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HOMOGENIZATION OF EVOLUTION PROBLEMS FOR A COMPOSITE
MEDIUM WITH VERY SMALL AND HEAVY INCLUSIONS

Michel Bellieud
1

Abstract. We study the homogenization of parabolic or hyperbolic equations like

ρε
∂nuε

∂tn
− div(aε∇uε) = f in Ω × T + boundary conditions, n ∈ {1, 2},

when the coefficients ρε, aε (defined in Ω) take possibly high values on a ε-periodic set of grain-like
inclusions of vanishing measure. Memory effects arise in the limit problem.
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1. Introduction

We are concerned with the homogenization of parabolic or hyperbolic boundary-value problems of the type






ρε
∂nuε
∂tn

− div(aε∇uε) = f in Ω × T , n ∈ {1, 2},
+ boundary conditions,

(1.1)

when the coefficients ρε, aε do not satisfy the assumptions of uniform ellipticity and boundedness like 0 < α <
aε(x), ρε(x) < β < +∞ which guarantee a classical asymptotic behaviour. It is well known that in this case,
homogenization may lead to unusual models such as non-local ones [7,9]. As far as scalar elliptic equations are
concerned, it actually seems that the effective equation obtained by the homogenization of grain-like inclusions
should be of local type (see Rem. 2.2 (v)). With regard to evolution equations on the contrary, we bring to the
fore in this paper the possible presence of memory terms in the limit equation, when inclusions of high mass
density and vanishing measure are considered.

In Section 2 we fix the notations and state the result (Th. 2.1). The proof, based on the argument developed
in [1], is situated in Section 4. Section 3 is devoted to a priori estimates.
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Figure 1. The composite medium.

2. Notations and main results

Let Ω be a bounded open domain of R
3 with smooth boundary. Given a sequence of positive real numbers (rε),

the ε-periodic distribution Bε of balls of radius rε is described as follows (see Fig. 1): we introduce

Y :=
(

−1
2
,

1
2

)3

; Br :=
{

x ∈ R
3,
√

x2
1 + x2

2 + x2
3 < r

}

;

Y iε := ε({i} + Y ); Bir := εi+Br; Iε :=
{
i ∈ Z3, Y iε ⊂ Ω

}
, (2.1)

and set
Bε :=

⋃

i∈Iε

Birε
. (2.2)

Our aim is to study the asymptotic behaviour of the sequence of evolution problems

ρε
∂nuε
∂tn

− div(aε∇uε) = f in Ω × T , uε ∈ Dn, (2.3)

with
n ∈ {1, 2}, f ∈ L2(Ω × T ), U0 ∈ C1

0 (Ω), V0 ∈ C(Ω), 0 < T < +∞, (2.4)
and

D1 := {u ∈ L2(0, T ;H1
0(Ω)) ∩ C([0, T ], L2(Ω)), u(0) = U0 in Ω},

D2 :=
{

u ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)), u(0) = U0,

∂u

∂t
(0) = V0 in Ω

}

. (2.5)

The sequences ρε, aε are defined by

ρε(x) = ρ1ε if x ∈ Bε, ρε(x) = ρ0 > 0 if x ∈ Ω \Bε,
aε(x) = a1ε if x ∈ Bε, aε(x) = 1 if x ∈ Ω \Bε, (2.6)
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where (ρ1ε) and (a1ε) are two sequences of positive real numbers such that

ρ1ε, aε > c > 0, lim
ε→0

4π
3
r3ε
ε3
ρ1ε = ρ1, ρ1 ∈ [0,+∞[,

lim
ε→0

a1ε = +∞, sup
ε>0

∫

Ω

aε|∇U0|2 dx < +∞. (2.7)

The function ρε is allowed to take very high values on the subset Bε of disconnected balls, while at the same
time the measure of Bε tends to 0. More precisely we assume

0 < rε � ε. (2.8)

The limit problem depends on ρ1 defined by (2.7), and on the parameter

γ := lim
ε→0

rε
ε3

∈ [0,+∞]. (2.9)

It is expressed in terms of the limit u of the sequence uε of solutions of (2.3) and the limit v of the sequence (vε)
defined by

vε :=
|Ω|
|Bε|uε1Bε×(0,T ), (2.10)

which describes the average behaviour of the restriction of uε to the subset of balls Bε. The effective boundary
conditions are given by (u, v) ∈ Deff

n , where

Deff
n :=

{
(u, v) ∈ (L2(0, T ;H1

0(Ω)) × L2(0, T ;L2(Ω))) ∩ (Cn(ρ0) × Cn(ρ1))
}
, (2.11)

with

Cn(0) := L2(0, T ;L2(Ω)),

Cn(r) :=

{

g ∈ Cn−1([0, T ];L2(Ω)),
g(0) = U0 if n = 1,

g(0) = U0 and
∂g

∂t
(0) = V0 if n = 2

}

if r > 0. (2.12)

Notice that the function u always satisfies the initial condition, while v only satisfies it if ρ1 > 0.

Theorem 2.1. Assume (2.6), (2.7) and (2.8), then consider γ defined in (2.9):
(i) if γ > 0, the sequence (uε) of solutions of (2.3) converges weakly in L2(0, T ;H1

0 (Ω)) (resp. star-weakly
in L∞(0, T ;H1

0 (Ω)) if n = 2) to u and the sequence vε defined by (2.10) converges star-weakly in
M(Ω × T ) (resp. star-weakly in L∞(0, T ;M(Ω)) if n = 2) to a function v, where (u, v) is the unique
solution in Deff

n of





ρ0
∂nu

∂tn
− ∆u+ 4πγ(u− v) = f in Ω × T ,

ρ1

∂nv

∂tn
+ 4πγ(v − u) = 0 in Ω × T ,

if 0 < γ < +∞,

v = u; (ρ0 + ρ1)
∂nu

∂tn
− ∆u = f in Ω × T , if γ = +∞. (2.13)

(ii) If γ = 0, the sequence (uε) of solutions of (2.3) converges weakly in L2(0, T ;H1
0(Ω)) (resp. star-weakly

in L∞(0, T ;H1
0 (Ω)) if n = 2) to the solution of

ρ0
∂nu

∂tn
− ∆u = f in Ω × T .
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Remark 2.2.
i) The average value of the coefficient aε(x) on the set Bε has no influence upon the limit problem, unlike in
the case where Bε is assumed to be a periodic distribution of fibers (see [1, 2]).

ii) If γ = 0 and ρ1 > 0 the sequence (vε) converges star-weakly in M(Ω × T ) to the solution v of the second
line of (2.13) which satisfies the initial conditions given by (2.11), namely v = U0 if n = 1 and v = U0 + V0t if
n = 2 (this is proved at the end of Sect. 4). Of course, in this case the variables u and v are independent.

iii) The auxiliary variable v can be expressed in terms of u by solving the second equation in (2.13). Assuming
ρ1 > 0 and setting ω2 = 4πγ

