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SPATIAL HETEROGENEITY IN 3D-2D DIMENSIONAL REDUCTION

Jean-François Babadjian1 and Gilles A. Francfort1

Abstract. A justification of heterogeneous membrane models as zero-thickness limits of a cylindral
three-dimensional heterogeneous nonlinear hyperelastic body is proposed in the spirit of Le Dret (1995).
Specific characterizations of the 2D elastic energy are produced. As a generalization of Bouchitté et al.
(2002), the case where external loads induce a density of bending moment that produces a Cosserat
vector field is also investigated. Throughout, the 3D-2D dimensional reduction is viewed as a problem
of Γ-convergence of the elastic energy, as the thickness tends to zero.
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1. Introduction

The purpose of this article is to study the behavior of a thin elastic plate, as the thickness tends to zero.
This approach renders more realistic the idealized view of a film as a thin plate. The originality of the work
comes from the heterogeneity of the material under consideration. Previous results have been established in
the homogeneous case; our aim here is to generalize those. As we will see, accounting for inhomogeneity leads
to technical difficulties linked to the equi-integrable character of the scaled gradient. We will use a “classical”
approach of the theory of dimension reduction. In recent years, the investigation of dimensional reduction has
focused on variational methods and used De Giorgi’s Γ-convergence (see [5, 8]) as its main tool.

As far as 3D-2D asymptotic analysis is concerned, the seminal paper is [15], in which a membrane model is
derived from three-dimensional hyperelasticity. In its footstep several studies have derived or re-derived various
membrane-like models in various settings; see in particular [6] and references therein; note that in Section 3 of
that paper, a transversally inhomogeneous thin domain is studied, but that in-plane-homogeneity is imposed.
Because of frame indifference, it may occur that the membrane effect is not excited by the loads: this is the
case for example when the lateral boundary conditions on the thin domain are compressive (see e.g. Th. 6.2 in
[13]). Then the membrane energy, which results from a 3D-energy of the order of the thickness ε, is actually
zero and lower energy modes are activated. In [11], a justification of classical nonlinear plate models for a
homogeneous isotropic material is given by a formal asymptotic expension. Recently, those results have been
rigorously justified by means of variational methods for general homogeneous hyperelastic bodies. A Kirchhoff
bending model in [12,13], and a Föppl-von Kármán model in [14] have been obtained when the 3D-energy scales
respectively like ε3 and ε5.
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The present study falls squarely within the membrane framework in the sense that, thanks to frame indif-
ference, the stored energy function depends only on the first fundamental form of the deformed plate mid-
surface. Our goal is to rigorously derive models for heterogeneous membranes from their heterogeneous thin
3D-counterparts. The paper is devoted to a generalization of the results established in [3,6,15] to the case of a
general inhomogeneity.

The key ingredient of this study is the equi-integrability theorem of [2] (Th. 1.1 of that reference). An
alternative proof of that theorem was also communicated to the authors [4]. This theorem shows that a sequence
of scaled gradients

{(
Dαuε|1εD3uε

)}
, which is bounded in Lp(Ω; M3×3), with p > 1, can be decomposed into

the sum of two sequences {wε} and {zε} where
{∣∣(Dαwε|1εD3wε

)∣∣p} is equi-integrable and zε → 0 in measure.
Let ω be a bounded open subset of R

2. Consider Ωε := ω × (−ε, ε), the reference configuration of a
hyperelastic heterogeneous thin film, with elastic energy density given by the ε-dependent Carathéodory function
Wε : Ωε ×M

3×3 → R. We will assume e.g. that the body is clamped on the lateral boundary Γε := ∂ω× (−ε, ε)
and that it is submitted to the action of surface traction densities on Σε := ω × {−ε, ε}. The total energy of
the system under a deformation u : Ωε → R

3 is given by

E(ε)(u) =
∫

Ωε

Wε(x;Du) dx −
∫

Ωε

fε.u dx−
∫

Σε

gε.u dH2,

where H2 stands for the 2-dimensional surface measure, fε ∈ Lp′
(Ωε; R3) denotes an appropriate dead load and

gε ∈ Lp′
(Σε; R3) some surface traction densities (1/p + 1/p′ = 1). We denote by W 1,p

Γε
(Ωε; R3) the space of

kinematically admissible fields, that is the functions in W 1,p(Ωε; R3) with zero trace on Γε. As is classical in
hyperelasticity, the equilibrium problem is viewed as the minimization problem

inf
u−x∈W 1,p

Γε
(Ωε;R3)

E(ε)(u).

Since the integration domain depends on ε, we reformulate the problem on a fixed domain through a 1/ε-
dilatation in the transverse direction x3. Let xα the vector (x1, x2) ∈ ω, we set v(xα,

x3
ε ) := u(xα, x3) and

Eε(v) := 1
εE(ε)(u), then

Eε(v) =
∫

Ω

Wε

(
xε;Dαv(x)

∣
∣∣
1
ε
D3v(x)

)
dx−

∫

Ω

fε(xε).v(x) dx − 1
ε

∫

Σ

gε(xε).v(x) dH2,

where xε := (xα, εx3). We set Ω := ω × (−1, 1), Σ := ω × {−1, 1}, denote by Dαv the 3 × 2 matrix of partial
derivatives ∂vi

∂xα
(i ∈ {1, 2, 3}, α ∈ {1, 2}) and by (F |z), the two first columns of which are those of the matrix

F ∈ M
3×2, while the last one is the vector z ∈ R

3. A formal asymptotic expension in [11] shows that the
membrane theory arises if the body forces are of order 1 and the surface loadings are of order ε. We next
assume that 





Wε(xα, εx3;F ) = W (xα, x3;F ),
fε(xα, εx3) = f(xα, x3),
gε(xα, εx3) = g0(xα, x3) + εg(xα, x3)

where f ∈ Lp′
(Ω; R3), g0, g ∈ Lp′

(Σ; R3) and W : Ω × M
3×3 → R is a Carathéodory function satisfying

conditions of p-coercivity and p-growth: for some 0 < β′ ≤ β < +∞ and some 1 < p <∞,

β′|F |p ≤W (x;F ) ≤ β(|F |p + 1), F ∈ M
3×3, for a.e. x ∈ Ω. (1.1)

The usual Euclidian norm on the space M
N×m of real N ×m matrices is denoted by |F |. The minimization

problem becomes
inf

v−xε∈W 1,p
Γ (Ω;R3)

Eε(v), (1.2)
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where W 1,p
Γ (Ω; R3) stands for the functions in W 1,p(Ω; R3) with zero trace on the lateral boundary Γ :=

∂ω × (−1, 1).
If we denote by g±0 (resp. g±) the trace of g0 (resp. g) on ω × {±1}, in view of Remark 3.2.3 of [11], the

loading vectors g+
0 and g−0 must satisfy g+

0 + g−0 = 0. In the second section, we assume the stronger condition
that g+

0 = g−0 = 0 . The physical implication of this assumption is that the plate of thickness 2ε cannot support
a non vanishing resultant surface load as the thickness ε goes to zero. We generalize here the result of [6, 15]
to a general inhomogeneity. In the third section, we address the general case of admissible surface loadings.
It deals with a similar problem, in which the class of surface forces generates a bending moment density as in
[3]; the limit behavior is not solely characterized by the limit deformations (a R

3-valued field defined on the
mid-plane), but it also involves the average of the Cosserat vector also defined on the mid-plane. Once again,
we generalize the result of [3] to the inhomogeneous case. The fourth and last section demonstrates that the
classical membrane model can be seen as a particular case of the Cosserat model when the bending moment
density is zero.

As for notation, A(ω) is the family of open subsets of ω; LN stands for the N -dimensional Lebesgue
measure in R

N (N = 2 or 3); → always denotes strong convergence whereas ⇀ (resp. ∗
⇀) denotes weak

(resp. weak-*) convergence. Finally, we loosely identify Lp(ω; R3) (resp. W 1,p(ω; R3)) with those functions
in Lp(Ω; R3) (resp. W 1,p(Ω; R3)) that do not depend upon x3.

2. Classical nonlinear membrane model

In this section, we assume that gε = εg with g ∈ Lp′
(Σ; R3). Thus, the minimization problem (1.2) becomes

inf
v−xε∈W 1,p

Γ (Ω;R3)

{∫

Ω

W

(
x;Dαv

∣
∣
∣
1
ε
D3v

)
dx−

∫

Ω

f.v dx−
∫

Σ

g.v dH2

}
.

