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A TWO WELL LIOUVILLE THEOREM ∗

Andrew Lorent
1

Abstract. In this paper we analyse the structure of approximate solutions to the compatible two well
problem with the constraint that the surface energy of the solution is less than some fixed constant.
We prove a quantitative estimate that can be seen as a two well analogue of the Liouville theorem of
Friesecke James Müller.

Let H =
(

σ 0
0 σ−1

)
for σ > 0. Let 0 < ζ1 < 1 < ζ2 < ∞. Let K := SO (2) ∪ SO (2) H . Let

u ∈ W 2,1 (Q1 (0)) be a C1 invertible bilipschitz function with Lip (u) < ζ2, Lip
(
u−1
)

< ζ−1
1 .

There exists positive constants c1 < 1 and c2 > 1 depending only on σ, ζ1, ζ2 such that if ε ∈ (0, c1)
and u satisfies the following inequalities∫

Q1(0)

d (Du (z) , K) dL2z ≤ ε

∫

Q1(0)

∣
∣D2u (z)

∣
∣ dL2z ≤ c1,

then there exists J ∈ {Id,H} and R ∈ SO (2) such that

∫

Qc1 (0)

|Du (z) − RJ | dL2z ≤ c2ε
1

800 .
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1. Introduction

We consider the following simple problem.

Problem A. Let E be a set of matrices and F �∈ E. Let q ≥ 1, and Ω be a Lipschitz domain in R
n.

Let d (·, E) denote Euclidean distance from set E. Prove there exists constants ε0 > 0, β0 > 0 such that any
u ∈W 2,q (Ω : R

m) satisfying u (x) = F (x) on ∂Ω and

∫

Ω

d (Du (z) , E) dL2z ≤ ε (1)
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for ε ∈ (0, ε0) has the property that
∫

Ω

∣∣D2u (z)
∣∣q dL2z ≥ ε1−q−β0 . (2)

Problem A is solved only for sets of 2 or 3 matrices satisfying the following strong condition.

Definition 1.1. A set of matrices E is called restricted if and only if given any Lipschitz domain Ω there exists
constant c1 > 0, δ0 > 0, γ0 > 0 such that if function u ∈ Lip satisfies u = F on ∂Ω for F �∈ E and

∫

Ω

d (Du (z) , E) dL2z < δ0

then u has the property

sup {|u (z) − F (z)| : x ∈ Ω} < c1

(∫

Ω

d (Du (z) , E) dL2z

)γ0

. (3)

We briefly comment on how Problem A is solved for restricted sets of 2 × 2 matrices in order to motivate
Definition 1.1. For restricted sets condition (1) forces the function to be pressed down uniformly close to the
affine boundary condition F in the sense of (3). Let v ∈ S1 be such that (X − F ) v �= 0 for any X ∈ E.
Suppose we can find two points a, b ∈ Ω in direction v such that Du�[a,b] ≈ X ∈ E then as (X − F ) (a− b) ≈
(u− F ) (a− b) ≤ ‖u − F‖L∞(Ω). So we have |a− b| < c2‖u − F‖L∞(Ω) < c2c1

(∫
Ω

d (Du (z) ,K) dL2x
)γ0 .

Thus for any line going through Ω there must be approximately
(
c2c1

(∫
Ω

d (Du (x) ,K) dL2x
)γ0)−1

points at
which Du jumps from one matrix inside E to another. Hence by Fubini (2) follows.

Solutions to problem A for restricted sets of 2 or 3 matrices appear in [6, 12]. For example the set{(
1 0
0 0

)
,
(−1 0

0 0

)}
is restricted.

From the results of Müller, Šverák [15, 16] and Dacorogna, Marcellini [10] for the set of matrices E =
SO (2) ∪ SO (2)H ⊂M2×2, H diagonal there exists a large class of matrices F �∈ E for which we can solve the
differential inclusion.

Du ∈ E for a.e. and u = F on ∂Ω.

Our goal is to solve Problem A with respect to this set of matrices. Our main theorem is following.

Theorem 1.1. Let 0 < ζ1 < 1 < ζ2 <∞. Let K := SO (2) ∪ SO (2)H where H =
(

σ 0
0 σ−1

)
.

Let u ∈W 2,1 (Q1 (0)) be a C1 invertible bilipschitz function with Lip (u) < ζ2, Lip
(
u−1
)
< ζ−1

1 . There exists
positive constants c1, c3, c4 < 1 and c2, c5 > 1 depending only on σ, ζ1, ζ2 such that if κ ∈ (0, c1], m0 ≥ c2 and
u satisfies the following inequalities

∫

Q1(0)

d (Du (z) ,K) dL2z ≤ κm0 (4)

∫

Q1(0)

∣
∣D2u (z)

∣
∣dL2z ≤ c3κ, (5)

then there exists J ∈ {Id,H} and R ∈ SO (2) such that

∫

Qc4 (0)

|Du (z) −RJ | dL2z ≤ c5κ
m0
800 . (6)
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The integral
∫

d (Du (z) ,K) dL2z is known as the bulk energy and
∫ ∣∣D2u (z)

∣
∣dL2z is known as the surface

energy. To illustrate our theorem it is helpful to consider κ = c1 and to take m0 → ∞ (this way we also obtain
the theorem stated in the abstract). So for small but fixed surface energy, as the bulk energy decreases, the
control of the derivative of the function in the central subsquare improves to some root power of the bulk energy.
To state things more roughly, even though the surface energy is a small but fixed quantity, as the bulk energy
decreases, the function in the central subsquare becomes increasingly flat.

The upper bound c5κ
m0
800 in (6) is far from optimal. The naive guess that the optimal bound is given by cκ

is false1, this follows from the construction of [7], see [9] for more details.
The assumption that u is bilipschitz is a technical one, however it is used in an essential way many times in

the proof. On the other hand the assumption u is C1 is not necessary, it saves us some details to do with fine
properties of Sobolev functions.

In another paper [13] we will use Theorem 1.1 to reduce Problem A to a kind of discrete ε free version of the
problem2.

As shown in the remark following Definition 1.1, for restricted sets E we can control the function just using
bulk energy, then simply count up the surface energy. For our case with matrices K = SO (2) ∪ SO (2)H from
the work of Dacorogna and Marcellini [10], Müller and Šverák [15], we have the existence of Lipschitz functions
satisfying the affine boundary condition but for which Du ∈ K a.e. in Ω. So there is no relation between
small bulk energy (in this case zero bulk energy) and being pressed down close to the affine boundary. It is not
possible to just use bulk energy, we have to control the function using bulk and surface energies in combination.
Hence the need for Theorem 1.1.

Functionals of the form (4) for K = SO (2) ∪ SO (2)H have received much attention in non convex calculus
of variations. From work of Ball, James [2, 3] and Chipot, Kinderlehrer [5] functionals of this form have been
the basis of a well known model for solid-solid phase transformations. The basic idea was that deformations of
the material will attempt to minimise an energy functional of the form

I (u) =
∫

Ω

φ (Du (x)) dL2x (7)

where φ is the free energy per unit volume in Ω. Many features of minimising sequences can be understood from
the set {F : φ (F ) = 0}. This set is known as the energy wells of the functional I. Certain natural assumptions
on the behavior of φ, in particular frame indifference, imply that K has to be of the form

K = {SO (3)Ai : i = 1, 2, . . .m} (8)

where the Ai are symmetry related and depend on the action of the phase transition.
Functional I is not quasiconvex and so minimisers can not be found by lower semicontinuity, however as

stated, from the work of Dacorogna and Marcellini, Müller and Šverák there exists absolute minimisers to I. It
is the existence of these functions that make Problem A interesting.

A some what different but nevertheless relevant theorem is [11], Theorem 3.1.

Theorem 1.2 (Friesecke, James, Müller). Let U be a bounded Lipschitz domain in R
n, n ≥ 2. The exists

a constant C (U) with the following property. For each v ∈ W 1,2 (U,Rn) there exists an associated rotation
R ∈ SO (n) such that

‖Dv −R‖L2(U) ≤ C (U) ‖dist (Dv, SO (n)) ‖L2(U). (9)

In [4] Theorem 1.2 was proved for the set K̃ = SO (2)∪SO (2)H where H = diag (λ1, λ2, . . . λn), λi > 0 is such
that

n∑

i=1

(1 − λi)
(

1 − det (H)
λi

)
> 0. (10)

1 Thanks to Sergio Conti for pointing this out.
2 Though this discrete problem remains very much open.
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Specifically it was shown that for each u ∈ W 1,2 (Ω,Rm) there exists R ∈ K̃ such that

‖Du−R‖L2(Ω) ≤ C (Ω, H) ‖dist
(
Du, K̃

)
‖L2(Ω).

Condition (10) forces the wells SO (n) and SO (n)H to be strongly incompatible, in particular H is not rank-1
connected to SO (n).