ρ1
, we obtain






v(x, t) =
∫ t

0

ω2 exp(ω2(τ − t))u(x, τ) dτ + U0(x) exp(−ω2t), if n = 1,

v(x, t) =
∫ t

0

ω sinω(t− τ)u(x, τ) dτ + V0(x)
sinωt
ω

+ U0(x) cosωt, if n = 2,

yielding after substitution in the first equation





ρ0
∂u

∂t
− ∆u + ρ1ω

2

(

u−ω2

∫ t

0

exp(ω2(t− τ))u(τ) dτ
)

= ρ0f + ρ1ω
2U0(x) exp(−ω2t), if n = 1,

ρ0
∂2u

∂t2
− ∆u+ ρ1ω

2

(

u−ω
∫ t

0

sin(ω(t− τ))u(τ) dτ
)

= ρ0f + ρ1ω
(
V0(x) sin(ωt) + ωU0(x) cos(ωt)

)
, if n = 2,

bringing to the fore the presence of memory terms in the limit problem.

iv) The asymptotic behaviour of

ρε
∂nuε
∂tn

− div(aε∇uε) = ρεf in Ω × T , uε ∈ Dn, (2.14)

can be studied in the same way, provided we assume

γ > 0, f ∈ C(Ω × T ), (2.15)

(if γ = 0, the relative compactness of (uε) may fail). The effective equations read

(u, v) ∈ Deff
n ,






ρ0
∂nu

∂tn
− ∆u+ 4πγ(u− v) = ρ0f in Ω × T ,

ρ1

∂nv

∂tn
+ 4πγ(v − u) = ρ1f in Ω × T ,

if 0 < γ < +∞,

v = u; (ρ0 + ρ1)
∂nu

∂tn
− ∆u = (ρ0 + ρ1)f on Ω × T , if γ = +∞. (2.16)

v) The homogenization of the sequence of elliptic problems

− div(aε∇uε) = ρε(x)f in Ω, uε ∈ H1
0 (Ω), (2.17)
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can be obtained by the same method under the asumptions (2.6), (2.7) (of course, with no assumption related
to the initial condition), (2.8), (2.15). The effective equation satisfied by the weak limit u in H1

0 (Ω) of the
sequence (uε) of solutions of (2.17), deduced from (2.13) by substituting 0 for the time derivatives, reads (see
a sketch of the proof at the end of Sect. 4)

−∆u = (ρ0 + ρ1)f in Ω, u ∈ H1
0 (Ω). (2.18)

This colour of simplicity covers the interesting behaviour of the sequence (vε), which converges star-weakly in
the sense of measures to the function v ∈ L2(Ω) such that (u, v) is the solution in H1

0 (Ω) × L2(Ω) of
{ −∆u+ 4πγ(u− v) = ρ0f in Ω,

4πγ(v − u) = ρ1f in Ω,
if 0 < γ < +∞,

v = u; −∆u = (ρ0 + ρ1)f on Ω, if γ = +∞. (2.19)

The couple of equations (2.19) is the Euler-Lagrange system associated with

min
(u,v)∈(L2(Ω))2

Φ(u, v) −
∫

Ω

ρ0fu dx−
∫

Ω

ρ1fv dx, (2.20)

where the functional Φ, defined on (L2(Ω))2 by

Φ(u, v) :=
1
2

∫

Ω

|∇u|2 dx+
1
2

∫

Ω

4πγ (v − u)2 dx if u ∈ H1
0 (Ω), Φ(u, v) := +∞ otherwise,

describes the energy associated with the couple (u, v). By fitting the argument developed in [2], we can prove
that the sequence of functionals defined on L2(Ω) by Fε(u) := 1

2

∫

Ω aε|∇u|2 dx − ∫Ω ρε(x)f.u dx, if u ∈ H1
0 (Ω),

Fε(u) := +∞ otherwise, Γ-converges (see [6]) strongly in L2(Ω) to the functional

F (u) := min
v∈L2(Ω,R3)

Φ(u, v) −
∫

Ω

ρ0fu dx−
∫

Ω

ρ1fv dx

=
1
2

∫

Ω

|∇u|2 dx−
∫

Ω

(ρ0 + ρ1)fu dx− 1
8πγ

∫

Ω

(ρ1f)2 dx. (2.21)

Classically, the solutions uε of (2.17), which minimize Fε, converge to the solution of minu F (u) equivalent
to (2.18).

vi) The results of [1,2] corresponding to fiber structures have recently been extended to the framework of linear
elasticity (see [3, 4]). It is likely possible to do the same for grain-like inclusions, although there occurs an
additional difficulty relating to the calculation of the exact solution of a three dimensional elasticity elementary
problem (corresponding to (4.5)).

vii) Inclusions of high mass density with a radius rε of the same order of magnitude as the period ε have been
considered in [10].

3. A PRIORI estimates

In the sequel, the letter “C” represents a suitable positive constant, independent of ε, which may vary from
line to line. We introduce the following measures on Ω defined by

mε :=
3
4π

ε3

r3ε
L3�Bε

(

=
|Y iε |
|Biε|

L3�Bε

)

. (3.1)
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We have mε(Ω) = | ∪i∈Iε Y
i
ε | ≤ |Ω|, hence the sequence (mε) is bounded in M(Ω). Fixing ϕ ∈ D(Ω) and setting

ϕε(x) :=
∑

i∈Iε

(∫

−
Y i

ε

ϕ(s)ds

)

1Y i
ε
(x)

(here the usual notation
∫−Ef dν = 1

ν(E)

∫

E f dν is employed), noticing that

∫

ϕε dmε =
∑

i∈Iε

|Y iε |
|Biε|

∫

Bi
ε

ϕε dx =
∫

∪i∈IεY
i

ε

ϕdx,

and that the inequality

||ϕ− ϕε||L∞(Ω) ≤ Cε,

holds as soon as the support of ϕ is included in ∪i∈IεY
i
ε (i.e. for ε < 1√

3
dist(∂Ω, Support ϕ)), we deduce

lim
ε→0

∫

ϕdmε = lim
ε→0

∫

ϕε dmε = lim
ε→0

∫

∪i∈IεY
i

ε

ϕdx =
∫

Ω

ϕdx,

and
mε

�
⇀ L3�Ω, star-weakly in M(Ω). (3.2)

Let us fix a sequence of positive real numbers (Rε) such that

rε � Rε � ε and ε3 � Rε. (3.3)

For a given sequence (uε) in H1
0 (Ω), we introduce the following functions

ũε(x) :=
∑

i∈Iε

(∫

−
∂Bi

Rε

uε(s) dH2(s)

)

1Y i
ε
(x),

ṽε(x) :=
∑

i∈Iε

(∫

−
∂Bi

rε

uε(s) dH2(s)

)

1Y i
ε
(x), (3.4)

where BiRε
, Birε

, Y iε , Iε are defined by (2.1). Their asymptotic behaviour is characterized by

Lemma 3.1. Let uε be a sequence in H1
0 (Ω) and mε, (ũε), (ṽε) be defined by (3.1), (3.4). Then the following

estimates hold:
∫

Ω

|uε − ũε|2 dx ≤ C

(
ε3

Rε
+ ε

2
3

)∫

Ω

|∇uε|2 dx,
∫

Bε

|uε − ṽε|2 dx ≤ Cr2ε

∫

Bε

|∇uε|2 dx,

∫

Ω

|ũε − ṽε|2 dx ≤ C
ε3

rε

∫

Ω

|∇uε|2 dx,
∫

Ω

|ũε|2 dx =
∫

|ũε|2 dmε ,

∫

Ω

|ṽε|2 dx =
∫

|ṽε|2 dmε. (3.5)
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Proof. For a given couple (r1, r2) of positive real numbers such that r1 < r2, the elementary minimization
problem

