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OPTIMAL CONTROL OF DELAY SYSTEMS WITH DIFFERENTIAL
AND ALGEBRAIC DYNAMIC CONSTRAINTS ∗
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Abstract. This paper concerns constrained dynamic optimization problems governed by delay con-
trol systems whose dynamic constraints are described by both delay-differential inclusions and linear
algebraic equations. This is a new class of optimal control systems that, on one hand, may be treated as
a specific type of variational problems for neutral functional-differential inclusions while, on the other
hand, is related to a special class of differential-algebraic systems with a general delay-differential in-
clusion and a linear constraint link between “slow” and “fast” variables. We pursue a twofold goal:
to study variational stability for this class of control systems with respect to discrete approximations
and to derive necessary optimality conditions for both delayed differential-algebraic systems under
consideration and their finite-difference counterparts using modern tools of variational analysis and
generalized differentiation. The authors are not familiar with any results in these directions for such
systems even in the delay-free case. In the first part of the paper we establish the value convergence
of discrete approximations as well as the strong convergence of optimal arcs in the classical Sobolev
space W 1,2. Then using discrete approximations as a vehicle, we derive necessary optimality condi-
tions for the initial continuous-time systems in both Euler-Lagrange and Hamiltonian forms via basic
generalized differential constructions of variational analysis.
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1. Introduction

This paper deals with a new class of dynamic optimization problems modelled as follows:

minimize J [x, z] := ϕ(x(a), x(b)) +
∫ b

a

f(x(t), x(t − ∆), z(t), ż(t), t) dt (1.1)
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subject to the constraints

ż(t) ∈ F (x(t), x(t − ∆), z(t), t) a.e. t ∈ [a, b], (1.2)

z(t) = x(t) +Ax(t − ∆), t ∈ [a, b], (1.3)

x(t) = c(t), t ∈ [a− ∆, a), (1.4)

(x(a), x(b)) ∈ Ω ⊂ IR2n, (1.5)

where x : [a−∆, b] → IRn is continuous on [a−∆, a) and [a, b] (with a possible jump at t = a), and where z(t)
is absolutely continuous on [a, b]. We always assume that F : IRn × IRn × IRn × [a, b] →→ IRn is a set-valued
mapping of closed graph, that Ω is a closed set, that ∆ > 0 is a constant delay, and that A is a constant n× n
matrix. Let us label this problem as (P ) and note that the methods used in this paper allow us to include the
cases of multiple delays ∆1 ≥ ∆2 ≥ . . . ≥ ∆m > 0 as well as varying delays ∆(t) with |∆̇(t)| < α ∈ (0, 1) a.e.
t ∈ [a, b], which are not consider here for simplicity. We do not also consider the limiting case of ∆ ↓ 0 required
additional assumptions.

Observe that the variational problem (P ) involves two kinds of state variables: “slow” z and “fast” x,
which satisfy interrelated dynamic constraints given by the delay-differential inclusion (1.2) and the linear
delay-algebraic equation (1.3). Furthermore, the integral functional in (1.1) depends on on both slow and fast
variables as well as on the time-derivative of slow variables (fast variables may not differentiable in time). All
these specific features are highly essential for the methods developed and the results obtained in this paper.

On one hand, problem (P ) containing both differential and algebraic constraints on slow and fast variables
may be viewed as a special subclass of delayed differential-algebraic control systems providing, by definition,
descriptions of control process via combinations of interconnected differential and algebraic dynamic relations.
There are many applications of such dynamic models (called DAEs, i.e., differential-algebraic equations) es-
pecially in process systems engineering, robotics, mechanical systems with holonomic and nonholonomic con-
straints, etc.; see [1, 2, 14, 15] and the references therein. Observe, however, that the dynamic relations (1.2)
and (1.3) and the assumptions made are generally different from those conventional in the control theory for
DAEs, especially for deriving necessary optimality conditions. The most advanced results in this direction for
the so-called index one DAEs are obtained in [14], where it was particularly discovered that optimal processes
in such systems do not satisfy the (strong) Maximum Principle in the absence of a convexity hypothesis on the
velocity sets.

On the other hand, the problem (P ) under consideration is strongly related to functional-differential control
systems of the so-called neutral type, which contain time delays in velocity variables. Indeed, the dynamic
constraints (1.2) and (1.3) can be unified as

d
dt

[
x(t) +Ax(t − ∆)

]
∈ F

(
x(t), x(t − ∆), x(t) +Ax(t− ∆), t

)
a.e.,

that, provided the absolute continuity of x̄(t) (which is not the case under the assumptions made), may be
written in the general form of neutral delay differential inclusions

ẋ(t) ∈ G(x(t), x(t − ∆), ẋ(t− ∆), t) a.e. (1.6)

Similarly, the cost functional (1.1) transfers under this substitution into the form

ϕ(x(a), x(b)) +
∫ b

a

g
(
x(t), x(t − ∆), ẋ(t), ẋ(t− ∆), t

)
dt. (1.7)

Thus we can treat problem (P ) as a special case of Bolza-type variational problems for neutral delay-differential
inclusions. However, in this way we loose the principal feature of the considered problem (P ), which is crucial
for the methods applied as well as for the results obtained below. This specific feature of problem (P ) is as
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follows: both the dynamic constraint (1.6) and the cost functional (1.7) depend in fact not on ẋ(t) and ẋ(t−∆)
but on the derivative of the same linear combination x(t) + Ax(t − ∆). That is why we treat this linear
combination as a new state variable in (1.3) and consider problem (P ) in the natural form (1.1)–(1.5), which
emphasizes both delay-differential and linear algebraic constraints on the system dynamics.

Our approach is based on the method of discrete approximations, in the line developed in [8, 10–12] for
nondelayed differential inclusions, delay-differential inclusions with A = 0, and for a special class of the neutral-
type problems that corresponds to (P ) with F independent of z and with f independent of (z, ż). Some results
for delayed differential-algebraic problems of type (P ) were announced in [13] in the case when both F and f
are independent of z, while f depends on the velocity ż described by (1.2).

The discrete approximation method is of undoubted interest from qualitative as well as numerical viewpoints,
and the present paper contains results in both of these directions. Our main emphasis, however, is the qualitative
aspect, which allows us to derive necessary optimality conditions for delayed differential-algebraic systems by
passing to the limit from their discrete-time analogues. A crucial issue is to establish variational stability of
discrete approximations that ensures an appropriate strong convergence of optimal solutions.

Once such a stability is established, discrete-time control problems for delayed difference-algebraic inclusions
reduce to special finite-dimensional problems of nonsmooth programming with an increasing number of geo-
metric constraints that may have empty interiors. To handle such problems, we use appropriate generalized
differentiation tools of variational analysis introduced earlier by the first author. In this way we derive necessary
optimality conditions for the discrete-time and then for continuous-time problems under consideration.

The rest of the paper is organized as follows. In Section 2 we show that any admissible pair to the delayed
differential-algebraic system (1.2) and (1.3) can be strongly approximated by the corresponding admissible pairs
to its finite-difference counterparts. This result is definitely important for its own sake. It also plays a crucial
role in the construction of well-posed discrete approximations to the original problem (P ) and in the subsequent
justification of the strong convergence of their optimal solutions to the given optimal solution for (P ).

Such a convergence analysis is conducted in Section 3 involving appropriate perturbations of the endpoint
constraints (1.5) that is consistent with the step of discretization. The required strong convergence of optimal
solutions is justified under an intrinsic property of the original problem (P ) called relaxation stability. This
property imposing the equality between the optimal values in (P ) and its relaxation goes far beyond the
convexity assumption on the velocity sets F (x, y, z, t).

Section 4 contains basic constructions and required material on generalized differentiation that are appropriate
for performing a variational analysis of discrete-time and continuous-time optimal control problems in the
subsequent sections. These constructions and calculus rules of generalized differentiation are used in Section 5
for deriving general necessary optimality conditions for nonconvex discrete-time inclusions arising in discrete
approximations of the original control problem (P ). The main necessary optimality conditions in the forms
of Euler-Lagrange and Hamiltonian inclusions for (P ) are derived in Section 6 via passing to the limit from
discrete approximations.

Our notation is basically standard; cf. [8] and [17]. Recall that, given a set-valued mapping (or multifunction)
F : X →→ Y between finite-dimensional spaces, the Painlevé-Kuratowski upper/outer limit of F (x) as x → x̄ is
defined by

Lim sup
x→x̄

F (x) :=
{
y ∈ Y | ∃ xk → x̄, ∃ yk → y with yk ∈ F (xk) for all k ∈ IN

}
,

where IN stands for the collection of all natural numbers.

2. Discrete approximations of differential-algebraic inclusions

This section deals with discrete approximations of an arbitrary admissible pair to the delayed differential-
algebraic system (1.2)–(1.4) without taking into account the endpoint constraints. We show that, under fairly
general assumptions, any admissible pair to (1.2)–(1.4) can be strongly approximated in the sense indicated below
by the corresponding admissible pairs to finite-difference inclusions obtained from (1.2)–(1.4) by the classical
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Euler scheme. This result is constructive providing efficient estimates of the approximation rate, and hence it
is certainly of independent interest for numerical analysis of delayed differential-algebraic inclusions.

Let (x̄, z̄) be an admissible pair to (1.2)–(1.4), i.e., x̄(·) is continuous on [a−∆, a) and [a, b] (with a possible
jump at t = a), z̄(·) is absolutely continuous on [a, b], and relations (1.2)–(1.4) are satisfied. Note that the
endpoint constraints (1.5) may not hold for (x̄, z̄); if they do hold, (x̄, z̄) is called feasible to (P ). The following
standing assumptions are imposed throughout the paper:

(H1): There are two open sets U ⊂ IRn, V ⊂ IRn and two positive numbers �F , mF such that x̄(t) ∈ U
for all t ∈ [a−∆, b] and z̄(t) ∈ V for all t ∈ [a, b], that the sets F (x, y, z, t) are closed, and that one has

F (x, y, z, t) ⊂ mF IB for all (x, y, z, t) ∈ U × U × V × [a, b],

F (x1, y1, z1, t) ⊂ F (x2, y2, z2, t) + �F (|x1 − x2| + |y1 − y2| + |z1 − z2|)IB

if (x1, y1, z1), (x2, y2, z2) ∈ U × U × V and t ∈ [a, b], where IB stands for the closed unit ball in IRn.
(H2): F (x, y, z, t) is Hausdorff continuous for a.e. t ∈ [a, b] uniformly in (x, y, z) ∈ U × U × V .
(H3): The function c(·) is continuous on [a− ∆, a].