In our case (where H is rank-1 connected to SO (2)) Theorem 1.2 is trivially false without additional condi-
tions (a simple laminate being the counter example).

Our additional conditions are to bound ‖D2u‖L1(Ω) by a small but fixed constant and to constrain u to be
bilipschitz3, and we obtain the weaker bound.

‖Du−RJ‖L1(Qc4 (0)) ≤ c4
(‖dist (Du,K) ‖L1(Q1(0))

) 1
800 .

After this paper was submitted, we learned of the relevance of the work of Conti, Schweizer [8] on the Gamma
limit of functional I with surface energy term, where I has linearised wells. Using methods of [9] (for the
non-linear functional) Conti, Schweizer proved a strong generalisation of Theorem 1.1, their strategy was to use
hypotheses (4) and (5) to deduce

∫
Q1(0) d (Du (z) , SO (2)J) ≤ κm0 for some J ∈ {Id,H}, the theorem then

follows from Theorem 1.2. For a simple proof of Theorem 1.1 in the plane via application of Theorem 1.2, see
[14].

2. Plan of proof

Strategy:

We will gain control of function u in a central subsquare by surrounding the central subsquare with a “diamond”.
Along the sides of the diamond we will show Du is L1 close to a fixed rotation, the control in the central
subsquare follows from this. Showing Du on a line l is L1 close to a fixed rotation is “more or less” equivalent
to showing u (l) is “roughly” mapped to a straight (unstretched) line. We will develop methods that show that
for many lines in Q1 (0) (in the directions of the sides of the diamond), function u maps the lines to “roughly”
straight (unstretched) lines.

2.1. The push over lemma

H =
(

σ 0
0 σ−1

)
. To begin with note that there are two linearly independent vectors φ1 and φ2 such that

|Hφi| = 1 for i = 1, 2. A short calculation gives that we can take φ1 =
( 1√

1+σ2
σ√

1+σ2

)
and φ2 =

( 1√
1+σ2
−σ√
1+σ2

)
. Let ni

denote the anticlockwise normal to φi for i = 1, 2.
Now the most basic example of a function satisfying the affine boundary condition that minimises bulk

energy is a laminate. In the reference configuration this can be seen as a function defined on a collection of
strips running parallel to either φ1 or φ2 for which the derivative of the laminate alternates from one strip to the
next from being in SO (2) to being in SO (2)H . For simplicity, let us suppose the strips are parallel to φ1 and
let us denote the laminate by u. Now if all our strips are of width w, by Fubini and the fact that det (H) = 1
and |Hφ1| = 1 we know that the images of our strips under the action of u will be strips of width w, as shown
Figure 1.

For a general function v with small bulk energy (i.e.
∫
Ω

d (Dv (x) , SO (2) ∪ SO (2)H) dL2x < ε) we will
examine the behaviour of v on lines parallel to φi. Roughly speaking it will turn out that if l1 is parallel to l2

3 Note that the fact we only have an L1 bound on D2u is important, for Lq bounds on D2u a much stronger result is possible,
see [14]. Also note that for a finite L2 bound on D2u the result can easily be deduced from Lemma 4 of [4].
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Figure 1. The pullback of a straight line by a laminate function.

and the two lines are distance w apart, then v(l1) will have to stay distance w away from v(l2). This is a
consequence of the following inequality

|Hψ| ≥ ψ · ni for all ψ ∈ S1. (11)

For the proof of which, see the argument following (27).
Firstly, suppose for two parallel lines l1, l2 in direction φ1 that are distance w apart we have that v (l1), v (l2)

are distance (much) less than w apart at some point, as shown in Figure 2 .
Let α be the line of length less than w joining v (l1) to v (l2). Using bilipschitzness of v and a Fubini argument,

we can assume α is such that
∫

α
d
(
Dv
(
v−1 (x)

)
, SO (2) ∪ SO (2)H

)
<

√
ε. We consider the preimage v−1 (α).

We want to use the formula H1 (α) =
∫

v−1(α)
|Dv (x) t (x)| dH1x and the fact that H1

(
v−1 (α)

) ≥ w to get a
contradiction from the assumption H1 (α) � w.

Assume for simplicity Dv
(
v−1 (x)

) ∈ N√
ε (SO (2) ∪ SO (2)H) for all x ∈ α. For each x ∈ α let G (x) ∈

SO (2) ∪ SO (2)H be the matrix such that
∣∣Dv

(
v−1 (x)

)−G (x)
∣∣ = d

(
Dv
(
v−1 (x)

)
, SO (2) ∪ SO (2)H

)
, and

let tx denote the tangent to v−1 (α) at point x. We have

H1 (α) =
∫

v−1(α)

∣
∣Dv

(
v−1 (x)

)
tx
∣
∣dH1x

≥
∫

v−1(α)

|G (x) tx| dH1x−√
εH1

(
v−1 (α)

)

(11)

≥ L1
(
Pφ⊥

i

(
v−1 (α)

))−√
εH1

(
v−1 (α)

)

= w −√
εH1

(
v−1 (α)

)
.



A TWO WELL LIOUVILLE THEOREM 315
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Figure 2. The pullback of the shortest line joining v (l2) to v (l1).

Assuming v is bilipschitz (and so H1
(
v−1 (α)

)
is not too big) this implies the images of lines l1 and l2 must

be (by at least (1 − c
√
ε)w) “pushed over” from one another, i.e. we can not find a line α of length less than

(1 − c
√
ε)w joining v (l1) to v (l2). This is our first restriction on the geometry of the function we want to study,

just coming from smallness of bulk energy.

2.2. ODE method

We consider the same picture as before but from a different perspective. So l1, l2, . . . are lines in direction φ1

going through Ω and we consider the images v (l1) , v (l2) , . . . Now supposing we were on a point x ∈ v (l1) and
we wanted to get to v (l2) via a path in v (Ω) of the shortest length. If we start at point s the most obvious
thing to do is to “draw a straight line” to the nearest point of v (l2). But supposing we are “blind” and we can
not see which straight line to draw, suppose we have to find the path just using analytic information we have
about v.

The most natural way to do it would be to consider the vector field given by the gradient of the function
Ψ1 : v (Ω) → R

2 defined by Ψ1 (x) := v−1 (x) · n1 note v (l1), v (l2) are the level sets of Ψ1. If we “follow” the
vector field from point x it will indeed take us along the optimal path to v (l2). But “following” a vector field
is exactly finding an integral curve for a vector field, which means solving the following ODE

X (0) = x
dX
dt

(t1) = DΨ1 (X (t1)) . (12)

Now if point y ∈ {X (t) : t > 0} is such that Dv
(
v−1 (y)

) ∈ N√
ε (SO (2) ∪ SO (2)H) we calculate that

DΨ1 (y) = Dv−T (y) · n1. Letting R
(
v−1 (y)

)
S
(
v−1 (y)

)
:= Dv

(
v−1 (y)

)
be the polar decomposition of

Dv
(
v−1 (y)

)
(i.e. R

(
v−1 (y)

) ∈ SO (2) and S
(
v−1 (y)

) ∈ M2×2
sym ) we have Dv−T (y)n1 =

R
(
v−1 (y)

)
S−1

(
v−1 (y)

)
n1 and as S

(
v−1 (y)

) ∈ N√
ε ({Id,H}) so either S

(
v−1 (y)

) ∈ N√
ε (Id) and so
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Figure 3. The integral path of the vector field Ψ1.

∣
∣S
(
v−1 (y)

)
n1

∣
∣ ≈ 1 or S

(
v−1 (y)

) ∈ N√
ε (H) and so

∣
∣S
(
v−1 (y)

)
n1

∣
∣ ≈ ∣

∣H−1n1

∣
∣ = 1. So assuming the

path of the vector field is such that Dv stays close to the wells SO (2)∪ SO (2)H , if Λ is a connected subset of
the set {X (t) : t > 0} with end points e ∈ v (l2), s ∈ v (l1) then

|Ψ1 (e) − Ψ1 (s)| =
∣
∣(v−1 (e) − v−1 (s)

) · n1

∣
∣ ≈ H1 (Λ) . (13)

So in Figure 3, as v−1 (s) ∈ l1 and v−1 (e) ∈ l2 then H1 (Λ) ≈ w, but on the other hand, by the push over
lemma we know that |s− e| can not be much less than w, this implies Λ must be close to a straight line.

2.3. Finding lines in a grid of good subsquares

Suppose u is an invertible function with
∫
Ω d (Du (z) , SO (2) ∪ SO (2)H) dL2z ≤ δ2 and

∫
Ω

∣
∣D2u (z)

∣
∣ dL2z ≤

1
1000 . It follows from the “push over lemma” and the “ODE method” that if we can find many paths X (0) = x0,
dX
dt (t0) = DΨ1 (X (t0)) in u (Ω) where the path {X (t) : t > 0} is mostly contained in the set

{
z ∈ u (Ω) : d

(
Du
(
u−1 (z)

)
,K
)
< δ
}

then we have that these paths are mostly straight and so we can control function u on the path, specifically u
is L∞ close to a rotation.

