By (7.6) and (7.4), we obtain

∫

Σ

h2(s)
∣
∣
∣
∣

∂w1,ν

∂y2

∣
∣
∣
∣

2

dΣ ≤ C6

(

‖Pµ,sw1,ν‖2
L2(Q) + ‖v‖2

(H1(Q))2

)

. (7.7)
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Finally, by (7.6), (7.7) combined with (5.16), we obtain
∥
∥
∥
∥

(
∂w2,ν

∂y2
, w2,ν

)∥
∥
∥
∥

2

X

≤ C7

(

‖Pµ,sw1,ν‖2
L2(Q) + ‖v‖2

(H1(Q))2 + ‖h(s)g‖2
(L2(Σ))2

)

. (7.8)

Since (7.6)–(7.8), (5.31) and (5.32), we obtain (5.15).
Case B. Assume that s∗ = 0 and

µ(y∗)ϕy2(y
∗) ≤

∣
∣µ(y∗)ϕy1(y∗)ξ∗1 − ϕy0(y∗)ξ∗0 |

√
λ+µ
µ (y∗)

∣
∣ξ∗1 |

. (7.9)

Then limζ→ζ∗ Im rµ(y∗, ζ)/|s| 	= 0. Since s∗ = 0, we note that Re rµ(y∗, ζ∗) > 0. Set I = sign limζ→ζ∗

Im rµ(y∗, ζ)/|s|. Then we have

Γ+
µ (y∗, ζ∗) = I

√

Re rµ(y∗, ζ∗).

Therefore for some C8 > 0 we have

−Γ+
µ (y∗, ζ∗)(µϕy1(y

∗)ξ∗1 − ϕy0(y
∗)ξ∗0) > C8.

Taking the parameters δ > 0 and δ1 > 0 sufficiently small, we obtain

−ReΓ+
µ (y, ζ)(µϕy1 (y)ξ1 − ϕy0(y)ξ0) > 0, ∀(y, ζ) ∈ Bδ ×O(δ1). (7.10)

Let us consider estimate (6.1). Let us recall that J1, J2, J3 are defined in (6.2). We have

J2 = Re
∫

Σ

2|s|µ∂w1,ν

∂y2

(

µ
∂w1,ν

∂y1
ϕy1(y∗) −

∂w1,ν

∂y0
ϕy0(y∗)

)

dΣ

= Re
∫

Σ

2|Dσ|µiΓ+
µ (y,D′)v1,ν

(

µ
∂v1,ν
∂y1

ϕy1(y∗) −
∂v1,ν
∂y0

ϕy0(y∗)
)

dΣ

+ Re
∫

Σ

2|Dσ|µiV +
µ (·, 0)

(

µ
∂v1,ν
∂y1

ϕy1(y∗) −
∂v1,ν
∂y0

ϕy0(y∗)
)

dΣ

= Re
∫

Σ

2µ(Dy1ϕy1(y
∗) −Dy0ϕy0(y

∗))Γ+
µ (y,D′)|Dσ| 12 v̂1,ν |Dσ| 12 v̂1,νdΣ

+ Re
∫

Σ

2|Dσ|µiV +
µ (·, 0)

(

µ
∂v1,ν
∂y1

ϕy1(y∗) −
∂v1,ν
∂y0

ϕy0(y∗)
)

dΣ. (7.11)

By (7.10) we obtain from G̊arding’s inequality that the first integral in the right hand side of (7.11) is
negative. Consider two cases. First let

ϕy1(y
∗)ξ∗1Γ+

µ (y∗, ζ∗) > 0.

This inequality and (7.10) yield |ξ∗0ϕy0(y∗)| > |ξ∗1µ(y∗)ϕy1(y∗)|. If ξ∗0ϕy0(y
∗) > 0 then Γ+

µ (y∗, ζ∗) = |√rµ(γ)|
and ξ∗1ϕy1(y

∗) > 0. Hence ϕy2(y∗) >
|ϕy1(y∗)ξ∗1−

ϕy0 (y∗)
µ(y∗) ξ∗0 |

(λ+µ
µ (y∗))

1
2 |ξ∗1 |

=
−ϕy1(y∗)ξ∗1+

ϕy0 (y∗)
µ(y∗) ξ∗0

(λ+µ
µ (y∗))

1
2 |ξ∗1 |

. By the first equation in (2.6),

this contradicts (7.9).

If ξ0ϕy0(y∗) < 0 then Γ+
µ (y∗, ζ∗) = −|√rµ(γ)| and ξ∗1ϕy1(y

∗) < 0. Therefore ϕy2(y∗) >
|ϕy1(y∗)ξ∗1−

ϕy0 (y∗)
µ(y∗) ξ∗0 |

(λ+µ
µ (y∗))

1
2 |ξ∗1 |

=

ϕy1(y∗)ξ∗1−
ϕy0 (y∗)

µ(y∗) ξ∗0

(λ+µ
µ (y∗))

1
2 |ξ∗1 |

. By (2.6) this again contradicts (7.9).
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In the second case one have to consider ϕy1(y∗)ξ∗1Γ+
µ (y∗, ζ∗) < 0. By G̊arding’s inequality we have

Re
∫

Σ

2|Dσ|µiΓ+
µ (y,D′)v1,νµ(y∗)ϕy1(y∗)

∂v1,ν
∂y1

dΣ < 0.

This inequality and the fact that the second integral in the right hand side of J2 is negative, imply that

−Re
∫

Σ

2|Dσ|µiΓ+
µ (y,D′)v1,ν

(

(λ+ 2µ)
∂v1,ν
∂y1

ϕy1(y∗) −
∂v1,ν
∂y0

ϕy0(y∗)
)

dΣ > 0. (7.12)

Note that

Ξ
(1)
λ+2µ =

∫

Σ

(

|s|(λ+ 2µ)2ϕy2(y
∗)
∣
∣
∣
∣

∂w2,ν

∂y2

∣
∣
∣
∣

2

+ |s|3(λ+ 2µ)2ϕ3
y2(y

∗)|w2,ν |2
)

dΣ

+ Re
∫

Σ

2|s|(λ+ 2µ)
∂w2,ν

∂y2

(

(λ+ 2µ)ϕy1(y∗)
∂w2,ν

∂y1
− ϕy0(y∗)

∂w2,ν

∂y0

)

dΣ

+
∫

Σ

|s|(λ + 2µ)ϕy2(y
∗)(ξ20 − (λ+ 2µ)ξ21 − s2ϕ2

y0(y
∗) + s2(λ+ 2µ)ϕ2

y1(y
∗))|v̂2,ν |2dΣ

= J̃1 + J̃2 + J̃3. (7.13)

Using equalities (5.14) we can transform J̃2 as

J̃2 = −Re
∫

Σ

2|s| µ

λ+ 2µ
∂w1,ν

∂y2

(

(λ+ 2µ)ϕy1(y∗)
∂w1,ν

∂y1
− ϕy0(y∗)

∂w1,ν

∂y0

)

dΣ + I,

where

|I| ≤ ε(δ)
∥
∥
∥
∥

(
∂wν

∂y2
,wν

)∥
∥
∥
∥

2

X

+ C9‖h(s)g‖2
(L2(Σ))2 .

Then by (7.12) there exists C10 > 0 such that

J̃2 > C10

∫

Σ

(

|s|
∣
∣
∣
∣

∂w1,ν

∂y1

∣
∣
∣
∣

2

+ |s|3|w1,ν |2
)

dΣ. (7.14)

Since rλ+2µ(γ) = 0, we have

|J̃3| ≤ C′
11δ1

∥
∥
∥
∥

(
∂w2,ν

∂y2
, w2,ν

)∥
∥
∥
∥

2

X

.

This inequality and (7.14) imply

Ξ(1)
λ+2µ ≥ C11

∫

Σ

(

|s|
∣
∣
∣
∣

∂w2,ν

∂y2

∣
∣
∣
∣

2

+ |s|3|w2,ν |2 + |s|
∣
∣
∣
∣

∂w1,ν

∂y1

∣
∣
∣
∣

2

+ |s|3|w1,ν |2
)

dΣ

− ε(δ)
∥
∥
∥
∥

(
∂wν

∂y2
,wν

)∥
∥
∥
∥

2

X

+ C9‖h(s)g‖2
(L2(Σ))2 . (7.15)

Now we will estimate J3. By (5.18) and (5.19), there exists a constant C′
12 > 0 such that

|ξ20 − s2ϕ2
y0(y

∗) − (λ+ 2µ)ξ21 + (λ+ 2µ)s2ϕ2
y1(y

∗)|
≤C′

12δ1(|ξ0|2 + |ξ1|2 + s2), ∀ζ ∈ O(δ1). (7.16)
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Using this inequality we obtain

ξ20 − µξ21 − s2ϕ2
y0(y

∗) + s2µϕ2
y1(y

∗)

=(λ+ µ)(ξ21 − s2ϕ2
y1(y

∗)) + (ξ20 − (λ + 2µ)ξ21 − s2ϕ2
y0(y

∗) + s2(λ+ 2µ)ϕ2
y1(y

∗))

≥(λ+ µ)(ξ21 − s2ϕ2
y1(y

∗)) − C12δ1(|ξ0|2 + |ξ1|2 + s2).

Therefore, for all sufficiently small δ1, there exists C13 > 0 such that

ξ20 − µξ21 − s2ϕ2
y0(y

∗) + s2µϕ2
y1(y

∗) ≥ C13(|ξ0|2 + |ξ1|2 + s2). (7.17)

By (7.17), we see that J3 ≥ 0. Therefore by (7.15) and (6.1), there exist constants C′
13 > 0, C14 > 0 such that

Ξ(1)
µ + C′

13Ξ
(1)
λ+2µ ≥ C14

∥
∥
∥
∥

(
∂w1,ν

∂y2
, w1,ν

)∥
∥
∥
∥

2

X

− C10(δ, δ1)(‖Pµ,sw1,ν‖2
L2(Q) + ‖v‖2

(H1(Q))2)

− ε(δ)
∥
∥
∥
∥

(
∂wν

∂y2
,wν

)∥
∥
∥
∥

2

X

+ C9‖h(s)g‖2
(L2(Σ))2 .

