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1. Introduction

In this paper, we study the genericity of the observability for discrete-time controlled nonlinear systems such
that:






xk+1 = f(xk, uk)
yk = h(xk, uk)
xk ∈ X, u ∈ U, yk ∈ R

p
(1)

where:
• X and U are C∞ compact connected second-countable manifold with dimensions n and m respectively;
• f : X ×U → X is a parameterized diffeomorphism: that is to say, for every u ∈ U , the mapping f(·, u)

is a C∞ diffeomorphism; we denote by DiffU the set of all parameterized diffeomorphisms;
• h : X × U → R

p is a C∞ mapping.
To be more specific, we will introduce some notations; given f ∈ DiffU(X) and h ∈ C∞(X × U,Rp), we denote
by uN the finite sequence (u0, . . . , uN−1) of elements of U , and we define recursively fk(x, uk) by

f1(x, u1) = f(x, u0)

fk+1(x, uk+1) = f(fk(x, uk), uk) for k ≥ 1.

Let us recall the notion of observability investigated in this paper.

Definition 1. Two initial conditions x0 and x̄0 and an input u = (uk)k≥0 being given, xk and x̄k denote the
points xk = f(x0, uk) and x̄k = f(x̄0, uk).
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System (1) is said observable for input u if for any initial conditions x0 �= x̄0, there exists an index k (possibly
depending on the initial conditions) such that xk �= x̄k.

System (1) is said observable if it is observable for each input.

Below, we are introducing a stronger notion of observability. We consider the application Θf,h
2n+1 from

X × U2n+1 to R
(2n+1)p × U2n+1 defined by

Θf,h
2n+1(x, u2n+1) = (h(x, u0), h(f1(x, u1), u1), . . . , h(f2n(x, u2n), u2n), u2n+1).

Notice that this application is the discrete-time analogous of the application SΦΣ
k defined in [6].

Definition 2. We will say that system (1) is strongly observable if the related application Θf,h
2n+1 defined above

is one-to-one.

In this article, we prove that system (1) is generically strongly observable as long as p > dimU ; in other
words any system such that (1) can be approximated by another strongly observable system.

On this subject, one has to mention first the important work from Gauthier and Kupka. In a first paper,
with also Hammouri [3], the authors investigated the genericity of observability for uncontrolled continuous-
time systems. This work was generalized by Gauthier and Kupka in [5, 6] the authors proved the genericity of
differential observability for systems with more outputs than inputs. As far as we are concerned by discrete-time
systems, we have to cite several papers on the subject of the genericity of the observability: first, a paper written
by Aeyels [2] in which the author considers uncontrolled continuous-time systems and their discretized. In this
paper, the author introduced the notion of P -observability. The system

{
ẋ = f(x)
y = h(x) (2)

is said P -observable if, given a time T > 0 and a finite subset P of [0, T ], for every pair (x, y) of distinct elements
in X2, there exists a ti ∈ P such that h ◦ Φti(x) �= h ◦ Φti(y) where Φ denotes the flow of f . One of the results
in this paper is the proof of the existence of an open and dense set of vector fields such that, a vector field f in
this set being fixed, the subset of functions h belonging to Cr(X,R) such that the system (f, h) is P -observable
is open and dense in Cr(X,R). This is true for almost any finite subset P of (2 dimX + 1) points in [0, T ].

To an uncontrolled discrete-time systems such that





xk+1 = f(xk)
yk = h(xk)

xk ∈M , compact manifold, yk ∈ R

(3)

is attached a map analogous to the map Θf,h
2n+1 defined above: consider

Φ : M −→ R
2n+1

x �−→ (h(x), h ◦ f(x), . . . , h ◦ f2n(x))

where n is the dimension of manifold M . In [10], the proof that, generically, Φ is an embedding is sketched
while in [8] and [11], the same result is proved in greater detail.

In the case of controlled discrete-time systems, in article [9], the authors investigate controlled discrete-time
systems and obtain some results which are similar (but not identical) to the one presented here.

Before going straight to the point, we want to add some words about the fact that the observation function
h depends on u. This situation is not common in automatic control theory, but the opposite assumption leads
to clumsy statements. Nevertheless, in the conclusion we roughly explain how the result of genericity can be
proved for systems where h does not depend on u. The paper is organized as follows: in the next section,
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some facts from transversality theory are recalled, in Section 3, the main result is stated together with some
definitions and lemmas; in Section 4, our result is proved through the demonstrations of three lemmas and,
finally, a conclusion is made in Section 5.

2. Some facts from transversality theory

In this section we recall some theorems from differential topology which will be intensively used in the proof
of the main result of this paper. For details on the C∞ Whitney topology, the reader is referred to the book
“Stable Mappings and their Singularities” [7].

If X and Y are two smooth manifolds, Jk(X,Y ) will denote, as usual, the set of k-jets from X to Y ,
α : Jk(X,Y ) → X is the source map and β : Jk(X,Y ) → Y the target map; moreover we denote by Cr(X,Y )
(1 ≤ r ≤ +∞) the set of Cr maps from X to Y . If f is in C∞(X,Y ) jkf denotes the k-jet of f . Recall that
the set C∞(X,Y ) endowed with the Whitney topology is a Baire space and so every residual set of C∞(X,Y )
(i.e. every countable intersection of open dense subsets) is dense.

The notion of transversality is of paramount importance for our purpose and we recall below its definition.

Definition 3. Let f be a smooth mapping between two smooth manifolds X and Y , W a submanifold of Y
and x a point in X . We will say that f intersects W transversely at x if either

• f(x) �∈ W , or
• f(x) ∈ W and Tf(x)Y = Tf(x)W + dfx(TxX),

TxX denoting the tangent space to X at x and dfx the Jacobian of f at x. We will say that f intersects W
transversely if it intersects W transversely at x for all x in W . We will use of the symbol � to denote the
transversality.

The following theorem states a result of genericity [7].

Theorem 1 (Thom transversality theorem). Let X and Y be smooth manifold and W a submanifold of Jk(X,Y )
and let

TW = {f ∈ C∞(X,Y ) | jkf � W}·
Then TW is a residual subset of C∞(X,Y ) in the C∞ topology. Moreover, if W is closed, then TW is open.

The following result generalizes the above theorem to multijet spaces. We first define the set X(s) =
{ (x1, . . . , xs) ∈ Xs | xi �= xj for 1 ≤ i < j ≤ s } and the mapping

αs :
(
Jk(X,Y )

)s −→ Xs

(σ1, . . . , σs) �−→ (
α(σ1), . . . , α(σs)

)

and we let Jk
s (X,Y ) = (αs)−1(X(s)), Jk

s (X,Y ) is a submanifold of
(
Jk(X,Y )

)s

.
For f ∈ C∞(X,Y ), we can define

jk
s f : X(s) −→ Jk

s (X,Y )
(x1, . . . , xs) �−→ (

jkf(x1), . . . , jkf(xs)
)
.

Theorem 2 (Multijet transversality theorem). Let W be a submanifold of Jk
s (X,Y ) and let

TW = {f ∈ C∞(X,Y ) | jk
s f � W}·

Then TW is a residual subset of C∞(X,Y ) in the C∞ topology. Moreover, if W is compact, then TW is open.

We will use also a transversality theorem due to Abraham [1]. Let A, X and Y be Cr manifolds and ρ a map
from A to Cr(X,Y ).
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For a ∈ A, we write ρa, the Cr map:

ρa : X −→ Y
x �−→ ρa(x) = ρ(a)(x)

and we say that ρ is a Cr representation if the evaluation map:

evρ : A×X −→ Y
(a, x) �−→ ρa(x) = ρ(a)(x)

is a Cr map from A×X to Y .