Γ(r1, r2) := min
ϕ∈H1([r1,r2])

{∫ r2

r1

|ϕ′(r)|2r2 dr, ϕ(r1) = 1, ϕ(r2) = 0
}

, (3.6)

is achieved at ϕ(r) := r1
r
r2−r
r2−r1 , yielding

Γ(r1, r2) =
r1r2
r2 − r1

· (3.7)

In accordance with (3.6) and Cauchy-Schwartz’s inequality, for any u ∈ H1(Br2 \ Br1) (see (2.1)) we have (in
spherical coordinates)

∫

Br2\Br1

|∇u|2 dx ≥
∫ π

θ1=0

∫ 2π

θ2=0

∫ r2

r1

∣
∣
∣
∣
∂u

∂r

∣
∣
∣
∣

2

r2 sin θ1 drdθ1dθ2

≥ Γ(r1, r2)
∫ π

θ1=0

∫ 2π

θ2=0

|u(r2, θ1, θ2) − u(r1, θ1, θ2)|2 sin θ1 dθ1dθ2

≥ 4πΓ(r1, r2)
∣
∣
∣
∣

∫ π

θ1=0

∫ 2π

θ2=0

(u(r2, θ1, θ2) − u(r1, θ1, θ2))
sin θ1
4π

dθ1dθ2

∣
∣
∣
∣

2

= 4πΓ(r1, r2)

∣
∣
∣
∣
∣

∫

−
∂Br2

u dH2 −
∫

−
∂Br1

u dH2

∣
∣
∣
∣
∣

2

. (3.8)

Applying (3.8) on each subset (BiRε
\Birε

), we deduce from (3.4), (3.7)

∫

Ω

|ũε − ṽε|2 dx =
∑

i∈Iε

∫

Y i
ε

∣
∣
∣
∣
∣

∫

−
∂Bi

Rε

uε dH2 −
∫

−
∂Bi

rε

uε dH2

∣
∣
∣
∣
∣

2

dx

≤
∑

i∈Iε

∫

Y i
ε

(
1

4πΓ1(Rε, rε)

∫

Bi
Rε

\Bi
rε

|∇uε|2 dx

)

dx

≤
∑

i∈Iε

ε3

(
1

4πΓ1(Rε, rε)

∫

Bi
Rε

\Bi
rε

|∇uε|2 dx

)

≤ ε3

4πΓ1(Rε, rε)

∫

Ω

|∇uε|2 dx =
ε3(Rε − rε)

4πRεrε

∫

Ω

|∇uε|2 dx

≤ ε3

4πrε

∫

Ω

|∇uε|2 dx,

and the third line of (3.5). Next we establish (see below) for R > 0 and α ∈]0, 1]

∫

BR

∣
∣
∣
∣u(x) −

∫

−
∂BαR

u(s) dH2(s)
∣
∣
∣
∣

2

dx ≤ C
R2

α

∫

BR

|∇u|2 dx, ∀u ∈ H1(BR). (3.9)

By applying (3.9) to uε (possibly extended to R
3 by setting uε(x) = 0 if x ∈ R

3\Ω) on each ball Bi√3
2 ε

(see (2.1))

with R =
√

3
2 ε and α = 2√

3
Rε

ε , noticing that Y iε ⊂ Bi√3ε
2

and
∑
i∈Iε

1Bi√
3

2 ε

≤ 2 on R
3 (because the balls Bi√3

2 ε
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intersect each other no more than two times), we infer

∫

∪i∈IεY
i

ε

|uε − ũε|2 dx ≤
∑

i∈Iε

∫

Y i
ε

∣
∣
∣
∣
∣
uε −

∫

−
∂Bi

Rε

uε dH2

∣
∣
∣
∣
∣

2

dx

≤
∑

i∈Iε

∫

Bi√
3

2 ε

∣
∣
∣
∣
∣
uε −

∫

−
∂Bi

Rε

uε dH2

∣
∣
∣
∣
∣

2

dx

≤ C
ε3

Rε

∑

i∈Iε

∫

Bi√
3

2 ε

|∇uε|2 dx ≤ C
ε3

Rε

∫

Ω

|∇uε|2 dx. (3.10)

On the other hand, setting Nε := Ω \ ∪i∈IεY
i
ε (notice that Nε ⊂ {x ∈ Ω, dist(x, ∂Ω) ≤ √

3ε} hence there holds
|Nε| ≤ Cε, because ∂Ω is smooth) by (3.4), Hölder’s inequality and the continuous inbedding H1

0 (Ω) ⊂ L6(Ω)
we have

∫

Nε

|uε − ũε|2 dx =
∫

Nε

|uε|2 dx ≤ ||uε||2L6(Ω)|Nε|
2
3 ≤ Cε

2
3

∫

Ω

|∇uε|2 dx. (3.11)

We deduce the first line of (3.5) from (3.10) and (3.11). By repeating the argument on each ball Birε
(with

R = rε, α = 1), we get

∫

Bε

|uε − ṽε|2 dx =
∑

i∈Iε

∫

Bi
rε

∣
∣
∣
∣
∣
uε −

∫

−
∂Bi

rε

uε dH2

∣
∣
∣
∣
∣

2

dx

≤ Cr2ε
∑

i∈Iε

∫

Bi
rε

|∇uε|2 dx = Cr2ε

∫

Bε

|∇uε|2 dx ,

and the second line of (3.5). Finally by (3.1) and (3.4) there holds

∫

|ũε|2 dmε =
∑

i∈Iε

|Y iε |
|Biε|

∫

Bi
ε

(∫

−
∂Bi

Rε

uε(s) dH2(s)

)

dx =
∑

i∈Iε

∫

Y i
ε

(∫

−
∂Bi

Rε

uε(s) dH2(s)

)

dx

=
∫

Ω

|ũε|2 dx,
(

resp.
∫

|ṽε|2 dmε =
∫

Ω

|ṽε|2 dx
)

,

yielding the fourth line of (3.5). �

Proof of (3.9). We prove the inequality for R = 1, the general case is inferred by making the change of variable
y = Rx. Noticing that by (3.7) and (3.8), for any r ∈ ]0, 1[ we have

∣
∣
∣
∣

∫

−
∂Br

u dH2 −
∫

−
∂Bα

u dH2

∣
∣
∣
∣

2

≤ 1
4π

|r − α|
rα

∫

B1

|∇u|2 dx, (3.12)
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we deduce from Cauchy-Schwartz’s inequality and (3.12) that

∣
∣
∣
∣

∫

−
B1

u dx−
∫

−
∂Bα

u dH2

∣
∣
∣
∣

2

=
∣
∣
∣
∣

∫ 1

0

(∫

−
∂Br

u dH2

)

3r2 dr −
∫ 1

0

(∫

−
∂Bα

u dH2

)

3r2 dr
∣
∣
∣
∣

2

≤
∫ 1

0

∣
∣
∣
∣

∫

−
∂Br

u dH2 −
∫

−
∂Bα

u dH2

∣
∣
∣
∣

2

3r2 dr

≤
∫ 1

0

(∫

B1
|∇u|2 dx

)

4π
|r − α|
rα

3r2 dr ≤ C

α

∫

B1

|∇u|2 dx, (3.13)

then, from the Poincaré-Wirtinger’s inequality
∫

B1
|u(x) − ∫−

B1
u(s) ds|2 dx ≤ C

∫

B1
|∇u|2 dx, that

∫

B1

∣
∣
∣
∣u−

∫

−
∂Bα

u dH2

∣
∣
∣
∣

2

dx ≤ C

α

∫

B1

|∇u|2 dx. �

We recall (see [2] Lem. A2, p. 431).