Following [3], we consider the so-called averaged modulus of continuity for the multifunction F (x, y, z, t) with
(x, y, z) ∈ U × U × V and t ∈ [a, b] defined by

τ(F ;h) :=
∫ b

a

σ(F ; t, h) dt,

where σ(F ; t, h) := sup
{
ϑ(F ;x, y, z, t, h)

∣∣ (x, y, z) ∈ U × U × V
}

with

ϑ(F ;x, y, z, t, h) := sup
{

haus(F (x, y, z, t1), F (x, y, z, t2))
∣∣∣ (t1, t2) ∈

[
t− h

2
, t+

h

2

]
∩ [a, b]

}
,

and where haus(·, ·) stands for the Hausdorff distance between two compact sets. It is proved in [3] that if
F (x, y, z, t) is Hausdorff continuous for a.e. t ∈ [a, b] uniformly in (x, y, z) ∈ U × U × V , then τ(F ;h) → 0 as
h→ 0. This fact is essentially used in what follows.

Let us construct a sequence of discrete approximations of the given delayed differential-algebraic inclusion
replacing the derivative in (1.2) by the classical Euler finite difference

ż(t) ≈ z(t+ h) − z(t)
h

·

For any N ∈ IN := {1, 2, . . .} we consider the step of discretization hN := ∆/N and define the discrete
partition tj := a + jhN as j = −N, . . . , k and tk+1 := b, where k is a natural number determined from
a + khN ≤ b < a + (k + 1)hN . Then the corresponding delayed difference-algebraic inclusions associated
with (1.2)–(1.4) are described by



zN(tj+1) ∈ zN (tj) + hNF (xN (tj), xN (tj − ∆), zN (tj), tj) for j = 0, . . . , k,
zN(tj) = xN (tj) +AxN (tj − ∆) for j = 0, . . . , k + 1,
xN (tj) = c(tj) for j = −N, . . . ,−1.

(2.1)

Given discrete functions xN (tj) and zN (tj) satisfying (2.1), we consider the extension of xN (tj) to the continuous-
time intervals [a−∆, b] such that xN (t) are defined piecewise-linearly on [a, b] and piecewise-constantly, contin-
uously from the right on [a−∆, a). We also define piecewise-constant extension of discrete velocities on [a, b] by

vN (t) :=
zN(tj+1) − zN (tj)

hN
, t ∈ [tj , tj+1), j = 0, . . . , k.
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It is easy to see that

zN (t) = zN (a) +
∫ t

a

vN (s) ds for t ∈ [a, b],

where zN (t) = xN (t) +AxN (t− ∆).
Let W 1,2[a, b] be the classical Sobolev space with the norm

‖x(·)‖W 1,2 := max
t∈[a,b]

|x(t)| +
(∫ b

a

|ẋ(t)|2dt
)1/2

.

The following theorem, which plays an essential role in the subsequent constructions and results of the paper
being also important for its own sake, establishes the strong W 1,2-approximation of any admissible pair to the
given delayed differential-algebraic inclusion by corresponding solutions to its discrete-time counterparts.

Theorem 2.1. Let (x̄, z̄) be an admissible pair to (1.2)–(1.4) under hypotheses (H1)–(H3). Then there is a
sequence (x̂N (tj), ẑN (tj)) of solutions to discrete inclusions (2.1) with x̂N (t0) = x̄(a) for all N ∈ IN such that
their extensions x̂N (t), a−∆ ≤ t ≤ b, converge uniformly to x̄(·) on [a−∆, b] while ẑN(t), a ≤ t ≤ b, converge
to z̄(t) in the W 1,2-norm on [a, b] as N → ∞.

Proof. Using the density of step-functions in L1[a, b], we first select a sequence {ωN(·)}, N ∈ IN , such that
each ωN(t) is constant on the interval [tj , tj+1) for j = 0, . . . , k and that ωN (·) converge to ˙̄z(·) as N → ∞ in
the norm topology of L1[a, b]. It follows from (H1) that

|ωN(t)| ≤ ∣∣ωN (t) − ˙̄z(t)
∣∣ +

∣∣ ˙̄z(t)∣∣ ≤ 1 +mF

for all t ∈ [a, b] and N ∈ IN . In the estimates below we use the sequence

ξN :=
∫ b

a

∣∣ωN (t) − ˙̄z(t)
∣∣dt→ 0 as N → ∞.

Denote ωNj := ωN (tj) and define discrete pairs (uN (tj), sN (tj)) recurrently by



uN(tj) := x̄(tj) for j = −N, . . . , 0,
sN(tj) := uN(tj) +AuN (tj − ∆) for j = 0, . . . , k + 1,
sN(tj+1) := sN (tj) + hNωNj for j = 0, . . . , k.

Then the extended discrete functions satisfy



uN(t) = x̄(tj) for t ∈ [tj , tj+1), j = −N, . . . ,−1,
sN (t) = uN(t) +AuN (t− ∆) for t ∈ [a, b],

sN (t) = z̄(a) +
∫ t

a

ωN (s) ds for t ∈ [a, b].

Next we want to prove that uN(t) converge uniformly to x̄(t) on [a, b]. Denote rN (t) := uN (t) − x̄(t) and
yN (t) := |rN (t) +ArN (t− ∆)|. For any t ∈ [a, b] one has

yN (t) =
∣∣sN (t) − z̄(t)

∣∣ ≤
∫ t

a

|ωN (s) − ˙̄z(s)| ds ≤ ξN , (2.2)
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which implies the estimates

|rN (t)| ≤ yN(t) + |A||rN (t− ∆)| ≤ yN (t) + |A|yN (t− ∆) + |A|2|rN (t− 2∆)| ≤ . . .

≤ yN(t) + |A|yN (t− ∆) + . . .+ |A|myN(t−m∆) + |A|m+1|rN (t− (m+ 1)∆)|.

Observe that c(·) is uniformly continuous on [a − ∆, a] due to assumption (H3). Picking an arbitrary se-
quence βN ↓ 0 as N → ∞, we therefore have

|c(t′) − c(t′′)| ≤ βN whenever t′, t′′ ∈ [tj , tj+1], j = −N, . . . ,−1.

Choose an integer number m such that a − ∆ ≤ b − (m + 1)∆ < a. Then t − (m + 1)∆ ∈ [tj , tj+1) for some
j ∈ {−N, . . . ,−1}, which implies that

|rN (t− (m+ 1)∆)| ≤ |c(tj) − c(t− (m+ 1)∆)| ≤ βN .

Since m ∈ IN does not depend on N , this gives

|rN (t)| ≤ ξN (1 + |A| + . . .+ |A|m) + |A|m+1βN := 
N → 0 as N → ∞ (2.3)

for all t ∈ [a, b] due to the construction of rN (·). Now consider a sequence {ζN} defined by

ζN := hN

k∑
j=0

dist(ωNj ;F (uN (tj), uN (tj − ∆), sN (tj), tj))

and show that ζN ↓ 0 as N → ∞. By construction of ζN and the averaged modulus of continuity τ(F ;h) we
get the following estimates:

ζN =
k∑

j=0

∫ tj+1

tj

dist(ωNj ;F (uN (tj), uN (tj − ∆), sN (tj), tj)) dt

=
k∑

j=0

∫ tj+1

tj

dist(ωNj ;F (uN (tj), uN (tj − ∆), sN (tj), t)) dt

+
k∑

j=0

∫ tj+1

tj

[
dist(ωNj ;F (uN (tj), uN (tj − ∆), sN (tj), tj)) − dist(ωNj ;F (uN (tj), uN (tj − ∆), sN (tj), t))

]
dt

≤
k∑

j=0

∫ tj+1

tj

dist(ωNj ;F (uN (tj), uN (tj − ∆), sN (tj), t)) dt+
k∑

j=0

∫ tj+1

tj

σ(F ; t, hN ) dt

≤
k∑

j=0

∫ tj+1

tj

dist(ωNj ;F (uN (tj), uN (tj − ∆), sN (tj), t)) dt+ τ(F ;hN ).

Further, assumption (H1) implies that for any t ∈ [tj , tj+1) with j = 0, . . . , k one has

dist(ωNj ;F (uN (tj), uN(tj − ∆), sN (tj), t)) − dist(ωNj ;F (uN(t), uN (t− ∆), sN (t), t))

≤ dist(F (uN (tj), uN(tj − ∆), sN (tj), t), F (uN (t), uN(t− ∆), sN (t), t))

≤ �F (|uN (tj) − uN(t)| + |uN (tj − ∆) − uN(t− ∆)| + |sN (tj) − sN (t)|).
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Taking into account that

∣∣sN (tj) − sN (t)
∣∣ =

∣∣∣∣∣
∫ t

tj

ωN (s) ds

∣∣∣∣∣ ≤ (1 +mF )(tj+1 − tj) = (1 +mF )hN := aN ↓ 0,

we arrive at

|uN (t) − uN(tj)| ≤ aN + |A||uN (t− ∆) − uN (tj − ∆)|
≤ aN(1 + |A| + . . .+ |A|m) + |A|m+1|uN(t− (m+ 1)∆) − uN (tj − (m+ 1)∆)|
≤ aN(1 + |A| + . . .+ |A|m) + |A|m+1βN := bN ↓ 0 as N → ∞

and hence ensure that

dist(ωNj ;F (uN(tj), uN(tj − ∆), sN (tj), t)) − dist(ωNj ;F (uN(t), uN (t− ∆), sN (t), t)) ≤ (aN + 2bN)�F .