So the problem becomes how to find these paths. The key observation that allows us to find them is the
following:

Suppose we have a point x0 ∈ u (Ω) where the path

X (0) = x0 and
dX
dt

(t0) = DΨ1 (X (t0)) (14)
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stays mostly in the set
{
z ∈ u (Ω) : d

(
Du
(
u−1 (z)

)
, SO (2)

)
< δ
}

then from the study we made in Section 2.1
we know u−1 ({X (t) : t > 0}) will be “roughly” a line in direction n1.

Conversely if we manage to find a line L in direction n1 where Du on Ω∩L stays mostly within Nδ (SO (2))
then u (Ω ∩ L) will “roughly” form an integral curve to DΨ1 and the path u (Ω ∩ L) will stay mostly in the set{
z ∈ u (Ω) : d

(
Du
(
u−1 (z)

)
, SO (2)

)
< δ
}
. So instead of trying to find paths X : [a, b] → u (Ω) that satisfy (14)

for which Du on X ([a, b]) stays L1 close to the wells SO (2) ∪ SO (2)H , we can look for a straight lines in
direction n1 in Ω for which Du stays L1 close to SO (2). By Fubini there will be many lines L1 close to
SO (2) ∪ SO (2)H and by the bound on surface energy, many of these lines will either be L1 close to SO (2) or
SO (2)H .

To summarise, what we have gained is that in the reference configuration (i.e. in Ω) we need only look for
straight lines with low bulk energy, and by Fubini there will be plenty of these. The cost is that Du must stay
close to the well SO (2).

2.3.1. The grid

First we will repeat the idea given in Section 2.3 with a bit more detail. Let δ > 0 be some small number
and m be a large integer. Suppose we had an invertible function u : Q1 (0) → R

2 with

∫

Q1(0)

d (Du (z) , SO (2) ∪ SO (2)H) dL2z ≤ δ2 (15)

and ∫

Q1(0)

∣
∣D2u (z)

∣
∣ dL2z ≤ 1

1000
· (16)

Suppose also we have an m × m grid of subsquares T := {Q1, Q2, . . . Qm2} that cover Q1 (0) for which we
have a subcollection G such that Card (T \G) ≤ (1 − δ)m2 and G has the following property; for any Qk ∈ G
there exists Rk ∈ SO (2), Jk ∈ {Id,H} such that

∫
Qk

|Du (z) −RkJk| dL2z ≤ δm−2. Then by the bound on
surface energy (16) we must be able to find many lines L in direction n1 such that {Qk ∈ G : Qk ∩ L �= ∅} are
all subsquares with Du close to either SO (2) or all of them are such that Du is close to SO (2)H . If we know
additionally that

∫
Q1(0)

d (Du (z) , SO (2)) dL2z ≤ ∫
Q1(0)

d (Du (z) , SO (2)H) dL2z then we could in fact find
many lines in direction n1 (or direction n2) on which Du stays close to SO (2).

As we have argued, the u image of these lines will form paths which (roughly speaking) solve the ODE (14)
and stay mostly inside the set

{
z ∈ u (Q1 (0)) : d

(
Du
(
u−1 (z)

)
, SO (2)

)
< δ
}

and hence by the push over lemma
(i.e. using (13)) and the ODE method, these paths will form mostly straight lines.

Now given that there are many lines L in directions n1 and n2 on which Du stays close to a fixed (depending
only on the line) rotation, it is easy to show that some central subsquare S̃ (whose size is determined by the
eigenvalues of matrix H) must be “surrounded” by the boundary of a “diamond” whose sides are parallel to
n1, n2 and form subsets of these “controlled” lines (see Fig. 7). So on each of these four lines, (call them
L1, L2, L3, L4) Du must be L1 close to a fixed rotation Rk. One of the main reasons for working on the grid
is that when two lines (say L1, L2) intersect on a “good” subsquare Qk ∈ T on which Du ≈ R1, Du ≈ R2 we
have R1 ≈ R2. So if we manage to find our four lines L1, L2, L3, L4 such that they only intersect on “good
subsquares” function u on the boundary of the diamond will be L1 close (with error δ

1
8 say) to a fixed rotation.

Since there are so many good subsquares finding these four lines is just a matter of careful counting.
Once this is established, by integrating the function in direction φ1 (note |Du (x)φ1| ≈ 1 for any x ∈ Q1 (0)

such that Du (x) is close to the wells SO (2) ∪ SO (2)H) from one side of the boundary of the diamond to the
other we can show that inside the diamond, Du will be mostly close to a rotation R with error say δ

1
16 .

So if for some δ which is approximately a root power of κm0 if we can find such a grid we will be in a position
to argue the statement of Theorem 1.1.

Ideas similar to this have been used in plate theories, specifically decomposing a region into squares on which
a rigidity theorem is applied. See [11] Section 4, and [17].
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2.4. The “weak” two well Liouville theorem

Recall our main theorem is a kind of Liouville theorem for functions with small (fixed) surface energy but
much much smaller bulk energy, where the control of the derivative of the function inside a central subsquare
is of some root power of the bulk energy.

We can have a “weaker” theorem of this type (weaker because the control of the derivative in the central
subsquare will be bounded by the surface energy) as a simple corollary of the BV Poincaré inequality; by the

inequality if we let A =
∫

Q1(0) Du(z)dL2z

4 then we have

∫

Q1(0)

|Du (z) −A| dL2z ≤ c

∫

Q1(0)

∣∣D2u (z)
∣∣dL2z ≤ cκ.

And its easy to see A ∈ Nκ (SO (2) ∪ SO (2)H).

2.5. Carefully scaling of the “weak” two well Liouville Theorem

Suppose function u is such that
∫

Q1(0) d (Du (z) , SO (2)) dL2z ≤ ∫
Q1(0) d (Du (z) , SO (2)H) dL2z and

satisfies (4), (5).
Recall we want a grid of subsquares T := {Qk : k = 1, 2, . . .} that cover Q1 (0) for which there is a subset

G ⊂ T such that for some (possible large) q ∈ N we have

•
Card (T \G) ≤ κ

m0
q Card (T ) . (17)

• For each Qk ∈ G there exists Rk ∈ SO (2), Jk ∈ {Id,H} such that

∫

Qk

|Du (z) −RkJk| dL2z ≤ κ
m0
q L2 (Qk) . (18)

Since m0 can be arbitrarily big we can in effect have as much control of bulk energy as we like and so we
need only concentrate on the surface energy. However surface energy being the gradient of Du means that it is
“morally speaking” one dimension lower than the estimate on bulk energy. If we take a grid with elements of
diameter h, we can think of the measure A→ ∫

A

∣
∣D2u (z)

∣
∣ dL2z as being a “one dimensional set” of length ≤ κ

spread out across the elements of the grid.
So if we take the set of “bad” grid elements Qk for which

∫
Qk

∣
∣D2u (z)

∣
∣ dL2z ≥ κ

m0
q h, the total sum of

the lengths of the bad grid elements will be less than κ1−m0
q which is κ−

m0
q times longer than the original

“one dimensional” set of surface energy. However we are interested in establishing estimate (17) which is a
“two dimensional” estimate because Card (T ) ≈ 1

h2 so the set of bad grid elements is negligible.
Since by the bulk energy estimate we easily have that most of the elements Qk are such that

∫

Qk

d (Du (z) , SO (2) ∪ SO (2)H) dL2z ≤ κ
m0
q h2

we have the conditions to apply the “weak two well Liouville theorem” on “most” of the elements Qk of the
grid and this give us (17), (18). Hence we have the grid we need. Technicalities aside these are all the elements
need for the proof.

We will prove Theorem 2.1, Theorem 1.1 follows by symmetry. Note that throughout the proof c will denote
all unimportant constants depending only on σ, ζ1, ζ2.

Theorem 2.1. Let 0 < ζ1 < 1 < ζ2 < ∞. Let H =
(

σ 0
0 σ−1

)
for σ ∈ (0, 1). Let K := SO (2) ∪ SO (2)H.

Let u ∈ W 1,2 (Q1 (0)) be a C1 bilipschitz function with Lip (u) < ζ2, Lip
(
u−1
)
< ζ−1

1 . There exists positive
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constants c1, c3, c4 < 1 and c2, c5 > 1 depending on σ, ζ1, ζ2 such that if k ∈ (0, c1], m0 ≥ c2 and function u
satisfies

∫

Q1(0)

d (Du (z) ,K) dL2z ≤ κm0 (19)
∫

Q1(0)

∣
∣D2u (z)

∣
∣dL2z ≤ c3κ (20)

∫

Qc4 (0)

d (Du (z) , SO (2)H) dL2z ≤
∫

Qc4 (0)

d (Du (z) , SO (2)) dL2z (21)

then there exists R1 ∈ SO (2) such that
∫

Qc4 (0)

|Du (z) −R1H | ≤ c5κ
m0
800 .