Define for any (u;A) ∈ Lp(Ω; R3) ×A(ω),

Jε(u;A) :=






∫

A×(−1,1)

W

(
x;Dαu

∣∣
∣
1
ε
D3u

)
dx if u ∈W 1,p

(
A× (−1, 1); R3

)
,

+∞ otherwise,

and
J{ε}(u;A) := inf

{uε}

{
lim inf

ε→0
Jε(uε;A) : uε → u in Lp

(
A× (−1, 1); R3

)}
. (2.1)

Remark 2.1. For any A ∈ A(ω), J{ε}(u;A) = +∞ whenever u ∈ Lp(Ω; R3) \W 1,p(A; R3), as is easily seen in
view of the definition of Jε, together with the coercivity condition (1.1).

By virtue of Remark 2.1, together with Theorem 2.5 in [6], for all sequences {ε}, there exists a subse-
quence {εn} such that J{εn}(.;A) defined in (2.1) is the Γ(Lp)-limit of Jεn(.;A). Further, there exists a
Carathéodory function W{εn} : ω × M

3×2 → R such that, for all A ∈ A(ω) and all u ∈W 1,p(A; R3)

J{εn}(u;A) = 2
∫

A

W{εn}(xα;Dαu) dxα.

Remark 2.2. Lemma 2.6 of [6] implies that J{εn}(u;A) is unchanged if the approximating sequences {uεn} are
constrained to match the lateral boundary condition of their target, i.e. uεn ≡ u on ∂A× (−1, 1).

From now onward, we will assume that {εn} denotes a subsequence of {ε} such that the Γ(Lp)-limit
of Jεn(u;A) exists, in which case it coincides with J{εn}(u;A). Under the hypothesis that W is a homoge-
neous elastic energy density, it is proved in [15], Theorem 2, that J{εn}(u;A) does not depend upon the choice
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of the sequence {εn}. It is given by

J{εn}(u;A) = 2
∫

A

QW (Dαu) dxα,

with for all F ∈ M
3×2,

W
(
F
)

:= inf
z∈R3

W
(
F |z) ,

and,

QW (
F
)

:= inf
φ∈W 1,p

0 (Q′;R3)

∫

Q′
W
(
F +Dαφ

)
dxα,

where Q′ := (0, 1)2, and QW is the 2D-quasiconvexification of W . This result was extended to the case where W
is also function of x3 in [6], Theorem 3.4. It is proved there that, in such a case, J{εn} is given by

J{εn}(u;A) = 2
∫

A

W (Dαu) dxα,

with for all F ∈ M
3×2,

W
(
F
)

:= inf
L,φ

{
1
2

∫

Q′×(−1,1)

W
(
x3;F +Dαφ|LD3φ

)
dxαdx3 : L > 0,

φ ∈ W 1,p
(
Q′ × (−1, 1); R3

)
, φ = 0 on ∂Q′ × (−1, 1)

}
.

We wish to extend those results to the case where W is a function of both x3 and xα. We set, for all F ∈ M
3×2

and for a.e. x0 ∈ ω,

W
(
x0;F

)
:= inf

L,φ

{
1
2

∫

Q′×(−1,1)

W
(
x0, x3;F +Dαφ|LD3φ

)
dxαdx3 : L > 0,

φ ∈ W 1,p
(
Q′ × (−1, 1); R3

)
, φ = 0 on ∂Q′ × (−1, 1)

}
. (2.2)

The following theorem holds:

Theorem 2.3. For all F ∈ M
3×2 and for a.e. x0 ∈ ω, W{εn}(x0;F ) = W (x0;F ) where W is given by (2.2).

Furthermore, for any A ∈ A(ω), Jε(.;A) Γ(Lp)-converges to J{ε}(.;A) and for all u ∈ Lp(Ω; R3),

J{ε}(u;A) =





2
∫

A

W (xα;Dαu) dxα if u ∈W 1,p(A; R3),

+∞ otherwise.

The proof of this theorem is a direct consequence of Lemmata 2.4, 2.5 below.

Lemma 2.4. For all F ∈ M
3×2 and for a.e. x0 ∈ ω,

W{εn}
(
x0, F

) ≥W
(
x0, F

)
.

Proof. Let us fix F ∈ M
3×2, we set u(xα) := Fxα and let x0 be a Lebesgue point of bothW{εn}(.;F ) andW (.;F ).

We denote by Q′(x0, r), the cube of R
2 of center x0 and side length r, where r > 0 is fixed and small enough so



SPATIAL HETEROGENEITY IN 3D-2D DIMENSIONAL REDUCTION 143

that Q′(x0, r) ∈ A(ω). According to the equi-integrability theorem (Th. 1.1 in [2]), there exists a subsequence
of {εn} (not relabelled) and a sequence {un} ⊂W 1,p(Q′(x0, r) × (−1, 1); R3) such that






un → 0 in Lp(Q′(x0, r) × (−1, 1); R3),
{∣∣
∣
∣

(
Dαun

∣
∣ 1
εn
D3un

)∣∣
∣
∣

p}
is equi-integrable,

J{εn}(u;Q′(x0, r)) = lim
n→+∞

∫

Q′(x0,r)×(−1,1)

W

(
xα, x3;F +Dαun

∣
∣∣

1
εn
D3un

)
dxαdx3.

Set

Fn(x) :=
(
F +Dαun(x)

∣
∣
∣

1
εn
D3un(x)

)
.

For any h ∈ N, we cover Q′(x0, r) with h2 disjoints cubes Q′
i,h of side length r/h. Thus Q′(x0, r) =

⋃h2

i=1Q
′
i,h

and

J{εn}(u;Q′(x0, r)) =
(

lim sup
h→+∞

)
lim sup
n→+∞

h2
∑

i=1

∫

Q′
i,h×(−1,1)

W (x;Fn(x)) dx. (2.3)

Since W is a Carathéodory integrand, Scorza-Dragoni’s theorem (see [9], Chap. VIII) implies the existence, for
any η > 0, of a compact set Kη ⊂ Ω such that

L3(Ω \Kη) < η, (2.4)

and the restriction of W to Kη × M
3×3 is continuous. For any λ > 0, define

Rλ
n := {x ∈ Q′(x0, r) × (−1, 1) : |Fn(x)| ≤ λ} .

By virtue of Chebyshev’s inequality, there exists a constant C > 0 – which does not depend on n or λ – such
that

L3
(
[Q′(x0, r) × (−1, 1)] \Rλ

n

)
<
C

λp
· (2.5)

Denoting by W η,λ the continuous extension of W outside Kη ×B(0, λ) (defined e.g. in Th. 1, Sect. 1.2 in [10]),
W η,λ is continuous on R

3 × M
3×3 and satisfies the following bound

0 ≤W η,λ(x;F ) ≤ max
Kη×B(0,λ)

W ≤ β(1 + λp) for all (x;F ) ∈ R
3 × M

3×3. (2.6)

In view of (2.3), we have

J{εn}(u;Q′(x0, r)) ≥ lim sup
λ→+∞

lim sup
η→0

lim sup
h→+∞

lim sup
n→+∞

h2
∑

i=1

∫

[Q′
i,h×(−1,1)]∩Rλ

n∩Kη

W η,λ(x;Fn(x)) dx.

By virtue of (2.6) and (2.4),

h2
∑

i=1

∫

[Q′
i,h×(−1,1)]∩Rλ

n\Kη

W η,λ(x;Fn(x)) dx ≤ β(1 + λp)η −−−→
η→0

0,

uniformly in (n, h). Therefore

J{εn}(u;Q′(x0, r)) ≥ lim sup
λ→+∞

lim sup
η→0

lim sup
h→+∞

lim sup
n→+∞

h2
∑

i=1

∫

[Q′
i,h×(−1,1)]∩Rλ

n

W η,λ(x;Fn(x)) dx.
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SinceW η,λ is continuous, it is uniformly continuous on Ω×B(0, λ). Thus there exists a continuous and increasing
function ωη,λ : R

+ −→ R
+ satisfying ωη,λ(0) = 0 and such that

∣
∣W η,λ(x;F ) −W η,λ(y;G)

∣
∣ ≤ ωη,λ(|x− y| + |F −G|), ∀ (x;F ), (y;G) ∈ Ω ×B(0, λ). (2.7)

Consequently, for all (xα, x3) ∈ [Q′
i,h × (−1, 1)] ∩Rλ

n and all yα ∈ Q′
i,h,

∣
∣W η,λ(xα, x3;Fn(xα, x3)) −W η,λ(yα, x3;Fn(xα, x3))

∣
∣ ≤ ωη,λ(|xα − yα|) ≤ ωη,λ(c/h).

We get, after integration in (x, yα) and summation,

sup
n∈N

h2
∑

i=1

h2

r2

∫

Q′
i,h

{∫

Rλ
n∩[Q′

i,h×(−1,1)]

∣
∣W η,λ(yα, x3;Fn(x)) −W η,λ(xα, x3;Fn(x))

∣
∣ dx

}

dyα

≤ 2r2ωη,λ(c/h) −−−−−→
h→+∞

0.