Theorem 3 (Abraham transversal density theorem). Let A, X, Y be Cr manifolds, ρ : A → Cr(X,Y ) a Cr

representation, W ⊂ Y a submanifold (not necessarily closed), and evρ : A × X → Y the evaluation map.
Define AW ⊂ A by:

AW = {a ∈ A | ρa � W}·
Assume that:

(1) X has a finite dimension n and W has a finite codimension q in Y ;
(2) A and X are second countable;
(3) r > max(0, n− q);
(4) evρ � W .

Then AW is residual in A.

Notice that manifold A is not necessarily finite dimensional; it may be a Banach space or an open subset of
a Banach space.

Finally, we will need the following theorem that can also be found in [1].

Theorem 4 (Openness of transversal intersection). Let A, X and Y be Cr manifolds with X finite dimensional,
W ⊂ Y a closed Cr submanifold, K a compact subset of X, and ρ : A → Cr(X,Y ) a Cr representation. Then
the subset AKW ⊂ A defined by

AKW = {a ∈ A | ρa �x W for x ∈ K }

is open.

3. Main result

We state here our main result and some lemmas used in the proof of our theorem. Our framework is the set
DiffU(X)×C∞(X ×U,Rp) equipped with the Whitney topology; obviously DiffU(X) is open in C∞(X ×U,X)
for this topology. In the theorem below, we assume that dimU < p.

Theorem 5. The set of applications (f, h) ∈ DiffU(X) × C∞(X × U,Rp) such that the mapping Θf,h
2n+1 is one

to one, contains a set which is residual in DiffU(X) × C∞(X×,Rp) equipped with the Whitney topology.

For the proof, we need the Abraham’s theorem [1]. Notice that in the continuous-time case, the set of pairs
(f, h) (with f a parameterized vector field) is a Banach space for the Cr topology (r < +∞) but this is not
the case for the set of pairs (f, h) where f is a parameterized diffeomorphism. So, it is not possible to copy
directly the reasoning of [5]. The proof of this theorem will be somewhat awkward and will be based on several
technical lemmas. Before stating these lemmas, we describe below our global strategy.

Suppose that P1(f, h) and P2(f, h) are two properties depending on (f, h) ∈ DiffU(X) × C∞(X × U,Rp)
whose conjunction is equivalent to the injectivity of Θf,h

2n+1. In Lemmas 1 and 2, we will prove that the set

E1 = { (f, h) ∈ DiffU(X) × C∞(X × U,Rp) | P1(f, h) is true }
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contains a residual set of DiffU(X)×C∞(X×U,Rp). In Lemma 3, we will prove that, for a given f ∈ DiffU(X),
a given integer r ≥ 1, and for every integer n, there exists a subset U r

n(f) of C∞(X × U,Rp), open and dense
for the Cr topology, such that if h belongs to the intersection

⋂
n≥0 U

r
n(f), the pair (f, h) satisfies property P2.

Moreover, we will prove that, for every integer n, the set

U r
n =

⋃

f∈DiffU(X)

{f} × U r
n(f)

is open dense in DiffU(X)×C∞(X×U,Rp) equipped with the Cr topology. Hence, clearly, the setE1∩(
⋂

n≥0
r≥1

U r
n )

contains a residual set for the C∞ topology and a pair (f, h) belonging to this set satisfies both properties P1

and P2. We will give two definitions before stating our lemmas.

Definition 4. Let f ∈ DiffU(X), we will say that the point (x, u2n+1) ∈ X × U2n+1 is periodic for f if there
exist two different integers k and k′ in {0, . . . , 2n} such that fk(x, uk) = fk′

(x, uk′ ).

Notations. We denote by Pf the set of all periodic points of f and by Pf the subset of X(2) × U2n+1 defined
by:

Pf = { (x0, x̄0, u2n+1) ∈ X(2) × U2n+1 | (x0, u2n+1) and (x̄0, u2n+1)periodic}·
We denote by P c

f the set complement of Pf in X(2) × U2n+1:

P c
f = X(2) × U2n+1

� Pf .

We will divide P c
f into two parts.

Definition 5. We will say that the element (x0, x̄0, u2n+1) of P c
f is permutable if there exist indices (i1, . . . , ir)

and (j1, . . . , jr) in {0, . . . , 2n}, (the ik’s as well as the jk’s mutually different) and a permutation σ of {0, . . . , 2n}
such that

jk = σ(ik) for k = 1, . . . , r

and the equalities
(f ik(x0, uik

), uik
) = (f jk(x̄0, ujk

), ujk
)

are satisfied for all k = 1, . . . , r.

Notice that in this definition, one cannot have jk = ik because this would imply that x0 = x̄0 (f being a
parameterized diffeomorphism).

Notations. A parameterized diffeomorphism f being given, we denote by Sf the subset of P c
f defined by

Sf =
{

(x0, x̄0, u2n+1) ∈ P c
f | (x0, x̄0, u2n+1) is permutable

}

and by Sc
f the set complement of Sf in P c

f :

Sc
f = P c

f � Sf .

Clearly, for every f in DiffU(X), we have

X(2) × U2n+1 = Pf ∪ Sf ∪ Sc
f

the union being disjoint. The proof of our result is based on the three following lemmas:
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Lemma 1. Let A1 be the set of mappings (f, h) ∈ DiffU(X) × C∞(X × U,Rp) such that:

Θf,h
2n+1(x0, u2n+1) �= Θf,h

2n+1(x̄0, u2n+1) for all (x0, x̄0, u2n+1) ∈ Pf . (4)

Set A1 contains a residual subset O1 of DiffU ×C∞(X × U,Rp).

Lemma 2. Let A2 be the set of mappings (f, h) ∈ DiffU(X) × C∞(X × U,Rp) such that:

Θf,h
2n+1(x0, u2n+1) �= Θf,h

2n+1(x̄0, u2n+1) for all (x0, x̄0, u2n+1) ∈ Sf . (5)

Set A2 contains a residual subset O2 of DiffU(X) × C∞(X × U,Rp).

In the third lemma p denotes the first projection from DiffU(X) × C∞(X × U,Rp) to DiffU.

Lemma 3. Let f be a given diffeomorphism in DiffU(X). There exists a sequence (Un(f))n≥1 of open dense
sets included in C∞(X × U,Rp) such that for every mapping h in

⋂
n≥1 Un(f), we have

Θf,h
2n+1(x0, u2n+1) �= Θf,h

2n+1(x̄0, u2n+1)for all (x0, x̄0, u2n+1) ∈ Sc
f . (6)

Moreover for every integer n, the set ⋃

f∈DiffU(X)

{f} × Un(f)

is open dense in DiffU(X) × C∞(X × U,Rp).

Properties P1 and P2. We say that the pair (f, h) ∈ DiffU(X) × C∞(X × U,Rp) satisfies property P1 if it
satisfies inequalities (4) and (5) and that it satisfies property P2 if inequality (6) is satisfied. Obviously, the
injectivity of Θf,h

2n+1 is equivalent to P1 and P2 and so the proof of our main result reduces to proving these
three lemmas.