It follows from (H1), (2.2) and (2.3) that for any t ∈ [tj , tj+1) and j = 0, . . . , k one has

dist(ωNj ;F (uN(t), uN (t− ∆), sN (t), t)) − dist(ωN (t);F (x̄(t), x̄(t− ∆), z̄(t), t))

≤ dist(F (uN (t), uN (t− ∆), sN (t), t), F (x̄(t), x̄(t− ∆), z̄(t), t))

≤ �F (|uN (t) − x̄(t)| + |uN(t− ∆) − x̄(t− ∆)| + |sN (t) − z̄(t)|)
≤ (2
N + ξN )�F .

Combining the above estimates and denoting µN := aN + 2bN + 2
N + ξN , we arrive at

dist(ωNj ;F (uN(tj), uN(tj − ∆), sN (tj), t)) ≤ �FµN + dist(ωNj ;F (x̄(t), x̄(t− ∆), z̄(t), t)) ≤ �FµN +
∣∣ωNj − ˙̄z(t)

∣∣
and finally conclude that

ζN ≤
k∑

j=0

∫ tj+1

tj

(∣∣ωNj − ˙̄z(t)
∣∣ + �FµN

)
dt+ τ(F ;hN )

= ξN + �FµN (b− a) + τ(F ;hN ) := γN ↓ 0 as N → ∞. (2.4)

Note that the discrete functions (uN (tj), sN (tj)) may not be a admissible pair for (2.1) because the inclusions
ωNj ∈ F (uN (tj), uN (tj − ∆), sN (tj), tj) may not be true for j = 0, . . . , k. Let us construct the desired pair
(x̂N (tj), ẑN (tj)) by the following proximal algorithm:




x̂N (tj) = c(tj) for j = −N, . . . ,−1, x̂N (t0) = x̄(a),

ẑN(tj+1) = ẑN (tj) + hNvNj for j = 0, . . . , k,

ẑN(tj) = x̂N (tj) +Ax̂N (tj − ∆) for j = 0, . . . , k + 1,

vNj ∈ F (x̂N (tj), x̂N (tj − ∆), ẑN (tj), tj) for j = 0, . . . , k,

|vNj − ωNj | = dist(ωNj ;F (x̂N (tj), x̂N (tj − ∆), ẑN (tj), tj)) for j = 0, . . . , k.

(2.5)

It follows from the construction (2.5) that (x̂N (tj), ẑN (tj)) is a feasible pair to the discrete inclusion (2.1) for
each N ∈ IN . Note that

|x̂N (t) − x̄(t)| = |x̂N (tj) − x̄(t)| = |c(tj) − c(t)| < βN for t ∈ [tj , tj+1), j = −N, . . . ,−1,
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which implies that the extensions of x̂N (·) converge to x̄(t) uniformly on [a−∆, a). Let us analyze the situation
on [a, b].

First we claim that x̂N (tj) ∈ U and ẑN(tj) ∈ V for j = 0, . . . , k + 1. Arguing by induction, we obviously
have x̂N (t0) ∈ U and ẑN (t0) ∈ V . Assume that x̂N (tj) ∈ U and ẑN (tj) ∈ U for all j = 1, . . . ,m with some fixed
m ∈ {1, . . . , k}. Then

|x̂N (tm+1) − uN (tm+1)| = |ẑN (tm+1) −Ax̂N (tm+1 − ∆) − sN (tm+1) +AuN (tm+1 − ∆)|
≤ |A||x̂N (tm+1 − ∆) − uN (tm+1 − ∆)| + |ẑN(tm+1) − sN(tm+1)|
≤ |A||x̂N (tm+1 − ∆) − uN (tm+1 − ∆)| + |A||x̂N (tm − ∆) − uN (tm − ∆)|

+ |x̂N (tm) − uN (tm)| + hNdist(ωNm ;F (x̂N (tm), x̂N (tm − ∆), ẑN (tm), tm)).

Taking into account that

|x̂N (tm) − uN(tm)| ≤ |A||x̂N (tm−N ) − uN (tm−N )| + |A||x̂N (tm−1−N ) − uN (tm−1−N )|
+ |x̂N (tm−1) − uN(tm−1)| + hNdist(ωNm−1 ;F (x̂N (tm−1), x̂N (tm−1−N ), ẑN (tm−1), tm−1)),

that

dist(ωNm−1 ;F (x̂N (tm−1), x̂N (tm−1−N ), ẑN(tm−1), tm−1))

≤ dist(ωNm−1 ;F (uN (tm−1), uN (tm−1−N ), sN (tm−1), tm−1))

+ �F (|x̂N (tm−1) − uN (tm−1)| + |ẑN (tm−1) − sN (tm−1)|
+ |x̂N (tm−1−N ) − uN(tm−1−N )|), (2.6)

that
|ẑN (tm) − sN (tm)| ≤ |x̂N (tm) − uN(tm)| + |A||x̂N (tm−N ) − uN (tm−N )|, (2.7)

and that |x̂N (tj) − uN(tj)| = 0 for j ≤ 0, one has

|x̂N (tm+1) − uN(tm+1)| ≤M1hN

m∑
j=0

dist(ωNj ;F (uN(tj), uN(tj − ∆), sN (tj), tj)) ≤M1γN (2.8)

with some constant M1 > 0. Now invoking (2.3) and increasing M1 if necessary, we arrive at

|x̂N (tm+1) − x̄(tm+1)| ≤ ξN +M1γN → 0 as N → ∞,

which implies that x̂N (tj) ∈ U for j = 0, . . . , k + 1.
Observing further that

|ẑN (tm+1) − sN (tm+1)| ≤ |ẑN (tm) − sN (tm)| + hN |vNm − ωNm |
≤ |ẑN(tm) − sN (tm)| + hNdist(ωNm ;F (x̂N (tm), x̂N (tm − ∆), ẑN(tm), tm)),

we derive from (2.6) and (2.7) the estimate

|ẑN(tm+1) − sN(tm+1)| ≤M2hN

m∑
j=0

dist(ωNj ;F (uN (tj), uN(tj − ∆), sN (tj), tj)) ≤M2γN (2.9)

with some constant M2 > 0. Note that

|ẑN (tm+1) − z̄N(tm+1)| ≤ |ẑN (tm+1) − sN (tm+1)| + |sN (tm+1) − z̄N(tm+1)| ≤M2γN + ξN ,
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which ensures the inclusions ẑN(tj) ∈ V for j = 0, . . . , k+ 1. It remains to prove that ẑN (t) converge to z̄(t) in
the W 1,2-norm on [a, b], which means that

max
t∈[a,b]

∣∣ẑN(t) − z̄(t)
∣∣ +

∫ b

a

∣∣ ˙̂zN (t) − ˙̄z(t)
∣∣2 dt→ 0 as N → ∞. (2.10)

To furnish this, we use (2.8) and (2.9) to get the estimates

k+1∑
j=0

∣∣x̂N (tj) − uN (tj)
∣∣ ≤

k+1∑
j=0

M1

j−1∑
m=0

hNdist(ωNm ;F (uN (tm), uN (tm − ∆), sN (tm), tm))

≤M1(b − a)
k∑

j=0

dist(ωNj ;F (uN (tj), uN (tj − ∆), sN (tj), tj)),

k+1∑
j=0

∣∣ẑN (tj) − sN (tj)
∣∣ ≤

k+1∑
j=0

M2

j−1∑
m=0

hNdist(ωNm ;F (uN (tm), uN (tm − ∆), sN (tm), tm))

≤M2(b − a)
k∑

j=0

dist(ωNj ;F (uN (tj), uN (tj − ∆), sN (tj), tj)),

which imply by (H1) that

∫ b

a

∣∣ ˙̂zN (t) − ωN(t)
∣∣ dt =

k∑
j=0

∫ tj+1

tj

∣∣ ˙̂zN (t) − ωN (t)
∣∣ dt

=
k∑

j=0

∫ tj+1

tj

|vNj − ωNj | dt =
k∑

j=0

hNdist(ωNj ;F (x̂N (tj), x̂N (tj − ∆), ẑN (tj), tj))

=
k∑

j=0

hNdist(ωNj ;F (uN(tj), uN(tj − ∆), sN (tj), tj))

+
k∑

j=0

hN [dist(ωNj ;F (x̂N (tj), x̂N (tj − ∆), ẑN (tj), tj))

− dist(ωNj ;F (uN (tj), uN (tj − ∆), sN (tj), tj))]

≤
k∑

j=0

hNdist(ωNj ;F (uN(tj), uN(tj − ∆), sN (tj), tj))

+
k∑

j=0

�FhN

[|x̂N (tj) − uN(tj)| + |x̂N (tj − ∆) − uN (tj − ∆)| + |ẑN (tj) − sN (tj)|
]

≤ γN +
k∑

j=0

�FhN

[|x̂N (tj) − uN (tj)| + |x̂N (tj − ∆) − uN(tj − ∆)| + |ẑN (tj) − sN (tj)|
]

≤ γN + 2(M1 +M2)(b− a)�F
k∑

j=0

hNdist(ωNj ;F (uN(tj), uN (tj − ∆), sN (tj), tj))

≤ γN + 2(M1 +M2)�F (b− a)γN .
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The latter ensures the estimates
∫ b

a

∣∣ ˙̂zN (t) − ˙̄z(t)
∣∣dt ≤

∫ b

a

∣∣ ˙̂zN (t) − ωN (t)
∣∣ dt+

∫ b

a

∣∣ωN (t) − ˙̄z(t)
∣∣dt

≤ γN (1 + 2(M1 +M2)(b− a)�F ) + ξN .

Due to x̂N (t) ∈ U and ẑN(t) ∈ V , we get from (H1) by (1.2) and (2.5) that
∣∣ ˙̂zN (t)

∣∣ ≤ mF ,
∣∣ ˙̄z(t)∣∣ ≤ mF , and

hence
∫ b

a

∣∣ ˙̂zN (t) − ˙̄z(t)
∣∣2 dt =

∫ b

a

∣∣ ˙̂zN (t) − ˙̄z(t)
∣∣∣∣ ˙̂zN (t) + ˙̄z(t)

∣∣dt
≤ 2mF [γN (1 + 2(M1 +M2)(b − a)�F ) + ξN ] ↓ 0 as N → ∞.