This inequality, (5.16) and (7.4) with the sign +, imply

Ξ(1)
µ ≥ C15

∥
∥
∥
∥

(
∂wν

∂y2
,wν

)∥
∥
∥
∥

2

X

−C16(δ, δ1)(‖Pµ,sw1,ν‖2
L2(Q) + ‖h(s)g‖2

(L2(Σ))2 + ‖v‖2
(H1(Q))2). (7.18)

By (7.18), (5.31) and (5.32), we obtain (5.15).
Case C. Assume that s∗ 	= 0. If δ1 > 0 is small enough, then there exists a constant C17 > 0 such that

|ξ0ϕy1(y∗) − (λ+ 2µ)ξ1ϕy1(y
∗)|2 ≤ δ21C17(|ξ1|2 + s2). (7.19)

By (5.31), there exists C18 > 0 such that

Ξ
(1)
λ+2µ + C18

(

‖h(s)w2,ν‖2
H1(Q) + ‖h3(s)w2,ν‖2

L2(Q)

)

≤ C18

(

‖Pλ+2µv2‖2
L2(Q) + ‖v‖2

(H1(Q))2

)

+ ε

∥
∥
∥
∥

(
∂w2,ν

∂y2
, w2,ν

)∥
∥
∥
∥

2

X

. (7.20)

By (7.16) and (7.19), we have

|J̃2 + J̃3| ≤ C19δ1

∥
∥
∥
∥

(
∂w2,ν

∂y2
, w2,ν

)∥
∥
∥
∥

2

X

. (7.21)

By (7.21) we obtain from (7.13) that there exists a constant C20 > 0 such that

Ξ
(1)
λ+2µ ≥ −ε

∥
∥
∥
∥

(
∂w2,ν

∂y2
, w2,ν

)∥
∥
∥
∥

2

X

+ C20

∫

Σ

(

h2(s)(λ + 2µ)2ϕy2(y
∗)
∣
∣
∣
∣

∂w2,ν

∂y2

∣
∣
∣
∣

2

+ h6(s)(λ + 2µ)2ϕ3
y2(y

∗)|w2,ν |2
)

dΣ. (7.22)
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From (5.16), we easily obtain

∥
∥
∥
∥h(s)

(
∂w2,ν

∂y2
− |s|ϕy2(y∗)w2,ν + g2,ν

)∥
∥
∥
∥

2

L2(Σ)

=
µ2

(λ+ 2µ)2

(∥
∥
∥
∥h(s)

∂w1,ν

∂y1

∥
∥
∥
∥

2

L2(Σ)

+ ϕ2
y1(y

∗)‖h(s)|s|w1,ν‖2
L2(Σ)

)

.

Hence (7.22) and this equality imply

Ξ
(1)
λ+2µ ≥ C21

∫

Σ

(

h2(s)

(∣
∣
∣
∣

∂w2,ν

∂y2

∣
∣
∣
∣

2

+
∣
∣
∣
∣

∂w1,ν

∂y1

∣
∣
∣
∣

2
)

+ h6(s)|w2,ν |2
)

dΣ−ε
∥
∥
∥
∥

(
∂w2,ν

∂y2
, w2,ν

)∥
∥
∥
∥

2

X

−C22‖h(s)g‖2
(L2(Σ))2 .

(7.23)
Now we claim that inequality (7.2) holds true for all sufficiently small δ1. First we may assume that for all

ζ ∈ O(δ1) we have s2 ≤ C23(ξ20 + ξ21). In fact, if the last inequality is not true, then ζ∗ ∈ M and the case was
treated in the previous section. Suppose that (7.2) is not true. In that case ξ∗1 = 0 and ξ∗0 	= 0, s∗ 	= 0. Therefore
ϕy0(y

∗) = 0 by (5.18). However, this implies (ξ∗0)2 + (λ(y∗) + 2µ(y∗))ϕ2
y1 (y

∗)(s∗)2 = 0. Hence we arrived at a
contradiction and the verification of (7.2) is complete.

Inequalities (7.2) and (7.23) imply that there exists a constant C24 > 0 such that

Ξ
(1)
λ+2µ ≥ C24

∫

Σ

(

h2(s)

(∣
∣
∣
∣

∂w2,ν

∂y2

∣
∣
∣
∣

2

+
∣
∣
∣
∣

∂w1,ν

∂y1

∣
∣
∣
∣

2

+
∣
∣
∣
∣

∂w1,ν

∂y0

∣
∣
∣
∣

2
)

+ h6(s)|wν |2
)

dΣ

− ε

∥
∥
∥
∥

(
∂w2,ν

∂y2
, w2,ν

)∥
∥
∥
∥

2

X

− C22‖h(s)g‖2
(L2(Σ))2 . (7.24)

By inequality (7.4) for V +
µ (·, 0), we obtain the estimate

∥
∥
∥
∥h(s)

∂w1,ν

∂y2

∥
∥
∥
∥

2

L2(Σ)

≤ C25

{∫

Σ

(

h2(s)

(∣
∣
∣
∣

∂w1,ν

∂y1

∣
∣
∣
∣

2

+
∣
∣
∣
∣

∂w1,ν

∂y0

∣
∣
∣
∣

2
)

+ h6(s)|w1,ν |2
)

dΣ

+ ‖Pµv1,ν‖2
L2(Q) + ‖v‖2

(H1(Q))2

}

· (7.25)

Inequalities (7.24) and (7.25) imply that there exists a constant C26 > 0 such that

Ξ
(1)
λ+2µ ≥ C26

∥
∥
∥
∥

(
∂wν

∂y2
,wν

)∥
∥
∥
∥

2

X

− C27(δ, δ1)
(

‖Pµ,sw1,ν‖2
L2(Q) + ‖h(s)g‖2

(L2(Σ))2 + ‖v‖2
(H1(Q))2

)

. (7.26)

By (7.26), (5.31) and (5.32), we obtain (5.15). The proof of Lemma 7.1 is finished. �

8. The case rµ(γ) 	= 0 and rλ+2µ(γ) 	= 0

In this section, we will prove

Lemma 8.1. Let γ = (y∗, ζ∗) ∈ Σ × S2 be a point such that

|rµ(y∗, ζ∗)| 	= 0 and |rλ+2µ(y∗, ζ∗)| 	= 0. (8.1)

If suppχν ⊂ O(δ1) and δ1 > 0 is sufficiently small, then estimate (5.15) holds true.
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Proof. Thanks to (8.1) and Proposition 5.3, decomposition (5.23) holds true for β = µ and β = λ+2µ. Therefore
we have

(Dy2 − Γ+
µ (y,D′))v1,ν |y2=0 = V +

µ (·, 0), (8.2)

(Dy2 − Γ+
λ+2µ(y,D

′))v2,ν |y2=0 = V +
λ+2µ(·, 0). (8.3)

By Proposition 5.4, we have an a priori estimate

‖h(Dσ)V +
µ (·, 0)‖2

L2(Σ) + ‖h(Dσ)V +
λ+2µ(·, 0)‖2

L2(Σ) ≤ C1

(

‖Pλ+2µv2‖2
L2(Q) + ‖Pµv1‖2

L2(Q) + ‖v‖2
(H1(Q))2

)

. (8.4)

Denote
α̃+
µ (y′, D) = α+

µ (y′, D) + i|Dσ|(ϕy2 − ϕy2(y
∗)).

Using (5.16), we may rewrite (8.2) and (8.3) as

λ+ 2µ
µ

(
∂v2,ν
∂y1

− |Dσ|ϕy1(y∗)v2,ν
)

− iα̃+
µ (y,D′)v1,ν = iV +

µ (·, 0) − iF−1
σ g1,ν , (8.5)

µ

λ+ 2µ

(

−∂v1,ν
∂y1

+ |Dσ|ϕy1(y∗)v1,ν
)

− iα̃+
λ+2µ(y,D

′)v2,ν = iV +
λ+2µ(·, 0) − iF−1

σ g2,ν . (8.6)

Let B(y,D′) be the matrix pseudo-differential operator with the symbol

B(y, ζ) =

(

−iα̃+
µ (y, ζ) λ+2µ

µ (iξ1 − |s|ϕy1(y))
µ

λ+2µ (−iξ1 + |s|ϕy1(y)) −iα̃+
λ+2µ(y, ζ)

)

.

By (5.19) and (5.20), we see: if detB(y∗, ζ∗) = 0, then either ξ∗0 + is∗ϕy0(y∗) = 0 or

ζ∗ ∈
{

ζ ∈ R
3; (ξ1 + i|s|ϕy1(y∗))2 =

(ξ0 + i|s|ϕy0(y∗))2
(λ+ 3µ)(y∗)

}

· (8.7)

In this case of (8.7), we have ϕy0(y∗) = ϕy1(y∗) = ξ∗0 = ξ∗1 = 0, s∗ = 1.
Now we consider two cases

Case A. detB(γ) 	= 0.
In this case, there exists a parametrix of the operator B(y,D′), which we denote by B−1(y,D′), such that

(v1,ν , v2,ν) = B−1(y,D′)(V +
µ (·, 0) −F−1

σ g1,ν , V
+
λ+2µ(·, 0) −F−1

σ g2,ν)T +K(v1,ν , v2,ν), (8.8)

where K : (L2(Q))2 → (H1(Q))2. By (8.4) and (8.8),

|Ξµ| + |Ξλ+2µ| ≤ C2

(

‖Pµv1‖2
L2(Q) + ‖Pλ+2µv2‖2

L2(Q) + ‖h(s)g‖2
(L2(Σ))2 + ‖v‖2

(H1(Q))2

)

. (8.9)

(Here and henceforth, for simplicity, we do not distinguish aT from a vector a.) By (8.9), (5.30) and (5.31), we
obtain (5.15).

Case B. detB(γ) = 0.