4. Proof of the main result

4.1. Proof of Lemma 1

The demonstration of this lemma is very technical and is based on the use of the multijet transversality
theorem. We will introduce some new notations: f ∈ DiffU being given, for an index s ∈ 1, . . . , 2n we denote
by Ps

f the subset of elements (x0, u2n+1) ∈ Pf defined by the two conditions:

• ∀i, j ∈ {0, . . . , s− 1}, f i(x0, ui) �= f j(x0, uj);

• ∃s′ ∈ {0, . . . , s− 1} | fs′
(x0, us′) = fs(x0, us).

Obviously, we have
⋃2n

s=1 Ps
f = Pf ; since a finite intersection of open dense sets is an open dense set, we will

prove lemma 1 for all elements (x0, x̄0, u2n+1) ∈ Pf such that (x0, u2n+1) ∈ Ps1
f and (x̄0, u2n+1) ∈ Ps2

f , for
every pair of elements (s1, s2) in {1, . . . , 2n}.

Let (x0, u2n+1) ∈ Ps1
f and (x̄0, ū2n+1) ∈ Ps2

f , we can suppose without loss of generality that s1 ≥ s2. There
exists s′1 ∈ {0, . . . , s1 − 1} and s′2 ∈ {0, . . . , s2 − 1} such that

• fs1(x0, us1) = fs′
1(x0, us′

1
) and fs2(x̄0, ūs2) = fs′

2(x̄0, ūs′
2
);

• in addition f i(x0, ui) �= f j(x0, uj) for all i, j ∈ {0, . . . , s1 − 1} and f i(x̄0, ūi) �= f j(x̄0, ūj), for all
i, j ∈ {0, . . . , s2 − 1}.

We let

xi = f i(x0, ui) zi = f(xi, ui) yi = h(xi, ui)

x̄i = f i(x̄0, ūi) zi = f(x̄i, ūi) yi = h(x̄i, ūi).
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In order to use multijet transversality theorem, we will study the equalities between the xi’s, zi’s, yi’s and the
x̄i’s, z̄i’s, ȳi’s. Consider the two following lists :

L1 (x0, u0, z0, y0), . . . , (xs1−1, us1−1, zs1−1, ys1−1)
L2 (x̄0, ū0, z̄0, ȳ0), . . . , (x̄s1−1, ūs1−1, z̄s1−1, ȳs1−1).

The elements of list L1 are mutually distinct, but this is not necessarily true for the elements of list L2, moreover
it is possible that some elements of the first list are equal to some elements of the second one. Let us notice
that two elements (xi, ui, zi, yi) and (x̄j , ūj , z̄j, ȳj), (resp. (x̄i, ūi, z̄i, ȳi) and (x̄j , ūj, z̄j , ȳj)) are equal if and only
if (xi, ui) is equal to (x̄j , ūj) (resp. (x̄i, ūi) is equal to (x̄j , ūj)).

Hereafter, if E is a finite set, cardE denotes the number of elements in E. Our strategy is the following:
from the lists L1 and L2 we will show that it is possible to extract lists L1 and L2 such that

• the elements of the union L1

⋃
L2 are mutually distinct;

• there are cardL1 + cardL2 non redundant equalities between the elements xi’s, zi’s, x̄i’s and z̄i’s of
these two lists; there are cardL1 non redundant equalities between the ui’s and the ūi’s.

For each index k such that 0 ≤ k ≤ s1 − 1, consider the set of indices

I(k) = { i ∈ {0, . . . , s1 − 1} | (xk, uk) = (x̄i, ūi) } ·

We notice that the sets I(k) are all disjoint (possibly empty) and that, under the assumptions u2n+1 = ū2n+1

and x0 �= x̄0, we have k �∈ I(k) because the equality fk(x0, uk) = fk(x̄0, ūk) implies x0 = x̄0.

Definition 6. We will call division of {0, 1, . . . , s1−1} a sequence of s1 subsets I(0), . . . , I(s1−1) of {0, . . . , s1−1}
(possibly empty) mutually disjoint and such that k �∈ I(k) (for 0 ≤ k ≤ s1 − 1).

A division (I(0), . . . , I(s1 − 1)) being given, we will say that the elements (x0, u2n+1) and (x̄0, ū2n+1) in Ps1
f

and Ps2
f (s1 ≥ s2) respectively, are in the configuration (I(0), . . . , I(s1−1)) if we have uk = ūk for k = 0, . . . , 2n

and if the set of indices i such that 0 ≤ i ≤ s1 − 1 and (xk, uk) = (x̄i, ūi) is equal to I(k) for k = 0, . . . , s1 − 1.

Now let (I(0), . . . , I(s1 − 1)) be a division of {0, 1, . . . , s1 − 1}, let (x0, u2n+1) and (x̄0, ū2n+1) be in Ps1
f and

Ps2
f (s1 ≥ s2) respectively, in the configuration (I(0), . . . , I(s1 − 1)). By writing all the equalities between the

elements of list L1 and the elements of list L2 we can have equalities between the ui’s and the ūj’s. Under the
assumption u2n+1 = ū2n+1, some equalities can be redundant; we will examine this possibility.

Definition 7. A division (I(0), . . . , I(s1 − 1)) of {0, . . . , s1 − 1} being given, we will say that the sequence
I(i1), . . . , I(ir) is a chain if:

i1 ∈ I(i2), i2 ∈ I(i3), . . . , ir−1 ∈ I(ir), ir ∈ I(i1).

Notice that a chain is defined up to a circular permutation. We will see that two chains are disjoint or
identical: let I(i1), . . . , I(ir) and I(j1), . . . , I(jt) be two chains with r ≤ t. If these two chains are not disjoint,
we can suppose that I(i1) = I(j1) thus i1 = j1 and consequently i1 ∈ I(i2) ∩ I(j2) which implies i2 = j2.
Reasoning by induction, we show the following equalities

i1 = j1, i2 = j2, . . . , ir = jr.

Now, we cannot have r < t because this would imply ir = jr ∈ I(i1)
⋂
I(jr+1) and so i1 = jr+1 which leads to

jr+1 = j1 which is impossible.
Concerning the chains, we make another important remark. Let I(i1), . . . , I(ir) be a chain, by definition we

can write the equalities

ui2 = ūi1 ui3 = ūi2 . . . uir = ūir−1 ui1 = ūir .
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Under the assumption u2n+1 = ū2n+1, we deduce from that

ui2 = ui1 ui3 = ui2 . . . uir = uir−1 ui1 = uir

but it is clear that the equality ui1 = uir results from the r − 1 first ones. Conversely, suppose that we can
write the equalities

ui1 = uj1 . . . uir = ujr

with the jk’s all distinct and jk ∈ I(ik) for k = 1, . . . , r, then if one equality can be deduced from the others,
we can find a chain among the sets I(i1), . . . , I(ir). Suppose indeed that the equality uir = ujr can be deduced
from the r − 1 preceding equalities, then there exist two sequences (ik1 , . . . , iks) and (jk1 , . . . , jks) of elements
of the sets {i1, . . . , ir} and {j1, . . . , jr} respectively such that

ik1 = jr ik2 = jk1 . . . iks = jks−1 ir = jks

and

uik1
= ujk1

. . . uiks
= ujks

.

Then we can write:

ik1 = jr ∈ I(ir) ir = jks ∈ I(iks) iks = jks−1 ∈ I(iks−1) . . . ik2 = jk1 ∈ I(ik1)

which proves that I(ik1), I(ir), I(iks), . . . , I(ik2) is a chain.
Now we will count the number of non redundant equalities appearing between the elements of lists L1 and

L2; in what follows � will denote the number of chains in the sequence (I(0), . . . , I(s1 − 1)) and we put

q = s1 −
s1−1∑

k=0

card I(k).