Observing finally that

max
t∈[a,b]

∣∣ẑN (t) − z̄(t)
∣∣2 ≤ (b − a)

∫ b

a

∣∣ ˙̂zN (t) − ˙̄z(t)
∣∣2 dt,

we arrive at (2.10) and complete the proof of the theorem. �

3. Strong convergence of discrete approximations

The goal of this section is to construct a sequence of well-posed discrete approximations of the dynamic
optimization problem (P ) such that optimal solutions to discrete approximation problems strongly converge, in
the sense described below, to a given optimal solution to the original optimization problem governed by delayed
differential-algebraic inclusions. The following construction explicitly involves the optimal solution (x̄, z̄) to the
problem (P ) under consideration for which we aim to derive necessary optimality conditions in the subsequent
sections.

For any natural number N we consider the following discrete-time dynamic optimization problem (PN ) for
functional-difference inclusions:

minimize JN [xN , zN ] := ϕ(xN (t0), xN (tk+1)) + |xN (t0) − x̄(a)|2

+ hN

k∑
j=0

f

(
xN (tj), xN (tj − ∆), zN (tj),

zN(tj+1) − zN (tj)
hN

, tj

)

+
k∑

j=0

∫ tj+1

tj

∣∣∣∣zN (tj+1) − zN (tj)
hN

− ˙̄z(t)
∣∣∣∣
2

dt (3.1)

subject to the dynamic constraints governed by (2.1), the perturbed endpoint constraints

(xN (t0), xN (tk+1)) ∈ ΩN := Ω + ηN IB, (3.2)

where ηN := |x̂N (tk+1) − x̄(b)| with the approximation x̂N (t) of x̄(t) from Theorem 2.1, and the auxiliary
constraints

|xN (tj) − x̄(tj)| ≤ ε, |zN (tj) − z̄(tj)| ≤ ε, j = 1, . . . , k + 1, (3.3)

with some ε > 0. The latter auxiliary constraints are needed to guarantee the existence of optimal solutions
in (PN ) and can be ignored in the derivation of necessary optimality conditions; see below.
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In what follows we select ε > 0 in (3.3) such that x̄(t)+εIB ⊂ U for all t ∈ [a−∆, b] and z̄(t)+εIB ⊂ V for all
t ∈ [a, b]. Take sufficiently large N ensuring that ηN < ε. Note that problems (PN ) have feasible solutions, since
the pair (x̂N , ẑN) from Theorem 2.1 satisfy all the constraints (2.1), (3.2), and (3.3). Therefore, by the classical
Weierstrass theorem, each (PN ) admits an optimal pair (x̄N , z̄N ) under the following assumption imposed in
addition to (H1)–(H3):

(H4): ϕ is continuous on U × U , f(x, y, z, v, ·) is continuous for a.e. t ∈ [a, b] uniformly in (x, y, z, v) ∈
U × U × V ×mF IB, f(·, ·, ·, ·, t) is continuous on U × U × V ×mF IB uniformly in t ∈ [a, b], and Ω is
locally closed around (x̄(a), x̄(b)).

We are going to justify the strong convergence of (x̄N , z̄N) to (x̄, z̄) in the sense of Theorem 2.1. To proceed,
we need to involve an important intrinsic property of the original problem (P ) called relaxation stability. Let
us consider, along with the original system (1.2), the convexified delayed differential-algebraic system

{
ż(t) ∈ coF (x(t), x(t − ∆), z(t), t) a.e. t ∈ [a, b],
z(t) = x(t) +Ax(t− ∆), t ∈ [a, b],

(3.4)

where “co ” stands for the convex hull of a set. Further, given the integrand f in (1.1), we take its restriction

fF (x, y, z, v, t) := f(x, y, z, v, t) + δ(v;F (x, y, z, t))

to F in (1.2), where δ(·;F ) stands for the indicator function of a set. Denote by f̂F (x, y, z, v, t) the convexification
of fF in the v variable and define the relaxed generalized Bolza problem (R) for delayed differential-algebraic
systems as follows:

minimize Ĵ [x, z] := ϕ(x(a), x(b)) +
∫ b

a

f̂F (x(t), x(t − ∆), z(t), ż(t), t) dt (3.5)

over feasible pairs (x, z) with the same analytic properties as in (P ) subject to the tail (1.4) and endpoint (1.5)
constraints. Every feasible pair to (R) is called a relaxed pair to (P ).

One clearly has inf(R) ≤ inf(P ) for the optimal values of the cost functionals in the relaxed and original
problems. We say that the original problem (P ) is stable with respect to relaxation if

inf(P ) = inf(R).

This property, which obviously holds under the convexity assumptions on the sets F (x, y, z, t) and the inte-
grand f in v, goes far beyond the convexity. General sufficient conditions for the relaxation stability of (P )
follow from [4]. We also refer the reader to [8, 10, 19, 20] for more detailed discussions on the validity of the
relaxation stability property for various classes of differential and functional-differential control systems.

Now we are ready to establish the following strong convergence theorem for optimal solutions to discrete
approximations, which makes a bridge between optimal control problems governed by delayed differential-
algebraic and difference-algebraic systems.

Theorem 3.1. Let (x̄, z̄) be an optimal pair to problem (P ), which is assumed to be stable with respect to
relaxation. Suppose also that hypotheses (H1)–(H4) hold. Then any sequence {(x̄N , z̄N)}, N ∈ IN , of optimal
pairs to (PN ) extended to the continuous interval [a − ∆, b] and [a, b] respectively, strongly converges to (x̄, z̄)
as N → ∞ in the sense that x̄N converge to x̄ uniformly on [a− ∆, b] and z̄N converge to z̄ in the W 1,2-norm
on [a, b].

Proof. We know from the above discussion that (PN ) has an optimal pair (x̄N , z̄N) for all N sufficiently large;
suppose that it happens for all N ∈ IN without loss of generality. We consider the sequence (x̂N , ẑN) from
Theorem 2.1. Since each (x̂N , ẑN ) is feasible to (PN ), one has

JN [x̄N , z̄N ] ≤ JN [x̂N , ẑN ] for all N ∈ IN.
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For convenience we represent JN [x̂N , ẑN ] as the sum of three terms:

JN [x̂N , ẑN ] = ϕ(x̂N (t0), x̂N (tk+1)) + hN

k∑
j=0

f

(
x̂N (tj), x̂N (tj − ∆), ẑN (tj),

ẑN (tj+1) − ẑN(tj)
hN

, tj

)

+
k∑

j=0

∫ tj+1

tj

∣∣∣∣ ẑN(tj+1) − ẑN (tj)
hN

− ˙̄z(t)
∣∣∣∣
2

dt := I1 + I2 + I3.

It follows from Theorem 2.1 and the assumption on ϕ in (H4) that

I1 → ϕ(x̄(a), x̄(b)) as N → ∞.

Moreover, using the sign “≈” for expressions equivalent as N → ∞ and the notation

v̂N (t) :=
ẑN(tj+1) − ẑN (tj)

hN
, t ∈ [tj , tj+1), j = 0, . . . , k,

we have the relations

I2 = hN

k∑
j=0

f(x̂N (tj), x̂N (tj − ∆), ẑN(tj), v̂N (tj), tj)

=
k∑

j=0

∫ tj+1

tj

f(x̂N (tj), x̂N (tj − ∆), ẑN (tj), v̂N (t), t) dt

+
k∑

j=0

∫ tj+1

tj

[
f(x̂N (tj), x̂N (tj − ∆), ẑN (tj), v̂N (t), tj) − f(x̂N (tj), x̂N (tj − ∆), ẑN (tj), v̂N (t), t)

]
dt

=
k∑

j=0

∫ tj+1

tj

f(x̂N (tj), x̂N (tj − ∆), ẑN (tj), v̂N (t), t) dt+ τ(f ;hN )

≈
k∑

j=0

∫ tj+1

tj

f(x̂N (tj), x̂N (tj − ∆), ẑN (tj), v̂N (t), t) dt

→
∫ b

a

f(x̄(t), x̄(t− ∆), z̄(t), ˙̄z(t), t) dt as N → ∞,

I3 =
k∑

j=0

∫ tj+1

tj

∣∣v̂N (t) − ˙̄z(t)
∣∣2 dt =

∫ b

a

∣∣v̂N (t) − ˙̄z(t)
∣∣2 dt

=
∫ b

a

∣∣ ˙̂zN (t) − ˙̄z(t)
∣∣2 dt→ 0 as N → ∞.

This implies that JN [x̂N , ẑN ] → J [x̄, z̄] as N → ∞, and therefore

lim sup
N→∞

JN [x̄N , z̄N ] ≤ J [x̄, z̄]. (3.6)

It is easy to observe that the strong convergence claimed in the theorem follows from

ρN :=
∣∣x̄N (a) − x̄(a)

∣∣2 +
∫ b

a

∣∣ ˙̄zN (t) − ˙̄z(t)
∣∣2dt→ 0 as N → ∞.
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On the contrary, suppose that the latter does not hold. Then there are a constant α > 0 and a subsequence
{Nm} ⊂ IN for which ρNm → α as m→ ∞. Employing the standard compactness arguments based on (2.1) and
the boundedness assumption in (H1), we find an absolutely continuous function z̃ : [a, b] → IRn and a function
x̃ : [a− ∆, b] continuous on [a− ∆, a) and [a, b] such that

˙̄zN(t) → ˙̃z(t) weakly in L2[a, b],

that x̄N (t) → x̃(t) uniformly on [a−∆, b] as N → ∞ (without loss of generality), and that z̃(t) = x̃(t)+Ax̃(t−∆)
for t ∈ [a, b]. By the classical Mazur theorem there is a sequence of convex combinations of ˙̄zN(t) that converges
to ˙̃z(t) in the norm topology of L2[a, b] and hence pointwisely for a.e. t ∈ [a, b] along some subsequence.
Therefore {

˙̃z(t) ∈ coF (x̃(t), x̃(t− ∆), z̃(t), t) a.e. t ∈ [a, b],
z̃(t) = x̃(t) +Ax̃(t− ∆), t ∈ [a, b].