Lemma 3.2. Let νε and ν be Radon measures on a compact K ⊂ R
N such that νε

�
⇀ ν. Let (fε) a sequence

of νε-measurable functions such that supε
∫ |fε|2 dνε < +∞. Then the sequence fενε is sequentially relatively

compact in the weak-star topology σ(M(K), C(K)) and every cluster point m is of the form m = fν with f ∈ L2
ν .

Moreover, if fενε
�
⇀ fν, then liminf

ε

∫

|fε|2 dνε ≥
∫

|f |2 dν.

The following proposition particularizes the asymptotic behaviour of the sequence (uε) of solutions of (2.3)
and of the sequence (vε) defined by (2.10).

Proposition 3.3. The sequence (uε) of solutions of (2.3) is bounded in L2(0, T ; H1
0 (Ω)) (resp. bounded in

L∞(0, T ; H1
0 (Ω)) if n = 2). More precisely, the following estimates hold

∫

Ω×T
|∇uε|2 dxdt < C (resp.

∫

Ω

|∇uε(x, τ)|2 dx < C, ∀τ ∈ [0, T ], if n = 2),
∫

Ω×T
aε|∇uε|2 dxdt < C (resp.

∫

Ω

aε|∇uε(x, τ)|2 dx < C, ∀τ ∈ [0, T ], if n = 2), (3.14)

and up to a subsequence, there exists a function u such that

uε ⇀ u weakly in L2(0, T ; H1
0 (Ω)), (resp. star-weakly in L∞(0, T ; H1

0 (Ω)), if n = 2). (3.15)

Besides the sequence (ũε) defined by (3.4) satisfies

ũε − uε → 0 strongly in L2(Ω × T ) (resp. in L∞(0, T ; L2(Ω)), if n = 2). (3.16)

Assume moreover that γ > 0. Then the following estimate holds

∫

Ω×T
|uε|2 dmε(x)dt ≤ C, if n = 1,

(

resp.
∫

Ω

|uε(x, τ)|2 dmε(x) ≤ C, ∀τ ∈ [0, T ], if n = 2
)

, (3.17)
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and up to a subsequence, there exists v ∈ L2(Ω × T ) such that

uε dmεdt
�
⇀ v dxdt star-weakly in M(Ω × T ),

(resp. star-weakly in L∞(0, T,M(Ω)) if n = 2). (3.18)

In addition, the sequence (ṽε) defined by (3.4) satisfies

ṽε ⇀ v weakly in L2(Ω × T ) (resp. star-weakly in L∞(0, T ; L2(Ω)), if n = 2). (3.19)

Proof. Assuming first n = 1, we multiply the equation (2.3) by uε and integrate it over Ω × (0, τ) for a fixed
real number τ ∈ [0, T ]. After integration by parts we obtain

1
2

∫

Ω

ρε(x)|uε(x, τ)|2 dx − 1
2

∫

Ω

ρε(x)|U0(x)|2 dx+
∫ τ

0

∫

Ω

aε|∇uε|2 dxdt =
∫ τ

0

∫

Ω

fuε dxdt. (3.20)

Choosing τ = T in (3.20), thanks to the Poincaré’s inequality and the fact that (aε) can be bounded from below
by a positive constant (see (2.7)), we infer

||uε||2L2(Ω×T ) ≤ C

∫ T

0

∫

Ω

|∇uε|2 dxdt ≤ C

∫ T

0

∫

Ω

aε|∇uε|2 dxdt

≤ C||f ||L2(Ω×T )||uε||L2(Ω×T ) + C

∫

Ω

ρε(x)|U0(x)|2 dx, (3.21)

yielding the boundedness of (uε) in L2(0, T ; H1
0 (Ω)), (3.14) and (3.15) (the sequence of real numbers(

1
2

∫

Ω ρε(x)|U0(x)|2 dx
)

is bounded because by (2.7) the sequence of measures (ρε(x) dx) is bounded in M(Ω)
and U0 is continuous).

If n = 2, by the standard regularity results (see [8] or [5], p. 222) we have

uε ∈ C([0, T ], H1
0 (Ω)) ∩ C1([0, T ], L2(Ω)),

∂2uε
∂t2

∈ L2(0, T ;H−1(Ω)). (3.22)

Fixing t ∈ [0, T ], multiplying the first line of (2.3) by ∂uε

∂t and integrating over Ω, after integration by parts
according to (3.22) with respect to the space variables, we obtain

d
dt

(
1
2

∫

Ω

ρε(x)
∣
∣
∣
∣
∂uε
∂t

(x, t)
∣
∣
∣
∣

2

dx+
1
2

∫

Ω

aε|∇uε|2 dx

)

=
∫

Ω

f(x, t)
∂uε(x, t)

∂t
dx. (3.23)

Fixing τ ∈ [0, T ] and integrating (3.23) with respect to t over [0, τ ], thanks to the initial conditions given in (2.3)
we get

1
2

(∫

Ω

ρε(x)
∣
∣
∣
∣
∂uε
∂t

(x, τ)
∣
∣
∣
∣

2

dx+
∫

Ω

aε|∇uε|2 dx

)

=

1
2

(∫

Ω

ρε(x)|V0(x)|2 dx+
∫

Ω

aε|∇U0(x)|2 dx
)

+
∫

Ω×(0,τ)

f(x, t)
∂uε(x, t)

∂t
dxdt. (3.24)
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By (2.7), the sequence of real numbers
(

1
2

∫

Ω ρε(x)|V0(x)|2 dx+ 1
2

∫

Ωaε|∇U0(x)|2 dx
)

is bounded, hence we deduce
from (3.24) that

1
2

(∫

Ω

ρε(x)
∣
∣
∣
∣
∂uε
∂t

(x, τ)
∣
∣
∣
∣

2

dx+
∫

Ω

aε|∇uε|2 dx

)

≤ C



1 +

√
∫

Ω×T

∣
∣
∣
∣
∂uε
∂t

∣
∣
∣
∣

2

dxdt



 , ∀ τ ∈ [0, T ], (3.25)

and then, after integration over (0, T ) with respect to τ ,

1
2

∫

Ω×T
ρε(x)

∣
∣
∣
∣
∂uε
∂t

∣
∣
∣
∣

2

dxdt+
1
2

∫

Ω×T
aε|∇uε|2 dxdt ≤ C



1 +

√
∫

Ω×T

∣
∣
∣
∣
∂uε
∂t

∣
∣
∣
∣

2

dxdt



 .