We claim that this situation is possible in the two cases:

(i) ϕy0(y
∗) = ϕy1(y

∗) = ξ∗0 = ξ∗1 = 0, s∗ = 1;

(ii) ξ∗0 = 0, s∗ϕy0(y
∗) = 0. (8.10)
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The first subcase was treated in Section 6. Let us consider the second subcase (8.10). Next we may assume
that

ζ∗ ∈ M̃.

Otherwise, ζ∗ ∈ M, so that the case was treated in Section 6. Next we may assume that

Im Γ+
µ (γ) = Im Γ+

λ+2µ(γ) ≥ 0. (8.11)

Really if
Im Γ+

µ (γ) = Im Γ+
λ+2µ(γ) < 0, (8.12)

then the situation is simple since we have the decomposition

Pβvj(β),ν = β|G|2(Dy2 − Γ∓
β (y,D′))V ±

β + T±
µ vj(β),ν ,

where T±
β ∈ L(H1(Q), L2(Q)), β ∈ {µ, λ + 2µ}, j(β) = 1 for β = µ and j(β) = 2 for β = λ + 2µ. This

decomposition, (8.12) and Proposition 5.3 imply

‖h(Dσ)(Dy2 − Γ±
β (y,D′))vj(β),ν |y2=0‖L2(Σ) ≤ C3

(‖Pβvj(β),ν‖L2(Q) + ‖v‖(H2(Q))2
)
. (8.13)

Obviously
−V +

β (·, 0) + V −
β (·, 0) = (α+

β (y,D′) − α−
β (y,D′))v1,ν on Σ.

Since α+
µ (y∗, ζ∗) − α−

µ (y∗, ζ∗) = 2
√
rµ(y∗, ζ∗) 	= 0, we have

∥
∥
∥
∥

(
∂wν

∂y2
,wν

)∥
∥
∥
∥

2

X

≤ C4

(

‖Pλ+2µ,sw2,ν‖2
L2(Q) + ‖Pµ,sw1,ν‖2

L2(Q) + ‖v‖2
(H1(Q))2

)

(8.14)

by (8.13) and G̊arding’s inequality.
By (8.14), (5.30) and (5.31), we obtain (5.15) under Condition (8.12).
In order to treat (8.10) under (8.11), we will use Calderon’s method. First we introduce the new variables

U = (U1, U2, U3, U4) with four components, where

(U1, U2) = Λ(D′)F−1
σ U , (U3, U4) = (D2 + i|Dσ|ϕy2)F−1

σ U ,

and Λ is the pseudo-differential operator with the symbol (s2 + ξ21 + ξ20 + 1)
1
2 . In the new notations, problem

(5.1) and (5.2) can be written in the form

Dy2U = M(y,D′)U + F in R
3 × [0, 1], (U1, U2)(y)|y2=0 = 0, (8.15)

where F = (0,PσF−1
σ U). Here M(y,D′) is the matrix pseudo-differential operator whose principal symbol

M1(y, ζ) is given by

M1(y, ζ) =
(

0 Λ1E2

A−1M21Λ−1
1 A−1M22

)

− i|s|ϕy2E4

(see [49]). Here we set 	θ = (ξ1 + i|s|ϕy1 , 0), G(y1) = (−d�(y1)/dy1, 1), Λ1 = |ζ|, M21(y, ξ′ + i|s|∇y′ϕ(y)) =
((ξ0 + i|s|ϕy0(y))2 − µ(ξ′ + i|s|ϕy1(y))2)E2 − (λ+ µ)(y)	θT 	θ, M22(y, ξ′) = −(λ+ µ)(y)	θTG+GT 	θ− 2µ(	θ,G)E2,
A = (λ + µ)(y)GTG + µ(y)|G|2E2. The matrix M1(γ) has only two eigenvalues M± given by (5.18)–(5.20).
Moreover it is known that the Jordan form of the matrix M1(γ) has two Jordan blocks of the form

M± =
(

Γ±
µ (γ) 1
0 Γ±

µ (γ)

)

.
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Following [46] and using the change of variables W = S−1(y,D′)U which is constructed below, we can reduce
system (8.15) to the form

Dy2W = M̃(y,D′)W + T (y,D′)W + F̃ , (8.16)

where the matrix M̃ has the form

M̃(y, ζ) =
(
M+(y, ζ) 0

0 M−(y, ζ)

)

, M± =
(

Γ±
λ+2µ(y, ζ) m±

12(y, ζ)
0 Γ±

µ (y, ζ)

)

,

the operator T is in L∞(0, 1;L((H1(Σ))4, (H1(Σ))4)), m±
12(y,D

′) are first order operators and

‖F̃‖L2(R1;(H1(Σ))2) ≤ C5

(‖PσF−1
σ U‖(H1(Q))2 + ‖F−1

σ U‖L2(R1;(H1(Σ))2)

)
.

Now we describe the construction of the pseudo-differential operator S. We take the symbol S in the form
S = (s+1 , s

+
2 , s

−
1 , s

−
2 ). Here

s±1 =
(

(	θ + α±
λ+2µG)Λ−1

1 , α±
λ+2µ(	θ + α±

λ+2µG)Λ−2
1

)

are the eigenvectors of the matrix M1(y, ζ) on the sphere ζ ∈ S
2 which corresponds to the eigenvalue Γ±

λ+2µ and
the vectors s±2 are given by the formula

s±2 = E±s±, E± =
1

2πi

∫

C±
(z −M1(y, ζ))−1dz,

where C± are small circles centered at Γ±
µ (γ) and s± solves the equation M1(γ)s± − Γ±

µ (γ)s± = s±1 (γ). Since
ζ∗ ∈ M̃ and ξ∗0 = 0, we have ξ∗1 	= 0. Therefore the circles C± may be taken such that the disks bounded by these
circles do not intersect, provided that δ1, δ are taken sufficiently small. Note that the vectors s±j ∈ C2(Bδ×Oδ1)
are homogeneous functions of the order zero in (s, ξ0, ξ1). Now using a standard argument (see [36], p. 241), we
can estimate the last two components of W as follows

‖(W3,W4)‖
(H

3
2 (Σ))2

≤ C6

(‖PσF−1
σ U‖(H1(Q))2 + ‖F−1

σ U‖(H2(Q))2
)
,

where the constant C6 is independent of N.
Now we need to estimate the first two components of the vector function W on Σ. Thanks to the zero

boundary conditions for U3 and U4, we have

S11(y0, y1, 0, D′)(W1,W2) = −S12(y0, y1, 0, D′)(W3,W4) + T−1(y0, y1, 0, D′)F−1
σ U , (8.17)

where we set

S(y, ζ) =
(
S11(y, ζ) S12(y, ζ)
S21(y, ζ) S22(y, ζ)

)

, T−1 : (H1(Σ))2 → (H2(Σ))2.

The principal symbol of the pseudo-differential operator S11 is the 2×2 matrix such that the first column equals
the last two coordinates of the vector s+1 and the second column equals the last two coordinates of the vector
s+2 . At the point γ, these vectors are given by the formulae

	η = (ξ∗1 + i|s∗|ϕy1(y∗), isign(ξ∗1 )(ξ∗1 + i|s∗|ϕy1(y∗)))

s+1 (γ) =

(

	η, i
sign(ξ∗1 )(ξ∗1 + i|s∗|ϕy1(y∗))

√
(ξ∗1 )2 + (s∗)2

	η

)

,
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	ς =
−1

√
(ξ∗1)2 + (s∗)2

λ+ 3µ
2(λ+ µ)

(y∗)(isign(ξ∗1), 1),

s+2 (γ) =

(

	ς,
1

√
(ξ∗1)2 + (s∗)2

{isign(ξ∗1 )(ξ∗1 + i|s∗|ϕy1(y∗))	ς + 	η}
)

.

Therefore detS11(γ) 	= 0. From (8.15), (8.16) and G̊arding’s inequality, we obtain
∥
∥
∥
∥

(
∂wν

∂y2
,wν

)∥
∥
∥
∥
X

≤ C7(‖PσF−1
σ U‖(H1(Q))2 + ‖F−1

σ U‖(H2(Q))2), (8.18)

where the constant C7 is independent of N . By (8.9), (5.30) and (5.31), we obtain (5.15). The proof of
Lemma 8.1 is finished. �

9. Proofs of Theorems 2.2 and 2.3

In this section we prove Theorems 2.2 and 2.3. The proof is based on the duality argument and the scenario
is described as follows. In view of the fact that observability implies controllability and vice versa, we will
introduce an extremal problem, and, using Carleman estimate (2.9), we show that there exists a solution to
this problem which solves the control problem for the operator P ∗ and minimizes weighted L2(Q)-norm. At the
next step, we obtain an estimate of this solution in the weighted H1-norm. This estimate implies (2.11) and
(2.12).

We introduce the Banach space X = (H1(Q))2 with the norm

‖w‖2
X =

∫

Q

(|∇w|2 + s2|w|2)dx.