Since x̃(·) obviously satisfies the initial tail condition (1.4) and the endpoint constraints (1.5), it is a feasible
solution to the relaxed problem (R). Note that

hN

k∑
j=0

f

(
x̄N (tj), x̄N (tj − ∆), z̄N (tj),

z̄N (tj+1) − z̄N(tj)
hN

, tj

)

=
k∑

j=0

∫ tj+1

tj

f(x̄N (tj), x̄N (tj − ∆), z̄N (tj), ˙̄zN (t), tj) dt→
∫ b

a

f(x̃(t), x̃(t− ∆), z̃(t), ˙̃z(t), t) dt

as N → ∞ due to the assumptions made. Observe also that the integral functional

I[v] :=
∫ b

a

∣∣∣v(t) − ˙̄z(t)
∣∣∣2dt

is lower semicontinuous in the weak topology of L2[a, b] by the convexity of the integrand in v. Since one has

k∑
j=0

∫ tj+1

tj

∣∣∣∣ z̄N (tj+1) − z̄N (tj)
hN

− ˙̄z(t)
∣∣∣∣
2

dt =
∫ b

a

∣∣∣ ˙̄zN(t) − ˙̄z(t)
∣∣∣2dt,

the latter implies that

∫ b

a

∣∣∣ ˙̃z(t) − ˙̄z(t)
∣∣∣2dt ≤ lim inf

N→∞

k∑
j=0

∫ tj+1

tj

∣∣∣∣ z̄N(tj+1) − z̄N (tj)
hN

− ˙̄z(t)
∣∣∣∣
2

dt.

Using the above relationships and passing to the limit in the expression (3.1) for JN [x̄N , z̄N ] as N → ∞, we
arrive at the inequality

J [x̃, z̃] + α ≤ lim
N→∞

JN [x̄N , z̄N ].

By (3.6) one therefore has

J [x̃, z̃] ≤ J [x̄, z̄] − α < J [x̄, z̄] if α > 0.

This clearly contradicts the optimality of pair (x̄, z̄) in the relaxed problem (R) due to the assumption on
relaxation stability. Thus α = 0, which completes the proof of the theorem. �
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4. Tools of generalized differentiation

The convergence results of the previous section allow us to make a bridge between the original infinite-
dimensional optimization problem (P ) for delayed differential-algebraic inclusions and the family of finite-
dimensional dynamic optimization problems (PN ) for delayed difference-algebraic inclusions. The further strat-
egy is now clear: to obtain first necessary optimality conditions for the discrete approximation problems (PN )
and then to derive necessary optimality conditions for the original problem (P ) by passing to the limit from the
ones for (PN ) as N → ∞.

Observe that problems (PN ) are essentially nonsmooth, even in the case of smooth functions ϕ and f in
the cost functional and the absence of endpoint constraints. The main source of nonsmoothness comes from
the (increasing number of) geometric constraints in (2.1), which reflect the discrete dynamics and may have
empty interiors. To conduct a variational analysis of such problems, we use appropriate tools of generalized
differentiation in finite dimensions introduced in [5] and then developed and applied in many publications; see,
in particular, the books [6, 17, 19] for detailed treatments and further references.

Recall the the basic (general,limiting) normal cone to the set Ω ⊂ IRn at the point x̄ ∈ Ω is

N(x̄; Ω) := Lim sup
x

Ω→x̄

N̂(x; Ω), (4.1)

where x Ω→ x̄ means that x→ x̄ with x ∈ Ω, and where

N̂(x̄; Ω) :=
{
x∗ ∈ IRn

∣∣∣ lim sup
x

Ω→x̄

〈x∗, x− x̄〉
|x− x̄| ≤ 0

}
(4.2)

is the cone of Fréchet (regular, strict) normals to Ω at x̄. For convex sets Ω both cones N(x̄; Ω) and N̂(x̄; Ω)
reduce to the normal cone of convex analysis. Note that the basic normal cone (4.1) is often nonconvex while
satisfying a comprehensive calculus, which is to the case for (4.2).

Given an extended-real-valued function ϕ : IRn → IR := [−∞,∞] finite at x̄, the basic (general, limiting)
subdifferential of ϕ at x̄ is defined geometrically

∂ϕ(x̄) :=
{
x∗ ∈ IRn

∣∣ (x∗,−1) ∈ N((x̄, ϕ(x̄)); epiϕ)
}

(4.3)

via basic normals to the epigraph epiϕ := {(x, µ) ∈ IRn+1| µ ≥ ϕ(x)}; equivalent analytic representations
of (4.3) can be found in the books [6, 17–19]. One of the most convenient representations of (4.3) is via the
Painlevé-Kuratowski upper limit (i.e., robust regularization) of Fréchet subgradients, which are the same as
subgradients in the sense of viscosity solutions.

Given a set-valued mapping F : IRn →→ IRm with the graph

gphF := {(x, y) ∈ IRn × IRm| y ∈ F (x)},

the coderivative D∗F (x̄, ȳ) : IRm →→ IRn of F at (x̄, ȳ) ∈ gphF is defined by

D∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ IRn

∣∣ (x∗,−y∗) ∈ N((x̄, ȳ); gphF )
}
. (4.4)

Note the useful relationships

∂ϕ(x̄) = D∗Eϕ(x̄, ϕ(x̄))(1) and D∗g(x̄)(y∗) = ∂〈y∗, g〉(x̄), y∗ ∈ IRm,

between the subdifferential and coderivative introduced, where Eϕ(x) := {µ ∈ IR| µ ≥ ϕ(x)} is the epigraph-
ical multifunctions associated with ϕ : IRn → IR, and where 〈y∗, g〉(x) := 〈y∗, g(x)〉 is the scalarized function
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associated with a locally Lipschitzian mapping g : IRn → IRm. Observe that

D∗g(x̄)(y∗) =
{∇g(x̄)∗y∗} for all y∗ ∈ IRm

if g is strictly differentiable at x̄. This means that the coderivative (4.4) is a natural extension of the adjoint
derivative operator to nonsmooth and set-valued mappings.

The subdifferential/coderivative constructions (4.3) and (4.4) enjoy a variety of useful calculus rules that
can be found in the books mentioned above and their references. Let us formulate two results crucial in the
method of discrete approximations. The first one gives a complete coderivative characterization of the classical
local Lipschitzian property of multifunctions imposed in our standing assumption (H1); cf. [7], Theorem 5.11,
and [17], Theorem 9.40.

Theorem 4.1. Let F : IRn →→ IRm be a closed-graph multifunction locally bounded around x̄. Then the following
conditions are equivalent:

(i) F is locally Lipschitzian around x̄.
(ii) There exist a neighborhood U of x̄ and a number � > 0 such that

sup
{
|x∗|

∣∣∣ x∗ ∈ D∗F (x, y)(y∗)
}
≤ �|y∗| for all x ∈ U, y ∈ F (x), y∗ ∈ IRm.

The next result (see, e.g., [6], Cor. 7.5, and [18], Th. 3.17) provides necessary optimality conditions for a general
problem (MP ) of nonsmooth mathematical programming with many geometric constraints:




minimize φ0(z) subject to
φj(z) ≤ 0, j = 1, . . . , r,
gj(z) = 0, j = 0, . . . ,m,
z ∈ Λj, j = 0, . . . , l,

where φj : IRd → IR, gj : IRd → IRn, and Λj ⊂ IRd.

Theorem 4.2. Let z̄ be an optimal solution to (MP ). Assume that all φi are Lipschitz continuous, that gj are
continuously differentiable, and that Λj are locally closed near z̄. Then there exist real numbers {µj | j = 0, . . . , r}
as well as vectors {ψj ∈ IRn| j = 0, . . . ,m} and {z∗j ∈ IRd| j = 0, . . . , l}, not all zero, such that

µj ≥ 0 for j = 0, . . . , r, (4.5)

µjφj(z̄) = 0 for j = 1, . . . , r, (4.6)

z∗j ∈ N(z̄; Λj) for j = 0, . . . , l, (4.7)

−
l∑

j=0

z∗j ∈ ∂
( r∑

j=0

µjφj

)
(z̄) +

m∑
j=0

∇gj(z̄)∗ψj . (4.8)

For applications in this paper in the case of nonautonomous continuous-time systems we need the following
modifications of the basic constructions (4.1), (4.3), and (4.4) for sets, functions, and set-valued mappings
depending on a parameter t from a topological space T (in our case T = [a, b]).

Given Ω: T →→ IRn and x̄ ∈ Ω(t̄), we define the extended normal cone to Ω(t̄) at x̄ by

Ñ(x̄; Ω(t̄)) := Limsup
(t,x)

gphΩ→ (t̄,x̄)

N̂(x; Ω(t)). (4.9)
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For ϕ : IRn × T → IR finite at (x̄, t̄) and for F : IRn × T →→ IRm with ȳ ∈ F (x̄, t̄), the extended subdifferential of
ϕ at (x̄, t̄) and the extended coderivative of F at (x̄, ȳ, t̄) with respect to x are given, respectively, by

∂̃xϕ(x̄, t̄) :=
{
x∗ ∈ IRn

∣∣ (x∗,−1) ∈ Ñ((x̄, ϕ(x̄, t̄)); epiϕ(t̄))
}

(4.10)

and, whenever y∗ ∈ IRm, by

D̃∗
xF (x̄, ȳ, t̄)(y∗) :=

{
x∗ ∈ IRn

∣∣ (x∗,−y∗) ∈ Ñ((x̄, ȳ); gphF (t̄))
}
. (4.11)

Note that the sets (4.9)–(4.11) may be bigger in some situations than the corresponding sets N(x̄; Ω(t̄)),
∂xϕ(x̄, t̄), and D∗

xF (x̄, ȳ, t̄)(y∗), where the latter two sets stand for the subdifferential (4.3) of ϕ(·, t̄) at x̄
and the coderivative (4.4) of F (·, t̄) at (x̄, ȳ, t̄), respectively. Efficient conditions ensuring equalities for these
sets are discussed in [8, 9, 11].