Hence,

J{εn}(u;Q′(x0, r)) ≥ lim sup
λ→+∞

lim sup
η→0

lim sup
h→+∞

lim sup
n→+∞

h2
∑

i=1

h2

r2

∫

Q′
i,h

{∫

[Q′
i,h×(−1,1)]∩Rλ

n

W η,λ(yα, x3;Fn(x)) dx

}

dyα.

Define the following sets which depend on all parameters (η, λ, i, h, n):

E :=
{
(yα, xα, x3) ∈ Q′

i,h ×Q′
i,h × (−1, 1) : (yα, x3) ∈ Kη and (xα, x3) ∈ Rλ

n

}
,

E1 :=
{
(yα, xα, x3) ∈ Q′

i,h ×Q′
i,h × (−1, 1) : (yα, x3) 
∈ Kη and (xα, x3) ∈ Rλ

n

}
,

E2 :=
{
(yα, xα, x3) ∈ Q′

i,h ×Q′
i,h × (−1, 1) : (xα, x3) 
∈ Rλ

n

}
,

and note that Q′
i,h ×Q′

i,h × (−1, 1) = E ∪E1 ∪ E2. Since W and W η,λ coincide on Kη ×B(0, λ),

J{εn}(u;Q′(x0, r)) ≥ lim sup
λ→+∞

lim sup
η→0

lim sup
h→+∞

lim sup
n→+∞

h2
∑

i=1

h2

r2

∫

E

W η,λ(yα, x3;Fn(x)) dxdyα

= lim sup
λ→+∞

lim sup
η→0

lim sup
h→+∞

lim sup
n→+∞

h2
∑

i=1

h2

r2

∫

E

W (yα, x3;Fn(x)) dxdyα. (2.8)

We will prove that the corresponding terms over E1 and E2 are zero. Indeed, in view of (2.4) and the p-growth
condition (1.1),

h2
∑

i=1

h2

r2

∫

E1

W (yα, x3;Fn(x)) dxdyα ≤
h2
∑

i=1

h2

r2
L2(Q′

i,h)L3([Q′
i,h × (−1, 1)] \Kη)β(1 + λp)

= β(1 + λp)L3([Q′(x0, r) × (−1, 1)] \Kη)
< β(1 + λp)η −−−→

η→0
0, (2.9)
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uniformly in (n, h). The bound from above in (1.1), the equi-integrability of {|Fn|p} and (2.5) imply that

h2
∑

i=1

h2

r2

∫

E2

W (yα, x3;Fn(x)) dxdyα ≤
h2
∑

i=1

h2

r2
L2(Q′

i,h)β
∫

[Q′
i,h

×(−1,1)]\Rλ
n

(1 + |Fn(x)|p) dx

= β

∫

[Q′(x0,r)×(−1,1)]\Rλ
n

(1 + |Fn(x)|p) dx −−−−−→
λ→+∞

0, (2.10)

uniformly in (η, n, h). Thus, in view of (2.8), (2.9), (2.10), Fatou’s lemma yields

J{εn}(u;Q′(x0, r)) ≥ lim sup
h→+∞

lim sup
n→+∞

h2
∑

i=1

h2

r2

∫

Q′
i,h

{∫

Q′
i,h×(−1,1)

W (yα, x3;Fn(x)) dx

}

dyα

≥ lim sup
h→+∞

lim inf
n→+∞

h2
∑

i=1

h2

r2

∫

Q′
i,h

{∫

Q′
i,h×(−1,1)

W (yα, x3;Fn(x)) dx

}

dyα

≥ lim sup
h→+∞

h2
∑

i=1

h2

r2

∫

Q′
i,h

{

lim inf
n→+∞

∫

Q′
i,h×(−1,1)

W (yα, x3;Fn(x)) dx

}

dyα.

We apply, for a.e. yα ∈ Q′
i,h, Theorem 3.1 in [6] to the Carathéodory function (x3;F ) �→ W (yα, x3;F ); in

particular

lim inf
n→+∞

∫

Q′
i,h×(−1,1)

W (yα, x3;Fn(x)) dx ≥ 2r2

h2
W
(
yα;F

)
.

Thus

J{εn}(u;Q′(x0, r)) ≥ lim sup
h→+∞

h2
∑

i=1

h2

r2

∫

Q′
i,h

2r2

h2
W
(
yα;F

)
dyα = 2

∫

Q′(x0,r)

W
(
yα;F

)
dyα.

Dividing both sides of the previous inequality by r2 and passing to the limit when r ↘ 0+, we obtain

W{εn}
(
x0;F

) ≥W
(
x0;F

)
. �

Lemma 2.5. For all F ∈ M
3×2 and for a.e. x0 ∈ ω,

W{εn}
(
x0;F

) ≤W
(
x0;F

)
.

Proof. For all k ≥ 1, let Lk > 0 and ϕk ∈W 1,∞(Q′ × (−1, 1); R3) with ϕk = 0 on ∂Q′ × (−1, 1) be such that

Zk

(
x0;F

)
:=

1
2

∫

Q′×(−1,1)

W
(
x0, x3;F +Dαϕk|LkD3ϕk

)
dxαdx3 ≤W

(
x0;F

)
+

1
k
· (2.11)

This is legitimate because of the density of W 1,∞(Q′× (−1, 1); R3) into W 1,p(Q′× (−1, 1); R3) and the p-growth
condition (1.1). We extend ϕk to R

2 × (−1, 1) by Q′-periodicity and set Fk(x) := (F +Dαϕk(x)|LkD3ϕk(x)).
Then, there exists Mk > 0 such that

‖Fk‖L∞(R2×(−1,1);R3) ≤Mk. (2.12)

Let F ∈ M
3×2 and x0 be a Lebesgue point of W (.;F ) and Zk(.;F ) for all k ≥ 1. We choose r > 0 small enough

such that Q′(x0, r) ∈ A(ω). Fix k ≥ 1 and set





u(xα) := Fxα,

uk
n(xα, x3) := Fxα + Lkεnϕk

(
xα

Lkεn
, x3

)
.
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Since uk
n −−−−−→

n→+∞ u in Lp(Q′(x0, r) × (−1, 1); R3),

J{εn}(u;Q′(x0, r)) ≤ lim inf
n→+∞

∫

Q′(x0,r)×(−1,1)

W

(
xα, x3;Dαu

k
n

∣∣
∣

1
εn
D3u

k
n

)
dxαx3

= lim inf
n→+∞

∫

Q′(x0,r)×(−1,1)

W

(
xα, x3;Fk

(
xα

Lkεn
, x3

))
dxαx3.

As before, we split Q′(x0, r) into h2 disjoint cubes Q′
i,h of length r/h. Then,

J{εn}(u;Q′(x0, r)) ≤
(

lim inf
h→+∞

)
lim inf
n→+∞

h2
∑

i=1

∫

Q′
i,h×(−1,1)

W

(
xα, x3;Fk

(
xα

Lkεn
, x3

))
dxαx3.

Let Kη be like in Lemma 2.4 and W η,k be a continuous extension of W outside Kη × B(0,Mk) which satisfies
the analogue of (2.6) with Mk instead of λ. In view of the p-growth condition (1.1), (2.12) and (2.4), we get

sup
n∈N

h2
∑

i=1

∫

[Q′
i,h×(−1,1)]\Kη

W

(
xα, x3;Fk

(
xα

Lkεn
, x3

))
dxαx3 ≤ β(1 +Mp

k )η −−−→
η→0

0.

Thus,

J{εn}(u;Q′(x0, r)) ≤ lim inf
η→0

lim inf
h→+∞

lim inf
n→+∞

h2
∑

i=1

∫

[Q′
i,h×(−1,1)]∩Kη

W η,k

(
xα, x3;Fk

(
xα

Lkεn
, x3

))
dxαx3

≤ lim inf
η→0

lim inf
h→+∞

lim inf
n→+∞

h2
∑

i=1

∫

Q′
i,h×(−1,1)

W η,k

(
xα, x3;Fk

(
xα

Lkεn
, x3

))
dxαx3.

Since W η,k is continuous, it is uniformly continuous on Ω × B(0,Mk). Thus, there exists a continuous and
increasing function ωη,k : R

+ −→ R
+ satisfying ωη,k(0) = 0 and the analogue of (2.7), replacing λ by Mk.

Then, for every (xα, x3) ∈ Q′
i,h × (−1, 1) and every yα ∈ Q′

i,h,

∣
∣∣
∣W

η,k

(
xα, x3;Fk

(
xα

Lkεn
, x3

))
−W η,k

(
yα, x3;Fk

(
xα

Lkεn
, x3

))∣∣∣
∣ ≤ ωη,k(|xα − yα|)
≤ ωη,k(c/h).