We infer that
∫

Ω×T ρε(x)
∣
∣ ∂uε

∂t

∣
∣2 dxdt is bounded (because by (2.7), ρε is bounded from below by a positive

constant) and then, coming back to (3.25), that

∫

Ω

ρε(x)
∣
∣
∣
∣
∂uε
∂t

(x, τ)
∣
∣
∣
∣

2

dx+
∫

Ω

aε|∇uε(x, τ)|2 dx ≤ C, ∀τ ∈ [0, T ], (3.26)

yielding (3.14), the boundedness of (uε) in L∞(0, T ;H1
0 (Ω)), and up to a subsequence the convergence (3.15).

The assertion (3.16) follows from (3.3), the first line of (3.5) and (3.14).
Let us assume that γ > 0. Then, by (2.9), (3.14), (3.15), (3.16) and the third line of (3.5), the sequence (ṽε)

is bounded in L2(Ω × T ) (resp. in L∞(0, T ;L2(Ω)) if n = 2) thus converges weakly (resp. star-weakly), up to a
subsequence, to some v ∈ L2(Ω × T ) (resp. L∞(0, T ;L2(Ω)) if n = 2), that is (3.19). We infer from the fourth
line of (3.5) ∫

Ω×T
|ṽε|2 dmεdt ≤ C,

(

resp.
∫

|ṽε(x, τ)|2 dmε ≤ C, ∀ τ ∈ [0, T ]
)

(3.27)

hence we can apply Lemma 3.2 with νε := mε⊗L1�(0,T ) (which by (3.2) converges star-weakly to the Lebesgue
measure on Ω × T ) and fε := ṽε: we deduce that the sequence of measures (ṽεmε ⊗ L1�(0,T )) is bounded
in M(Ω × T ) (resp. in L∞(0, T ;M(Ω))) and weak-star converges, up to a subsequence, to a measure of the
type w dxdt with w ∈ L2(Ω × T ). By passing to the limit as ε→ 0 in the following estimate

∣
∣
∣
∣

∫

Ω×T
ϕ ṽε dmεdt−

∫

Ω×T
ϕ ṽε dxdt

∣
∣
∣
∣ ≤ Cε, (3.28)

holding in view of the definitions (3.1) and (3.4), for any ϕ ∈ C(Ω × T ) we deduce w = v, hence

ṽε dmεdt
�
⇀ v dxdt, star-weakly in M(Ω × T ),

(resp. star-weakly in L∞(0, T,M(Ω)) if n = 2). (3.29)

By (3.1) , (3.14) and the second line of (3.5) we have

∫

Ω×T
|uε − ṽε|2 dmεdt =

3
4π

ε3

r3ε

∫

Bε×(0,T )

|uε − ṽε|2 dxdt ≤ C
ε3

r3ε
r2ε

∫

Bε×(0,T )

|∇uε|2 dxdt

= C
ε3

rε

1
a1ε

∫

Bε×(0,T )

a1ε|∇uε|2 dxdt ≤ C
ε3

rε

1
a1ε

,

(

resp.
∫

Ω

|uε(x, τ)−ṽε(x, τ)|2 dmε(x)≤ C
ε3

rε

1
a1ε

, ∀τ ∈ [0, T ] if n = 2
)

. (3.30)
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The estimate (3.17) follows from (3.27), (3.30) and the inequality

∫

Ω×T
|uε|2 dmεdt ≤ 2

∫

Ω×T
|uε − ṽε|2 dmεdt+ 2

∫

Ω×T
|ṽε|2 dmεdt,






resp.
∫

Ω

|uε(x, τ)|2 dmε ≤ 2
∫

Ω

|uε(x, τ)−ṽε(x, τ)|2 dmε(x)+ 2
∫

Ω

|ṽε(x, τ)|2 dmε(x),

∀τ ∈ [0, T ] if n = 2




 . (3.31)

By (3.17) we can apply Lemma 3.2 with νε := mε ⊗ L1�(0,T ) and fε := uε. We infer, up to a subsequence,

uε dmεdt
�
⇀ g dxdt, star-weakly in M(Ω × T ),

(resp. star-weakly in L∞(0, T,M(Ω)) if n = 2), (3.32)

for some g ∈ L2(Ω × T ). Finally, using the last line of Lemma 3.2 with νε := mε ⊗ L1�(0,T ) and fε := uε − ṽε,
taking into account (2.7), (3.29), (3.30), (3.32) and the assumption γ > 0, we obtain

∫

Ω×T
|g − v|2 dxdt ≤ liminf

ε→0

∫

Ω×T
|uε − ṽε|2 dmεdt ≤ C liminf

ε→0

ε3

rε

1
a1ε

= 0,

hence g = v and (3.18) follows from (3.32). �

4. Proof of Theorem 2.1

As in [1], the key point of the proof consists of the construction of an appropriate sequence of oscillating
test functions (Φε) by which we will multiply (2.3), then pass to the limit as ε → 0 in accordance with the
convergences stated in Proposition 3.3 to get a weak formulation of the limit problem. We assume first that
γ > 0 (the case γ = 0, much easier, is commented at the end of the section). Fixing two regular functions
ϕ, ψ ∈ C∞(Ω × (0, T )) such that ϕ = ψ = 0 on ∂Ω × [0, T ]∪ Ω × {T } and (if n = 2) ∂ϕ

∂t = ∂ψ
∂t = 0 on Ω × {T },

we set

dε(x) := dist(x, {εi, i ∈ Z3}),
Cε :=

⋃

i∈Iε

BiRε
\Birε

= {x ∈ Ω, rε < dε(x) < Rε}, (4.1)

and define the test functions (Φε) by

Φε(x, t) := (1 − θε(x))ϕ(x, t) + θε(x)(ϕε + ψε)(x, t), (4.2)

where

ϕε(x, t) :=
∑

i∈Iε

(∫

−
Bi

rε

ϕ(s, t) ds

)

1Y i
ε
(x),

ψε(x, t) :=
∑

i∈Iε

(∫

−
Bi

rε

ψ(s, t) ds

)

1Y i
ε
(x), (4.3)
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and θε : Ω → [0, 1] is given by

θε(x) := 1 if dε(x) < rε; θε(x) := 0 if dε(x) > Rε;

θε(x) :=
rε

dε(x)
Rε − dε(x)
Rε − rε

otherwise. (4.4)

Notice that θε is the solution on each subset BiRε
\Birε

of the minimization problem

min

{∫

Bi
Rε

\Bi
rε

|∇θ(x)|2 dx, θ ∈ H1(BiRε
\Birε

), θ = 1 on ∂Birε
, θ = 0 on ∂BiRε

}

. (4.5)

By multiplying equation (2.3) by Φε and integrating it by parts over Ω × (0, T ), we get if n = 1:

−
∫

Ω

ρε(x)U0(x)Φε(x, 0) dx−
∫ T

0

∫

Ω

ρε(x)uε
∂Φε
∂t

dxdt+
∫ T

0

∫

Ω

aε∇uε∇Φε dxdt =
∫ T

0

∫

Ω

fΦε dxdt, (4.6)

and if n = 2:

−
∫

Ω

ρε(x)V0(x)Φε(x, 0) dx+
∫

Ω

ρε(x)U0(x)
∂Φε
∂t

(x, 0) dx

+
∫ T

0

∫

Ω

ρε(x)uε
∂2Φε
∂t2

dxdt+
∫ T

0

∫

Ω

aε∇uε∇Φε dxdt =
∫ T

0

∫

Ω

fΦε dxdt. (4.7)

By (3.3), (4.1) and (4.2), for all τ ∈ [0, T ] and all m ∈ {0, 1, 2} there holds

∫

Ω

∣
∣
∣
∣
∂m

∂tm
Φε(x, τ) − ∂m

∂tm
ϕ(x, τ)

∣
∣
∣
∣

2

dx ≤
∫

(Cε∪Bε)

∣
∣
∣
∣
∂m

∂tm
Φε(x, τ) − ∂m

∂tm
ϕ(x, τ)

∣
∣
∣
∣

2

dx

≤ C|Cε ∪Bε| ≤ C
R3
ε

ε3
→ 0, (4.8)

hence

Φε → ϕ strongly in L2(Ω × T ); Φε(., 0) → ϕ(., 0) strongly in L2(Ω);
∂nΦε
∂tn

→ ∂nϕ

∂tn
strongly in L2(Ω × T );

∂nΦε
∂tn

(x, 0) → ∂nϕ

∂tn
(x, 0) strongly in L2(Ω). (4.9)

To determine the limit behaviour of the sequences (ρε(x)Φε(x, 0)) and
(

ρε(x)
∂Φε
∂t

(x, 0)
)

, we fix g ∈ C(Ω) and

write (see (3.1), (4.2))
∫

Ω

ρε(x)Φε(x, 0)g(x) dx =
∫

Ω

ρ0Φε(x, 0)g(x)1Ω\Bε
(x) dx

+ ρ1ε
4πr3ε
3ε3

∫

(ϕε(x, 0) + ψε(x, 0))g(x) dmε,

∫

Ω

ρε(x)
∂Φε
∂t

(x, 0)g(x) dx =
∫

Ω

ρ0
∂Φε
∂t

(x, 0)g(x)1Ω\Bε
(x) dx

+ ρ1ε
4πr3ε
3ε3

∫ (
∂ϕε
∂t

(x, 0) +
∂ψε
∂t

(x, 0)
)

g(x) dmε. (4.10)
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By (4.9) and the strong convergences in L2(Ω) of the sequence (g(x)1Ω\Bε
(x)) to g (due to |Bε| → 0), there

holds

lim
ε→0

∫

Ω

ρ0Φε(x, 0)g(x)1Ω\Bε
(x) dx =

∫

Ω

ρ0ϕ(x, 0)g(x) dx,

lim
ε→0

∫

Ω

ρ0
∂Φε
∂t

(x, 0)g(x)1Ω\Bε
(x) dx =

∫

Ω

ρ0
∂ϕ

∂t
(x, 0)g(x) dx. (4.11)

From (2.7), (3.2) and the following estimates, holding on Bε in view of (4.2), (4.3)

|ϕε(x, 0) + ψε(x, 0) − (ϕ(x, 0) + ψ(x, 0))| ≤ Crε, ∀x ∈ Bε,
∣
∣
∣
∣
∂nΦε
∂tn

− ∂n(ϕ+ ψ)
∂tn

∣
∣
∣
∣ (x, t) =

∣
∣
∣
∣
∂n(ϕε + ψε)

∂tn
− ∂n(ϕ+ ψ)

∂tn

∣
∣
∣
∣ (x, t) ≤ Crε, ∀x ∈ Bε, (4.12)

we infer

lim
ε→0

ρ1ε
4π
3
r3ε
ε3

∫

(ϕε(x, 0) + ψε(x, 0))g(x) dmε = ρ1

∫

Ω

(ϕ(x, 0) + ψ(x, 0))g(x) dx,

lim
ε→0

ρ1ε
4π
3
r3ε
ε3

∫(
∂ϕε
∂t

(x, 0)+
∂ψε
∂t

(x, 0)
)

g(x) dmε=ρ1

∫

Ω

(
∂ϕ

∂t
(x, 0)+

∂ψ

∂t
(x, 0)

)

g(x) dx, (4.13)

and deduce from (4.10), (4.11), (4.13) and the arbitrary nature of g that

ρε(x)Φε(x, 0) �
⇀ ρ0ϕ(x, 0) + ρ1(ϕ(x, 0) + ψ(x, 0)) star-weakly in M(Ω),

ρε(x)
∂Φε
∂t

(x, 0) �
⇀ ρ0

∂ϕ

∂t
(x, 0) + ρ1

(
∂ϕ

∂t
(x, 0) +

∂ψ

∂t
(x, 0)

)

star-weakly in M(Ω). (4.14)

It follows from (4.9) and (4.14) that (see (2.4))

lim
ε→0

∫

Ω

ρε(x)U0(x)Φε(x, 0) dx =
∫

Ω

U0(x)(ρ0ϕ(x, 0) + ρ1(ϕ(x, 0) + ψ(x, 0))) dx, (n = 1),

lim
ε→0

∫

Ω

ρε(x)U0(x)
∂Φε
∂t

(x, 0) dx =
∫

Ω

U0(x)
(

ρ0
∂ϕ

∂t
(x, 0) + ρ1

(
∂ϕ

∂t
(x, 0) +

∂ψ

∂t
(x, 0)

))

dx, (n = 2),

lim
ε→0

∫

Ω

ρε(x)V0(x)Φε(x, 0) dx =
∫

Ω

V0(x)(ρ0ϕ(x, 0) + ρ1(ϕ(x, 0) + ψ(x, 0))) dx, (n = 2),

lim
ε→0

∫ T

0

∫

Ω

fΦε dxdt =
∫ T

0

∫

Ω

fϕdxdt. (4.15)

We infer from (4.9), (4.12) and the following convergences (due to (2.7), (2.8), (3.15) and (3.18))

ρε(x)uε(x, t)1Bε(x)
�
⇀ ρ1v star-weakly in M(Ω × T ),

ρε(x)uε(x, t)1Ω\Bε
(x) ⇀ ρ0u weakly in L2(Ω × T ),

that

lim
ε→0

∫ T

0

∫

Ω

ρε(x)uε
∂nΦε
∂tn

dxdt = lim
ε→0

∫ T

0

∫

Ω

ρε(x)uε1Ω\Bε
(x)

∂nΦε
∂tn

dxdt +
∫ T

0

∫

Ω

ρε(x)uε1Bε(x)
∂nΦε
∂tn

dxdt

=
∫ T

0

∫

Ω

(

ρ0u
∂nϕ

∂tn
+ ρ1v

∂n(ϕ+ ψ)
∂tn

)

dxdt. (4.16)
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Noticing that ∇Φε = 0 on Bε, we split the remaining term of (4.6) (or (4.7)) into a sum of two terms:
∫ T