In order to prove the theorems, we consider the following extremal problem

J(z,v1,v2) =
1
2
‖ze−sφ‖2

(L2(Q))2 +
1
2
‖v1e−sφ‖2

(L2(Qω))2 +
1

2s2
‖v2e−sφ‖2

(L2(Qω))2 −→ inf, (9.1)

Pz = ue2sφ +
∂v1

∂x0
+ v2 in Q, (9.2)

suppvj ⊂ Qω, j = 1, 2, z|(0,T )×∂Ω = 0,
∂z
∂x0

(0, ·) =
∂z
∂x0

(T, ·) = 0. (9.3)

Denote by (z,v1,v2) the solution to extremal problem (9.1)–(9.3).
We have

Lemma 9.1. Under the conditions of Theorem 2.2 for all u ∈ (L2(Q))2, there exists a unique solution
(z,v1,v2) ∈ (H1(Q))2 × (H1(0, T ;L2(Ω)))2 × (H1(Q))2 to problem (9.1)–(9.3). Moreover this solution sat-
isfies the optimality system

Pp + ze−2sφ = 0 in Q, (9.4)

p|(0,T )×∂Ω = 0,
∂p
∂x0

(0, ·) =
∂p
∂x0

(T, ·) = 0, (9.5)

p =
1
s2

v2e−2sφ in Qω,
∂p
∂x0

= −v1e−2sφ in Qω, (9.6)

Pz = ue2sφ +
∂v1

∂x0
+ v2 in Q, suppvj ⊂ Qω, j ∈ {1, 2}, (9.7)

z|(0,T )×∂Ω = 0,
∂z
∂x0

(0, ·) =
∂z
∂x0

(T, ·) = 0, (9.8)
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and the following estimate holds true:

‖ze−sφ‖2
X +

∥
∥
∥
∥

∂v1

∂x0
e−sφ

∥
∥
∥
∥

2

(L2(Qω))2
+ s2‖v1e−sφ‖2

(L2(Qω))2 + ‖v2e−sφ‖2
(L2(Qω))2 ≤ C1‖uesφ‖2

(L2(Q))2 . (9.9)

Proof of Lemma 9.1. The proof is done along the standard argument (e.g., [38]) and for completeness we will
give it. For any ε ∈ (0, 1), we consider the following extremal problem

Jε(z,v1,v2,w) =
1
2

∫

Q

|z|2e−2sφdx+
1
2

∫

Q

mε

(

|v1|2 +
|v2|2
s2

)

e−2sφdx+
1
2ε

∫

Q

|w|2dx −→ inf, (9.10)

Pz =
∂v1

∂x0
+ v2 + ue2sφ + w in Q, (9.11)

z|(0,T )×∂Ω = 0,
∂z
∂x0

(0, x′) =
∂z
∂x0

(T, x′) = 0, (9.12)

where mε ∈ C2(Ω), mε(x′) > 0 on Ω,

mε(x′) =

{

1, for x ∈ ω
1
ε , for dist (x, ω) ≥ 1

ln 1
ε

.

Denote by (ẑε, v̂1,ε, v̂2,ε, ŵε) a solution to extremal problem (9.10)–(9.12).

Remark. We understand equation (9.11) and the boundary Conditions (9.12) in the sense of the equality:

(z, P δ)(L2(Q))2 = −(v1, ∂x0δ)(L2(Q))2 + (v2 + u2sφ + w, δ)(L2(Q))2

for any δ ∈ (H1(Q))2 satisfying Pδ ∈ (L2(Q))2, δ|(0,T )×∂Ω = 0, ∂δ
∂x0

(0, .) = ∂δ
∂x0

(T, .) = 0. If z, v1 are regular,
then ∂z

∂x0
(0, .) − v1(0, .) = 0 and ∂z

∂x0
(T, .) − v1(T, .) = 0.

We have

Proposition 9.1. Under conditions of Theorem 2.2 for all u ∈ (L2(Q))2, there exists a unique solution
(ẑε, v̂1,ε, v̂2,ε, ŵε) ∈ (H1(Q))2× (H1(0, T ;L2(Ω)))2× (H2(Q))2× (H2(Q))2 to problem (9.10)–(9.12). Moreover
this solution satisfies the optimality system:

pε(x) =
ŵε(x)
ε

in Q, (9.13)

Ppε + e−2sφẑε = 0 in Q, (9.14)

pε|(0,T )×∂Ω = ẑε|(0,T )×∂Ω = 0,

∂pε
∂x0

(0, ·) =
∂pε
∂x0

(T, ·) =
∂ẑε
∂x0

(0, ·) =
∂ẑε
∂x0

(T, ·) = 0, (9.15)

P ẑε =
∂v̂1,ε

∂x0
+ v̂2,ε + ue2sφ + ŵε in Q, (9.16)

∂pε
∂x0

+mεv̂1,εe−2sφ = 0 in Q, (9.17)

pε −mε
v̂2,ε

s2
e−2sφ = 0 in Q, (9.18)
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and the following estimate holds:

‖ẑεe−sφ‖2
X +

∥
∥
∥
∥

∂v̂1,ε

∂x0
e−sφ

∥
∥
∥
∥

2

(L2(Qω))2
+ s2‖v̂1,εe−sφ‖2

(L2(Qω))2 + ‖v̂2,εe−sφ‖2
(L2(Qω))2 ≤ C2‖uesφ‖2

(L2(Q))2 . (9.19)

Proof of Proposition 9.1. Since the functional Jε is strictly convex and the set of admissible elements is a
linear space, problem (9.10)–(9.12) has at most one solution. First let us prove that there exists a solution
to (9.10)–(9.12): an element (ẑ, v̂1, v̂2, ŵ) in the space (L2(Q))8. Obviously (0, 0, 0,−ue−2sφ) is an admissible
element and so the set of an admissible elements is not empty. Hence there exists a minimizing sequence
{(ẑj,ε, v̂1,j,ε, v̂2,j,ε, ŵj,ε)}∞j=1 such that

(ẑj,ε, v̂1,j,ε, v̂2,j,ε, ŵj,ε) → (ẑε, v̂1,ε, v̂2,ε, ŵε) weakly in (L2(Q))8. (9.20)

Passing to the limit in (9.11), (9.12) and using (9.20), we obtain that (ẑε, v̂1,ε, v̂2,ε, ŵε) is an admissible element.
On the other hand, since the functional Jε is lower semi-continuous with respect to the weak convergence in
(L2(Q))8, this element is a solution to problem (9.10)–(9.12).

In order to obtain optimality system (9.13)–(9.18), we introduce the function q(δ1, δ2, δ3) = Jε(ẑε+δ1d1, v̂1,ε+
δ2d2, v̂2,ε + δ3d3, r(δ1, δ2, δ3)), where d1 ∈ (L2(Q))2 with Pd1 ∈ (L2(Q))2, d2 ∈ (H1(Q))2, d3 ∈ (L2(Q))2,

r(δ1, δ2, δ3) = P (ẑε + δ1d1) −
(

∂

∂x0
(v̂1,ε + δ2d2) + v̂2,ε + δ3d3

)

− ue2sφ.

Obviously the function q attains the minimum in R3 at (0, 0, 0) if the variation is admissible. Thus ∇q(0, 0, 0) =
0. Moreover the equalities ∂q

∂δ2
(0, 0, 0) = ∂q

∂δ3
(0, 0, 0) = 0 imply

−1
ε

∫

Q

ŵε
∂d2

∂x0
dx+

∫

Q

mεv̂1,εd2e−2sφdx = 0, ∀d2 ∈ (H1(Q))2 such that d2(0, ·) = d2(T, ·) = 0,

−1
ε

∫

Q

ŵεd3dx+
∫

Q

mε
v̂2,εd3

s2
e−2sφdx = 0, ∀d3 ∈ (L2(Q))2.

On the other hand, these equalities are equivalent to

1
ε

∂ŵε

∂x0
+mεv̂1,εe−2sφ = 0 in Q, (9.21)

ŵε

ε
−mε

v̂2,ε

s2
e−2sφ = 0 in Q. (9.22)

By the equality ∂q
∂δ1

(0, 0, 0) = 0, we obtain

(
ŵε

ε
, Pd1

)

(L2(Q))2
+
∫

Q

ẑεd1e−2sφdx = 0, ∀d1 ∈ X, (9.23)

where X = {d1 ∈ L2(0, T ; (H2(Ω))2); Pd1 ∈ (L2(Q))2, d1|(0,T )×∂Ω = 0, ∂d1
∂x0

(0, ·) = ∂d1
∂x0

(T, ·) = 0}.
Since v̂1,ε ∈ (L2(Q))2, we obtain immediately from (9.21) that ∂ŵε

∂x0
∈ (L2(Q))2. Since d1(0, ·) and d1(T, ·)

can be chosen arbitrarily, it follows from (9.23) that

∂ŵε

∂x0
(0, ·) =

∂ŵε

∂x0
(T, ·) = 0, ŵε|(0,T )×∂Ω = 0.
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Introducing the function pε by formula (9.13), in terms of (9.21)–(9.23), we immediately obtain equalities (9.17),
(9.18) and (9.14), (9.15). Equation (9.17) implies ∂pε

∂x0
∈ (L2(Q))2. From (9.14), (9.15) we obtain pε ∈ (H1(Q))2.

Next we will show that pε ∈ (H2(Q))2. We extend pε on the set [−T, 2T ]× Ω by the formula: pε(x0, x
′) =

pε(−x0, x
′) for x ∈ [−T, 0]× Ω and pε(x0, x

′) = pε(2T − x0, x
′) for (x0, x

′) ∈ [T, 2T ]× Ω. In the same way, we
extend −ẑεe−2sφ on the domain [−T, 2T ]× Ω and denote the extended function by f̃ . Since ∂φ

∂x0
(T, x′) < 0 for

all x′ ∈ Ω and ∂φ
∂x0

(0, x′) > 0 for all x′ ∈ Ω by (2.10), there exists δ > 0 such that we can continue the function
φ on [−δ, T + δ] × Ω up to a C3-function such that ∂φ

∂x0
(x) < 0 for all x ∈ [T, T + δ] × Ω and ∂φ

∂x0
(x) > 0 for all

x ∈ [−δ, 0]× Ω. By (9.14), we have

Ppε = f̃ in Q̃ ≡ [−δ, T + δ] × Ω. (9.24)

Also Condition 2.1 for the function φ holds true if we replace the domainsQ, Qω by Q̃, [−δ, T+δ]×ω respectively.

Let Dhf = f(x0+h,x
′)−f(x)

h and Dhf = f(x)−f(x0−h,x′)
h . For the function DhDhpε, we have

∂

∂x0
DhDhpε|x0=0 =

∂

∂x0
DhDhpε|x0=T = 0.

Note that PDhDhpε = DhDhf̃ . Hence

(ẑε, DhDhf̃)(L2(Q))2 = −(v̂1,ε, ∂x0DhDhpε)(L2(Q))2 + (v̂2,ε + ue2sφ + ŵε, DhDhpε)(L2(Q))2 .