In the following, we will consider two cases.

4.1.1. Case where � = 0

We start by showing that, in this case, q > 0; to do that, we will show that q = 0 implies � �= 0. Suppose
that q = 0, then we have

⋃s1−1
k=0 I(k) = {0, . . . , s1 − 1}. Let i1 such that I(i1) �= ∅, as i1 �∈ I(i1) there exists

i2 �= i1 such as i1 ∈ I(i2), in the same way there exists i3 such as i2 ∈ I(i3) and we can then write

i1 ∈ I(i2), i2 ∈ I(i3), . . . , ik ∈ I(ik+1), . . .

Now the sequence (ik)k≥1 is finite, so there exists k < l such that ik = il. Notice that l �= k + 1 (if not, we
would have il ∈ I(l)), we can then write

ik ∈ I(ik+1), ik+1 ∈ I(ik+2), . . . , il−1 ∈ I(l) = I(ik)

which proves that I(k), . . . , I(l − 1) is a chain and so � ≥ 1.
Consider now the lists L1 and the list L′

2 extracted from L2 by cancelling all the terms whose indices belong
to the union of the I(k)’s, let

L′
2 (x̄r1 , ūr1 , z̄r1, ȳr1), . . . , (x̄rq , ūrq , z̄rq , ȳrq)
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with r1 < r2 < . . . < rq. In list L′
2, there can exist equalities between some terms. In each equality class, we

remove all terms but the one of highest index. We obtain then the list L′′
2 .

L′′
2 (x̄t1 , ūt1 , z̄t1 , ȳt1), . . . , (x̄tq′ , ūtq′ , z̄tq′ , ȳtq′ ).

We will exhibit s1 + q′ independent equalities between the xi’s, zi’s, x̄i’s and z̄i’s and s1 independent equalities
between the ui’s and ūi’s. First, we can write:

z0 = x1, z1 = x2, . . . , zs1−1 = xs′
1

which gives us s1 equalities (the last one comes from zs1−1 = xs1 and xs1 = xs′
1
).

We will now show that there are at least q′ equalities between the terms of L′′
2 and between the terms xj and x̄j .

Let us examine two consecutive terms in L′′
2 : (x̄ti , ūti , z̄ti , ȳti), (x̄ti+1 , ūti+1, z̄ti+1 , ȳti+1) with i ∈ {1, . . . , q′ − 1}.

• Suppose that ti+1 = ti + 1, we have in this case z̄ti = x̄ti+1 ;
• if ti+1 > ti + 1, the term (x̄ti+1, ūti+1, z̄ti+1, ȳti+1) was removed because

– it is equal to a term of L1 and consequently there exists j ∈ {0, . . . , s1 − 1} with j �= ti + 1 and
x̄ti+1 = xj , from what it follows z̄ti = xj ;

– or it is equal to a term of list L′′
2 and consequently there exists j ∈ {i+ 1, . . . , q′} such that

tj > ti + 1 and x̄ti+1 = x̄tj , so z̄ti = x̄tj with tj > ti.
At this point we have obtained s1 + q′ − 1 equalities, in the following, we distinguish two situations. We start
by examining the case where tq′ < s1 − 1: in this case, the term (x̄tq′+1, ūtq′+1, x̄tq′+2, ȳtq′+1) was removed
because it is equal to a term of L1, hence there exists j ∈ {1, . . . , s1 − 1} with j �= tq′ + 1 and x̄tq′+1 = xj and
so z̄tq′ = xj , which gives us an additional equality.

The second situation occurs when tq′ = s1 − 1, and it is subdivided into two cases
• if s1 = 1 or if (x̄j , ūj , z̄j, ȳj) ∈ L′′

2 for j = 0, . . . , s1 − 2, list L′′
2 has s1 terms and, since s1 ≥ s2, we have

the equality x̄s2 = x̄s′
2
;

• if s1 ≥ 2 and if there exists 0 ≤ j ≤ s1 − 2 such that (x̄j , ūj , z̄j, ȳj) �∈ L′′
2 , we put

r = max { j ∈ {0, . . . , s1 − 2} | (x̄j , ūj, z̄j , ȳj) �∈ L′′
2 } ·

Now, the term (x̄r , ūr, z̄r, ȳr) was removed because
– it is equal to a term of list L1, hence there exists j ∈ {0, . . . , s1 − 1} (with j �= r) such that z̄r = zj

and so x̄r+1 = zj which is an additional equality;
– or it is equal to a term of list L′

2, hence there exists ti such that r < ti ≤ s1 − 1 and z̄r = z̄ti , and
so x̄r+1 = z̄ti with r + 1 ≤ ti which is an additional equality.

At this point of our reasoning, we can conclude to the existence of s1 + q′ equalities between the terms xi’, zi,
x̄i and z̄i in lists L1 and L′′

2 ; we examine now the relation between the ui’s and the ūi’s.
For a given k such that I(k) is nonempty we let I(k) = {l1, . . . , lα} and we can write the equalities

uk = ūl1 , . . . , uk = ūlα

Under the assumption u2n+1 = ū2n+1, we deduce

uk = ul1 , . . . , uk = ulα .

which are α equalities between the ui’s. Repeating the reasoning for each I(k) we get

s1−1∑

k=0

card I(k) = s1 − q

equalities between the ui’s (since there is no chain, there is no redundant equalities).
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Let us examine now the list L′
2. We denote by C1, . . . , Cq′ the classes of equalities; recall that, for the

construction of list L′′
2 , we kept the term of higher index in each class. For each index ti, we can write cardCi−1

equalities between ūti and terms ūj with j < ti and j �∈ {t1, . . . , tq′}, under the hypothesis u2n = ū2n, we deduce
cardCi − 1 equalities between ūti and terms uj with j < ti, we can write also the q′ equalities

ūt1 = ut1 , . . . , ūt′q = ut′q

therefore, we have an amount of
q′

∑

i=1

(cardCi − 1) + q′ = q

equalities between the ūi’s and the ui’s in lists L1 and L′′
2 .

Conclusion. In this subsection, we have proved the existence of s1 + q′ equalities between the xi’s, zi’s, x̄i’s
and z̄i’s in lists L1 and L′′

2 and s1 equalities between the ui’s and the ūi’s.

4.1.2. Case where � �= 0

In this case there exist � chains denoted by

C1 I(i11), . . . , I(i
1
n1

)
...

C� I(i�1), . . . , I(i�n�
)

a chain being defined up to a circular permutation, we can suppose that, for k = 1, . . . , �, ik1 �= 0.
We built the list L′

1 extracted from L1 by removing the elements of indices i11, . . . , i
�
1. We consider also the

list L′′′
2 extracted from L2 by taking the terms of the list L′′

2 (possibly empty) which is obtained starting from
L2 as explained in the case � = 0 and by adding the terms of indices i1n1

, . . . , i�n�
. Notice that, due to the

construction of L′′
2 , the lists {i1n1

, . . . , i�n�
} and {t1, . . . , tq′} are disjoint, thus, the number of elements in L′′′

2 is
equal to �+ q′; we introduce the following notations:

{ i1, . . . , is1−� } = { 0, . . . , s1 − 1 } � { i11, . . . , i�1 } with i1 < . . . < is1−�

{j1, . . . , j�+q′} = {i1n1
, . . . , i�n�

, t1, . . . , tq′} with j1 < . . . < j�+q′ .