3. Preliminary notation

Let H =
(
σ 0
0 σ−1

)
for σ ∈ (0, 1). Throughout all the lemmas we take

K := SO (2) ∪ SO (2)H. (22)

Let 0 < ζ1 < 1 < ζ2 <∞. Define

D (ζ1, ζ2) :=
{
M ∈M2×2 : inf

v∈S1
|Mv| ≥ ζ1 and sup

v∈S1
|Mv| ≤ ζ2

}
. (23)

Given a C1 invertible function u : Ω → R
2, u being bilipschitz with Lip (u) ≤ ζ2, Lip

(
u−1
) ≤ ζ−1

1 is
equivalent to

Du (z) ∈ D (ζ1, ζ2) for all z ∈ Ω.
The latter formulation will be more convenient for us. Let

R (z, α, β) :=
{
x ∈ R

2 : |(z − x) · e1| ≤ β, |(z − x) · e2| ≤ α
}
.

4. Push over lemma

This is the push over Lemma described in Section 2.1 of the introduction. The proof is essentially a calculation,
see Section 2.1 for a explanation of why it works.

Lemma 4.1. Let 0 < ζ1 < 1 < ζ2 <∞. Let K be as in (22). Let u ∈W 2,1 (Q1 (0)) be a C1 invertible function
with the property that Du (x) ∈ D (ζ1, ζ2) for all x ∈ Q1 (0). Let

φ1 =

(
1√

1+σ2
σ√

1+σ2

)

, φ2 =

( −1√
1+σ2
σ√

1+σ2

)

note that |Hφi| = 1 for i = 1, 2. (24)

Let ni denote the anti-clockwise normal to φi for i = 1, 2.
Let i ∈ {1, 2}. For any s, e ∈ u (Q1 (0)), such that η := [s, e] ⊂ u (Q1 (0)) and

∫

η

d
(
Du
(
u−1 (z)

)
,K
)
dH1z < α |s− e| (25)
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then
|s− e| > ∣∣(u−1 (s) − u−1 (e)

) · ni

∣
∣− ζ−1

1 α |s− e| . (26)

Proof. We begin with the main inequality.

Step 1. Let i ∈ {1, 2}, for any ψ ∈ S1

|Hψ| ≥ ψ · ni. (27)

Proof of Step 14. This follows by self adjointness of H and Cauchy Schwartz inequality, let ψ
 denote the
clockwise normal to ψ

ψ · ni = ψ
 · φi

= H−1ψ
 ·Hφi

≤
∣∣
∣H−1ψ


∣∣
∣

= |Hψ| .

Proof of Lemma. Let J : u (Q1 (0)) → R be defined by J (x) = d
(
Du
(
u−1 (x)

)
,K
)
. We let tx ∈ S1 denote the

tangent to the curve u−1 (η) at point x

∫

η

J (z) dH1z =
∫

u−1(η)

|Du (x) tx| J (u (x)) dH1x

≥ ζ1

∫

u−1(η)

J (u (x)) dH1x.

So using (25) we have

ζ−1
1 α |s− e| ≥

∫

u−1(η)

d (Du (x) ,K) dH1x. (28)

Now for each x ∈ u−1 (η), let G (x) ∈ K be the matrix such that d (Du (x) ,K) = |Du (x) −G (x)|. Let
E (x) = Du (x) −G (x), note that |E (x)| = d (Du (x) ,K). So

|s− e| = L1 (η)

=
∫

u−1(η)

|Du (x) tx| dH1x

≥
∫

u−1(η)

|G (x) tx| − |E (x) tx|dH1x

(27)

≥
∫

u−1(η)

tx · ni −
∫

u−1(η)

|E (x) tx| dH1x

(28)

≥ L1
(
Pφ⊥

i

(
u−1 (η)

))− ζ−1
1 α |s− e|

=
∣
∣(u−1 (s) − u−1 (e)

) · ni

∣
∣− ζ−1

1 α |s− e| . �

5. Weak two well Liouville theorem

Lemma 5.1 is the “weak two well Liouville Theorem” described in Section 2.4 of the introduction. The proof
is simply a matter of applying the BV Poincaré inequality.

4 I would like to thank Laszlo Szekelyhidi for the following argument.
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Lemma 5.1. Suppose u ∈ W 2,1 (Q1 (0)) ∩ C1 with the property that for constant ζ2 > 1 we have Du (z) ∈
D (0, ζ2) (see definition (23)) for all z ∈ Q1 (0). Let K be as in (22). Suppose κ > 0 is a small number and that
u satisfies the following inequalities ∫

Q1(0)

d (Du (z) ,K) dL2z ≤ κ (29)

∫

Q1(0)

∣
∣D2u (z)

∣
∣dL2z ≤ κ (30)

then for some R ∈ SO (2), J ∈ {H, Id} we have
∫

Q1(0)

|Du (z) −RJ | dL2z < cκ. (31)

Proof. Let A = 1
4

∫
Q1(0)Du (z) dL2z. By the BV Poincaré inequality (see Th. 3.43 [1]) we have

∫

Q1(0)

|Du (z) −A| dL2z ≤ c

∫

Q1(0)

∣
∣D2u (z)

∣
∣dL2z

≤ cκ. (32)

And

4d (A,K) ≤
∫

Q1(0)

|A−Du (z)| dL2z +
∫

Q1(0)

d (Du (z) ,K) dL2z

(29),(32)

≤ 2cκ. (33)

So there exists R ∈ SO (2), J ∈ {H, Id} such that |A−RJ | = d (A,K) and by (32) and (33) satisfies (31). �

Definition 5.2. Given vectors v1, v2 ∈ S1 and δ > 0 we define a grid G (v1, v2, δ) as follows.

G (v1, v2, δ) := {P (k1δv1 + k2δv2, v1, v2, δ) : P (k1δv1 + k2δv2, v1, v2, δ) ⊂ Q1 (0) , k1, k2 ∈ Z}

where P (x1, v1, v2, δ) is a parallelogram centered on x1 whose sides are parrel to v1, v2 and of length δ. Note
that the grid is the set of parallelograms inside Q1 (0).

6. Scaling lemma

In this lemma we set up the grid described in Sections 2.3.1 and 2.5 of the introduction. The proof is a
matter of simple scaling and counting.

Lemma 6.1. Let Q1 (0) be the unit square in R
2. Let K be as in (22). Let integer m0 be large. Given

u ∈W 1,2 (Q1 (0)) ∩ C1 that for small κ > 0 satisfies the following properties,
•

Du (x) ∈ D (0, ζ2) for all x ∈ Q1 (0) .
• ∫

Q1(0)

d (Du (z) ,K) dL2z ≤ κm0 (34)

• ∫

Q1(0)

∣
∣D2u (z)

∣
∣ dL2z ≤ 1. (35)



322 A. LORENT

m /20κ

2 σ−2 κm 0

σ −22 κm 0/2

/2

κm 0/2

Figure 4. Elements of the grid G
(
w1, w2, κ

m0
2

)
.

Let w1, w2 ∈ S1 be vectors such that w1 · w2 ∈ (−1 + 2σ6, 1 − 2σ6
)
. Then we can find a subcollection G ⊂

G
(
w1, w2, κ

m0
2

)
with the following properties

• Card
(
G
(
w1, w2, κ

m0
2

)
\G
)
≤ cκ−

3m0
4 .

• For any P ∈ G there exists R ∈ SO (2), J ∈ {H, Id} such that

∫

P

|Du (z) −RJ |dL2z ≤ cκ
m0
4 κm0 . (36)

Proof. First note that P (0, w1, w2, 1) ⊂ Q1 (0). We define zk1,k2 := k1w1 + k2w2.

Let W :=
{
(k1, k2) : Q

κ
m0
2

(zk1,k2) ⊂ Q1 (0)
}
. Let θ > 0 be the angle between w1 and w2. Now

(
sin θ

2

)2
=

1−cos θ
2 ≥ σ6, so sin θ

2 ≥ σ3. From this it follows that the width or height (which ever is smaller) of any

parallelogram P ∈ G (w1, w2, 1) is greater than σ3. Now G
(
w1, w2, κ

m0
2

)
\W are the set of parallelograms close

to the boundary, as can easily be seen from Figure 4

Card
(
G
(
w1, w2, κ

m0
2

))
− Card (W ) < cκ−

m0
2 . (37)

Let

B1 :=





(k1, k2) ∈W :

∫

Q
κ

m0
2

(zk1,k2)
d (Du (z) ,K) dL2z ≥ κ

5m0
4





. (38)
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σ

1

2σ −2

3

Figure 5. The squares
{
Q

κ
m0
2

(zk1,k2)
}

centered on the elements of the grid.