Integration and summation yield in turn

sup
n∈N

h2
∑

i=1

h2

r2

∫

Q′
i,h

{∫

Q′
i,h×(−1,1)

∣∣
∣
∣W

η,k(yα, x3;Fk

(
xα

Lkεn
, x3

)
−W η,k(xα, x3;Fk

(
xα

Lkεn
, x3

)∣∣
∣
∣dx

}

dyα

≤ 2r2ωη,k(c/h) −−−−−→
h→+∞

0.

Hence,

J{εn}(u;Q′(x0, r)) ≤ lim inf
η→0

lim inf
h→+∞

lim inf
n→+∞

h2
∑

i=1

h2

r2

∫

Q′
i,h

{∫

Q′
i,h×(−1,1)

W η,k(yα, x3;Fk

(
xα

Lkεn
, x3

)
dxαdx3

}

dyα.
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According to (2.6) and (2.4),

sup
n∈N

h2
∑

i=1

h2

r2

∫

Q′
i,h

{∫

[Q′
i,h×(−1,1)]\Kη

W η,k(yα, x3;Fk

(
xα

Lkεn
, x3

)
dyαdx3

}

dxα ≤ β(1 +Mp
k )η −−−→

η→0
0.

Since W η,k coincides with W on Kη ×B(0,Mk), we get

J{εn}(u;Q′(x0, r))

≤ lim inf
η→0

lim inf
h→+∞

lim inf
n→+∞

h2
∑

i=1

h2

r2

∫

Q′
i,h

{∫

[Q′
i,h×(−1,1)]∩Kη

W (yα, x3;Fk

(
xα

Lkεn
, x3

)
dyαdx3

}

dxα

≤ lim inf
h→+∞

h2
∑

i=1

h2

r2
lim sup
n→+∞

∫

Q′
i,h

{∫

Q′
i,h×(−1,1)

W (yα, x3;Fk

(
xα

Lkεn
, x3

)
dyαdx3

}

dxα.

Riemann-Lebesgue’s lemma applied to the Q′-periodic function
∫

Q′
i,h×(−1,1)W (yα, x3;Fk(., x3)) dyαdx3 implies

that

J{εn}(u;Q′(x0, r)) ≤ lim inf
h→+∞

h2
∑

i=1

h2

r2

∫

Q′
i,h

2r2

h2
Zk

(
yα;F

)
dyα = 2

∫

Q′(x0,r)

Zk

(
yα;F

)
dyα.

Dividing both sides of the inequality by r2 and letting r ↘ 0+, we get in view of the definition of x0 and (2.11),

W{εn}
(
x0;F

) ≤ Zk

(
x0;F

) ≤W
(
x0;F

)
+

1
k
·

Passing to the limit when k ↗ +∞ yields the desired result. �

Proof of Theorem 2.3. For a.e. x0 ∈ ω and for all F ∈ M
3×2, W{εn}(x0;F ) = W (x0;F ). Since the Γ(Lp)-limit

does not depend upon the choice of sequence {εn}, appealing to Proposition 7.11 in [5] we conclude that for
any A ∈ A(ω), the whole sequence Jε(.;A) Γ(Lp)-converges to J{ε}(.;A) and we have,

J{ε}(u;A) = 2
∫

A

W (xα;Dαu) dxα,

for all u ∈W 1,p(A; R3). �
Remark 2.6. Proposition 4.1 gives another expression for the energy density W .

Remark 2.7. By construction and thanks to Remark 3.3 of [6], Theorem 2.3 generalizes both Theorem 2 of [15]
and Theorem 3.4 of [6].

3. Cosserat nonlinear membrane model

In this section, we assume as in [3] that gε := g0 + εg with g0, g ∈ Lp′
(Σ; R3) and g+

0 + g−0 = 0. Thus, the
minimization problem (1.2) reads as

inf
v−xε∈W 1,p

Γ (Ω;R3)

{∫

Ω

W

(
x;Dαv

∣
∣
∣
1
ε
D3v

)
dx− Lε(v)

}
,

with

Lε(v) :=
∫

Ω

f.v dx+
∫

Σ

g.v dH2 +
∫

ω

g+
0 .

(
v+ − v−

ε

)
dxα, v±(xα) := v(xα,±1).
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If vε → v in Lp(Ω; R3) is a minimizing sequence and if bε := 1
εD3vε, then

Lε(vε) =
∫

Ω

f.vε dx+
∫

Σ

g.vε dH2 + 2
∫

ω

g+
0 .bε dxα, where bε =

1
2

∫ 1

−1

bε(., x3) dx3.

By virtue of the coercivity condition (1.1), we deduce that the sequence {vε} is uniformly bounded inW 1,p(Ω; R3)
and that, for a subsequence of {ε} still labelled {ε}, vε ⇀ v in W 1,p(Ω; R3) and bε ⇀ b in Lp(Ω; R3) with
v ∈ W 1,p(ω; R3). As previously, v is associated to the mid-plane deformation, whereas b is the Cosserat vector.
In any case, limε→0 Lε(vε) = L(v, b), with

L(v, b) :=
∫

ω

(
2f + g+ + g−

)
.v dxα + 2

∫

ω

g+
0 .bdxα, (3.1)

where b(xα) := 1
2

∫ 1

−1
b(xα, x3) dx3 and f(xα) := 1

2

∫ 1

−1
f(xα, x3) dx3. The desired membrane model should thus

depend on the average, b, of b with respect to x3. Once we establish our Γ-convergence result, we will be in a
position to conclude that v and b are truly independent and that the corresponding model is a Cosserat type
membrane model.

To this end, we define, for all (u, b;A) ∈ Lp(Ω; R3) × Lp(ω; R3) ×A(ω),

Jε(u, b;A) :=






∫

A×(−1,1)

W

(
x;Dαu

∣
∣
∣
1
ε
D3u

)
dx if

{
u ∈ W 1,p(A× (−1, 1); R3),

1
2ε

∫ 1

−1
D3u(., x3) dx3 = b,

+∞ otherwise,

(3.2)

and

J{ε}(u, b;A) := inf
{uε,bε}

{
lim inf

ε→0
Jε(uε, bε;A) : uε → u in Lp(A × (−1, 1); R3) and bε ⇀ b in Lp(A; R3)

}
. (3.3)

Remark 3.1. Let (u, b;A) ∈ Lp(Ω; R3)×Lp(ω; R3)×A(ω) and suppose that J{ε}(u, b;A) < +∞. Arguing as in
Remark 2.1, we deduce that u ∈ W 1,p(A; R3). Hence, if u ∈ Lp(Ω; R3) \W 1,p(A; R3), then J{ε}(u, b;A) = +∞.

Remark 3.2. Whenever u ∈ W 1,p(A; R3), one has J{ε}(u, b;A) < +∞, this is easily obtained by considering
the sequence {uε(xα, x3) := u(xα) + εx3bε(xα)}, where bε ∈ C∞

c (A; R3) and bε → b strongly in Lp(A; R3).

Theorem 1.2 in [3] shows that, ifW is a homogeneous elastic energy density, then J{ε} is the Γ(Lp)-limit of Jε,
by which we mean, from now onward, the Γ-limit with respect to, respectively, the strong topology of Lp(Ω; R3),
and the weak topology of Lp(ω; R3). Furthermore, for all (u, b;A) ∈W 1,p(ω; R3) × Lp(ω; R3) ×A(ω),

J{ε}
(
u, b;A

)
= 2

∫

A

Q∗W
(
Dαu|b

)
dxα,

where, for all F ∈ M
3×2 and z ∈ R

3,

Q∗W (F |z) := inf
L>0,ϕ

{
1
2

∫

Q′×(−1,1)

W
(
F +Dαϕ|LD3ϕ

)
dxαdx3 : ϕ ∈ W 1,p(Q′ × (−1, 1); R3),

ϕ(., x3) Q′-periodic for a.e. x3 ∈ (−1, 1),
L

2

∫

Q′×(−1,1)

D3ϕdx = z

}

.
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We propose to extend this result to the heterogeneous case. We set, for all F ∈ M
3×2, z ∈ R

3 and a.e. x0 ∈ ω,

Q∗W (x0;F |z) := inf
L>0,ϕ

{
1
2

∫

Q′×(−1,1)

QW (
x0, x3;F +Dαϕ|LD3ϕ

)
dxαdx3:

ϕ ∈W 1,p
(
Q′ × (−1, 1); R3

)
, ϕ(., x3) Q′-periodic for a.e. x3 ∈ (−1, 1),

and
L

2

∫

Q′×(−1,1)

D3ϕdx = z

}

(3.4)

where, for a.e. x ∈ Ω and all F ∈ M
3×3, QW (x; .), the 3D-quasiconvexification of W (x; .) is defined as

QW (x;F ) = inf
φ∈W 1,p

0 (Q;R3)

∫

Q

W (x;F +Dφ(y)) dy

with Q := (0, 1)3. Since QW (x; .) is quasiconvex and satisfies a p-growth condition, for all F1, F2 ∈ M
3×3 and

for a.e. x ∈ Ω,

|QW (x;F1) −QW (x;F2)| ≤ β
(
1 + |F1|p−1 + |F2|p−1

) |F1 − F2| (3.5)

(see [7], Lem. 2.2). Elementary properties of Q∗W are summarized in the following proposition:

Proposition 3.3.
i) For all (F , z) ∈ M

3×2 × R
3 and a.e. x0 ∈ ω,

0 ≤ Q∗W
(
x0;F |z

) ≤ β
(∣
∣F
∣
∣p + |z|p + 1

)
. (3.6)

ii) Q∗W is a Carathéodory function.