0

∫

Ω

∇uε∇Φε dxdt = I1ε + I2ε,

I1ε :=
∫ T

0

∫

Ω\(Cε∪Bε)

∇uε∇ϕdxdt, I2ε :=
∫ T

0

∫

Cε

∇uε∇Φε dxdt. (4.17)

By (3.15) and by the strong convergence in L2 of ∇ϕ1Ω\(Cε∪Bε) to ∇ϕ (due to (3.3)), we obtain

lim
ε→0

I1ε =
∫ T

0

∫

Ω

∇u∇ϕdxdt. (4.18)

With regard to I2ε, we shall prove (see below) that

lim
ε→0

(

I2ε −
∫ T

0

∫

Cε

ψε∇uε∇θε dxdt

)

= 0, (4.19)

then, noticing that on each subset BiRε
\Birε

the function ψε(x) is constant and the function θε and the field ∇θε
are given in terms of the local spherical coordinates (x1 − i1 = r sin θ1 cos θ2, x2 − i2 = r sin θ1 sin θ2, x3 − i3 =
r cos θ1 ) by

θε(r, θ1, θ2) =
rε
r

Rε − r

Rε − rε
; ∇θε(r, θ1, θ2) = − 1

r2
rεRε
Rε − rε

n(θ1, θ2),

where n(θ1, θ2) is the unit vector in the direction given by the angles θ1, θ2, we infer (see (3.4))
∫ T

0

∫

Bi
Rε

\Bi
rε

ψε∇uε∇θε dx =
∫ T

0

∫

Bi
Rε

\Bi
rε

ψε∇uε∇θεr2 sin θ1 drdθ1dθ2dt

=
rεRε
Rε − rε

∫ T

0

∫ π

θ1=0

∫ 2π

θ2=0

∫ Rε

r=rε

(

−∂uε
∂r

(r, θ1, θ2, t)
)

ψε dr sin θ1 dθ1dθ2dt

=
rεRε
Rε − rε

∫ T

0

∫ π

0

∫ 2π

0

(uε(rε, θ1, θ2, t) − uε(Rε, θ1, θ2, t))ψε sin θ1 dθ1dθ2dt

= 4π
rεRε
Rε − rε

∫ T

0

(ṽε − ũε)ψε dt

=
4π
ε3

rεRε
Rε − rε

∫ T

0

∫

Y i
ε

(ṽε − ũε)ψε dxdt, (4.20)

then, adding up (4.20) over i ∈ Iε,
∫ T

0

∫

Cε

ψε∇uε∇θε dxdt =
4π
ε3

rεRε
Rε − rε

∫ T

0

∫

Ω

(ṽε − ũε)ψε dxdt. (4.21)

By (3.15), (3.16), (3.19) and the estimate |ψ − ψε| ≤ Cε, there holds

lim
ε→0

∫ T

0

∫

Ω

(ṽε − ũε)ψε dxdt =
∫ T

0

∫

Ω

(v − u)ψ dxdt. (4.22)

Assuming first that 0 < γ < +∞, we deduce from (2.9), (4.19), (4.21) and (4.22)

lim
ε→0

I2ε = 4πγ
∫ T

0

∫

Ω

(v − u)ψ dxdt, (4.23)
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and passing to the limit as ε → 0 in (4.6) and in (4.7), taking into account (4.15), (4.16), (4.17), (4.18) and
(4.23), we obtain if n = 1

−
∫

Ω

U0(x)(ρ0ϕ+ ρ1(ϕ+ ψ))(x, 0) dx −
∫ T

0

∫

Ω

(

ρ0u
∂ϕ

∂t
+ ρ1v

∂(ϕ+ ψ)
∂t

)

dxdt

+
∫ T

0

∫

Ω

∇u∇ϕdxdt+ 4πγ
∫ T

0

∫

Ω

(v − u)ψ dxdt =
∫ T

0

∫

Ω

fϕdxdt, (4.24)

and if n = 2,

−
∫

Ω

V0(x)(ρ0ϕ+ ρ1(ϕ+ ψ))(x, 0) dx +
∫

Ω

U0(x)
(

ρ0
∂ϕ

∂t
+ ρ1

∂(ϕ+ ψ)
∂t

)

(x, 0) dx

+
∫ T

0

∫

Ω

(

ρ0u
∂2ϕ

∂t2
+ ρ1v

∂2(ϕ+ ψ)
∂t2

)

dxdt+
∫ T

0

∫

Ω

∇u∇ϕdxdt

+ 4πγ
∫ T

0

∫

Ω

(v − u)ψ dxdt =
∫ T

0

∫

Ω

fϕdxdt. (4.25)

By choosing successively ψ = −ϕ and ϕ = 0 in (4.24), (4.25) we deduce from the arbitrary nature of ϕ, ψ and
from the standard regularity results (see [8]) that the couple (u, v) is a solution of:






ρ0
∂nu

∂tn
− ∆u + 4πγ(u− v) = f on Ω × T ,

ρ1

∂nv

∂tn
+ 4πγ(v − u) = 0 on Ω × T ,

(u, v) ∈ Deff
n ,

(4.26)

where Deff
n is defined by (2.11). The proof of Theorem 2.1 in the case 0 < γ < +∞ is achieved.

Assuming now γ = +∞, we first notice that by (4.6), (4.7), (4.15), (4.16), (4.17) and (4.18) the sequence I2ε

admits a finite limit as ε → 0. Since γ is infinite, we deduce from (4.19), (4.21) and (4.22) that
∫ T

0

∫

Ω

(v −
u)ψ dxdt = 0, hence u = v. Next we substitute 0 for ψ in (4.3) and pass to the limit as ε→ 0 in (4.6) and (4.7).
By (4.15), (4.16), (4.18), (4.19), we obtain for n = 1

−
∫

Ω

U0(x)(ρ0 + ρ1)ϕ(x, 0) dx −
∫ T

0

∫

Ω

(ρ0 + ρ1)u
∂ϕ

∂t
dxdt+

∫ T

0

∫

Ω

∇u∇ϕdxdt =
∫ T

0

∫

Ω

fϕdxdt,

and for n = 2,

−
∫

Ω

V0(x)(ρ0 + ρ1)ϕ(x, 0) dx +
∫

Ω

U0(x)(ρ0 + ρ1)
∂ϕ

∂t
(x, 0) dx +

∫ T

0

∫

Ω

(ρ0 + ρ1)u
∂2ϕ

∂t2
dxdt

+
∫ T

0

∫

Ω

∇u∇ϕdxdt =
∫ T

0

∫

Ω

fϕdxdt,

yielding by the same argument the case γ = +∞ of Theorem 2.1.
If γ = 0, the limit equation is obtained by repeating the previous line of reasoning with the test function

Φε(x, t) := ϕ(1 − θε). (4.27)
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Proof of (4.19). By the definitions (4.1)–(4.4), we check easily that