Let

B2 :=





(k1, k2) ∈W :

∫

Q
κ

m0
2

(zk1,k2)

∣
∣D2u (z)

∣
∣dL2z ≥ κ

3m0
4





. (39)

Now as can seen from Figure 5,
{
Q

κ
m0
2

(zk1,k2) : (k1, k2) ∈W
}

can not overlap by more than c times. Formally

∑

(k1,k2)∈W

χQ
κ

m0
2

(zk1,k2) (z) ≤ c. (40)

So

Card (B1)κ
5m0

4 ≤
∑

(k1,k2)∈B1

∫

Q
κ

m0
2

(zk1,k2)
d (Du (z) ,K) dL2z

(40)

≤ c

∫

⋃
(k1,k2)∈B1

Q
κ

m0
2

(zk1,k2)
d (Du (z) ,K) dL2z

(34)

≤ cκm0 .

Thus
Card (B1) ≤ cκ−

m0
4 . (41)

In the same way

Card (B2)κ
3m0

4 ≤
∑

(k1,k2)∈B2

∫

Q
κ

m0
2

(zk1,k2)

∣
∣D2u (z)

∣
∣dL2z

≤ c

∫

⋃
(k1,k2)∈B2

Q
κ

m0
2

(zk1,k2)

∣∣D2u (z)
∣∣dL2z

(35)

≤ c.



324 A. LORENT

Thus
Card (B2) ≤ cκ−

3m0
4 . (42)

Now for any (k1, k2) ∈ W\ (B1 ∪B2) we can define function v on Q1 (0) by

v (z) = u
(
κ

m0
2 z + zk1,k2

)
κ−

m0
2 .

Since (k1, k2) �∈ B1 (see definition (38))
∫

Q1(0)

d (Dv (z) ,K) dL2z =
∫

Q
κ

m0
2

(zk1,k2)
d (Du (y) ,K)κ−m0dL2y

≤ κ
m0
4 .

Now since (k1, k2) �∈ B2, (see (39))
∫

Q1(0)

∣
∣D2v (z)

∣
∣dL2z =

∫

Q
κ

m0
2

(zk1,k2)

∣
∣D2u (y)

∣
∣ κ−

m0
2 dL2y

≤ κ
m0
4 .

Now we can apply Lemma 5.1 to v on Q1 (0) we can obtain that for some R ∈ SO (2), J ∈ {Id,H} we have
∫

Q1(0)

|Dv (z) −RJ |dL2z ≤ cκ
m0
4 .

Since P (0, w1, w2, 1) ⊂ Q1 (0) this of course implies
∫

P (0,w1,w2,1)

|Dv (z) −RJ | dL2z ≤ cκ
m0
4 . (43)

Now we scale this information back to learn about the derivative of u on P
(
zk1,k2 , w1, w2, κ

m0
2

)
. Recall

u (z) = κ
m0
2 v

(
z − zk1,k2

κ
m0
2

)
for z ∈ Q

κ
m0
2

(zk1,k2) .

So let y = (z − zk1,k2) κ−
m0
2 ,

∫

P
(

zk1,k2 ,w1,w2,κ
m0
2
) |Du (z) −RJ |dL2z =

∫

P (0,w1,w2,1)

|Dv (y) −RJ |κm0dL2y

(43)

≤ cκ
m0
4 κm0 . (44)

Let
G :=

{
P
(
zk1,k2 , w1, w2, κ

m0
2

)
: (k1, k2) ∈W\ (B1 ∪B2)

}

from (37), (41), (42) we have that

Card
(
G
(
w1, w2, κ

m0
2

)
\G
)
≤ cκ−

3m0
4 .

And by (44) any P ∈ G satisfies (36) and this completes the proof. �
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7. Following integral curves I

If we have a curve γ with endpoints a, b and |a− b| > H1 (γ)− δ we can show that the tangents (denote the
tangent at point z by tz) of the curve mostly point in direction a−b

|a−b| by the following trick

∫

γ

(
tz − a− b

|a− b|
)2

dH1z = 2H1 (γ) − 2
(∫

γ

tzdH1z,
a− b

|a− b|
)

= 2
(
H1 (γ) − |a− b|) < 2δ. (45)

Letting c1, c2 be the centres of P1, Pm1 respectively, the curve we will be considering is given by u ([c1, c2]).
Analogously to what we discussed in Section 2.4 of the introduction, if we have a line L parallel to H−1n1

such that
∫

L∩Q1(0)
d (Du (z) , SO (2)H) dH1z ≤ δ then the curve u ([c1, c2]) will form a small perturbation of an

integral curve to the vector field Ψ1 : u (Q1 (0)) → R (recall Ψ1 (x) := u−1 (x) ·n1). Since ||DΨ1 (z)| − 1| < δ for
all z such that d

(
Du
(
u−1 (z)

)
,K
)
< δ we have |(c1 − c2) · n1| = |Ψ1 (u (c1)) − Ψ1 (u (c2))| ≈ H1 (u ([c1, c2])).

However by (50) this is also the distance between the end points of the path u ([c1, c2]) and by a trick very
similar to (45) this gives (51), (52). We will have to use Lemma 7.4 a couple of times, for this reason we
formulate it in a more general way than would at first seem necessary.

Notation. Given a set of vectors {v1, v2, . . . vm} let 〈v1, v2, . . . vm〉 denote the span of these vectors, i.e.
〈v1, v2, . . . vm〉 = {∑m

i=1 λivi : λi ∈ R}.
Definition 7.1. A G-line inside grid G (w1, w2, α) is subset {P1, P2, . . . Pk1} ⊂ G (w1, w2, α) which form a con-
nected line of parallelograms in direction w1 or w2. Formally, {P1, P2, . . . Pk1} satisfies the following properties

• Pk ∩ Pk+1 �= ∅ for k ∈ {1, 2, . . . k1 − 1}.
• If C (Pk) denotes the center of the parallelogram Pk, then either

Pw⊥
1

(C (Pi)) = Pw⊥
1

(C (Pj)) for i, j ∈ {1, 2, . . . k1}

or
Pw⊥

2
(C (Pi)) = Pw⊥

2
(C (Pj)) for i, j ∈ {1, 2, . . . k1}

Definition 7.2. A complete G-line {P1, P2, . . . Pk1} inside grid G (w1, w2, α) is a G-line with the property that
d (P1, ∂Q1 (0)) ≤ 2κ

m0
2 and d (Pk1 , ∂Q1 (0)) ≤ 2κ

m0
2 . Informally, the G-line cuts right across the grid.

Definition 7.3. Given grid G (w1, w2, α), and G-line L we let

L̃ :=
⋃

P∈L

P.

Lemma 7.4. Let u ∈W 1,2
(
Q16ζ−1

1 ζ2
(0)
)

be an invertible C1 function with assumption that Du (z) ∈ D (ζ1, ζ2)
for all z ∈ Q16ζ−1

1 ζ2
(0). Let K be defined by (22). Let m0 ≥ 16. Let κ > 0 be a small number (depending on σ,

ζ1, ζ2), suppose function u satisfies the following properties:
(1) ∫

Q
16ζ

−1
1 ζ2

(0)

d (Du (z) ,K) dL2z ≤ κm0 . (46)

(2) There exist G-line {P1, P2, . . . Pm1} parallel to H−2ni

|H−2ni| inside grid G
(

H−2n1
|H−2n1| ,

H−2n2
|H−2n2| , κ

m0
2

)
and a

subset M0 ⊂ {P1, P2, . . . Pm1} such that
•

Card ({P1, P2, . . . Pm1\M0}) ≤ 2κp0κ−
m0
2 for some p0 ≥ m0

16
· (47)
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•
dist (P1, Pm1) >

σ2

16
· (48)

• For each P ∈M0 there exists R ∈ SO (2) such that

∫

P

|Du (z) −RH |dL2z ≤ cκ
m0
4 κm0 . (49)

And with the property that for some points x1 ∈ P1 and x2 ∈ Pm1 where x2−x1
|x2−x1| = H−2ni

|H−2ni| we have

||u (x1) − u (x2)| − |(x1 − x2) · ni|| < cκq0 for some q0 ≥ m0

8
· (50)

Then let R0 ∈ SO (2) be such that R0H
−1n1 = u(x2)−u(x1)

|u(x2)−u(x1)| , there exists a subset M1 ⊂M0 with

Card (M0\M1) ≤ c
(
κ

p0
2 + κ

q0
2

)
κ−

m0
2 (51)

such that for any P ∈M1 we have

∫

P

|Du (z) −R0H | dL2z ≤ c
(
κ

p0
4 + κ

q0
4

)
κm0 . (52)

Proof.