Proof.
i). We take ϕ(x) := zx3/L as test function in (3.4) an use the p-growth condition (1.1).
ii). It suffices to show that Q∗W (x0; .) is continuous for a.e. x0 ∈ ω. Let Fn → F and zn → z. We first prove
that Q∗W (x0; .) is upper semicontinuous. For any δ > 0, set L > 0 and ϕ ∈W 1,p(Q′ × (−1, 1); R3) Q′-periodic
satisfying L

2

∫
Q′×(−1,1)D3ϕdx = z such that

Q∗W
(
x0;F |z

) ≤ 1
2

∫

Q′×(−1,1)

QW (
x0, x3;F +Dαϕ|LD3ϕ

)
dxαdx3 ≤ Q∗W

(
x0;F |z

)
+ δ.

The sequence {ϕn(x) := ϕ(x) + x3(zn − z)/L} is in W 1,p(Q′ × (−1, 1); R3) and it is Q′-periodic. Furthermore,
Dαϕ = Dαϕn and L

2

∫
Q′×(−1,1)D3ϕn dx = zn. Since

∥∥(F +Dαϕ|LD3ϕ
)− (Fn +Dαϕn|LD3ϕn

)∥∥
L∞(Q′×(−1,1);M3×3)

≤ ∣∣(F |z)− (Fn|zn

)∣∣→ 0
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while {Dϕn} is bounded in Lp(Q′ × (−1, 1); M3×3), (3.5) together with Hölder’s inequality, yields

lim sup
n→+∞

Q∗W
(
x0;Fn|zn

)−Q∗W
(
x0;F |z

)− δ

≤ lim sup
n→+∞

1
2

∫

Q′×(−1,1)

∣
∣QW (

x0, x3;Fn +Dαϕn|LD3ϕn

)−QW (
x0, x3;F +Dαϕ|LD3ϕ

)∣∣ dx

≤ lim sup
n→+∞

β

2

∫

Q′×(−1,1)

(
1 +

∣
∣(Fn +Dαϕn|LD3ϕn

)∣∣p−1
+
∣
∣(F +Dαϕ|LD3ϕ

)∣∣p−1
)

× ∣∣(F +Dαϕ|LD3ϕ
)− (Fn +Dαϕn|LD3ϕn

)∣∣ dx

≤ lim sup
n→+∞

C

(
1 + ‖Dϕ‖

p−1
p

Lp(Q′×(−1,1);M3×3) + ‖Dϕn‖
p−1

p

Lp(Q′×(−1,1);M3×3)

)

× ∥∥(F +Dαϕ|LD3ϕ
)− (Fn +Dαϕn|LD3ϕn

)∥∥
Lp(Q′×(−1,1);M3×3)

= 0.

Passing to the limit when δ↘0+ yields the desired upper semicontinuity. Let us prove now that Q∗W (x0; .) is
lower semicontinuous. For every n ≥ 1, choose Ln > 0 and ϕn ∈ W 1,p(Q′ × (−1, 1); R3) Q′-periodic satisfying
Ln

2

∫
Q′×(−1,1)D3ϕn dx = zn such that

1
2

∫

Q′×(−1,1)

QW (
x0, x3;Fn +Dαϕn|LnD3ϕn

)
dxαdx3 ≤ Q∗W (x0;Fn|zn) +

1
n
·

Set ϕ̃n(x) := ϕn(x) + x3(z − zn)/Ln, then ϕ̃n ∈ W 1,p(Q′ × (−1, 1); R3) is Q′-periodic and satisfies
Ln

2

∫
Q′×(−1,1)

D3ϕ̃n dx = z. Since

∥
∥(F +Dαϕ̃n|LnD3ϕ̃n

)− (Fn +Dαϕn|LnD3ϕn

)∥∥
L∞(Q′×(−1,1);M3×3)

≤ ∣∣(F |z)− (Fn|zn

)∣∣→ 0

while, in view of the coercivity condition (1.1), the sequences {(Dαϕn|LnD3ϕn)} and {(Dαϕ̃n|LnD3ϕ̃n)} are
bounded in Lp(Q′ × (−1, 1); M3×3) uniformly in n, (3.5) implies that

Q∗W
(
x0;F |z

) ≤ lim inf
n→+∞

1
2

∫

Q′×(−1,1)

QW (
x0, x3;F +Dαϕ̃n|LnD3ϕ̃n

)
dxαdx3

≤ lim inf
n→+∞

1
2

∫

Q′×(−1,1)

QW (
x0, x3;Fn +Dαϕn|LnD3ϕn

)
dxαdx3

≤ lim inf
n→+∞Q∗W

(
x0;Fn|zn

)
.

Thus Q∗W (x0; .) is lower semicontinuous and the continuity follows. �
We propose to establish the following Γ-convergence result.

Theorem 3.4. For all A ∈ A(ω), Jε(., .;A) Γ(Lp)-converges to J{ε}(., .;A). Further, for all (u, b) ∈ Lp(Ω; R3)×
Lp(ω; R3),

J{ε}
(
u, b;A

)
=






2
∫

A

Q∗W
(
xα;Dαu|b

)
dxα if u ∈ W 1,p

(
A; R3

)
,

+∞ otherwise,
where Q∗W is given by (3.4).

We first note, as in [6] p. 1374, that, if R(ω) is the countable family of all finite unions of open squares in ω
with faces parallel to the axes, centered at rational points and with rational edge lengths, then there exists a
subsequence {εn} ⊂ {ε} such that J{εn}(., .;C) is, for all C ∈ R(ω), the Γ(Lp)-limit of Jεn(., .;C).
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Then, the analogue of step 2 in the proof of Theorem 2.5 of [6] holds, namely

Lemma 3.5. For any A ∈ A(ω) and (u, b) ∈ W 1,p(A; R3)×Lp(A; R3), there exists a sequence {un} ⊂W 1,p(A×
(−1, 1); R3) satisfying 





un → u in Lp(A× (−1, 1); R3),

bn :=
1

2εn

∫ 1

−1

D3un(.;x3) dx3 ⇀ b in Lp
(
A; R3

)
,

lim
n→+∞Jεn

(
un, bn;A

)
= J{εn}

(
u, b;A

)
.

(3.7)

Proof. The coercivity condition (1.1) implies that whenever u ∈ W 1,p(C; R3), we can choose the attainment
sequence {un, bn}, so that (3.7) holds true. Now let us fix δ > 0 and choose a subset Cδ of A in R(ω) such
that Cδ ⊂ A and ∫

A\Cδ

(1 + |Dαu|p) dxα <
δ

2β
·

Consider a sequence {vδ
n} ⊂W 1,p(Cδ × (−1, 1); R3) satisfying





vδ
n −−−−−→

n→+∞ u in Lp(Cδ × (−1, 1); R3),

b
δ

n :=
1

2εn

∫ 1

−1

D3v
δ
n(., x3) dx3 −−−−−⇀

n→+∞ b in Lp(Cδ; R3),

lim
n→+∞Jεn

(
vδ

n, b
δ

n;Cδ
)

= J{εn}(u, b;Cδ).

In view of Lemma 2.2 in [3] (the proof in our context is identical to that of the homogeneous case), there exists
a subsequence of {εn} (not relabelled) and a sequence {v̂δ

n} in W 1,p(Cδ × (−1, 1); R3) satisfying v̂δ
n = u on a

neighborhood of ∂Cδ × (−1, 1) such that





v̂δ
n −−−−−→

n→+∞ u in Lp
(
Cδ × (−1, 1); R3

)
,

b̂
δ

n :=
1

2εn

∫ 1

−1

D3v̂
δ
n(.;x3) dx3 −−−−−⇀

n→+∞ b in Lp
(
Cδ; R3

)
,

lim
n→+∞Jεn

(
v̂δ

n, b̂
δ

n;Cδ

)
= J{εn}

(
u, b;Cδ

)
.