Using (9.17), (9.18) and the definition of the function f̃ , we have

1
2
(Dhẑε, Dh(e−2sφẑε))(L2(Q))2 +

1
2
(Dhẑε, Dh(e

−2sφẑε))(L2(Q))2

+
1
2
(Dhv̂1,ε, Dh(mεe

−2sφv̂1,ε))(L2(Q))2 +
1
2
(Dhv̂1,ε, Dh(mεe

−2sφv̂1,ε))(L2(Q))2

+
1
2
(Dhv̂2,ε, Dh(s−2mεe

−2sφv̂2,ε))(L2(Q))2 +
1
2
(Dhv̂2,ε, Dh(s

−2mεe
−2sφv̂2,ε))(L2(Q))2

+
1
2ε

(Dhwε, Dhwε)(L2(Q))2 +
1
2ε

(Dhwε, Dhwε)(L2(Q))2

=(ue2sφ, DhDhpε)(L2(Q))2 .

Hence

‖Dhẑε‖(L2(Q))2 + ‖Dhv̂1,ε‖(L2(Q))2 + ‖Dhv̂2,ε‖(L2(Q))2

≤C′
2(‖Dhu‖(L2(Q))2 + ‖(ẑε, v̂1,ε, v̂2,ε)‖(L2(Q))6),

where the constant C′
2 > 0 is independent of h. Therefore

(∂x0 ẑε, ∂x0 v̂1,ε, ∂x0 v̂2,ε) ∈ (L2(Q))6.

Equations (9.11) - (9.18) imply that ẑε ∈ (H1(Q))2 and pε ∈ (H2(Q))2.
Let χ1 ∈ C∞

0 (−δ, T + δ) be a cut-off function such that χ1|[− δ
2 ,T+ δ

2 ] = 1. Then

P (χ1pε) = χ1f̃ − [χ1, P ]pε in Q̃, (9.25)

where supp [χ1, P ]pε ⊂ ([T + δ
2 , T + δ]×Ω)∪ ([−δ,− δ

2 ]×Ω). We will apply Carleman estimate (2.9) to equation
(9.25).
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For this, we observe that

‖f̃esφ‖L2(−δ,T+δ;(L2(Ω))2) ≤ C3‖zεe−sφ‖(L2(Q))2 ,

‖([χ1, P ]pε)esφ‖L2(−δ,T+δ;(L2(Ω))2) ≤ C4

s
‖pεesφ‖X . (9.26)

Moreover, by a way similar to Appendix II in [26] (i.e., the final step of the proof of Lem. 2.3 in [26]), we can
prove that at the right hand side of (2.9), we can replace the integral over Qω by the following integral

∫

Qω

(∣
∣
∣
∣

∂2u
∂x2

0

∣
∣
∣
∣

2

+ s2
∣
∣
∣
∣

∂u
∂x0

∣
∣
∣
∣

2

+ s4|u|2
)

e2sφdx.

Note that thanks to the choice of the extension of the function φ, we have

∫

(−δ,T+δ)×ω

(∣
∣
∣
∣

∂2(χ1pε)
∂x2

0

∣
∣
∣
∣

2

+ s2
∣
∣
∣
∣

∂(χ1pε)
∂x0

∣
∣
∣
∣

2

+ s4|χ1pε|2
)

e2sφdx

≤ C5

∫

Qω

(∣
∣
∣
∣

∂2pε
∂x2

0

∣
∣
∣
∣

2

+ s2
∣
∣
∣
∣

∂pε
∂x0

∣
∣
∣
∣

2

+ s4|pε|2
)

e2sφdx. (9.27)

In fact, let us denote the left and the right hand sides of (9.27) respectively by I1 and I2. First we can easily
see

I1 ≤ C′
5

∫

(−δ,T+δ)×ω

(∣
∣
∣
∣

∂2pε
∂x2

0

∣
∣
∣
∣

2

+ s2
∣
∣
∣
∣

∂pε
∂x0

∣
∣
∣
∣

2

+ s4|pε|2
)

e2sφdx.

On the other hand, since pε(x0, x
′) = pε(−x0, x

′), −δ ≤ x′ ≤ 0 by the extension, we have

∫ 0

−δ

∫

ω

(∣
∣
∣
∣

∂2pε
∂x2

0

∣
∣
∣
∣

2

+ s2
∣
∣
∣
∣

∂pε
∂x0

∣
∣
∣
∣

2

+ s4|pε|2
)

e2sφ(x0,x
′)dx0dx′ =

∫ δ

0

∫

ω

(∣
∣
∣
∣

∂2pε
∂x2

0

∣
∣
∣
∣

2

+ s2
∣
∣
∣
∣

∂pε
∂x0

∣
∣
∣
∣

2

+ s4|pε|2
)

e2sφ(−x0,x
′)dx0dx′.

By (2.10), we have ∂x0φ(0, x′) > 0. Therefore, for all sufficiently small δ > 0, we obtain ∂x0φ(x) > 0 for all
x0 ∈ [−δ, δ]. This implies e2sφ(−x0,x

′) ≤ e2sφ(x0,x
′) for 0 < x0 < δ. Hence

∫ δ

0

∫

ω

(∣
∣
∣
∣

∂2pε
∂x2

0

∣
∣
∣
∣

2

+ s2
∣
∣
∣
∣

∂pε
∂x0

∣
∣
∣
∣

2

+ s4|pε|2
)

e2sφ(−x0,x
′)dx0dx′

≤
∫ δ

0

∫

ω

(∣
∣
∣
∣

∂2pε
∂x2

0

∣
∣
∣
∣

2

+ s2
∣
∣
∣
∣

∂pε
∂x0

∣
∣
∣
∣

2

+ s4|pε|2
)

e2sφ(x0,x
′)dx0dx′ ≤ I2.

We can similarly estimate

∫ T+δ

T

∫

ω

(∣
∣
∣
∣

∂2pε
∂x2

0

∣
∣
∣
∣

2

+ s2
∣
∣
∣
∣

∂pε
∂x0

∣
∣
∣
∣

2

+ s4|pε|2
)

e2sφdx0dx′.

Thus the verification of (9.27) is complete.
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Using equations (9.17), (9.18), (9.24) and estimate (9.27), by Theorem 2.1, we obtain

∑

|α|=2

‖(∂αxpε)esφ‖2
(L2(Q))2 + s2‖pεesφ‖2

X ≤ C6M(ẑε, v̂1,ε, v̂2,ε), (9.28)

where we set

M(ẑε, v̂1,ε, v̂2,ε) = ‖ẑεe−sφ‖2
X +

∫

Qω

(∣
∣
∣
∣

∂v̂1,ε

∂x0

∣
∣
∣
∣

2

+ s2|v̂1,ε|2 + |v̂2,ε|2
)

e−2sφdx.

By (9.14)–(9.18) and integration by parts, we have

(
∂v̂1,ε

∂x0
+ v̂2,ε + ue2sφ + ŵε, pε

)

(L2(Q))2
= (P ẑε,pε)(L2(Q))2 = (ẑε, Ppε)(L2(Q))2 = −(ẑε, ẑεe−2sφ)(L2(Q))2 .

Therefore, taking the scalar product of (9.16) and pε in (L2(Q))2 and using (9.17) and (9.18), we obtain

2Jε(ẑε, v̂1,ε, v̂2,ε, ŵε) = −1
2

∫

Q

(ue2sφ,pε)dx.

By (9.28), we obtain from this inequality that

s2Jε(ẑε, v̂1,ε, v̂2,ε, ŵε) ≤ C7‖uesφ‖(L2(Q))2M(ẑε, v̂1,ε, v̂2,ε)
1
2 . (9.29)

Next we differentiate equations (9.14) and (9.16) with respect to the variable x0:

P
∂pε
∂x0

=
∂

∂x0
f̃ in Q, (9.30)

P
∂ẑε
∂x0

=
∂2v̂1,ε

∂x2
0

+
∂v̂2,ε

∂x0
+
∂(ue2sφ)
∂x0

+
∂ŵε

∂x0
in Q. (9.31)

Taking the scalar product of (9.31) and ∂pε

∂x0
in (L2(Q))2 and integrating by parts, in terms of (9.14)–(9.18), we

similarly obtain

2Jε

(
∂ẑε
∂x0

,
∂v̂1,ε

∂x0
,
∂v̂2,ε

∂x0
,
∂ŵε

∂x0

)

=
∫

Q

{(

ue2sφ,
∂2pε
∂x2

0

)

+ 2s
∂φ

∂x0

(
∂ẑε
∂x0

, ẑε

)

e−2sφ

+ 2s
∂φ

∂x0
mε

(
∂v̂1,ε

∂x0
, v̂1,ε

)

e−2sφ +
2mε

s

∂φ

∂x0

(
∂v̂2,ε

∂x0
, v̂2,ε

)

e−2sφ

}

dx.

This equality and (9.28), (9.29) imply

Jε

(
∂ẑε
∂x0

,
∂v̂1,ε

∂x0
,
∂v̂2,ε

∂x0
,
∂ŵε

∂x0

)

≤ C8‖uesφ‖(L2(Q))2M(ẑε, v̂1,ε, v̂2,ε)
1
2 . (9.32)
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Let L̃ denote the part of first order of Lλ,µ, that is, (L̃v)(x′) = divv(x′)∇x′λ(x′) + (∇x′v + (∇x′v)T )∇x′µ(x′).
Taking the scalar product of (9.16) with ẑεe−2sφ in (L2(Q))2, we obtain

∫

Q

(µ|∇x′ ẑε|2 + (λ+ µ)(div ẑε)2)e−2sφdx−
∫

Q

(L̃ẑε, ẑεe−2sφ)dx

=
∫

Q

(∣
∣
∣
∣

∂ẑε
∂x0

∣
∣
∣
∣

2

− 2s∂x0φ

(
∂ẑε
∂x0

, ẑε

))

e−2sφdx

+
∫

Q

(

2µs
2∑

k=1

(∂xk
ẑε, (∂xk

φ)ẑε) + 2(λ+ µ)s(div ẑε)(∇x′φ, ẑε)

)

e−2sφdx

−
∫

Q

2∑

k=1

(ẑε, ∂xk
ẑε)(∂xk

µ)e−2sφdx−
∫

Q

(div ẑε)(∇x′(λ+ µ), ẑε)e−2sφdx

+
∫

Q

(ue2sφ + ŵε, ẑε)e−2sφdx+
∫

Q

(
∂v̂1,ε

∂x0
+ v̂2,ε, ẑεe−2sφ

)

dx.