Step 1. There exists w1 ∈ P1, w2 ∈ Pm1 such that if v1 := u(w2)−u(w1)
|u(w2)−u(w1)| then

∫ w2

w1

∣
∣Du (x)H−2ni − v1

∣
∣2 dH1x < c (κp0 + κq0) . (53)

Proof of Step 1. Define O : M0 → SO (2) as follows. For each P ∈M0 let O (P ) ∈ SO (2) be a rotation (which
by definition of M0 we know exists) such that

∫

P

|Du (z) −O (P )H | dL2z ≤ cκm0κ
m0
4 . (54)

We define function

Ẽ (z) :=

{
|Du (z) −O (P )H | z ∈ M̃0

2ζ2 z �∈ M̃0.
(55)

So using (47)

∫

⋃m1
k=1 Pk

Ẽ (z) dL2z ≤ cκm0κ
m0
4 Card ({P1, P2, . . . Pm1} ∩M0)

+2ζ2κm0Card ({P1, P2, . . . Pm1} \M0)
(47)

≤ cκ
m0
4 κ

m0
2 + 4ζ2κp0κ

m0
2

≤ cκp0κ
m0
2 . (56)
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H
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n 2nH

−2
1

e 1
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~
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3σ  /(σ  +1)6

Figure 6. The central region Ỹ in which we gain control of our function.

Now its a calculation to see H−2n1
|H−2n1| =

(
1√

1+σ6

σ3√
1+σ6

)

so
∣
∣∣ H−2n1
|H−2n1| · e2

∣
∣∣ ≥ σ3

2 . Now we will take a diamond of side

length 1 with sides parallel to H−2ni

|H−2ni| for i = 1, 2. The length of the smallest projection will be greater than
σ3

2 , see Figure 6. Now {Pk : k = 1, . . .m1} are diamonds of side length κ
m0
2 with sides parallel to H−2ni

|H−2ni| for
i = 1, 2. So

P(H−2n1)
⊥ (Pk) ≥ σ3κ

m0
2

4
· (57)

So by Fubini from (56) we must be able to find a point w1 ∈ P1 such that
∫

(w1+〈H−2ni〉)∩(⋃m1
k=1 Pk)

Ẽ (z) dL1z ≤ cκp0 . (58)

Take point w2 ∈ Pm1 ∩
(
w1 + 〈H−2ni〉

)
. Note that by Lipschitzness from (50) we have

||u (w1) − u (w2)| − |(w1 − w2) · ni|| ≤ c
(
κq0 + κ

m0
2

)
. (59)

For each x ∈ [w1, w2] let Γ (x) ∈ SO (2) be such that

d (Du (x) , SO (2)H) = |Du (x) − Γ (x)H | . (60)

From (24) we know
∣∣H−1ni

∣∣ =

∣
∣
∣∣
∣

(
σ−1 0
0 σ

)( ±σ√
(1+σ2)
1√

1+σ2

)∣∣
∣∣
∣
=

∣
∣
∣∣
∣

( ±1√
(1+σ2)
σ√

1+σ2

)∣∣
∣∣
∣
= 1. (61)

Thus
∣
∣
∣
∣Du (z)H−2ni

∣
∣− ∣∣Γ (z)H−1ni

∣
∣
∣
∣ ≤ 2

∣
∣Du (z)H−1 − Γ (z)

∣
∣

(60)

≤ 4σ−1d (Du (x) , SO (2)H) . (62)
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Hence from (55), (58), (62)

∣
∣
∣∣
∣

∫

[w1,w2]

∣∣Du (z)H−2ni

∣∣2 dL1z −
∫

[w1,w2]

∣∣Γ (z)H−1ni

∣∣2 dL1z

∣
∣
∣∣
∣

≤
∣
∣
∣
∣∣

∫

[w1,w2]

(∣∣Du (z)H−2ni

∣
∣− ∣∣Γ (z)H−1ni

∣
∣) (
∣
∣Du (z)H−2ni

∣
∣+
∣
∣Γ (z)H−1ni

∣
∣)dL1x

∣
∣
∣
∣∣

≤
∫

[w1,w2]

2
∣
∣
∣
∣Du (z)H−2ni

∣
∣− ∣∣Γ (z)H−1ni

∣
∣
∣
∣ ζ2σ−1dL1z

(62)

≤ 8ζ2σ−2

∫

[w1,w2]

d (Du (z) , SO (2)H) dL1z

(55)

≤ 8ζ2σ−2

∫

[w1,w2]

Ẽ (z) dL1z

(58)

≤ cκp0 .

Since from (61) we know
∣
∣Γ (x)H−1ni

∣
∣ =
∣
∣H−1ni

∣
∣ = 1 we have

∣∣
∣
∣
∣

∫

[w1,w2]

∣
∣Du (x)H−2ni

∣
∣2 dL1x− |w1 − w2|

∣∣
∣
∣
∣
≤ cκp0 . (63)

Let

v1 :=
u (w2) − u (w1)
|u (w2) − u (w1)| · (64)

So
∫

[w1,w2]

∣∣Du (z)H−2ni − v1
∣∣2 dL1z =

∫

[w1,w2]

∣∣Du (z)H−2ni

∣∣2 + |v1|2 − 2
(
Du (z)H−2ni, v1

)
dL1z

(63)

≤ 2 |w1 − w2| + cκp0 − 2
∣
∣H−2ni

∣
∣
(∫

[w1,w2]

Du (z)
H−2ni

|H−2ni|dL
1z, v1

)

= 2 |w1 − w2| + cκp0 − 2
∣
∣H−2ni

∣
∣ (u (w1) − u (w2) , v1) . (65)

Note from the definition of v1, (64)

∣
∣H−2ni

∣
∣ (u (w1) − u (w2) , v1) =

∣
∣H−2ni

∣
∣ |u (w1) − u (w2)| . (66)

As w2−w1
|w2−w1| = H−2ni

|H−2ni| so

|(w1 − w2) · ni| = |w1 − w2|
∣
∣∣
∣
H−2ni

|H−2ni| · ni

∣
∣∣
∣ . (67)

Putting (67) together with (59) we get

∣∣
∣
∣|u (w1) − u (w2)| − |w1 − w2|

∣∣
∣
∣
H−2ni

|H−2ni| · ni

∣∣
∣
∣

∣∣
∣
∣ ≤ c

(
κq0 + κ

m0
2

)
. (68)
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Note by self adjointness

H−2n1 · n1 = H−1n1 ·H−1n1

=
∣∣H−1n1

∣∣2

(61)
= 1. (69)

In the same way we can see that H−2n2 · n2 = 1. So applying (69) to (68) we have

∣
∣
∣
∣H−2ni

∣
∣ |u (w1) − u (w2)| − |w1 − w2|

∣
∣ ≤ c

(
κq0 + κ

m0
2

)
. (70)

So from (66) this implies

∣
∣|w1 − w2| −

∣
∣H−2ni

∣
∣ (u (w1) − u (w2) , v1)

∣
∣ ≤ c

(
κq0 + κ

m0
2

)
.

Applying this to (65) we get
∫

[w1,w2]

∣
∣Du (z)H−2ni − v1

∣
∣2 dL1z ≤ c (κp0 + κq0) . (71)

This completes the proof of Step 1.

Proof of lemma continued.
Now recall from (58) we know that

∫

[w1,w2]

Ẽ (z) dL1z ≤ cκp0 . (72)

So we can find a set of intervals I1, I2, . . . Im1−2 ⊂ [w1, w2] with Ik := [w1, w2] ∩ Pk for some k ∈ {1, 2, . . .m1}
and L1

(
[w1, w2] \

(⋃m1−2
k=1 Ik

))
≤ 3κ

m0
2 . Let

A1 :=
{
k ∈ {1, 2, . . .m1 − 2} :

∫

Ik

Ẽ (z) dL1z ≤ cκ
p0
2 L1 (Ik)

}
. (73)

Thus from (72)

cκ
p0
2




∑

k∈{1,2,...m1−2}\A1

L1 (Ik)



 ≤
∑

k∈{1,2,...m1−2}\A1

∫

Ik

Ẽ (z) dL1z

(72)

≤ cκp0 .

So
cκ

p0
2 ≥

∑

k∈{1,2,...m1−2}\A1

L1 (Ik) = Card ({1, 2, . . .m1 − 2} \A1)κ
m0
2 .

Hence
Card ({1, 2, . . .m1 − 2} \A1) ≤ cκ

p0
2 κ−

m0
2 . (74)

Let

A2 :=
{
k ∈ {1, 2, . . .m1 − 2} :

∫

Ik

∣
∣Du (z)H−2ni − v1

∣
∣2 dL1z ≤ c (κq0 + κp0)

1
2 κ

m0
2

}
.
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So from (53)

Card ({1, 2, . . .m1 − 2} \A2) c (κq0 + κp0)
1
2 κ

m0
2

≤
∑

k∈{1,2,...m1−2}\A2

∫

Ik

∣
∣Du (z)H−2ni − v1

∣
∣2 dL1z

≤ c (κp0 + κq0) .