Notice that i1 is necessarily zero and that, with these notations, lists L′
1 and L′′′

2 can be written:

L′
1 (xi1 , ui1 , zi1 , yi1), . . . , (xis1−�

, uis1−�
, zis1−�

, yis1−�
)

L′′′
2 (x̄j1 , ūj1 , z̄j1 , ȳj1), . . . , (x̄j�+q′ , ūj�+q′ , z̄j�+q′ , ȳj�+q′ ).

It can be easily seen that the terms of L′
1 ∪ L′′′

2 are mutually distinct.
In the following, for the sake of readability, we will sometimes write τ(i) in place of τi where τ is one of the

symbols x, z, x̄,. . . and i is an expression representing an index.
We start by showing that we have at least s1 + q′ equalities between the terms xi, zi, x̄i and z̄i of the lists

L′
1 and L′′′

2 . We put is1−�+1 = s1 and we examine first the terms corresponding to two consecutive indices ir
and ir+1 with r ∈ {1, . . . , s1 − �− 1}.

• if ir+1 = ir + 1 < s1, we can write the equality

z(ir) = x(ir+1);

if ir+1 = ir + 1 = s1, we have x(s1) = x(s′1) if s′1 �∈ {i11, . . . , i�1}, we deduce the equality

z(ir) = x(s′1)
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between two terms of L′
1, if there exists 1 ≤ a ≤ � such that s′1 = ia1 , we have x(ia1) = x̄(iana

) and we can
write the equality:

z(ir) = x̄(iana
);

• if ir+1 = ir + d with 2 ≤ d ≤ i(s1 − �)− ir, the index ir + 1 is equal to an index ik1
1 , since ik1

nk1
∈ I(ik1

1 ),

we have x(ik1
1 ) = x̄(ik1

nk1
), now x(ik1

1 ) = x(ir + 1) = z(ir), so we have the equality:

z(ir) = x̄(ik1
nk1

).

From the definition of L′
1, it follows that for each j = 1, . . . , d − 1, the index ir+j belongs to the list

(i11, . . . , i
�
1), so there exists kj such that ir+j = i

kj

1 . If ikj
nkj

+ 1 is the index of an element in the list L′′′
2 ,

we have the equality

z̄(ikj
nkj

) = x̄(ikj
nkj

+ 1).

Otherwise, the term of index ikj
nkj

+ 1 was canceled because it is equal to

– a term of L′
1, which implies the existence of an index ia such that x̄(ikj

nkj
+ 1) = x(ia) and since

x̄(ikj
nkj

+ 1) = z̄(ikj
nkj

), we have

z̄(ikj
nkj

) = x(ia);

– a term of L1 � L′
1, which implies the existence of an index ib1 such that x̄(ikj

nkj
+ 1) = x(ib1) and

since x̄(ikj
nkj

+ 1) = z̄(ikj
nkj

) and x(ib1) = x̄(ibnb
), we can write the equality:

z̄(ikj
nkj

) = x̄(ibnb
);

– a term of list L′′
2 , which implies the existence of an index ti such that x̄(ikj

nkj
+ 1) = x̄(ti) and we

can write:
z̄(ikj

nkj
) = x̄(ti).

At this point, we have written

s1−�∑

r=1

(ir+1 − ir) = is1−�+1 − i1 = is1−�+1 = s1

equalities between the xi’s, zi’s, x̄i’s and z̄i’s of lists L′
1 and L′′′

2 .
Reasoning as in the case where � = 0, the q′ terms of the list L′′

2 give q′ equalities; notice that, since the sets
of indices {i1n1

, . . . , i�n�
} and {t1, . . . , tq′} are disjoint, these q′ equalities are independent from the s1 equalities

written above.
We will now prove that we can write s1 − � equalities between the terms ui and ūj in lists L′

1 and L′′′
2 .

Consider the chain C1 and let

I(i11) = {i1n1
, i11,2, . . . , i

1
1,m1

}
I(i12) = {i11, i12,2, . . . , i

1
2,m2

}
...

I(i1n1
) = {i1n1−1, i

1
n1,2, . . . , i

1
n1,mn1

}·
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We can write the following equalities

u(i11) = ū(i1n1
) u(i11) = ū(i11,2) . . . u(i11) = ū(i11,m1

)
...

... . . .
... (7)

u(i1n1
) = ū(i1n1−1) u(i1n1

) = ū(i1n1,2) . . . u(i1n1
) = ū(i1n1,mn1

).

Taking into account that the term u(i11) does not appear in list L′
1 and under the assumption that u2n+1 = ū2n+1,

we deduce the following equalities:

u(i12) = u(i12,2) . . . u(i12) = u(i12,m2
)

u(i13) = u(i12) u(i13) = u(i13,2) . . . u(i13) = u(i13,m3
)

...
... . . .

...

u(i1n1
) = u(i1n1−1) u(i1n1

) = u(i1n1,2) . . . u(i1n1
) = u(i1n1,mn1

).

So we have an amount of
n1∑

j=1

card I(i1j) −m1 − 1.

equalities. From the first line of equalities (7) and under the assumption u2n+1 = ū2n+1, we can write the
m1 − 1 equalities:

ū(i1n1
) = u(i11,2) ū(i1n1

) = u(i11,3) . . . ū(i1n1
) = u(i11,m1

).

Reasoning in the same way for the other chains, we obtain

�∑

i=1

ni∑

j=1

card I(iij) − 2�

equalities between the ui’s and the ū(ijnj
)’s. Taking into account the sets I(k) which are not components of

chains and reasoning as in the case � = 0, we can write other equalities between the ui’s; these equalities added
to the equalities above give us t an amount of

s1 − q − 2�

equalities between the ui’s and the ū(ijnj
)’s; clearly, these equalities are non redundant because, due to the

absence of the terms of indices i11, . . . , i�1 from L′
1, we cannot find a chain built with indices appearing in list L′

1.
Now reasoning as in the case � = 0, we can write q − q′ equalities between the ū(ti)’s and some ūj (with

j < ti and j /∈ {t1, . . . , tq′}), also we can write the following q′ + � equalities:

ū(it1) =u(it1) . . . ū(itq′ ) =u(itq′ )

ū(i1n1
) =u(i1n1

) . . . ū(i�n�
) =u(i�n�

).

Finally, we have an amount of s1 − � equalities between the ui’s and the ūj ’s and s1 + q′ equalities between the
xi’s, zi’s, x̄i’s and z̄i’s.

We are now ready to apply the multijet transversality theorem. For given s1 and s2, consider the set
(X × U)(d1+d2) with 1 ≤ d1 ≤ s1 and d2 ≤ d1, let us denote by α (= (x, u)) an element of X ×U and, for (f, h)
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in DiffU(X) × C∞(X × U,Rp), consider the mapping:

j0d1+d2
(f, h) : (X × U)(d1+d2) −→ (X × U ×X × R

p)d1+d2

(α1, . . . , αd1 , ᾱ1, . . . , ᾱd2) �−→ (β1, . . . , βd1 , β̄1, . . . , β̄d2)

where βi = (xi, ui, f(xi, ui), h(xi, ui)) if αi = (xi, ui) (analogous expression for the β̄i’s). In the manifold
(X × U ×X × R

p)d1+d2 , we consider a submanifold W defined by d1 + d2 equalities between the xi’s, zi’s, x̄i’s
and z̄i’s, d1 equalities between the ui’s and the ūi’s and d2 equalities between the elements ȳ1, . . . , ȳd2 and d2

elements chosen among the elements y1, . . . , yd1 . The number of submanifolds such that W is finite, moreover
these submanifolds are closed and their codimensions are equal to

(d1 + d2)n+ d1m+ d2p

which is greater than the dimension of (X × U)(d1+d2), therefore transversality to W means non membership
and we can assert that the set of mappings (f, h) belonging to DiffU(X) × C∞(X × U,Rp) such that

j0d1+d2
(f, h)(α1, . . . , αd1 , ᾱ1, . . . , ᾱd2) /∈W

is residual. Now denote by Os1,s2 the residual set in DiffU ×C∞(X × U,Rp) obtained as the finite intersection
of all residual sets related to all possible values for d1 and d2 and all submanifolds such that W . Let (f, h) in
Os1,s2 and assume that (x0, u2n+1) ∈ Ps1

f and (x̄0, ū2n+1) ∈ Ps2
f . If u2n+1 = ū2n+1, as we have seen above, we

can extract two lists L1 and L2 from L1 and L2 of length d1 and d2 respectively such that:

• there exist d1 + d2 equalities between the xi’s, zi’s, x̄i’s and z̄i’s;
• there exist d1 equalities between the ui’s and the ūi’s.