(3.8)

We extend v̂δ
n as u outside Cδ (and correspondingly extend b̂

δ

n as 0). Since J{εn}(u, b; .) is an increasing set
function, we have J{εn}(u, b;Cδ) ≤ J{εn}(u, b;A) and thus,

lim sup
δ→0+

lim sup
n→+∞

Jεn

(
v̂δ

n, b̂
δ

n;A
)

≤ lim sup
δ→0+

{

lim
n→+∞Jεn

(
v̂δ

n, b̂
δ

n;Cδ

)
+ 2β

∫

A\Cδ

(1 + |Dαu|p) dxα

}

= lim sup
δ→0+

J{εn}
(
u, b;Cδ

)

≤ J{εn}
(
u, b;A

)

≤ lim inf
δ→0+

lim inf
n→+∞ Jεn

(
v̂δ

n, b̂
δ

n;A
)
.

Remark that (3.8), together with coercivity, implies that

∥
∥Dαv̂

δ
n

∥
∥

Lp(A×(−1,1);M3×2)
+
∥
∥
∥∥b̂

δ

n

∥
∥
∥∥

Lp(A;R3)

≤ C,
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independently of δ, n; in particular, {b̂
δ

n} lies in a subset of Lp(A; R3), which is metrizable for the weak
Lp-topology. A simple diagonalization lemma (Lem. 7.1 in [6]) permits to conclude the existence of a decreasing
sequence {δ(n)} ↘ 0+ such that the sequence {un := v̂

δ(n)
n } satisfies (3.7). �

We now recall two results that will be of use in the proof of Lemma 3.10 below. Their proof can be found in
[3] in the homogeneous case and the heterogeneity does not create any additional difficulty.

Proposition 3.6. For any sequence {ε} ↘ 0+, there exists a subsequence {εn} such that, for any (u, b) ∈
W 1,p(ω; R3)×Lp(ω; R3), the set function J{εn}(u, b; .) defined in (3.3) is the trace on A(ω) of a Radon measure,
which is absolutely continuous with respect to the 2-dimensional Lebesgue measure.

By virtue of Lemma 3.5 and Proposition 3.6, we will assume henceforth that {εn} denotes a subsequence
of {ε} such that the Γ(Lp)-limit of Jεn exists, in which case it coincides with J{εn}, and such that, for every
(u, b) ∈W 1,p(ω; R3)×Lp(ω; R3), the set function J{εn}(u, b; .) is the trace on A(ω) of a Radon measure, which
is absolutely continuous with respect to the 2-dimensional Lebesgue measure.

Proposition 3.7. For all (u, b;A) ∈ W 1,p(ω; R3) × Lp(ω; R3) × A(ω), the value of J{ε}(u, b;A) is unchanged
if W is replaced by QW in (3.2).

Remark 3.8. If W does not depend on xα, we can show as in [3] that for all A ∈ A(ω), Jε(., .;A)
Γ(Lp)-converges to J{ε}(., .;A) and

J{ε}(u, b;A) = 2
∫

A

Q∗W
(
Dαu|b

)
dxα,

for every (u, b) ∈W 1,p(A; R3) × Lp(ω; R3), where Q∗W is given by (3.4).

Theorem 3.4 is a direct consequence of the following two lemmata.

Lemma 3.9. For all A ∈ A(ω) with A Lipschitz and for all (u, b) ∈ W 1,p(A; R3) × Lp(A; R3),

J{εn}(u, b;A) ≥ 2
∫

A

Q∗W
(
xα;Dαu|b

)
dxα.

Lemma 3.10. For all A ∈ A(ω) with A Lipschitz and for all (u, b) ∈W 1,p(A; R3) × Lp(A; R3),

J{εn}(u, b;A) ≤ 2
∫

A

Q∗W (xα;Dαu|b) dxα.

Proof of Lemma 3.9. Let (u, b) ∈W 1,p(A; R3)×Lp(A; R3). According to the equi-integrability theorem (Th. 1.1
in [2]) together with Lemma 3.5 , there exists a subsequence of {εn} (not relabelled) and a sequence {un} ⊂
W 1,p(A× (−1, 1); R3) such that






un → u in Lp(A× (−1, 1); R3),

1
2εn

∫ 1

−1

D3un(., x3) dx3 ⇀ b in Lp(A; R3),

{∣∣
∣
∣

(
Dαun

∣
∣
∣

1
εn
D3un

)∣∣
∣
∣

p}
is equi-integrable,

J{εn}(u, b;A) = lim
n→+∞

∫

A×(−1,1)

W

(
xα, x3;Dαun

∣
∣
∣

1
εn
D3un

)
dxαdx3.
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We argue as in the proof of Lemma 2.4 with Fn(x) :=
(
Dαun(x)

∣
∣ 1

εn
D3un(x)

)
and we obtain, since W ≥ QW

J{εn}(u, b;A) ≥ lim sup
h→+∞

∑

i∈Ih

1
L2(Ai,h)

∫

Ai,h

{

lim inf
n→+∞

∫

Ai,h×(−1,1)

W (yα, x3;Fn(xα, x3)) dxαdx3

}

dyα

≥ lim sup
h→+∞

∑

i∈Ih

1
L2(Ai,h)

∫

Ai,h

{

lim inf
n→+∞

∫

Ai,h×(−1,1)

QW (yα, x3;Fn(xα, x3)) dxαdx3

}

dyα,

where {Ai,h}i∈Ih
denotes a finite family of disjoint open sets with diameter less than 1/h, such that L2(A \

∪i∈Ih
Ai,h) = 0 and CardIh = O(h2). Applying, for a.e. yα ∈ Ai,h, Remark 3.8 to the Carathéodory function

(x3;F ) �→W (yα, x3;F ), we get

J{εn}(u, b;A) ≥ lim sup
h→+∞

∑

i∈Ih

1
L2(Ai,h)

∫

Ai,h

{

2
∫

Ai,h

Q∗W (yα;Dαu(xα)|b(xα)) dxα

}

dyα.

By Proposition 3.3 (ii), Q∗W is a Carathéodory integrand, thus Scorza-Dragoni’s Theorem implies the existence,
for any η > 0, of a compact set Cη ⊂ A, such that

L2(A \ Cη) < η, (3.9)

and Q∗W is continuous on Cη × M
3×2. Let Sλ := {xα ∈ A : |(Dαu(xα)|b(xα))| ≤ λ}, thanks to Chebyshev’s

inequality

L2(A \ Sλ) <
C

λp
· (3.10)

Consequently

J{εn}(u, b;A) ≥

lim sup
λ→+∞

lim sup
η→0

lim sup
h→+∞

∑

i∈Ih

1
L2(Ai,h)

∫

Ai,h∩Cη

{

2
∫

Ai,h∩Cη∩Sλ

Q∗W
(
yα;Dαu(xα)|b(xα)

)
dxα

}

dyα.

Since Q∗W is continuous on Cη ×M
3×2, it is uniformly continuous on Cη ×B(0, λ) thus there exists a increasing

and continuous function ωη,λ : R
+ −→ R

+ satisfying ωη,λ(0) = 0 and for every yα ∈ Ai,h ∩ Cη and every
xα ∈ Ai,h ∩ Cη ∩ Sλ,

∣∣Q∗W (yα;Dαu(xα)|b(xα)) −Q∗W (xα;Dαu(xα)|b(xα))
∣∣ ≤ ωη,λ(|xα − yα|) ≤ ωη,λ(1/h).

Using the fact that L2(Ai,h)CardIh ≤ C, we get

∑

i∈Ih

1
L2(Ai,h)

∫

Ai,h∩Cη

∫

Ai,h∩Cη∩Sλ

∣
∣Q∗W (yα;Dαu(xα)|b(xα)) −Q∗W (xα;Dαu(xα)|b(xα))

∣
∣ dxαdyα

≤ Cωη,λ(1/h) −−−−−→
h→+∞

0.

Therefore,

J{εn}(u, b;A) ≥ lim sup
λ→+∞

lim sup
η→0

lim sup
h→+∞

∑

i∈Ih

2L2(Ai,h ∩ Cη)
L2(Ai,h)

∫

Ai,h∩Cη∩Sλ

Q∗W (xα;Dαu(xα)|b(xα)) dxα.
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By virtue of the p-growth condition (3.6) together with (3.9), we get

∑

i∈Ih

L2(Ai,h \ Cη)
L2(Ai,h)

∫

Ai,h∩Cη∩Sλ

Q∗W (xα;Dαu(xα)|b(xα)) dxα ≤ β(1 + λp)
∑

i∈Ih

L2(Ai,h \ Cη)

= β(1 + λp)L2(A \ Cη)
< β(1 + λp)η −−−→

η→0
0.