We note that |∂xjzk||z�| ≤ δ
2 |∂xjzk|2 + 1

2δ |z�|2 for any δ > 0. Therefore if we take sufficiently small δ > 0
and sufficiently large s > 0, then by (9.28), (9.29) and (9.32), we obtain (9.19). The proof of Proposition 9.1 is
complete. �

Now we finish the proof of Lemma 9.1. Obviously ŵε → 0 in (L2(Q))2 and v̂1,εk
, v̂2,εk

→ 0 in (L2(Q \
Qω))2 as ε → +0. In terms of (9.19), from the sequence {(ẑε, v̂1,ε, v̂2,ε,pε)}, one can extract a subsequence
{(ẑεk

, v̂1,εk
, v̂2,εk

,pεk
)} such that

(ẑεk
, v̂1,εk

, v̂2,εk
,pεk

) → (ẑ, v̂1, v̂2,p) weakly in X × (H1(0, T ;L2(Ω)))2 × (L2(Q))4. (9.33)

Thanks to (9.33), we can pass to the limit in (9.14)-(9.18), so that the element (ẑ, v̂1, v̂2,p) satisfies the equations

Pp + e−2sφẑ = 0 in Q, (9.34)

p|(0,T )×∂Ω = ẑ|(0,T )×∂Ω = 0,

∂p
∂x0

(0, ·) =
∂p
∂x0

(T, ·) =
∂ẑ
∂x0

(0, ·) =
∂ẑ
∂x0

(T, ·) = 0, (9.35)

P ẑ =
∂v̂1

∂x0
+ v̂2 + ue2sφ in Q, (9.36)

∂p
∂x0

+ v̂1e−2sφ = 0 in Q, (9.37)

p− v̂2

s2
e−2sφ = 0 in Q, supp v̂j ⊂ Qω, j = 1, 2. (9.38)

Estimate (9.9) follows from (9.19). Finally we note that Jε(ẑε, v̂1,ε, v̂2,ε, ŵε) ≤ J(z,v1,v2) for all ε ∈ (0, 1).
Hence J(ẑ, v̂1, v̂2) ≤ J(z,v1,v2), the element (ẑ, v̂1, v̂2) is a solution to extremal problem (9.1)–(9.3). Since a
solution to this problem is unique, we have (ẑ, v̂1, v̂2) = (z,v1,v2). The proof of Lemma 9.1 is complete. �
Proof of Theorem 2.2. Taking the scalar product of (2.1) with z in (L2(Q))2 and integrating by parts, in terms
of (2.1), (2.2), (9.7) and (9.8), we obtain the equality

‖uesφ‖2
(L2(Q))2 =

∫

Q

(f, z)dx−
∫

Qω

(

u,
∂v1

∂x0
+ v2

)

dx. (9.39)
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Applying (9.9) to this equality and using again an inequality |ab| ≤ δ
2 |a|2 + 1

2δ |b|2 for any δ > 0, we obtain
∫

Q

s2|u|2e2sφdx ≤ C9

(

‖fesφ‖2
(L2(Q))2 +

∫

Qω

(|∇u|2 + s2|u|2)e2sφdx
)

, ∀s ≥ s0(τ). (9.40)

In order to estimate the derivatives of first order for the function u, replacing u by ∂u
∂x0

, we consider extremal
problem (9.1)–(9.3). Let (z̃, ṽ1, ṽ2) be the corresponding solution. Then Lemma 9.1 yields

‖z̃e−sφ‖2
X +

∥
∥
∥
∥

∂ṽ1

∂x0
e−sφ

∥
∥
∥
∥

2

(L2(Qω))2
+ ‖ṽ2e−sφ‖2

(L2(Qω))2 ≤ C10

∥
∥
∥
∥

∂u
∂x0

esφ
∥
∥
∥
∥

2

(L2(Q))2
. (9.41)

Since the Lamé coefficients are independent of x0, we have

P
∂u
∂x0

=
∂f
∂x0

in Q,
∂u
∂x0

|(0,T )×∂Ω = 0,
∂u
∂x0

(T, ·) =
∂u
∂x0

(0, ·) = 0. (9.42)

Taking the scalar product of (9.42) with z̃ in (L2(Q))2 and integrating by parts, we obtain the equality
∥
∥
∥
∥

∂u
∂x0

esφ
∥
∥
∥
∥

2

(L2(Q))2
=

∫

Q

(
∂f
∂x0

, z̃
)

dx−
∫

Qω

(
∂u
∂x0

,
∂ṽ1

∂x0
+ ṽ2

)

dx.

Applying the inequality 2|ab| ≤ δ|a|2 + 1
δ |b|2 to the second term at the right hand side of this equality, by means

of (9.41), we obtain

∫

Q

(∣
∣
∣
∣

∂u
∂x0

∣
∣
∣
∣

2

+ s2|u|2
)

e2sφdx ≤ C11

{

‖fesφ‖2
(L2(Q))2 +

∫

Qω

(|∇u|2 + s2|u|2)e2sφdx
}

, ∀s ≥ s0(τ). (9.43)

Finally, taking the scalar product of (2.1) with ue2sφ in (L2(Q))2, we obtain

∫

Q

(µ|∇x′u|2 + (λ+ µ)(div u)2)e2sφdx =
∫

Q

(∣
∣
∣
∣

∂u
∂x0

∣
∣
∣
∣

2

+ 2s∂x0φ

(
∂u
∂x0

,u
))

e2sφdx

−
∫

Q

(

2µs
2∑

k=1

(∂xk
u, (∂xk

φ)u) + 2(λ+ µ)s(divu)(∇x′φ,u)

)

e2sφdx−
∫

Q

2∑

k=1

(u, ∂xk
u)(∂xk

µ)e2sφdx

−
∫

Q

(divu)(∇x′(λ+ µ),u)e2sφdx+
∫

Q

(L̃u,ue2sφ)dx+
∫

Q

(f,u)e2sφdx.

This equality and (9.43) imply (2.11), the conclusion of Theorem 2.2. �
Proof of Theorem 2.3. In order to complete the proof, it is sufficient to estimate

∫

Q
(f , z)dx in (9.39) as follows:

∣
∣
∣
∣

∫

Q

(f−1, z)dx
∣
∣
∣
∣ ≤ ‖f−1esφ‖(H−1(Q))2‖ze−sφ‖(H1(Q))2 ≤ ‖f−1esφ‖(H−1(Q))2‖ze−sφ‖X

and
∣
∣
∣
∣

∫

Q

(∂xj fj , z)dx
∣
∣
∣
∣ =

∣
∣
∣
∣

∫

Q

(fj , ∂xjz)dx
∣
∣
∣
∣ ≤ ‖fjesφ‖(L2(Q))2‖(∂xjz)e

−sφ‖(L2(Q))2

≤ C12‖fjesφ‖(L2(Q))2(‖∇(ze−sφ)‖(L2(Q))2 + s‖ze−sφ‖(L2(Q))2)

≤ C13‖fjesφ‖(L2(Q))2‖ze−sφ‖X .
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Therefore
∣
∣
∣
∣
∣
∣

∫

Q







f−1 +
2∑

j=0

∂xj fj



 , z



 dx

∣
∣
∣
∣
∣
∣

≤ C14



‖f−1esφ‖(H−1(Q))2 +
2∑

j=0

‖fjesφ‖(L2(Q))2



 ‖ze−sφ‖X .

Then, again by using the inequality |ab| ≤ δ
2 |a|2 + 1

2δ |b|2 for δ > 0, this inequality and estimates (9.9), (9.39)
imply (2.12). �

Appendix I. Proof of Proposition 5.1

In order to prove the proposition, it is convenient to use the coordinate x instead of y. Moreover it suffices
to prove the estimate for an arbitrary but fixed x0 ∈ [0, T ]. Therefore we should establish the estimate: there
exist τ̂ > 1 and N0 > 1 such that for any τ > τ̂ and N > N0, there exists s0(τ,N) such that

N

∫

Ω1/N2




1
sϕ

2∑

j,k=1

|∂xj∂xk
u|2 + sϕ|∇x′u|2 + s3ϕ3|u|2



e2sϕdx′ ≤ C0(‖rotu esϕ‖2
H1(Ω1/N2)+‖divuesϕ‖2

H1(Ω1/N2)),

∀u ∈ (H1
0 (Ω1/N2))2, ∀s ≥ s0(τ,N), suppu ⊂ Bδ ∩ Ω1/N2 , (1)

where the constant C0 is independent of N. Recall that Ω1/N2 =
{
x′ ∈ Ω; dist (x′, ∂Ω) ≤ 1

N2

}
.

First we choose N0 > 0 sufficiently large such that

∇x′ψ(x) 	= 0, ∀x′ ∈ Ω1/N2 , ∀x0 ∈ (0, T ).

The existence of such N0 follows from (2.6).
Denote rotu ≡ ∂u2

∂x1
− ∂u1

∂x2
= y and divu ≡ w. Let rot∗v = ( ∂v∂x2

,− ∂v
∂x1

). Using a formula rot∗rot = −∆x′ +
∇x′div , we obtain

−∆x′u = −rot∗ y −∇x′w in Ω1/N2 , u|∂Ω1/N2 = 0.

The function ũ = uesϕ satisfies the equation

L1ũ + L2ũ = qs in Ω1/N2 , ũ|∂Ω1/N2 = 0, (2)

where L1ũ = −∆x′ũ − s2|∇x′ϕ|2ũ, L2ũ = 2s
∑2
k=1(∂xk

ũ)ϕxk
+ s(∆x′ϕ)ũ and qs = (−rot∗ y − ∇x′w)esϕ.