If, in addition we suppose that the d2 elements ȳi in list L2 are equal to the corresponding yi in list L1, the
element

j0f,h(α1, . . . , αd1 , ᾱ1, . . . , ᾱd2)

belongs to a submanifold such as W (here α1, . . . , αd1 (resp. ᾱ1, . . . , ᾱd2) denotes the list constituted by the
projection of the elements of L1 (resp. L2) onto X ×U). Such a membership being impossible for a pair (f, h)
in Os1,s2 , there must exist a term yi different from ȳi. Finally we see that, denoting by A1 the finite intersection
of all residual sets Os1,s2 , Lemma 1 is proved.

4.2. Proof of Lemma 2

The demonstration of this lemma is very similar to the one of Lemma 1.
Let (x0, x̄0, u2n+1) be in Sf and suppose that (x0, u2n+1) /∈ Pf . There exist indices i1 < · · · < ir and

j1, . . . , jr ∈ {0, . . . , 2n} mutually distinct and a permutation σ such that jk = σ(ik) for k = 1, . . . , r and

(f ik(x0, uik
), uik

) = (f jk(x̄0, ujk
), ujk

) for k = 1, . . . , r.

Given a finite sequence ū2n+1, with the same notations than in the proof of Lemma 1, consider the two following
lists constituted by the terms of indices i1, i1 + 1, . . . , ir−1 − 1, ir−1

L1 : (xi1 , ui1 , zi1 , yi1), . . . , (xir−1, uir−1, zir−1, yir−1)

L2 : (x̄i1 , ūi1 , z̄i1 , ȳi1), . . . , (x̄ir−1, ūir−1, z̄ir−1, ȳir−1).

Like in the proof of Lemma 1, we will extract from them two lists L1 and L2 such that, under the assumption
u2n+1 = ū2n+1,
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• the elements of the union L1

⋃
L2 are all distinct;

• there are cardL1 + cardL2 non redundant equalities between the elements xi’s, zi’s, x̄i’s and z̄i’s of
these two lists; there are cardL1 non redundant equalities between the ui’s and the ūi’s.

From the definition of Sf , we can suppose, without loss of generality, that (x0, u2n+1) /∈ Pf , so the elements
of list L1 are all distinct but this is not necessarily the case for the elements of list L2. Moreover, it can happen
that some elements of the first list are equal to elements of the second one.

Like in the demonstration of Lemma 1, for each index k (i1 ≤ k ≤ ir − 1), we consider the sets

I(k) = { i | i1 ≤ i ≤ ir − 1 and (xk, uk) = (x̄i, ūi) }

which obviously have the same properties than in the proof of Lemma 1. We introduce also the concepts of
division and chains as in the demonstration of Lemma 1. We denote by � the number of chains and by q the
number

q = ir − i1 −
ir−1∑

k=i1

card I(k).

Notice that jr ∈ {i1, i1 + 1, . . . , ir−1} (the set of all integers between i1 and ir − 1) because we cannot have
jr = ir, which would imply x0 = x̄0; moreover (x̄jr , ūjr , z̄jr , ȳjr ) is different from all the elements of list L1,
indeed an equality such that x̄jr = xk with i1 ≤ k ≤ ir − 1 would imply xir = xk which is in contradiction with
the fact that (x0, u2n+1) /∈ Pf .

Consider the list L′
2 extracted from L2 by removing every term whose index belongs to the union of the Ik’s;

notice that the term of index jr is present in list L′
2. In this list, there can exist equalities between some terms,

in each equality class, we remove all terms but the one of highest index excepted for the equality class which
contains the term of index jr, for this class, we keep the term (x̄jr , ūjr , z̄jr , ȳjr ). In this way, we obtain a list
denoted by L′′

2 :

L′′
2 : (x̄t1 , ūt1 , z̄t1 , ȳt1), . . . , (x̄tq′ , ūtq′ , z̄tq′ , ȳtq′ ) with t1 < · · · < tq′ .

In what follows, we will distinguish two cases.

4.2.1. Case where � = 0

In the first list we find the ir − i1 − 1 following equalities

zk = xk+1 for k = i1, i1 + 1, . . . , ir − 2.

Under the hypothesis, u2n+1 = ū2n+1, we will establish now that there exist at least q′ + 1 equalities in L′′
2

between the terms x̄j and between the terms xj and x̄j . Let us examine two consecutive terms of respective
indices ti and ti+1 in L′′

2 .
• Suppose that ti+1 = ti + 1, we have in this case x̄ti+1 = z̄ti ;
• if ti+1 > ti + 1, the term (x̄ti+1, ūti+1, z̄ti+1, ȳti+1) was removed because:

– it is is equal to an element of L1 and consequently there exists j ∈ {i1, i1 + 1, . . . , ir − 1} with
j �= ti + 1 such that x̄ti+1 = xj , from where z̄ti = xj ;

– or it is equal to an element of list L′′
2 and consequently there exists j ∈ {ti+1, . . . , tq′} such that

x̄ti+1 = x̄j and consequently z̄ti = x̄j .
To these q′ − 1 equalities, we add the equality x̄jr = zir−1 and we will distinguish two situations:

• first, suppose that tq′ < ir − 1, in this case, the term of index tq′ + 1 was removed because it is equal to
an element of index j in list L1 and so x̄tq′+1 = xj from which z̄tq′ = xj , which gives us a new equality;

• if tq′ = ir − 1, we have z̄tq′ = x̄ir = xσ−1(ir).
At this point we have ir − i1 + q′ equalities between the xj ’s, zj ’s, x̄j ’s and z̄j ’s. Now by reasoning exactly in
the same way than in the proof of lemma 1, we can write ir − i1 equalities between the uj ’s and the ūj ’s.
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4.2.2. Case where � �= 0:

In this case there exist � chains denoted by

C1 I(j11), . . . , I(j1n1
)

...
C� I(j�

1), . . . , I(j
�
n�

)

a chain being defined up to a circular permutation, we can suppose that, for k = 1, . . . , �, jk
1 �= 0. As in the

proof of Lemma 1, we built the list L′
1 extracted from L1 by removing the elements of indices j11 , . . . , j

�
1. We

consider also the list L′′′
2 extracted from L2 by taking the terms of the list L′′

2 (possibly empty) which is obtained
starting from L2 as explained in the case � = 0 and by adding the terms of indices j1n1

, . . . , j�
n�

.
Now as in the proof of Lemma 1 Section 4.1.2, we obtain, by the consideration of consecutive elements in

L′
1, cardL′

1 + � − 1 equalities between the xi’s, zi’s, x̄i’s and z̄i’s. Notice that in this case we cannot have
an equality like z(ir) = x(s′1) because (x0, u2n+1) does not belong to Ps1

f but as compensation, we have the
equality x̄jr = zir−1. Then we can obtain also cardL′′′

2 −� equalities concerning the elements of list L′′′
2 . Finally,

as in the proof of lemma 1, we obtain cardL′
1 equalities between the ui’s and the ūi’s.