It is not difficult to check that the extended constructions (4.9)–(4.11) are robust with respect to their
variables, which is important for performing limiting procedures in what follows. In particular,

Ñ(x̄; Ω(t̄)) = Limsup
(t,x)

gphΩ→ (t̄,x̄)

Ñ(x; Ω(t)). (4.12)

Note also that the constructions (4.9)–(4.11) enjoy a full generalized differential calculus similar to one for (4.1),
(4.3), and (4.4). We do not need this calculus in the present paper, however.

5. Necessary optimality conditions for difference-algebraic systems

In this section we derive necessary optimality conditions for the discrete approximation problems (PN )
by reducing them to those in Theorem 4.2 for nonsmooth mathematical programming problems with many
geometric constraints.

Given n ∈ IN , consider problem (MP ) with the decision vector

w :=
(
xN

0 , . . . , x
N
k+1, z

N
0 , . . . , z

N
k+1, v

N
0 , v

N
1 , . . . , v

N
k

) ∈ IRn(3k+5)

and the following data:

φ0(w) := ϕ
(
xN

0 , x
N
k+1

)
+

∣∣xN
0 − x̄(a)

∣∣2 + hN

k∑
j=0

f
(
xN

j , x
N
j−N , z

N
j , v

N
j , tj

)

+
k∑

j=0

∫ tj+1

tj

∣∣vN
j − ˙̄z(t)

∣∣2 dt, (5.1)

φj(w) :=

{
|xN

j − x̄(tj)| − ε, j = 1, . . . , k + 1,
|zN

j−k−1 − z̄(tj−k−1)| − ε, j = k + 2, . . . , 2k + 2,

Λj :=
{(
xN

0 , . . . , v
N
k

) ∣∣ vN
j ∈ F

(
xN

j , x
N
j−N , z

N
j , tj

)}
, j = 0, . . . , k,

Λk+1 :=
{
(xN

0 , . . . , v
N
k )

∣∣ (xN
0 , x

N
k+1) ∈ ΩN

}
,

gj(w) := zN
j+1 − zN

j − hNv
N
j , j = 0, . . . , k,

hj(w) := zN
j − xN

j −AxN
j−N , j = 0, . . . , k + 1,
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where xN
j := c(tj) for j < 0. Let w̄N := (x̄N

0 , . . . , x̄
N
k+1, z̄

N
0 , . . . , z̄

N
k+1, v̄

N
0 , . . . , v̄

N
k ) be a given optimal solution

to (MP ). Applying Theorem 4.2 with the equality constraints given by (gj , hj), we find real numbers µN
j for

j = 0, . . . , 2k + 2, vectors w∗
j ∈ IRn(3k+5) for j = 0, . . . , k + 1, vectors ηN

j ∈ IRn for j = 0, . . . , k, as well as
vectors ψN

j ∈ IRn for j = 0, . . . , k + 1, not all zero, such that conditions (4.5)–(4.8) are satisfied.
Taking w∗

j := (x∗0,j , . . . , x
∗
k+1,j , z

∗
0,j , . . . , z

∗
k+1,j , v

∗
0,j , . . . , v

∗
k,j) ∈ N(w̄N ; Λj) for j = 0, . . . , k, we observe that

all but one components of w∗
j are zero and the remaining one satisfies

(
x∗j,j , x

∗
j−N,j , z

∗
j,j, v

∗
j,j

) ∈ N
((
x̄N

j , x̄
N
j−N , z̄

N
j , v̄

N
j

)
; gphF (·, ·, ·, tj)

)
, j = 0, . . . , k.

Similarly notice that the condition w∗
k+1 ∈ N(z̄N ; Λk+1) is equivalent to

(
x∗0,k+1, x

∗
k+1,k+1

) ∈ N
((
x̄N

0 , x̄
N
k+1

)
; ΩN

)

with all the other components of w∗
k+1 equal to zero. Employing Theorem 3.1 on the convergence of discrete

approximations, we have φj(w̄N ) < 0 for j = 1, . . . , 2k + 2 whenever N is sufficiently large. Thus µN
j = 0 for

these indexes due to the complementary slackness conditions (4.6). Let λN := µN
0 ≥ 0. Observe further that

k∑
j=0

(∇gj

(
w̄N

))∗
ηN

j =
(
0, . . . , 0, ηN

0 , η
N
0 − ηN

1 , η
N
k−1 − ηN

k , η
N
k ,−hNη

N
0 , . . . ,−hNη

N
k

)
,

and that one has

k+1∑
j=0

(∇hj

(
w̄N

))∗
ψN

j =
(
− ψN

0 +A∗ψN
N ,−ψN

1 +A∗ψN
N+1, . . . ,

− ψN
k−N+1 +A∗ψN

k+1,−ψN
k−N+2, . . . ,−ψN

k+1, ψ
N
0 , . . . , ψ

N
k+1, 0, . . . , 0

)
.

From the subdifferential sum rule for φ0 in (5.1) we deduce that

∂φ0(w̄N ) ⊂ ∂ϕ(x̄N
0 , x̄

N
k+1) + 2(x̄N

0 − x̄(a)) + hN

k∑
j=0

∂f(x̄N
j , x̄

N
j−N , z̄

N
j , v̄

N
j , tj) +

k∑
j=0

∫ tj+1

tj

2
(
v̄N

j − ˙̄z(t)
)

dt

with ∂f standing here and in what follows for the basic subdifferential of f with respect to the first four variables.
Thus the inclusion (4.8) in Theorem 4.2 is equivalent to the relationships




−x∗0,0 − x∗0,N − x∗0,k+1 = λNuN
0 + λNhNϑ

N
0 + λNhNκ

N
0 +

2λN (x̄N
0 − x̄(a)) − ψN

0 −A∗ψN
N ,

−x∗j,j − x∗j,j+N = λNhNϑ
N
j + λNhNκ

N
j − ψN

j −A∗ψN
j+N , j = 1, . . . , k −N + 1,

−x∗j,j = λNhNϑ
N
j − ψN

j , j = k −N + 2, . . . , k,

−x∗k+1,k+1 = λNuN
k+1 − ψN

k+1,

−z∗j,j = λNhNσ
N
j + ψN

j + ηN
j−1 − ηN

j , j = 0, . . . , k,

−v∗j,j = λNhN ι
N
j + λNθN

j − hNη
N
j , j = 0, . . . , k,

(5.2)

with the notation

(uN
0 , u

N
k+1) ∈ ∂ϕ(x̄N

0 , x̄
N
k+1), (ϑN

j , κ
N
j−N , σ

N
j , ι

N
j ) ∈ ∂f(x̄N

j , x̄
N
j−N , z̄

N
j , v̄

N
j , tj), θN

j := 2
∫ tj+1

tj

(
v̄N

j − ˙̄z(t)
)
dt.
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Based on the above relationships, we arrive at the following necessary optimality conditions for discrete-time
problems (PN ), where fj(·, ·, ·, ·) := f(·, ·, ·, ·, tj) and Fj(·, ·, ·) := F (·, ·, ·, tj).

Theorem 5.1. Let w̄N be an optimal solution to problem (PN ). Assume that the sets Ω and gphFj are closed
and that the functions ϕ and fj are Lipschitz continuous around the points (x̄N

0 , x̄
N
k+1) and (x̄N

j , x̄
N
j−N , z̄

N
j , v̄

N
j ),

respectively, for all j = 0, . . . , k. Then there exist λN ≥ 0, pN
j (j = 0, . . . , k +N + 1), qN

j (j = −N, . . . , k + 1),
and rN

j (j = 0, . . . , k + 1), not all zero, such that

pN
j = 0, j = k + 2, . . . , k +N + 1, (5.3)

qN
j = 0, j = k −N + 1, . . . , k + 1, (5.4)

(pN
0 + qN

0 ,−pN
k+1) ∈ λN∂ϕ(x̄N

0 , x̄
N
k+1) +N((x̄N

0 , x̄
N
k+1); ΩN ), (5.5)

(
PN

j+1 − PN
j

hN
,
QN

j−N+1 −QN
j−N

hN
,
rN
j+1 − rN

j

hN
, −λ

NθN
j

hN
+ pN

j+1 + qN
j+1 + rN

j+1

)

∈ λN∂fj(x̄N
j , x̄

N
j−N , z̄

N
j , v̄

N
j ) +N((x̄N

j , x̄
N
j−N , z̄

N
j , v̄

N
j ); gphFj), j = 1, . . . , k, (5.6)

with the notation

PN
j := pN

j +A∗pN
j+N , QN

j := qN
j +A∗qN

j+N .

Proof. Most of the proof has been actually done above, where we transformed the necessary optimality conditions
for (MP ) into the ones for (PN ) written in the form of nonsmooth mathematical programming. What we need
to do is to change the notation in the relationships of (5.2). Let us first denote

SN
j :=

{
ψN

j for j = 1, . . . , k + 1,
0 for j = k + 2, . . . , k +N ;

TN
j :=

{
λNκN

j + x∗j,j+N/hN for j = 1, . . . , k −N + 1,
0 for j = k −N + 2, . . . , k;

r̃N
j := ηN

j−1 for j = 1, . . . , k + 1.

It follows from (5.2) that



SN
j +A∗SN

j+N − TN
j = λNϑN

j + x∗j,j/hN ,

TN
j−N = λNκN

j−N + x∗j−N,j/hN ,

r̃N
j+1 − r̃N

j

hN
− SN

j = λNσN
j +

z∗j,j
hN

,

−λNθN
j /hN + r̃N

j+1 = λN ιNj + v∗j,j/hN

(5.7)

for all j = 1, . . . , k. Define the sequences p̃N
j , and q̃N

j by the recurrent formulae

p̃N
j := p̃N

j+1 − SN
j hN with p̃N

j = 0 for j = k + 2, . . . , k +N + 1,

q̃N
j := q̃N

j+1 − TN
j hN with q̃N

j = 0 for j = k −N + 1, . . . , k +N + 1.
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Putting qN
j := q̃N

j +A∗q̃N
j+N , we rewrite (5.7) as




(p̃N
j+1 − qN

j+1) − (p̃N
j − qN

j )
hN

+A∗ (p̃N
j+N+1 − qN

j+N+1) − (p̃N
j+N − qN

j+N )
hN

= λNϑN
j +

x∗j,j
hN

, j = 1, . . . , k,

(qN
j−N+1 +A∗qN

j+1) − (qN
j−N +A∗qN

j )
hN

= λNκN
j−N +

x∗j−N,j

hN
, j = 1, . . . , k,

r̃N
j+1 − r̃N

j

hN
− p̃N

j+1 − p̃N
j

hN
= λNσN

j +
z∗j,j
hN

, j = 1, . . . , k,

−λNθN
j /hN + r̃N

j+1 = λN ιNj +
v∗j,j
hN

, j = 1, . . . , k.