Which implies

Card ({1, 2, . . .m1 − 2} \A2) ≤ c
(
κ

q0
2 + κ

p0
2

)
κ−

m0
2 . (75)

So for and k ∈ {1, 2, . . .m1 − 2} \ (A1 ∪A2), recalling definition (73) we have

∫

Ik

Ẽ (z) +
∣
∣Du (z)H−2ni − v1

∣
∣2 dL1z ≤ c

(
κ

p0
2 + κ

q0
2

)
κ

m0
2 .

Hence there must exist a point zk ∈ Ik such that

Ẽ (zk) +
∣
∣Du (zk)H−2ni − v1

∣
∣2 ≤ c

(
κ

p0
2 + κ

q0
2

)
.

So if P ∈ {P1, P2, . . . Pm1} \ (A1 ∪A2) by definition of Ẽ (see (55)) we have

|Du (zk) −O (P )H | ≤ c
(
κ

p0
2 + κ

q0
2

)
(76)

and
∣
∣Du (zk)H−2ni − v1

∣
∣2 ≤ c

(
κ

p0
2 + κ

q0
2

)
. (77)

Now (76) implies
∣∣Du (zk)H−2ni −O (P )H−1ni

∣∣ < c
(
κ

p0
2 + κ

q0
2

)
. (78)

And (77) implies
∣
∣Du (zk)H−2ni − v1

∣
∣ < c

(
κ

p0
4 + κ

q0
4

)
(79)

so adding (78) and (79) together gives

∣
∣O (P )H−1ni − v1

∣
∣ ≤ c

(
κ

p0
4 + κ

q0
4

)
. (80)

Let M1 := {Pk : k ∈ {1, 2, . . .m1 − 2} \ (A1 ∪A2)} ∩M0. Note by (75) and (74) we have

Card (M0\M1) ≤ c
(
κ

p0
2 + κ

q0
2

)
κ−

m0
2 . (81)

Let R1 ∈ SO (2) be the rotation such that

R1H
−1ni = v1, (82)
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recall (64) for a reminder of the definition of v1. Since |w1 − x1| < κ
m0
2 and |w2 − x2| < κ

m0
2 and from (48)

|x1 − x2| > σ2

32 (recall x1 ∈ P1, x2 ∈ Pm1). By bilipschitzness, from (64) making obvious estimates we obtain

∣
∣
∣
∣
u (x2) − u (x1)
|u (x2) − u (x1)| − v1

∣
∣
∣
∣ ≤ cκ

m0
2 . (83)

Now recall the definition of R0 in the statement of the lemma, R0H
−1ni := u(x2)−u(x1)

|u(x2)−u(x1)| . Hence from (83)
∣
∣R0H

−1ni −R1H
−1ni

∣
∣ < cκ

m0
2 which implies

|R0 −R1| ≤ cκ
m0
2 . (84)

So (80) implies that for any P ∈ {P1, P2, . . . Pm1} \ (A1 ∪A2),

|O (P ) −R0| ≤ ∣
∣O (P )H−1ni −R0H

−1ni

∣
∣

(82),(84)

≤ ∣
∣O (P )H−1ni − v1

∣
∣+ cκ

m0
2

(80)

≤ c
(
κ

p0
4 + κ

q0
4

)
. (85)

To summarise, by (81) we can find a set M1 ⊂M0 such that

• Card (M0\M1) ≤ c
(
κ

p0
2 + κ

q0
2

)
κ−

m0
2

• From (85), for each P ∈ M1 we have |O (P ) −R0| ≤ c
(
κ

p0
4 + κ

q0
4

)
and so putting this together with

(54)
∫

P

|Du (z) −R0H | dL2z ≤ c
(
κ

p0
4 + κ

q0
4

)
κm0 .

Thus M1 satisfies all the properties we want and hence we have established the lemma. �

8. Following integral curves II

As explained in the introduction to Lemma 7.4, Hypotheses (88) and (89) imply |(c1 − c2) · n1| ≈
H1 (u ([c1, c2])) where c1, c2 denote the centres of P1, Pn1 respectively. To recall, this is essentially because (88),
(89) imply u ([c1, c2]) is close to an integral curve of the vector field Ψ1 (x) where Ψ1 : u (Q1 (0)) → R is defined
by Ψ1 (x) := u−1 (x) · n1.

Now by the “push over” lemma, i.e. Lemma 4.1 (see Sect. 2.1 of the introduction) if we know

∫

u−1([u(c1),u(c2)])

d (Du (z) ,K) dH1z is small (86)

then |u (c1) − u (c2)| is (with some small error) greater than |(c1 − c2) · n1| and so the endpoints of u ([c1, c2]) are
pushed far enough apart to make u ([c1, c2]) an “almost” straight line, then we can simply apply Lemma 7.4 to
arrive at conclusions (90) and (91). The only issue is establishing (86) via the area formula, a Fubini argument
and Lipschitzness.
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Lemma 8.1. Let u ∈ W 2,1
(
Q16ζ−1

1 ζ2
(0)
)
∩ C1 be invertible with the assumption that Du (z) ∈ D (ζ1, ζ2) for

all z ∈ Q16ζ−1
1 ζ2

(0). Let K be defined by (22). Let m0 be a big integer. Let κ > 0 be a small number (depending
on σ, ζ1, ζ2), suppose function u satisfies the following properties:

(1)
∫

Q
16ζ

−1
1 ζ2

(0)

d (Du (z) ,K) dL2z ≤ κm0 . (87)

(2) There exists G-line {P1, P2, . . . Pm1} parallel to H−2ni

|H−2ni| inside grid G
(

H−2n1
|H−2n1| ,

H−2n2
|H−2n2| , κ

m0
2

)
and a

subset M ⊂ {P1, P2, . . . Pm1} such that
•

Card ({P1, P2, . . . Pm1} \M) ≤ 2κ
m0
16 κ−

m0
2 (88)

•
dist (P1, Pm1) >

σ3

8
·

• For each P ∈M there exists R ∈ SO (2) such that

∫

P

|Du (z) −RH |dL2z ≤ cκ
m0
4 κm0 . (89)

Then there exists a set M0 ⊂M and fixed R0 ∈ SO (2) such that

•
Card (M\M0) ≤ cκ

m0
32 κ−

m0
2 . (90)

• Every P ∈M0 satisfies the inequality

∫

P

|Du (z) −R0H | dL2z ≤ cκ
m0
64 κm0 . (91)

Proof.

Step 1. Let i ∈ {1, 2} be such that the G-line {P1, P2, . . . Pm1} is parallel to H−2ni

|H−2ni| . We will we show that for

any point x1 ∈ P1 and any point x2 ∈ Pm1 such that x2−x1
|x2−x1| = H−2ni

|H−2ni| we have the following inequality

|u (x1) − u (x2)| ≤ |(x1 − x2) · ni| + cκ
m0
16 . (92)

Proof of Step 1. We define the function E :
⋃m1

k=1 Pk → R by

E (x) =
{ |Du (x) −RkH | for x ∈ Pk ∈M where Rk ∈ SO (2) satisfies (89)

2ζ2 for x ∈ (
⋃m1

k=1 Pk) \M.
(93)

From (88), (89) we know

∫

⋃m1
k=1 Pk

E (x) dL2x ≤
∑

Pk∈M

∫

Pk

|Du (z) −RkH | dL2z + cκm0Card ({P1, P2, . . . Pm1} \M)

≤ cκ
m0
4 κ

m0
2 + cκ

m0
2 κ

m0
16

≤ cκ
m0
16 κ

m0
2 .
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Now in the same way as we deduced inequality (58) from inequality (56) in Lemma 7.4. Here we again use the

fact that PH−2n⊥
i

(
⋃m1

k=1 Pk) ≥ σ3 κ
m0
2

4 . So by Fubini, we must be able to find point z1 ∈ P1 and z2 ∈ Pm1 such

that z2−z1
|z2−z1| = H−2ni

|H−2ni| and
∫ z2

z1

E (x) dH1x ≤ cκ
m0
16 . (94)

We will first show the inequality for z1, z2. It will then follow by Lipschitzness. First note

∣
∣∣
∣

∫ z2

z1

Du (x) ·H−2ni

∣
∣∣
∣ =
∣∣H−2ni

∣∣ |u (z2) − u (z1)| . (95)

Now for each x ∈ [z1, z2], let Γ (x) ∈ SO (2)H be such that |Du (x) − Γ (x)| = d (Du (x) , SO (2)H). Note that
|Du (x) − Γ (x)| ≤ E (x).