We conclude by applying the multijet transversality theorem exactly in the same way than in the conclusion
of the proof of Lemma 1.

4.3. Proof of Lemma 3

Let f be given in DiffU(X)), the set Sc
f is obviously an open subset of X × X × U2n+1 and, since X and

U are second countable, there exists a sequence (Kn(f))n≥1 of compact sets such that Sc
f =

⋃
n≥1Kn(f) and

Kn(f) is included in K̊n+1(f), the interior of Kn+1(f). The vector space C∞(X × U,Rp), equipped with the
Cr topology with r < +∞, is a Banach space; in the following C∞(X ×U,Rp) is supposed to be equipped with
this topology. We define the representation ρ

ρ : C∞(X × U,Rp) −→ C∞(Sc
f , (R

p)2n+1)

through the evaluation mapping :

evρ : C∞(X × U,Rp) × Sc
f −→ (Rp)2n+1

(h, x0, x̄0, u2n+1) �−→ (
h(x0, u0) − h(x̄0, u0), . . . ,

h(f2n(x0, u2n), u2n) − h(f2n(x̄0, u2n), u2n)
)
.

(8)

Consider the submanifold W = {0} of (Rp)2n+1, its codimension is equal to p(2n + 1) which is greater than
2n + m(2n + 1) the dimension of Sc

f , hence to say that ρh is transverse to W is equivalent to say that
ρh(x0, x̄0, u2n+1) �= 0 for every (x0, x̄0, u2n+1) in Sc

f or, equivalently, that Θf,h
2n+1(x0, u2n+1) �= Θf,h

2n+1(x̄0, u2n+1).
We will first prove the existence of a residual (for the Cr topology) set Er in C∞(X × U,Rp) such that if the
mapping h is in Er, ρh is transverse to W .

In order to prove the existence of the sets Er we will apply the Abraham theorem (Th. 3) with A =
C∞(X×U,Rp), X = Sc

f and Y = (Rp)2n+1. Clearly the three first hypotheses in the statement of this theorem
are satisfied and we will just prove that evρ � W , to this end it is sufficient to prove that evρ is a submersion.
First, we write the expression of devρ, the differential application of evρ at the point a = (h, x0, x̄0, u2n+1) ∈
C∞(X × U,Rp) × Sc

f :

(devρ)a · (h, ξ0, ξ̄0, η0, . . . , η2n) = (ψ0, . . . , ψ2n)
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with

ψi = h(f i(x0, ui), ui) − h(f i(x̄0, ui), ui) + d1h0(f i(x0, ui), ui).ξ0 − d2h0(f i(x̄0, ui), ui).ξ̄0

+ di
3h0(f i(x0, ui), ui).(η0, . . . , ηi) − di

3h0(f i(x̄0, ui), ui).(η0, . . . , ηi)

for i = 0, . . . , 2n, the notations d1, d2 and di
3 standing for the partial derivatives at x0, x̄0 and u0, . . . , ui

respectively. Putting ξ0 = 0, ξ̄0 = 0 and ηi = 0 for i = 0, . . . , 2n, the expression of devρ at a becomes:

(devρ)a · (h, 0 . . . , 0) =
(
h(x0, u0) − h(x̄0, u0), . . . , h(f2n(x1, u2n), u2n) − h(f2n(x̄2, u2n), u2n)

)
.

To show that (devρ)a is onto, it is enough to show that, for every (W0, . . . ,W2n) in (Rp)2n+1, there exists h in
C∞(X × U,Rp) such that the following equalities are satisfied:






h(x0, u0) − h(x̄0, ū0)) = W0

...
...

h(f2n(x0, u2n), u2n) − h(f2n(x̄0, u2n), u2n) = W2n.

(9)

Consider the two following lists
L1 : (x0, u0), . . . , (f2n(x0, u2n), u2n)

and
L2 : (x̄0, u0), . . . , (f2n(x̄0, u2n), u2n)

since (x0, x̄0, u2n+1) belongs to Sc
f , we can suppose without loss of generality that (x0, u2n+1) is not a periodic

point of f and so, the elements of list L1 are mutually distinct. However, there can exist equalities between the
terms of list L2 and between terms of L1 and L2. If we do not take into account the order of the elements, list L2

can be written as (a1, . . . , an′ , b1, . . . , bn′′), with n′+n′′ = 2n+1, a1, . . . , an′ ∈ L1 and b1, . . . , bn′′ �∈ L1. We will
show the existence of a function h taking given values at points (xi, ui) and such that h(b1) = . . . = h(bn′′) = 0.

Consider the following system with the p-dimensional unknowns α0, . . . , α2n given in (Rp)2n+1






α0 −
2n∑

j=0

ε0,jαj = W0

...

α2n −
2n∑

j=0

ε2n,jαj = W2n

(10)

where

εi,j =

{
1 if (x̄i, ui) = (xj , uj)
0 otherwise.

Notice that, due to the fact that (x0, x̄0, u2n+1) is not permutable, if we take two sets of indices {i1, . . . , ip},
mutually distinct, and {j1, . . . , jp} in {0, . . . , 2n} such that σ(ik) = jk with σ a permutation of {0, . . . , 2n} and
k = 1, . . . , p, we cannot have (εi1,j1 , . . . , εip,jp) = (1, . . . , 1). Notice also that, since xi �= x̄i, εi,i = 0.

We will consider the matrix A associated with this linear system (10)

A =







Ip −ε0,1 Ip −ε0,2 Ip . . . −ε0,2n Ip
−ε1,0 Ip Ip −ε1,2 Ip . . . −ε1,2n Ip
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−ε2n,0 Ip −ε2n,1 Ip −ε2n,2 Ip . . . Ip
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where Ip denote the p-dimensional identity matrix. We will show that detA = 1, it is well known that the
determinant of A can be expressed as the pth power of the determinant of the matrix

A′ =







1 −ε0,1 −ε0,2 . . . −ε0,2n

−ε1,0 1 −ε1,2 . . . −ε1,2n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−ε2n,0 −ε2n,1 −ε2n,2 . . . 1





 .

Now, we have
detA′ =

∑

σ∈S2n+1

εσaσ(0),0 . . . aσ(2n),2n

where S2n+1 denotes the set of permutations of {0, . . . , 2n}, εσ, the sign of permutation σ and the ai,j ’s are
the terms of matrix A′. If σ is the identity permutation, we have

εσaσ(0),0 . . . aσ(2n),2n = 1.

If σ is different from identity let {k1, . . . , kp} be the set of fixed points of σ and put {i1, . . . , iq} = {0, . . . , 2n}�

{k1, . . . , kp}, this last set is non empty and, letting jk = σ(ik), we have

εσaσ(0),0 . . . aσ(2n),2n = εσ(−1)q
εj1,i1 . . . εjq,iq

which is zero because (εj1,i1 , . . . , εjq,iq) �= (1, . . . , 1). So we proved that detA′ = 1.
The consequence of this computation is that system (10) has a solution (α0, . . . , α2n), for these values, we

can find a mapping h in C∞(X × U,Rp) such that h(xi) = αi for i = 0, . . . , 2n and h(bi) = 0 for i = 1, . . . , n′′.
Clearly Such a mapping h is a solution of system (9).