(5.8)

Letting finally

pN
0 := λNuN

0 + x∗0,k+1 − qN
0 ,

pN
j := p̃N

j − qN
j for j = 1, . . . , k +N + 1,

rN
j := r̃N

j − p̃N
j for j = 1, . . . , k + 1,

we arrive at all the relationships (5.3)–(5.6) and complete the proof of the theorem. �

Corollary 5.2. In addition to the assumptions in Theorem 5.1, suppose that the mapping Fj is bounded and
Lipschitz continuous around (x̄N

j , x̄
N
j−N , z̄

N
j ) for each j = 0, . . . , k. Then the conditions λN ≥ 0 and (5.3)–(5.6)

hold with (λN , pN
k+1, r

N
k+1) �= 0, i.e., one can let

(
λN

)2
+

∣∣pN
k+1

∣∣2 +
∣∣rN

k+1

∣∣2 = 1. (5.9)

Proof. If λN = 0, then (5.6) together with (5.3) and (5.4) imply that

(
pN

k+1 − pN
k

hN
,
−qN

k−N

hN
,
rN
k+1 − rN

k

hN

)
∈ D∗Fk

(
x̄N

k , x̄
N
k−N , z̄

N
k , v̄

N
k

) (−pN
k+1 − rN

k+1

)
.

Assuming now that pN
k+1 = 0 and rN

k+1 = 0, we get

(
−pN

k

hN
,
−qN

k−N

hN
,
−rN

k

hN

)
∈ D∗Fk

(
x̄N

k , x̄
N
k−N , z̄

N
k , v̄

N
k

)
(0),

which yields pN
k = 0, qN

k−N = 0, and rN
k = 0 by Theorem 4.1. Repeating the above procedure, we arrive at the

contradiction with the nontriviality assertion in Theorem 5.1. �

6. Optimality conditions for differential-algebraic inclusions

In the concluding section of the paper we obtain the main results of this study that provide necessary
optimality conditions for the original dynamic optimization problem (P ) in both extended Euler-Lagrange
and Hamiltonian forms involving generalized differential constructions of Section 4. Our major theorem es-
tablishes the following conditions of the Euler-Lagrange type derived by the limiting procedure from discrete
approximations.
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Theorem 6.1. Let (x̄, z̄) be an optimal solution pair to problem (P ) under hypotheses (H1)–(H4), where ϕ and
f(·, ·, ·, ·, t) are assumed to be Lipschitz continuous instead of the plain continuity. Suppose also that (P ) is stable
with respect to relaxation. Then there exist a number λ ≥ 0, piecewise continuous functions p : [a, b+ ∆] → IRn

and q : [a − ∆, b] → IRn (whose points of discontinuity are confined to multiples of the delay time ∆), and an
absolutely continuous function r : [a, b] → IRn such that p(t) +A∗p(t+ ∆) and q(t− ∆) +A∗q(t) are absolutely
continuous on [a, b] and that the following conditions hold:

λ+ |p(b)| + |r(b)| = 1, (6.1)

p(t) = 0 for t ∈ (b, b+ ∆], q(t) = 0 for t ∈ (b− ∆, b], (6.2)

(p(a) + q(a),−p(b)) ∈ λ∂ϕ(x̄(a), x̄(b)) +N((x̄(a), x̄(b)); Ω), (6.3)(
d
dt

[
p(t) +A∗p(t+ ∆)

]
,

d
dt

[
q(t− ∆) +A∗q(t)

]
, ṙ(t)

)

∈ co
{
(u, v, w)

∣∣ (u, v, w, p(t) + q(t) + r(t)) ∈ λ∂̃f(x̄(t), x̄(t− ∆), z̄(t), ˙̄z(t), t)

+Ñ
(
(x̄(t), x̄(t− ∆), z̄(t), ˙̄z(t)); gphF (t)

)}
a.e. t ∈ [a, b].

(6.4)

Proof. To prove this theorem by the method of discrete approximations, we first construct a sequence of discrete-
time problems (PN ) whose optimal solutions (x̄N , z̄N ) strongly approximate (x̄, z̄) in the sense of Theorem 2.1.
By necessary optimality conditions for (x̄N , z̄N ) from Corollary 5.2 we find λN ≥ 0, pN

j , qN
j , and rN

j satisfying
relationships (5.3)–(5.9) for all N ∈ IN .

Without loss of generality we suppose that λN → λ as N → ∞ for some λ ≥ 0. Recall that the symbols
x̄N (t), z̄N(t), pN (t), qN (t − ∆), rN (t), PN(t), and QN(t − ∆) stand for the piecewise linear extensions of the
corresponding discrete functions from Theorem 5.1 with their piecewise constant derivatives on the continuous-
time interval [a, b].

Considering θj from Theorem 5.1, we define θN (t) := θN
j /hN for t ∈ [tj , tj+1) as j = 0, . . . , k and conclude

by Theorem 2.1 that

∫ b

a

|θN (t)| dt =
k∑

j=0

|θN
j | ≤ 2

k∑
j=0

∫ tj+1

tj

∣∣∣ ˙̄z(t) − v̄N
j

∣∣∣dt = 2
∫ b

a

∣∣∣ ˙̄z(t) − ˙̄zN (t)
∣∣∣ dt := νN → 0 as N → ∞.

We may assume without loss of generality that

v̄N (t) := ˙̄zN(t) → ˙̄z(t) and θN (t) → 0 a.e. t ∈ [a, b] as N → ∞.

Let us estimate (pN (t), qN (t−∆), rN (t)) for large N . Using (5.3) and (5.4), we derive from (5.6) the inclusions

(
pN

j+1 − pN
j

hN
− λNϑN

j ,
qN
j−N+1 − qN

j−N

hN
− λNκN

j−N ,
rN
j+1 − rN

j

hN
− λNσN

j ,

−λ
NθN

j

hN
+ pN

j+1 + rN
j+1 − λN ιNj

)
∈ N

((
x̄N

j , x̄
N
j−N , z̄

N
j , v̄

N
j

)
; gphFj

)
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with some (ϑN
j , κ

N
j−N , σ

N
j , ι

N
j ) ∈ ∂fj(x̄N

j , x̄
N
j−N , z̄

N
j , v̄

N
j ) for all j = k−N+2, . . . , k+1. This means, by definition

of the coderivative (4.4), that

(
pN

j+1 − pN
j

hN
− λNϑN

j ,
qN
j−N+1 − qN

j−N

hN
− λNκN

j−N ,
rN
j+1 − rN

j

hN
− λNσN

j

)

∈ D∗Fj(x̄N
j , x̄

N
j−N , z̄

N
j , v̄

N
j )

(
λN ιNj +

λNθN
j

hN
− pN

j+1 − rN
j+1

)

for such j. Thus it follows from Theorem 4.1 that

∣∣∣∣∣
(
pN

j+1 − pN
j

hN
− λNϑN

j ,
qN
j−N+1 − qN

j−N

hN
− λNκN

j−N ,
rN
j+1 − rN

j

hN
− λNσN

j

)∣∣∣∣∣
≤ �F

∣∣∣∣∣λN ιNj +
λNθN

j

hN
− pN

j+1 − rN
j+1

∣∣∣∣∣

for j = k−N + 2, . . . , k+ 1. Since |(ϑN
j , κ

N
j−N , σ

N
j , ι

N
j )| ≤ �f due to the Lipschitz continuity of f with modulus

�f , we derive from the above that

|(pN
j , q

N
j−N , r

N
j )| ≤ �F |θN

j | + (�F + 1)hN�f + (�FhN + 1)|(pN
j+1, q

N
j−N+1, r

N
j+1)|

≤ �F |θN
j | + (�FhN + 1)�F |θN

j+1| + (�F + 1)hN�f + (�FhN + 1)(�F + 1)hN �f

+ (�FhN + 1)2|(pN
j+2, q

N
j−N+2, r

N
j+2)| ≤ . . .

≤ exp[�F (b− a)](1 + �f(�F + 1)/�F + �F νN ), j = k −N + 2, . . . , k + 1,

which implies the uniform boundedness of {(pN
j , q

N
j−N , r

N
j ) | j = k − N + 2, . . . , k + 1} and hence that of

(pN (t), qN (t− ∆), rN (t)) on [b− ∆, b].
Next we consider j = k − 2N + 2, . . . , k −N + 1 and derive from (5.6) that

∣∣∣∣∣
(
pN

j+1 − pN
j

hN
− λNϑN

j ,
qN
j−N+1 − qN

j−N

hN
− λNκN

j−N ,
rN
j+1 − rN

j

hN
− λNσN

j

)∣∣∣∣∣
≤ �F

∣∣∣∣∣λN ιNj +
λNθN

j

hN
− pN

j+1 − qN
j+1 − rN

j+1

∣∣∣∣∣ +

∣∣∣∣∣
(
A∗pN

j+N+1 −A∗pN
j+N

hN
,
A∗qN

j+1 −A∗qN
j

hN
, 0

)∣∣∣∣∣ .