Thus, (3.9) and (3.10) yield

J{εn}(u, b;A) ≥ 2 lim sup
λ→+∞

lim sup
η→0

∫

A∩Cη∩Sλ

Q∗W (xα;Dαu(xα)|b(xα)) dxα

= 2
∫

A

Q∗W (xα;Dαu(xα)|b(xα)) dxα. �

Proof of Lemma 3.10. The proof is divided into three steps. First, we address the case where u is affine and b
is constant; then, that where u is piecewise affine and continuous, and b piecewise constant. Finally, we address
the general case.

Step 1. Let A ∈ A(ω), we assume that
{
u(xα) = Fxα + c,

(
F , c

) ∈ M
3×2 × R

3,

b(xα) = z, z ∈ R
3.

Thanks to the density of W 1,∞(Q′ × (−1, 1); R3) into W 1,p(Q′ × (−1, 1); R3) and to the p-growth hypoth-
esis (1.1), for any k ≥ 1, there exists Lk > 0 and ϕk ∈ W 1,∞(Q′ × (−1, 1); R3) Q′-periodic satisfying
Lk

2

∫
Q′×(−1,1)D3ϕk dx = z and such that

Zk(x0;F |z) :=
1
2

∫

Q′×(−1,1)

QW (
x0, x3;F +Dαϕk|LkD3ϕk

)
dxαdx3 ≤ Q∗W

(
x0;F |z

)
+

1
k
·

We extend ϕk to R
2 × (−1, 1) by Q′-periodicity. Choose r > 0 small enough so that Q′(x0, r) ⊂ A where x0 is

a Lebesgue point of the Radon-Nikodym derivative of J{εn}(u, b; .) with respect to the 2-dimensional Lebesgue
measure and of Zk(.;F |z) for all k ≥ 1. Fix k and set

uk
n(x) := Fxα + c+ Lkεnϕk

(
xα

Lkεn
, x3

)
.

Then,
uk

n −−−−−→
n→+∞ u in Lp

(
Q′(x0, r) × (−1, 1); R3

)
,

and by virtue of Riemann-Lebesgue’s lemma,

1
2εn

∫ 1

−1

D3u
k
n dx3 =

Lk

2

∫ 1

−1

D3ϕk

(
xα

Lkεn
, x3

)
dx3

Lp(Q′(x0,r);R3)−−−−−−−−−−⇀
n→+∞

Lk

2

∫

Q′×(−1,1)

D3ϕk dx = b.

So {uk
n} is admissible for J{εn}(u, b;Q′(x0, r)) and, thanks to Proposition 3.7,

J{εn}
(
u, b;Q′(x0, r)

) ≤ lim inf
n→+∞

∫

Q′(x0,r)×(−1,1)

QW
(
xα, x3;Dαu

k
n

∣
∣
∣

1
εn
D3u

k
n

)
dxαdx3.
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Using an argument similar to that in the proof of Lemma 2.5, with QW instead of W , we get

dJ{εn}(u, b; .)
dL2

(x0) ≤ 2Q∗W (x0;F |z).

Thus, integration over A yields

J{εn}
(
u, b;A

) ≤ 2
∫

A

Q∗W
(
xα;F |z) dxα.

Step 2. Assume that u is continuous and piecewise affine and b is piecewise constant on A. There exists a
partition A1, ..., AN of A such that u(xα) = F ixα + ci and b(xα) = zi on Ai, for all i = 1, ..., N . Thanks to
step 1, for all i = 1, ..., N , we have

J{εn}(F ixα + ci, zi;Ai) ≤ 2
∫

Ai

Q∗W (xα;F i|zi) dxα.

In view of Proposition 3.6, J{εn}(u, b; .) is a measure and we thus get

J{εn}(u, b;A) =
N∑

i=1

J{εn}(F ixα + ci, zi;Ai)

≤ 2
N∑

i=1

∫

Ai

Q∗W (xα;F i|zi) dxα

= 2
∫

A

Q∗W (xα;Dαu|b) dxα.

Step 3. Consider A ∈ A(ω) with A Lipschitz and u ∈ W 1,p(A; R3), b ∈ Lp(A; R3). There exists a sequence {un}
of continuous and piecewise affine functions in W 1,p(A; R3) and a sequence {bn} of piecewise constant func-
tions in Lp(A; R3) such that un → u in W 1,p(A; R3) and bn → b in Lp(A; R3). Since J{εn}(., .;A) is lower
semicontinuous, we get, in view of the previous step,

J{εn}
(
u, b;A

) ≤ lim inf
n→+∞J{εn}

(
un, bn;A

) ≤ lim inf
n→+∞ 2

∫

A

Q∗W
(
xα;Dαun|bn

)
dxα. (3.11)

By Proposition 3.3 and Lebesgue’s dominated convergence theorem,

lim
n→+∞

∫

A

Q∗W
(
xα;Dαun|bn

)
dxα =

∫

A

Q∗W
(
xα;Dαu|b

)
dxα. (3.12)

Thus (3.11) and (3.12) yield

J{εn}(u, b;A) ≤ 2
∫

A

Q∗W (xα;Dαu|b) dxα. �

Proof of Theorem 3.4. The two previous lemmata demonstrate that, provided A ∈ A(ω) is Lipschitz, then, for
all (u, b) ∈ W 1,p(A; R3) × Lp(A; R3), J{εn}(u, b;A) does not depend upon the choice of sequence {εn}. Thus,
in light of Proposition 7.11 in [5], the whole sequence Jε(u, b;A) Γ(Lp)-converges to J{ε}(u, b;A) and

J{ε}
(
u, b;A

)
= 2

∫

A

Q∗W (xα;Dαu; b) dxα.
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Whenever A ∈ A(ω) is an arbitrary open set, we define the nested sequence of Lipschitz open subsets Ak :=
{xα ∈ A : dist(xα, ∂A) > 1/k} of A, so that Ak ⊂ A and ∪k≥1Ak = A. Consider the sequence {uk}
in W 1,p(A; R3) such that uk = u on Ak. Since J{ε}(., .;Ak) is local and Ak is Lipschitz,

J{ε}
(
u, b;Ak

)
= J{ε}(uk, b;Ak) = 2

∫

Ak

Q∗W (xα;Dαuk|b)dxα = 2
∫

Ak

Q∗W
(
xα;Dαu|b

)
dxα.

But J{ε}(u, b; .) is a measure, thus, letting k ↗ +∞,

J{ε}
(
u, b;A

)
= 2

∫

A

Q∗W (xα;Dαu|b) dxα.

Then Remark 3.1 completes the proof of Theorem 3.4. �

Remark 3.11. If W does not depend upon x, Proposition 1.1 (iii) of [3] states that

Q∗W
(
F |z) = inf

L>0,ϕ

{
1
2

∫

Q′×(−1,1)

W
(
F +Dαϕ|LD3ϕ

)
dxαdx3 : ϕ ∈ W 1,p

(
Q′ × (−1, 1); R3

)
,

ϕ(., x3) Q′-periodic for a.e. x3 ∈ (−1, 1),
L

2

∫

Q′×(−1,1)

D3ϕdx = z

}

= inf
L>0,ϕ

{
1
2

∫

Q′×(−1,1)

QW (F +Dαϕ|LD3ϕ) dxαdx3 : ϕ ∈ W 1,p
(
Q′ × (−1, 1); R3

)
,

ϕ(., x3) Q′-periodic for a.e. x3 ∈ (−1, 1),
L

2

∫

Q′×(−1,1)

D3ϕdx = z

}
.

In other words, the result of [3] is recovered by Theorem 3.4.

Remark 3.12. Since Q∗W is the integrand of the Γ(Lp)-limit of Jε, which satisfies a p-coercivity condition
(see (1.1)), for all F ∈ M

3×2, for all z ∈ R
3 and for a.e. x0 ∈ ω,

β′ (|F |p + |z|p) ≤ Q∗W
(
x0;F |z

)
. (3.13)

Remark 3.13. Theorem 3.4 implies that the functional

(
u, b
) �→

∫

ω

Q∗W
(
xα;Dαu|b

)
dxα

is sequentially weakly lower semicontinuous on W 1,p(ω; R3)×Lp(ω; R3). Therefore, Q∗W (x0; .|z) is quasiconvex
and Q∗W (x0;F |.) is convex. Thanks to the p-growth condition (3.6), Q∗W (x0; .|.) is locally Lipschitz, because
it is separately convex (see Th. 2.3 in [7]).