Taking the L2 norms of the right and the left hand sides of equation (2), we obtain

‖L1ũ‖2
(L2(Ω1/N2))2 + ‖L2ũ‖2

(L2(Ω1/N2))2 + 2(L1ũ, L2ũ)(L2(Ω1/N2))2 = ‖qs‖2
(L2(Ω1/N2v))2

.

Therefore we can obtain the formula

(L1ũ, L2ũ)(L2(Ω1/N2))2 =
∫

Ω1/N2

(

2s
2∑

k,j=1

(∂xj ũ)(∂xk
ũ)ϕxjxk

+ s3(div(|∇x′ϕ|2∇x′ϕ)

− |∇x′ϕ|2∆x′ϕ)|ũ|2 − s

2

2∑

j=1

∂2∆x′ϕ

∂x2
j

|ũ|2
)

dx′ − s

∫

∂Ω1/N2

∣
∣
∣
∣

∂ũ
∂	n

∣
∣
∣
∣

2

(∇x′ϕ,	n)dσ. (3)
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By (2.6), the last integral in (3) is nonnegative. Denote ψ1(x) = ψ(x) − ε̂�1(x). Then

div(|∇x′ϕ|2∇x′ϕ) − |∇x′ϕ|2∆x′ϕ = 2
2∑

k,j=1

ϕxk
ϕxjϕxkxj

= 2ϕ3
2∑

k,j=1

τ4(∂xk
ψ1 + 2N�1∂xk

�1)2(∂xjψ1 + 2N�1∂xj �1)
2

+ τ3(∂xk
ψ1 + 2N�1∂xk

�1)(∂xjψ1 + 2N�1∂xj �1)(∂xj∂xk
ψ1 + 2N∂xk

�1∂xj �1 + 2N�1∂xk
∂xj�1).

Since (∇x′ψ1,∇x′�1) > 0 on ∂Ω, there exists a constant C1 > 0 which is independent of N, τ, s such that

div(|∇x′ϕ|2∇x′ϕ) − |∇x′ϕ|2∆x′ϕ ≥ 2ϕ3τ4|∇x′ψ1|4 + C1Nτ
3ϕ3 + ϕ2O(τ3). (4)

On the other hand, by the definition of ψ̃ = ψ − ε̂�1 +N�21 = ψ1 +N�21,

2∑

k,j=1

(∂xj ũ)(∂xk
ũ)ϕxjxk

= τ2(∇x′ ũ,∇x′ψ̃)2ϕ

+ τ
2∑

k,j=1

(∂xj ũ)(∂xk
ũ)(∂xj∂xk

ψ1 + 2N�1∂xj∂xk
�1)ϕ+ 2Nτ(∇x′ũ,∇x′�1)2ϕ. (5)

Note that there exists a constant C2 > 0, independent of N , such that

‖N�1∂2
xixj

�1‖C0(Ω1/N2) ≤ C2/N. (6)

By (3)–(6), we obtain

‖L1ũ‖2
(L2(Ω1/N2))2 + ‖L2ũ‖2

(L2(Ω1/N2))2 +
∫

Ω1/N2

(2ϕ3τ4|∇x′ψ1|4 + C1Nτ
3ϕ3)|ũ|2dx′

− sτC3

∫

Ω1/N2

ϕ|∇x′ũ|2dx′ ≤ ‖qs‖2
(L2(Ω1/N2))2 . (7)

Multiplying equation (2) by sNϕũ and integrating by parts, we obtain

∫

Ω1/N2

(sNϕ|∇x′ ũ|2 + s2N(∆x′ϕ)ϕ|ũ|2 − s3ϕ3|∇x′ϕ|2|ũ|2 − sN

2
divϕ|ũ|2)dx′ =

∫

Ω1/N2

qssNϕũdx′. (8)

Next we note that

∆x′ϕ = (|∇x′ ψ̃|2τ2 + τ∆x′ψ1 + 2τN |∇x′�1|2 + 2τN�1∆x′�1)ϕ ≥ C4τNϕ.

This inequality and (8) imply

∫

Ω1/N2

{

sNϕ|∇x′ ũ|2 +
1
2
s2N(∆x′ϕ)ϕ|ũ|2 − s3ϕ3|∇x′ϕ|2|ũ|2

}

dx′ ≤ C4‖qs‖2
(L2(Ω1/N2))2 . (9)
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By (7) and (9), we obtain

‖L1ũ‖2
(L2(Ω1/N2))2 + ‖L2ũ‖2

(L2(Ω1/N2))2 +
∫

Ω1/N2

(
1
2
ϕ3τ4|∇x′ψ1|4 + C1Nτ

3ϕ3

)

|ũ|2dx′

+ sN

∫

Ω1/N2

ϕ|∇x′ ũ|2dx′ ≤ C5‖qs‖2
(L2(Ω1/N2))2 . (10)

Let ũ = ũ1 + ũ2 where the functions ũj are solutions to the boundary value problems

−∆x′ũ1 = L1ũ in Ω1/N2
0
, ũ1|∂Ω1/N2

0
= 0, −∆x′ ũ2 = s2|∇x′ϕ|2ũ in Ω1/N2

0
, ũ2|∂Ω1/N2

0
= 0.

By means of a standard a priori estimate for the Laplace operator, we have

‖ũ1‖(H2(Ω1/N2))2 ≤ C6‖L1ũ‖(L2(Ω1/N2))2 , (11)

√
N√
s
‖ũ2‖(H2(Ω1/N2))2 ≤ C7

√
N‖s 3

2 |∇x′ϕ|2ũ‖(L2(Ω1/N2))2 , (12)

where the constants C6 and C7 are independent of N. Taking s0(τ,N) ≥ N , we obtain (1) from (9)–(12). The
proof of Proposition 5.1 is finished. �

Appendix II. Proof of estimate (5.28)

We prove (5.28) for a more general hyperbolic operator. Denote y = (y0, y′) = (y0, y1, ..., yn), ξ = (ξ0, ξ′) =
(ξ0, ξ1, ..., ξn) and GN = Rn × [0, 1

N2 ].
Let a function w ∈ H1(GN ) satisfy the equations:

R(y′, D)w =
∂2w

∂y2
0

−
n∑

j,k=1

∂

∂yj

(

ajk(y′)
∂w

∂yk

)

+
n∑

j=0

bj(y′)
∂w

∂yj
+ c(y′)w = g in GN , (1)

w|yn= 1
N2

=
∂w

∂yn
|yn= 1

N2
= 0, suppw ⊂ Bδ(x∗), (2)

where x∗ is an arbitrary point on ∂GN and Bδ(x∗) is a ball of radius δ centered at x∗.
We assume that the coefficients of the linear operator R satisfy the conditions

ajk ∈ C1(GN ), ajk = akj , 1 ≤ j, k ≤ n, b� ∈ L∞(GN ), 0 ≤ � ≤ n, c ∈ L∞(GN ) (3)

and the uniform ellipticity: there exists δ > 0 such that

a(y′, ξ, ξ) ≡
n∑

j,k=1

ajk(y′)ξjξk ≥ δ|ξ|2, ∀ξ ∈ R
n+1, ∀y ∈ GN . (4)

By R(y′, ξ), we denote the principal symbol of the operator R:

R(y′, ξ) = −ξ20 +
n∑

j,k=1

ajk(y′)ξjξk,
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and by R̃(y′, ξ1, ξ2) the quadratic form

R̃(y′, ξ1, ξ2) = ξ10ξ
2
0 −

n∑

j,k=1

ajk(y′)ξ1j ξ
2
k

with ξ1 = (ξ10 , ..., ξ1n) and ξ2 = (ξ20 , ..., ξ2n). Following [15], we introduce the notations:

R(j)(y′, ξ) =
∂R(y′, ξ)
∂ξj

, R(j,k)(y′, ξ) =
∂2R(y′, ξ)
∂ξj∂ξk

, R(j)(y′, ξ) =
∂R(y′, ξ)
∂yj

·

We assume that there exists a function ψ1 ∈ C2(GN ) such that

{R, {R,ψ1}}(y, ξ) > 0 (5)

if (y, ξ) ∈ (GN \Bδ(x∗)) × (Rn+1 \ {0}) satisfies

R(y′, ξ) = 〈∇ξR(y′, ξ),∇ψ1(y)〉 = 0,

and
{R(y′, ξ − is∇ψ1(y)), R(y′, ξ + is∇ψ1(y))}/2is > 0 (6)

if (y, ξ, s) ∈ (GN \Bδ(x∗)) × (Rn+1 \ {0})× (R \ {0}) satisfies

R(y′, ξ + is∇ψ1(y)) = 〈∇ξR(y′, ξ + is∇ψ1(y)),∇ψ1(y)〉 = 0,

R(y,∇ψ1) < 0.

Using the function ψ1 and following [15], we construct the function φ by

φ(y) = eτψ1(y), τ > 1. (7)

It is known (see e.g., Th. 8.6.2, p. 205 [15]) that provided that the parameter τ is sufficiently large,

{R, {R, φ}}(y, ξ) > 0 (8)

if (y, ξ) ∈ (GN \Bδ(x∗)) × (Rn+1 \ {0}) satisfies

R(y′, ξ) = 0, (9)

and
{R(y′, ξ − is∇φ(y)), R(y′, ξ + is∇φ(y))}/2is > 0

if (y, ξ, s) ∈ (GN \Bδ(x∗)) × (Rn+1 \ {0})× (R \ {0}) satisfies

R(y′, ξ + is∇φ(x)) = 0.