This implies due to Theorem 4.1 and the uniform boundedness of the above vectors pN
j and qN

j by some constant
α > 0, and so

∣∣∣∣∣
(
pN

j+1 − pN
j

hN
− λNϑN

j ,
qN
j−N+1 − qN

j−N

hN
− λNκN

j−N ,
rN
j+1 − rN

j

hN
− λNσN

j

)∣∣∣∣∣
≤ �F

∣∣∣∣∣λN ιNj +
λNθN

j

hN
− pN

j+1 − qN
j+1 − rN

j+1

∣∣∣∣∣ +
α

hN
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for j = k − 2N + 2, . . . , k −N + 1. Therefore

|(pN
j , q

N
j−N , r

N
j )| ≤ �F |θN

j | + (�F + 1)hN �f + (�FhN + 1)|(pN
j+1, q

N
j−N+1, r

N
j+1)| + (�FhN + 1)α

≤ �F |θN
j | + (�FhN + 1)�F |θN

j+1| + (�F + 1)hN �f + (�FhN + 1)(�F + 1)hN�f

+ (�FhN + 1)(�F + 1)α+ (�FhN + 1)2|(pN
j+2, q

N
j−N+2, r

N
j+2)| ≤ . . .

≤ exp[�F (b− a)](1 + (�f + α)(�F + 1)/�F + �F νN ), j = k − 2N + 2, . . . , k −N + 1.

This shows that pN
j , qN

j−N , and rN
j are uniformly bounded for j = k − 2N + 2, . . . , k − N + 1, and hence the

sequence {pN (t), qN (t − ∆), rN (t)} is uniformly bounded on [b − 2∆, b − ∆]. Repeating the above procedure,
we conclude that both sequences {pN (t), qN (t−∆), rN (t)} and {PN(t), QN (t−∆)} are uniformly bounded on
the whole interval [a, b].

Next we estimate
(
ṖN (t), Q̇N (t− ∆), ṙN (t)

)
on [a, b] using (5.6) and Theorem 4.1. This yields, for tj ≤ t <

tj+1 with j = 0, . . . , k, that

∣∣∣
(
ṖN (t), Q̇N (t− ∆), ṙN (t)

)∣∣∣ =

∣∣∣∣∣
(
PN

j+1 − PN
j

hN
,
QN

j−N+1 −QN
j−N

hN
,
rN
j+1 − rN

j

hN

)∣∣∣∣∣
≤ �F

∣∣∣∣∣λN ιNj +
λNθN

j

hN
− pN

j+1 − qN
j+1 − rN

j+1

∣∣∣∣∣ + �f

≤ �F
∣∣θN

∣∣ + �F
∣∣pN

j+1

∣∣ + �F
∣∣qN

j+1

∣∣ + �F
∣∣rN

j+1

∣∣ + (�F + 1) �f .

Thus the sequence {ṖN(t), Q̇N (t − ∆), ṙN (t)} is weakly compact in L1[a, b]. Taking the whole sequence of
N ∈ IN without loss of generality, we find three absolutely continuous functions P (·), Q(· − ∆), and r(·) on
[a, b] such that

ṖN (t) → Ṗ (t), Q̇N (t− ∆) → Q̇(t− ∆), ṙN (t) → ṙ(t) weakly in L1[a, b]

and PN (t) → P (t), QN(t − ∆) → Q(t − ∆), rN (t) → r(t) uniformly on [a, b] as N → ∞. Since pN(t) and
qN (t−∆) are uniformly bounded on [a, b+∆], they surely converge to some functions p(t) and q(t−∆) weakly
in L1[a, b+ ∆]. Taking into account the above convergence of PN(t) and QN(t− ∆), we get that p(·) and q(·)
satisfy (6.2), that

P (t) = p(t) +A∗p(t+ ∆), Q(t− ∆) = q(t− ∆) +A∗q(t), t ∈ [a, b],

and that p(t) and q(t) are piecewise continuous on [a, b+∆] and [a−∆, b], respectively, with possible discontinuity
(from the right) at the points b − i∆ at i = 0, 1, . . . Conditions (6.1) and (6.3) follow by passing to the limit
from (5.9) and (5.5), respectively, by taking into account the robustness of the basic subdifferential (4.3) and
the normal cone (4.1).

It remains to justify the Euler-Lagrange inclusion (6.4). To furnish this, we rewrite the discrete Euler-Lagrange
inclusion (5.6) in the form

(ṖN (t), Q̇N (t− ∆), ṙN (t)) ∈
{
(u, v, w)

∣∣∣
(
u, v, w, pN (tj+1) + qN (tj+1) + rN (tj+1) −

λNθN
j

hN

)

∈ λN∂f(x̄N (tj), x̄N (tj − ∆), z̄N(tj), v̄N
j , tj) +N

(
(x̄N (tj), x̄N (tj − ∆), z̄N(tj), v̄N

j ); gphFj

)}
(6.5)

for t ∈ [tj , tj+1] with j = 0, . . . , k. By the classical Mazur theorem there is a sequence of convex combinations
of the functions (ṖN (t), Q̇N (t − ∆), ṙN (t)) that converges to (Ṗ (t), Q̇(t − ∆), ṙ(t)) for a.e. t ∈ [a, b]. Passing
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the limit in (6.5) and taking into account the pointwise convergence of θN (t) and v̄N (t) established above, as
well as the constructions of the extended normal cone (4.9) and the extended subdifferential (4.10) and their
robustness property (4.12) with respect to all variables and parameters, we arrive at (6.4) and complete the
proof of the theorem. �

Observe that for the Mayer problem (PM ), which is (1.1)–(1.5) with f = 0, the generalized Euler-Lagrange
inclusion (6.4) is equivalently expressed in terms of the extended coderivative (4.11) with respect to the first
three variables of F = F (x, y, z, t), i.e., in the form

(
d
dt

[p(t) +A∗p(t+ ∆)],
d
dt

[q(t− ∆) +A∗q(t)], ṙ(t)
)

∈ co D̃∗
x,y,zF

(
x̄(t), x̄(t− ∆), z̄(t), ˙̄z(t)

)(− p(t) − q(t) − r(t)
)

a.e. t ∈ [a, b]. (6.6)

It turns out that the extended Euler-Lagrange inclusion obtained above implies, under the relaxation stability
of the original problems, two other principal optimality conditions expressed in terms of the Hamiltonian
function built upon the mapping F in (1.2). The first condition called the extended Hamiltonian inclusion is
given below in terms of a partial convexification of the basic subdifferential (4.3) for the Hamiltonian function.
The second one is an analogue of the classical Weierstrass-Pontryagin maximum condition for the differential-
algebraic inclusions under consideration. Recall that an analogue of the Maximum Principle (centered around
the maximum condition) does not generally hold for differential-algebraic systems, even in the case of optimal
control problems governed by smooth functional-differential equations of neutral type that are a special case
of (P ).

The following relationships between the extended Euler-Lagrange and Hamiltonian inclusions are based on
Rockafellar’s dualization theorem [16] (see also [19], Sect. 7.6, for another, more simple proof) that concerns
subgradients of abstract Lagrangian and Hamiltonian associated with set-valued mappings regardless of the
dynamics in (1.2). For simplicity we consider the case of the Mayer problem (PM ) for autonomous differential-
algebraic systems. Then the Hamiltonian function for F in (1.2) is defined by

H(x, y, z, p) := sup
{〈p, v〉∣∣ v ∈ F (x, y, z)

}
. (6.7)

Corollary 6.2. Let (x̄, z̄) be an optimal solution pair to the Mayer problem (PM ) for the autonomous delayed
differential-algebraic inclusion (1.2) under the assumptions of Theorem 6.1. Then there exist a number λ ≥ 0,
piecewise continuous functions p : [a, b + ∆] → IRn and q : [a − ∆, b] → IRn (whose points of discontinuity are
confined to multiples of the delay time ∆), and an absolutely continuous function r : [a, b] → IRn such that
p(t)+A∗p(t+∆) and q(t−∆)+A∗q(t) are absolutely continuous on [a, b] and, besides (6.1)–(6.4), one has the
extended Hamiltonian inclusion

(
d
dt

[p(t) +A∗p(t+ ∆)],
d
dt

[q(t− ∆) +A∗q(t)], ṙ(t)
)

∈ co
{
(u, v, w)

∣∣∣
(
− u,−v,−w, ˙̄z(t)

)
∈ ∂H

(
x̄(t), x̄(t− ∆), z̄(t), p(t) + q(t) + r(t)

)}
(6.8)

and the maximum condition

〈
p(t) + q(t) + r(t), ˙̄z(t)

〉
= H

(
x̄(t), x̄(t− ∆), z̄(t), p(t) + q(t) + r(t)

)
(6.9)
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for a.e. t ∈ [a, b]. If moreover F is convex-valued around (x̄(t), x̄(t − ∆), z̄(t)), then (6.8) is equivalent to the
Euler-Lagrange inclusion

(
d
dt

[p(t) +A∗p(t+ ∆)],
d
dt

[q(t− ∆) +A∗q(t)], ṙ(t)
)

∈ coD∗F
(
x̄(t), x̄(t− ∆), z̄(t), ˙̄z(t)

)(− p(t) − q(t) − r(t)
)

a.e. t ∈ [a, b], (6.10)

which automatically implies the maximum condition (6.9) in this case.

Proof. Since (PM ) is stable with respect to relaxation, the pair (x̄, z̄) is an optimal solution to the relaxed
problem (RM ) whose only difference from (PM ) is that the delayed differential-algebraic inclusion (1.2) is
replaced by its convexification (3.4). By Theorem 6.1 the optimal solution (x̄, z̄) satisfies conditions (6.1)–(6.4)
and the relaxed counterpart of (6.6), which is the same as (6.10) in this case with F replaced by the convex hull
coF . According to [16], Theorem 3.3, and [19], Theorem 7.6.5, one has

co
{
(u, v, w)

∣∣∣ (u, v, w, p) ∈ N((x, y, z, q); gph(coF )
}
⊂ co

{
(u, v, w)

∣∣∣ (−u,−v,−w, q) ∈ ∂HR(x, y, z, p)
}
,

(6.11)
where HR stands for the Hamiltonian (6.7) of the relaxed system, i.e., with F replaced by coF . It is easy to
check that HR = H . Thus the extended Euler-Lagrange inclusion for the relaxed system implies the extended
Hamiltonian inclusion (6.8), which surely yields the maximum condition (6.9). When F is convex-valued,
(6.8) and (6.10) are equivalent due to the equality in (6.11) proved in [16]. This completes the proof of the
corollary. �
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