At this stage, we have a residual set Er included in C∞(X ×U,Rp) such that every mapping h in Er is such
that the pair (f, h) satisfies property P2. Now, using Theorem 4, we can see that the set

U r
n(f) = {h ∈ C∞(X × U,Rp) | ρh �x W for x ∈ Kn(f) }

is open, and, since Er is obviously included in U r
n(f), it is also dense. Proving that the set U is open is a

quite delicate task. First, we will be more specific about the construction of the compact sets Kn(f): given a
sequence of compact sets (Jn(f))n≥1 such that

Sc
f =

⋃

n≥1

Jn(f) and Jn(f) = J̊n+1(f)

we can write the set Sc
f as

Kn(f) = Jn(f) ∩
{

v ∈ Sc
f | d(v, Pf ∪ Sf ) ≥ 1

n

}

where d is a distance compatible with the topology of X × X × U2n+1; recall also that Pf ∪ Sf is the set
complement of Sc

f in M ×M × U .
Now if the parameterized diffeomorphism f is closed to f0, set Sc

f is closed to Sc
f0

and so are the sets Kn(f)
and Kn(f0) defined as above. The representation ρ defined by equality (8) and set Er depend on diffeomorphism
f , to avoid ambiguity, in what follows, we will denote them by ρf and Er(f). Take now (f0, h0) in U r

n , there
exists m > 0 such that for every (x0, x̄0, u2n+1) in Kn(f0),

‖ρf0
h0

(x0, x̄0, u2n+1)‖ ≥ m
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if (f, h) is closed enough to (f0, h0), Kn(f0) is closed to Kn(f) and we have

‖ρf
h(x0, x̄0, u2n+1)‖ ≥ m

2

for every pair (f, h) in some neighborhood of (f0, h0); this proves the openness of U r
n .

5. Conclusion

In this paper, we proved that, generically, a discrete-time nonlinear system is strongly observable provided
that the number of outputs is greater than the number of inputs. We made the assumption that the observation
function h depends on the state variable x and the input u, nevertheless the same result is true if function
h depends only on x, we will indicate briefly how this result could be proved. The outline of the proof of
Theorem 5 is the same, and we have just to make the following slight modifications. If f is in DiffU(X) and h
is in C∞(X,Rp), the notation (f, h) stand for the mapping

(f, h) : X × U ×X −→ X × R
p

(x, u, w) �−→ (f(x, u), h(w)).

In the proofs of Lemmas 1 and 2, the lists to be considered have to be modified as follows:

L1 (x0, u0, w0, z0, y0), . . . , (xs1−1, us1−1, ws1−1, zs1−1, ys1−1)
L2 (x̄0, ū0, w̄0, z̄0, ȳ0), . . . , (x̄s1−1, ūs1−1, w̄s1−1, z̄s1−1, ȳs1−1)

and we work under the assumption w0 = x0, . . . , ws1−1 = xs1−1 and w̄0 = x̄0, . . . , w̄s1−1 = x̄s1−1. These
equalities have to be added to the equalities established in the first parts of the proofs of Lemmas 1 and 2.
Now, in the application of the multijet transversality theorem, we consider mapping from (X × U ×X)(d1+d2) to
X×U×X×X×R

p, thanks to these extra equalities, the codimension of submanifold W in X×U×X×X×R
p

is greater than the dimension of (X × U ×X)(d1+d2) which allows us to conclude as in the proofs of Lemmas 1
and 2. Nothing has to be changed in the proof of Lemma 3. Finally we shall examine the assumptions of our
main result. First, we claim that it is not possible to obtain the same result if we relax the hypothesis “fu is
a diffeomorphism”. In [11] indeed, we provide the following counterexample: T

n denoting the n-dimensional
torus, consider the mapping

f : T
n −→ T

n

(eiθ1 , . . . , eiθn) �−→ (e2iθ1 , ei(θ1+θ2), . . . , ei(θn−1+θn))

together with
h : T

n −→ R
n

(eiθ1 , . . . , eiθn) �−→ (sin θ1, . . . , sin θn).
Mapping f is smooth but is not a diffeomorphism and the (uncontrolled) discrete-time system defined on T

n

by f and h is unobservable; moreover in the above-mentioned paper, we prove the existence around the pair
(f, h) of an open set in C∞(X,X × R

n) constituted by unobservable discrete-time systems.
Now is it possible to relax the assumption about the dimensions of the input and output spaces? In [4, 6],

the authors have proved that if p = 1 and dimU ≥ 1, a continuous-time uniformly infinitesimally observable
system can be put locally in observability canonical form. The non genericity of this canonical form leads us
to think that, if p ≤ dimU , observability is no more a generic property. As a matter of fact, we provide below
a simple example illustrating this assertion. As usual, we denote by S1 the circle S1 = { z ∈ C | |z| = 1 } We
take X = S1, U = S1 and we consider the following mappings

f0 : S1 × S1 −→ S1

(eiθ , u) �−→ u eiθ
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and
h0 : S1 × S1 −→ R

(eiθ, eiα) �−→ sin(θ − α)
which are smooth, f0 being such that (fu)0 is a diffeomorphism of S1 for every u. We shall prove “by hand”
that one can find around the pair (f0, h0) an open neighborhood constituted by unobservable dynamical systems
(f, h). First notice that, letting

x0 = 1 x̄0 = −1 u0 = u1 = u2 = 1

x1 = f0(x0, u0) x2 = f0(x1, u1)

x̄1 = f0(x̄0, u0) x̄2 = f0(x̄1, u1)

we have h0(xi, ui) = h0(x̄i, ui) for i = 0, 1, 2. If the function h is closed enough to h0 (in the sense of C0-
topology), the expression h(1, eiα)− h(−1, eiα) is closed to h0(1, eiα)− h0(−1, eiα) = −2 sinα and so it changes
its sign as α varies from −π/4 to π/4, hence there exists v0 = eiα0 such that h(1, eiα0) = h(−1, eiα0). Now if
the parameterized diffeomorphism f is closed enough to f0, f(1, v0) and f(−1, v0) are closed to f0(1, v0) and
f0(−1, v0) and the expression h(f(1, u0), eiα) − h(f(−1, u0), eiα) is closed to

h0(f0(1, u0), eiα) − h0(f0(−1, u0), eiα) = 2 sin(α0 − α)

which changes its sign as α varies in an open interval containing α0, so there exists v1 = eiα1 such that
h(f(1, v0), v1) = h(f(−1, v0), v1). A similar reasoning proves the existence of v2 = eiα2 such that h(f(f(1, v0), v1), v2) =
h(f(f(−1, v0), v1), v2). Thus we have proved the existence of an neighborhood of the pair (f0, h0), open for the
C0-topology (and hence for the C∞-topology) such that, for every pair (f, h) in this neighborhood, there exist
v0, v1 and v2 such that

h(1, v0) = h(−1, v0) h(z1, v1) = h(z̄1, v1) h(z2, v2) = h(z̄2, v2)

where

z1 = f(1, v0) z̄1 = f(−1, v0) z2 = f(z1, v1) z̄2 = f(z̄1, v1)

which means that the observed dynamical system defined by the pair (f, h) on S1 is not observable.
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