Now we fix the parameter τ such that inequalities (8) and (9) hold true. Let �1 ∈ C2(GN ) be a function such
that �1|yn=0 = 0. Let ψ̃(y) = ψ1(y) + N�21(y) and ϕ = eτψ̃. Since ϕ(y) = φ(y)eτN�

2
1(y), using �1|yn=0 = 0, we

have
ϕ→ φ in C1(GN ) as N → +∞. (10)
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Moreover

{R(y′, ξ − is∇ϕ(y)), R(y′, ξ + is∇ϕ(y))}/2is

− 2Nτ
n∑

j,k=1

(∂yj �1(y))(∂yk
�1(y))(R(j)(y′, ξ)R(k)(y′, ξ) + s2R(j)(y′,∇ϕ)R(k)(y′,∇ϕ))

−→ {R(y′, ξ − is∇φ(y)), R(y′, ξ + is∇φ(y))}/2is in C(GN × S
n) as N → +∞. (11)

Here we set Sn = {ξ ∈ Rn+1; |ξ| = 1}. By (8)–(11), there exists N0 > 0 such that for any N > N0, the following
inequalities hold true:

{R, {R,ϕ}}(y, ξ) > 0 (12)

if (y, ξ) ∈ (GN \Bδ(x∗)) × (Rn+1 \ {0}) satisfies R(y, ξ) = 0, and

{R(y′, ξ − is∇ϕ(y)), R(y′, ξ + is∇ϕ(y))}/2is > C1(|ξ|2 +Ns2) (13)

if (y, ξ, s) ∈ (GN \Bδ(x∗))× (Rn+1 \ {0})× (R\ {0}) satisfies R(y′, ξ+ is∇ϕ(y)) = 0, where the constant C1 > 0
is independent of ξ, s,N.

Denote w̃(y) = w(y)esϕ. By (11), the following equality holds:

esφR(y′, D)(e−sϕw̃) = gesϕ in GN . (14)

The short calculations give the equation

L2,ϕw̃ + L1,ϕw̃ = gs in GN , (15)

where

L1,ϕw̃ = −
n∑

j=0

sϕyjR
(j)(y′,∇w̃), L2,ϕw̃ = Rw̃ + s2R(y′,∇ϕ)w̃,

gs(y) = gesϕ + w̃Rϕ. (16)

Taking the L2-norms of the both sides of (15), we obtain

‖gs‖2
L2(GN ) = ‖L2,ϕw̃‖2

L2(GN ) + ‖L1,ϕw̃‖2
L2(GN ) + 2(L1,ϕw̃, L2,ϕw̃)L2(GN ). (17)

Denote

Gφ(y, s, w̃) ={R, {R, φ}}(y′,∇w̃) + s2
n∑

j,k=0

R(k)(y′,∇φ)R(j)(y′,∇φ)w̃2

+ s2
n∑

j,k=0

φyjyk
R(j)(y′,∇φ)R(k)(y′,∇φ)w̃2 (18)

and Gϕ(y, s, w̃) is defined similarly.
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Let us transform the last term at the right side of (17). In [18], one can find the following identity:

(L1,ϕw̃, L2,ϕw̃)L2(GN ) =
∫

∂GN

R̃(y′, 	n,∇w̃)L1,ϕw̃ dΣ + s

∫

∂GN

R̃(y′,∇ϕ,	n)R(y′,∇w̃)dΣ

− s3
∫

∂GN

R(y′,∇ϕ)R̃(y′, 	n,∇ϕ)w̃2dΣ +
∫

GN

sGϕ(y, s, w̃) dx

+
∫

GN

s

2





n∑

j,k=0

R
(k)
(k)(y

′,∇w̃)ϕyjR
(j)(y′,∇w̃) − θ(R(y′,∇w̃) − s2R(y′,∇ϕ)w̃2)



 dy,

(19)

where 	n is the unit outward normal vector to ∂GN and

θ(y) =
n∑

l,m=0

(ϕylymR
(l,m)(y′,∇w̃) + ϕyl

R
(l,m)
(m) (y′,∇w̃)).

Now we need the following Lemma proved in [18].
Lemma 1. Let w ∈ H1(GN ) be a solution to (1) and (2).

s

∫

GN

(|∇w̃|2 + s2w̃2)dy ≤ C2

∫

GN

sGφ(y, s, w̃)dy

+ C3

(

1
s
‖L2,φw̃‖2

L2(GN ) +
1
s
‖L1,φw̃‖2

L2(GN ) + s‖w̃‖L2(∂GN )‖∂ynw̃‖L2(∂GN )

)

, ∀s ≥ s0(τ), (20)

where the constants C2 and C3 are independent of s,N.

We claim :

∣
∣
∣
∣
∣
∣

∫

GN

s

2





n∑

j,k=0

R
(k)
(k)(y

′,∇w̃)ϕyjR
(j)(y′,∇w̃) − θ{R(y′,∇w̃) − s2R(y′,∇ϕ)w̃2}



dy

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

s

2

∫

GN

n∑

j,k=0

R
(k)
(k)(y

′,∇w̃)ϕxjR
(j)(y′,∇w̃) dy

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣s

∫

GN

θ(R(y′,∇w̃) − s2R(y′,∇ϕ)w̃2)dy
∣
∣
∣
∣

≤ εs

2

∫

GN

(|∇w̃|2 + s2w̃2)dy + C4

(

1
sε

‖L1,ϕw̃‖2
L2(GN ) +

1
sε

‖L2,ϕw̃‖2
L2(GN ) + s‖w̃‖L2(∂GN )‖∂ynw̃‖L2(∂GN )

)

.

(21)

In fact, by the Cauchy-Bunyakovskii inequality,

∣
∣
∣
∣
∣
∣

∫

GN

s

n∑

j,k=0

R
(k)
(k)(y

′,∇w̃)ϕyjR
(j)(y′,∇w̃)dy

∣
∣
∣
∣
∣
∣

≤ εs

4
‖w̃‖2

H1(GN ) +
C5

sε
‖L1,ϕw̃‖2

L2(GN ). (22)
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Since the function θ is continuous, there exists θε ∈ C2(GN ) such that ‖θ − θε‖C(GN ) ≤ ε
8 . Taking the scalar

product in L2(GN ) of the functions θεw̃ and L2,ϕw̃, we obtain the equality

∫

GN

θε(sR(y′,∇w̃) − s3R(y′,∇ϕ)w̃2)dy = −s
∫

GN

(L2,ϕw̃)θεw̃dy

+ s

∫

GN

n∑

j,k=1

(
∂ajk
∂yj

∂w̃

∂yk
θεw̃ − R̃(y′,∇w̃,∇θε)w̃

)

dy +
∫

∂GN

a(y, 	n,∇w̃)θεw̃dΣ.

Thus
∣
∣
∣
∣

∫

GN

θ(sR(y′,∇w̃) − s3R(y′,∇ϕ)w̃2)dy
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

GN

(θ − θε)(sR(y′,∇w̃) − s3R(y′,∇ϕ)w̃2)dy
∣
∣
∣
∣ +

∣
∣
∣
∣

∫

GN

θε(sR(x′,∇w̃) − s3R(x′,∇ϕ)w̃2)dy
∣
∣
∣
∣

≤ εs

4

∫

GN

(|∇w̃|2 + s2w̃2)dy + C6

(

1
s
‖L1,ϕw̃‖2

L2(GN ) +
1
s
‖L2,ϕw̃‖2

L2(GN ) + s‖w̃‖L2(∂GN )‖∂ynw̃‖L2(∂GN )

)

.

(23)

Inequalities (22) and (23) imply (21).
By Lemma 1, we have

s

∫

GN

(|∇w̃|2 + s2w̃2)dy +
∫

GN

4Nτ
n∑

j,k=1

∂yj �1(y
′)∂yk

�1(y′){R(j)(y′,∇w̃)R(k)(y′,∇w̃)

+s2R(j)(y,∇ϕ)R(k)(y′,∇ϕ)}dy ≤
∫

GN

2sGϕ(y, s, w̃)dy +
∫

GN

{

2sGφ(y, s, w̃) − 2sGϕ(y, s, w̃)

+4Nτ
n∑

j,k=1

∂yj �1(y
′)∂yk

�1(y′){R(j)(y′,∇w̃)R(k)(y′,∇w̃) + s2R(j)(y′,∇ϕ)R(k)(y′,∇ϕ)}
}

dy

+C8

(
1
s
‖L2,φw̃‖2

L2(GN ) +
1
s
‖L1,φw̃‖2

L2(GN ) + s‖w̃‖L2(∂GN )‖∂ynw̃‖L2(∂GN )

)

. (24)

Note that there exists a constant C9 > 0, independent of N , such that

∫

GN

4Nτ
n∑

j,k=1

∂yj �1(y
′)∂yk

�1(y′){R(j)(y′,∇w̃)R(k)(y′,∇w̃) + s2R(j)(y′,∇ϕ)R(k)(y′,∇ϕ)}dy ≥ C9N

∫

GN

w̃2dy

(25)
for all sufficiently large N.

By (11), we have

∫

GN

(

2sGϕ(y, s, w̃) − 2sGφ(y, s, w̃)

− 4Nτ
n∑

j,k=1

∂yj �1(y
′)∂yk

�1(y′){R(j)(y′,∇w̃)R(k)(y′,∇w̃) + s2R(j)(y′,∇ϕ)R(k)(y′,∇ϕ)}
)

dy

≤ C10(N)s
∫

GN

(|∇w̃|2 + s2w̃2)dy, (26)
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where C10(N) → 0 as N → +∞. By (10), we obtain
∣
∣
∣
∣

1
s
‖L2,φw̃‖2

L2(GN ) +
1
s
‖L1,φw̃‖2

L2(GN ) −
1
s
‖L2,ϕw̃‖2

L2(GN ) −
1
s
‖L1,ϕw̃‖2

L2(GN )

∣
∣
∣
∣

≤ C11(N)s
∫

GN

(|∇w̃|2 + s2w̃2)dy, (27)

where C11(N) → 0 as N → +∞. Using (25)–(27), from (24) we obtain

1
C7
s

∫

GN

(|∇w̃|2 + s2w̃2)dy ≤ 1
4
‖L1,ϕw̃‖2

L2(GN ) +
1
4
‖L2,ϕw̃‖2

L2(GN )

+
∫

GN

2sGφ(y, s, w̃)dy + sC9‖w̃‖L2(∂GN )‖∂ynw̃‖L2(∂GN ), ∀s ≥ s0(τ). (28)

Inequalities (21), (28) imply (5.28). The proof is finished. �
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