∫ T

0

∫

Cε

|∇θε|2 dxdt ≤ C

ε3
rεRε
Rε − rε

, |ϕ− ϕε| < CRε on Cε × (0, T ),

|Cε × (0, T )| ≤ C
R3
ε

ε3
, ∇(ϕε + ψε − ϕ) = −∇ϕ on Cε × (0, T ), 0 ≤ θε ≤ 1. (4.28)

Since ∇Φε −∇θεψε = ∇ϕ+ ∇θε(ϕε − ϕ) + θε∇(ϕε + ψε − ϕ), we infer from (2.8), (3.3) and (4.28)

∫ T

0

∫

Cε

|∇Φε −∇θεψε|2 dxdt ≤ C
R3
ε

ε3
+
C

ε3
Rεrε
Rε − rε

R2
ε −→ε→0 0,

which proves (4.19), because ∇uε is bounded in L2(Ω × T ). �

Justification of (ii) and (v) of Remark 2.2

(ii) Assume that γ = 0 and ρ1 > 0, then if n = 1, by (2.7) and (3.20) (resp. by (2.7) and (3.26) if n = 2) the
following estimate holds for all τ ∈ [0, T ]

∫

Ω

|uε(x, τ)|2 dmε ≤ C

∫

Ω

ρε(x)|uε(x, τ)|2 dx ≤ C,

(

resp.
∫

Ω

|uε(x, τ)|2 dmε ≤ C

∫

Ω

ρε(x)|uε(x, τ)|2 dx

= C

∫

Ω

ρε(x)
∣
∣
∣
∣

∫ τ

0

∂uε
∂t

(x, s) ds+ U0(x)
∣
∣
∣
∣

2

dx ≤ C, if n = 2

)

.

By applying Lemma 3.2 we get (3.18), and we deduce from the fourth line of (3.5) that ṽε is bounded in
L2(Ω × T ), hence converges weakly in L2(Ω × T ), up to a subsequence, to a function which by virtue of (3.28)
is equal to v. By choosing test functions defined by (4.2) (instead of (4.27)), and by passing to the limit as
ε→ 0 in (4.6) (resp. in (4.7) if n = 2), we obtain (4.24) (resp. (4.25) if n = 2) and (4.26).

(v) We indicate how to establish the weak convergence in H1
0 (Ω), stated in Remark 2.2 (v), of the sequence

(uε) of solutions of (2.17) to the solution u of (2.18). In what follows, when we refer to some formula obtained
in the proof of theorem 2.1, it is to be inferred that symbols of type

∫

A
... dm, X , Ω ... are substituted

for
∫

A×(0,T ) ... dmdt, Lp(0, T ;X), Ω × (0, T )...
We multiply (2.17) by uε, integrate by parts over Ω and use Hölder’s inequality to find

∫

Ω

aε|∇uε|2 dx =
∫

Ω

ρεf.uε ≤
(∫

Ω

|f |2ρε dx
) 1

2
(∫

Ω

|uε|2ρε dx
) 1

2

. (4.29)

By (2.7) we have ρε(x) ≤ C(1 + |Ω|
|Bε|1Bε) on Ω, hence by (3.1) and Poincaré’s inequality there holds

∫

Ω

|uε|2ρε dx ≤ C

∫

Ω

|uε|2 dx+ C

∫

|uε|2 dmε ≤ C

∫

Ω

|∇uε|2 dx+ C

∫

|uε|2 dmε. (4.30)
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The estimates (3.5) and Poincaré’s inequality yield

∫

|uε|2 dmε ≤ 2
∫

|uε − ṽε|2 dmε + 2
∫

|ṽε|2 dmε = 2
3ε3

4πr3ε

∫

Bε

|uε − ṽε|2 dx+ 2
∫

Ω

|ṽε|2 dx

≤ C
ε3

r3ε

∫

Bε

|uε − ṽε|2 dx+ 4
∫

Ω

|ṽε − ũε|2 dx+ 4
∫

Ω

|ũε − uε|2 dx+ 4
∫

Ω

|uε|2 dx

≤ C

(
ε3

rε
+
ε3

Rε
+ ε

3
2 + 1

)∫

Ω

|∇uε|2 dx

≤ C

∫

Ω

|∇u|2 dx. (4.31)

In the last inequality, we used that ε3

Rε
� ε3

rε
� 1 (because γ > 0, see (2.9)). By the assumption aε > c > 0 (see

(2.7)) we have
∫

Ω

|∇(uε)|2 dx ≤ C

∫

Ω

aε|∇(uε)|2 dx. (4.32)

Collecting (4.29), (4.30), (4.31), (4.32), we infer

∫

Ω

|uε|2ρε dx ≤ C

(∫

|f |2ρε dx
) 1

2
(∫

|uε|2ρε dx
) 1

2

.

Since ρ1 < +∞, the measure ρε1Ω dx is bounded (see (2.7)) hence the quantity
∫ |f |2ρε dx is bounded (recall

that f is assumed to be continuous). We deduce that
∫

Ω
|uε|2ρε dx is bounded and then, by (4.29), (4.31), (4.32)

we get
∫

Ω

|uε|2 dx ≤ C,

∫

|uε|2 dmε ≤ C,

∫

Ω

aε|∇uε|2 dx ≤ C,

∫

Ω

|∇uε|2 dx ≤ C, (4.33)

that is (3.14) and (3.17). By repeating the argument of the proof of Proposition 3.3, we infer the conver-
gences (3.16), (3.18), (3.19). Assuming that γ < +∞, we multiply (2.17) by the test function (4.2) (now with
ϕ, ψ chosen in D(Ω)), and after integration by parts we get

∫

Ω

aε∇uε.∇Φε dx =
∫

Ω

ρεfΦε dx. (4.34)

By the weak-star convergence in M(Ω) of the sequence (ρεΦε) to the function ρ0ϕ+ ρ1(ϕ+ψ) (see (4.14)), we
have

lim
ε→0

∫

Ω

ρεfΦε dx =
∫

Ω

(ρ0ϕ+ ρ1(ϕ+ ψ))f dx. (4.35)

Splitting the term of the left hand side of (4.34) like in (4.17) and repeating the same argument we get (4.18),
(4.23). Passing to the limit as ε→ 0 in (4.34), thanks to (4.18), (4.23), (4.17) and (4.35) we obtain

∫

Ω

∇u∇ϕdx + 4πγ
∫

Ω

(v − u)ψ dx =
∫

Ω

(ρ0ϕ+ ρ1(ϕ+ ψ))f dx,

and deduce from the arbitrary nature of (ϕ, ψ) that (u, v) is the unique solution in H1
0 (Ω) × L2(Ω) of (2.19)

and u is the unique solution in H1
0 (Ω) of (2.18).

The case γ = +∞ can be treated alike by fitting the argument of the proofs corresponding to evolution
equations.
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[9] U. Mosco, Composite media and asymptotic Dirichlet forms. J. Funct. Anal. 123 (1994) 368–421.

[10] G. Panasenko, Multicomponent homogenization of the vibration problem for incompressible media with heavy and rigid
inclusions. C. R. Acad. Sci. Paris I 321 (1995) 1109–1114.