4. Classical membrane model obtained as a zero bending moment density

This section investigates the coherence of our results. In the absence of a bending moment density (g0 = 0),
we show below that Theorem 3.4 boils down to Theorem 2.3. We first give another form of the energy density W
similar to the definition of Q∗W (see (3.4)). Specifically,
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Proposition 4.1. For all F ∈ M
3×2 and for a.e. x0 ∈ ω,

W
(
x0;F

)
= inf

L,ϕ

{
1
2

∫

Q′×(−1,1)

QW (
x0, x3;F +Dαϕ|LD3ϕ

)
dxαdx3:

L > 0, ϕ ∈W 1,p
(
Q′ × (−1, 1); R3

)
, ϕ(., x3) Q′-periodic for a.e. x3 ∈ (−1, 1)

}
.

Proof. Set

W ∗ (x0;F
)

:= inf
L,ϕ

{
1
2

∫

Q′×(−1,1)

QW (
x0, x3;F +Dαϕ|LD3ϕ

)
dxαdx3:

L > 0, ϕ ∈ W 1,p
(
Q′ × (−1, 1); R3

)
, ϕ(., x3) Q′-periodic for a.e. x3 ∈ (−1, 1)

}
.

It is obvious that W (x0;F ) ≥ W ∗(x0;F ). Conversely, for any δ > 0, consider L > 0 and ϕ ∈ W 1,p(Q′ ×
(−1, 1); R3) Q′-periodic, such that

1
2

∫

Q′×(−1,1)

QW (
x0, x3;F +Dαϕ|LD3ϕ

)
dxαdx3 ≤W ∗ (x0;F

)
+ δ.

We extend ϕ by Q′-periodicity and we set ϕn(xα, x3) := 1
nϕ(nxα, x3). Then, Riemann-Lebesgue’s Lemma

applied to
∫ 1

−1
QW (x0, x3;F +Dαϕ(., x3)|LD3ϕ(., x3)) dx3, implies that

lim
n→+∞

1
2

∫

Q′×(−1,1)

QW (
x0, x3;F +Dαϕn|LnD3ϕn

)
dxαdx3 ≤W ∗ (x0;F

)
+ δ. (4.1)

For fixed n, the relaxation theorem of [1] (see Statement III.7 in [1])– applied to Q′ × (− 1
Ln ,

1
Ln

)
and to

ψn(xα, x3) := ϕn(xα, Lnx3) – yields a sequence

ϕn,k −−−−−⇀
k→+∞

ϕn in W 1,p
(
Q′ × (−1, 1); R3

)

such that,

∫

Q′×(−1,1)

QW (x0, x3;F +Dαϕn|LnD3ϕn) dxαdx3 =

lim
k→+∞

∫

Q′×(−1,1)

W (x0, x3;F +Dαϕn,k|LnD3ϕn,k) dxαdx3. (4.2)

Thus (4.1) together with (4.2) give

lim
n→+∞ lim

k→+∞
1
2

∫

Q′×(−1,1)

W
(
x0, x3;F +Dαϕn,k|LnD3ϕn,k

)
dxαdx3 ≤W ∗ (x0;F

)
+ δ.

Furthermore, we have,
lim

n→+∞ lim
k→+∞

‖ϕn,k‖Lp(Q′×(−1,1);R3) = 0.
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By a standard diagonalization process, we can find an increasing sequence {k(n)}, with k(n)
n

↗ +∞ such that,
if we set φn := ϕn,k(n),

lim
n→+∞

1
2

∫

Q′×(−1,1)

W
(
x0, x3;F +Dαφn|LnD3φn

)
dxαdx3 ≤W ∗ (x0;F

)
+ δ, (4.3)

and φn → 0 in Lp(Q′ × (−1, 1); R3). By virtue of the coercivity hypothesis (1.1),

‖(Dαφn|LnD3φn)‖Lp(Q′×(−1,1);M3×3) ≤ C.

We define the following sequence of non negative bounded Radon measures

λn := (1 + |(Dαφn|LnD3φn)|p)χQ′×(−1,1)L3.

The coercive character (1.1) of W permits to assert that, up to a subsequence (not relabelled), there exists a
non negative bounded Radon measure λ such that

λn
∗
⇀ λ in Mb

(
R

3
)
.

We cut φn near the lateral boundary to obtain a sequence which vanishes on ∂Q′ × (−1, 1). Let θk ∈ C∞
c (Q′) a

cut-off function defined by






θk(xα) :=

{
1 if xα ∈ Q′(0, 1 − 1/k),
0 if xα /∈ Q′(0, 1 − 1/(k + 1)),

‖Dαθk‖L∞(Q′) ≤ Ck2.

(4.4)

We set φk
n := θkφn, since φk

n = 0 on ∂Q′ × (−1, 1), (4.3) together with (4.4) yields

W ∗ (x0;F
) ≥ lim inf

k→+∞
lim inf
n→+∞

1
2

∫

Q′(0,1− 1
k )×(−1,1)

W (x0, x3;F +Dαφ
k
n|LnD3φ

k
n) dxαdx3 − δ

≥ lim inf
k→+∞

lim inf
n→+∞

1
2

∫

Q′×(−1,1)

W (x0, x3;F +Dαφ
k
n|LnD3φ

k
n) dxαdx3

− lim sup
k→+∞

lim sup
n→+∞

1
2

∫

(Q′(0,1− 1
k+1 )\Q′(0,1− 1

k ))×(−1,1)

W (x0, x3;F +Dαφ
k
n|LnD3φ

k
n) dxαdx3

−β(1 + |F |p) lim sup
k→+∞

L2

(
Q′ \Q′

(
0, 1 − 1

k + 1

))
− δ

≥ W (x0;F ) − lim sup
k→+∞

lim sup
n→+∞

{
Cλn

((
Q′
(

0, 1 − 1
k + 1

)
\Q′

(
0, 1 − 1

k

))
× (−1, 1)

)

+ C′k2p

∫

Q′×(−1,1)

|φn|p dx

}

− δ. (4.5)
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Since Q′(0, 1 − 1/k) is an increasing sequence of open sets, the union of which is Q′, we get

lim sup
k→+∞

lim sup
n→+∞

λn

((
Q′
(

0, 1 − 1
k + 1

)
\Q′

(
0, 1 − 1

k

))
× (−1, 1)

)

≤ lim sup
k→+∞

λ

((
Q′
(

0, 1 − 1
k + 1

)
\Q′

(
0, 1 − 1

k

))
× (−1, 1)

)

≤ lim sup
k→+∞

λ

((
Q′ \Q′

(
0, 1 − 1

k − 1

))
× [−1, 1]

)
= 0.

Using the fact that φn → 0 in Lp(Q′ × (−1, 1); R3) and letting δ tend to 0 in (4.5), we finally get

W ∗ (x0;F
) ≥W

(
x0;F

)
. �

Now that W and Q∗W are expressed in near identical manner, Remarks 3.12 and 3.13 immediately imply that
for all F ∈ M

3×2 and for a.e. x0 ∈ ω, there exists b0 ∈ R
3 such that

W
(
x0;F

)
= min

z∈R3
Q∗W

(
x0;F |z) = Q∗W (x0;F |b0

)
.

In the absence of bending moments, the linear form L given by (3.1) does not depend upon b and we may
perform explicitly the minimum in b in the limit minimization problem. For u ∈ W 1,p(ω; R3), a classical
measurability selection criterion (see [9], Chap. VIII, Th. 1.2), together with the coercivity condition (3.13),
implies the existence of b0 ∈ Lp(ω; R3) such that for a.e. x0 ∈ ω,

W (x0;Dαu(x0)) = min
z∈R3

Q∗W (x0;Dαu(x0)|z) = Q∗W
(
x0;Dαu(x0)|b0(x0)

)
.

Thus,

inf
b∈Lp(ω;R3)

∫

ω

Q∗W
(
xα;Dαu|b

)
dxα ≤

∫

ω

Q∗W
(
xα;Dαu|b0

)
dxα

=
∫

ω

W (xα;Dαu) dxα

=
∫

ω

min
z∈R3

Q∗W (xα;Dαu|z) dxα

≤
∫

ω

Q∗W
(
xα;Dαu|b

)
dxα, (4.6)

where the last inequality holds for all b ∈ Lp(ω; R3). Taking the infimum in b in the last term of (4.6), the
inequalities become equalities thus

inf
b∈Lp(ω;R3)

∫

ω

Q∗W
(
xα;Dαu|b

)
dxα =

∫

ω

W (xα;Dαu) dxα.

This shows that Theorem 2.3 is recovered from Theorem 3.4.
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