From (61) we have
∣
∣Γ (x) ·H−2ni

∣
∣ =
∣
∣H−1ni

∣
∣ = 1 and so from (94)

∣
∣∣
∣

∫ z2

z1

Du (x) ·H−2nidL1x

∣
∣∣
∣ ≤

∣
∣∣
∣

∫ z2

z1

Γ (x) ·H−2nidL1x

∣
∣∣
∣+ σ−1

∫ z2

z1

E (x) dL1x

≤
∫ z2

z1

∣
∣Γ (x) ·H−2ni

∣
∣dL1x+ cκ

m0
16

≤ |z1 − z2| + cκ
m0
16 .

By (95) this implies
∣
∣H−2ni

∣
∣ |u (z2) − u (z1)| ≤ |z1 − z2| + cκ

m0
16 . (96)

Recall from (69) we have H−2ni · ni = 1. So since z2−z1
|z2−z1| = H−2ni

|H−2ni| from (96) we have

|u (z1) − u (z2)| ≤
∣
∣H−2ni

∣
∣−1
(
|z1 − z2| + cκ

m0
16

)

=
∣
∣
∣
∣
H−2ni

|H−2ni| · ni

∣
∣
∣
∣
(
|z1 − z2| + cκ

m0
16

)

≤ |(z1 − z2) · ni| + cκ
m0
16

and this completes the proof of this inequality for z1, z2. Since x1 ∈ B
κ

m0
2

(z1) and x2 ∈ B
κ

m0
2

(z2) inequal-
ity (92) in the statement of Step 1 follows by Lipschitzness.

Step 2. We will show that for any point x1 ∈ P1 and any point x2 ∈ Pm1 such that x2−x1
|x2−x1| = H−2ni

|H−2ni| we have
the following inequality

|u (x1) − u (x2)| ≥ |(x1 − x2) · ni| − cκ
m0
4 |x1 − x2| . (97)

Proof of Step 2. Let J (z) = d
(
Du
(
u−1 (z)

)
,K
)
. So by the area formula

∫

u

(
Q

16ζ
−1
1 ζ2

(0)

) J (z)
∣
∣det

(
Du
(
u−1 (z)

))∣∣−1
dL2z =

∫

Q
16ζ

−1
1 ζ2

(0)

J (u (z)) dL2z

=
∫

Q
16ζ

−1
1 ζ2

(0)

d (Du (x) ,K) dL2x

≤ κm0 .
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Since Du ∈ D (ζ1, ζ2) we know |det (Du (z))| ≤ ζ2
2 for all z ∈ Q16ζ−1

1 ζ2
(0). So

∫

u

(
Q

16ζ
−1
1 ζ2

(0)

) J (z) dL2z ≤ ζ2
2κ

m0 . (98)

Now as we know u is invertible and by assumption since ‖Du−1 (x) ‖ < ζ−1
1 , so u−1 is ζ−1

1 -Lipschitz. So
Q4ζ2 (u (0)) ⊂ u

(
Q16ζ−1

1 ζ2
(0)
)

since otherwise there would be a point q ∈ ∂Q16ζ−1
1 ζ2

(0) with |u (0) − u (q)| <
4ζ2. And hence |0 − q| ≥ 2ζ−1

1 |u (0) − u (q)| which contradicts ζ−1
1 -Lipschitzness of u−1.

Similarly, as u is ζ2-Lipschitz, so Q1 (0) ⊂ u−1 (Q4ζ2 (u (0))). So as for any two points, x1 ∈ P1, x2 ∈ Pm1 we
know that u (x1) , u (x2) ∈ Q4ζ2 (u (0)). Since Q4ζ2 (u (0)) is convex

[u (x1) , u (x2)] ⊂ Q4ζ2 (u (0)) ⊂ u
(
Q16ζ−1

1 ζ2
(0)
)
.

By a Fubini argument using (98) we must be able to find points z1 ∈ B
κ

m0
2

(u (x1)) and z2 ∈ B
κ

m0
2

(u (x2))
such that ∫ z2

z1

J (z) dL1z ≤ ζ−2
1 κ

m0
2 .

Now since x1 ∈ P1 and x2 ∈ P2 we know |x1 − x2| ≥ σ3

16 . By bilipschitzness this implies |u (x1) − u (x2)| > ζ1σ3

16

so |z1 − z2| > ζ1σ3

32 . Hence
∫ z2

z1

J (z) dL1z ≤ c |z1 − z2|κ
m0
2 .

We apply Lemma 4.1 to conclude that

|z1 − z2| ≥
∣∣(u−1 (z1) − u−1 (z2)

) · ni

∣∣− cκ
m0
2 |z1 − z2| . (99)

Now |z1 − u (x1)| < κ
m0
2 , |z2 − u (x2)| < κ

m0
2 which implies

∣
∣u−1 (z1) − x1

∣
∣ < ζ−1

1 κ
m0
2 and

∣
∣u−1 (z2) − x2

∣
∣ <

ζ−1
1 κ

m0
2 , so applying this to (99) gives Step 2.

Note, by putting Step 1 (92) and Step 2 (97) together we have

||u (x1) − u (x2)| − |(x1 − x2) · ni|| ≤ cκ
m0
16 . (100)

Notice that for p0 = m0
16 , q0 = m0

16 , (88), (100) give us the hypotheses to apply Lemma 7.4. So by Lemma 7.4
there exists a set M0 ⊂M and some fixed R0 ∈ SO (2) such that

Card (M\M0) ≤ cκ
m0
32 κ−

m0
2

and every P ∈M0 satisfies the inequality
∫

P

|Du (z) −R0H | dL2z ≤ cκ
m0
64 κm0 . �

9. Transferring orientation across lines

Now from hypotheses (101), (102), (103) and by Lemmas 6.1, 7.4, 8.1 we have the existence of a grid G and
many lines L in directions H−2n1 and H−2n2 for which Du on {P : P ∈ G,P ∩ L �= ∅} is “mostly” orientated
by R (L)H , R (L) ∈ SO (2). See Section 2.3.1 for a basic outline of the idea. What we would like to do
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Figure 7. Transferring orientation across G-lines.

is to surround a central subsquare in Q1 (0) with a “diamond” whose boundary is contained in the union of
lines L1, L2, L3, L4 in directions H−2n1, H−2n2 (see Fig. 6) such that Du on the set

{P : P ∈ G,P ∩ Li �= ∅ for some i ∈ {1, 2, 3, 4}}

is “mostly” orientated by RH for some fixed R.
It would then be a relatively elementary matter to show that most of the elements of the grid inside the

central subsquare are such that Du is orientated by RH ; we just need to notice that function u is fixed on the
endpoints of the lines in direction H−2ni intersected with the diamond, so we can apply Lemma 7.4 to them.

We only need to find the “diamond”. Note that if line L1 in direction H−2n1 and line L2 in direction H−2n2

intersect (inside Q1 (0)) and at the intersection they have an element of the grid G for which Du is orientated
both by R (L1)H and R (L2)H , then R (L1) ≈ R (L2). Our strategy for the proof is to find lines L1, L2, L3, L4

where we have this intersection of grid elements on which Du is orientated by R (Li) and R (Li+1) occurs
between L1 and L2, between L2 and L3 and between L3 and L4. The reason we can find these lines is that
there are so many lines in direction H−2n1 and H−2n2 which have most of the grid elements where Du along
them is orientated by a fixed rotation, so to find four lines that intersect three times on (mutually) orientated
grid elements is just a matter of careful counting. See Figures 7, 8, 9 for an impression of how we do this.

Recall definition (7.3), given a G-line L, we define L̃ to be the set given by the union of all the parallelograms
in L.

Lemma 9.1. Let u ∈ W 2,1
(
Q16ζ−1

1 ζ2
(0)
)

be C1 invertible with the assumption that Du (z) ∈ D (ζ1, ζ2) for all
z ∈ Q16ζ−1

1 ζ2
(0). Let K be as defined in (22). There exists constant c1 depending on σ, ζ1, ζ2 such that if
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Hn 1
−2

Hn
−2

2

Ki 0

L j1

L j2

L jk

iU 0

Ujk

j2

j1

1Θ 1/4

U
U

Figure 8. A closer view of how orientation is transfered.

function u satisfies the following inequalities
∫

Q
16ζ

−1
1 ζ2

(0)

d (Du (z) ,K) dL2z ≤ κm0 (101)

∫

Q
16ζ

−1
1 ζ2

(0)

∣
∣D2u (z)

∣
∣dL2z ≤ c1 (102)

∫

Q σ3

2
√

σ6+1

(0)

d (Du (z) , SO (2)H) dL2z ≤
∫

Q σ3

2
√

σ6+1

(0)

d (Du (z) , SO (2)) dL2z. (103)

Given grid G
(

H−2n1
|H−2n1| ,

H−2n2
|H−2n2| , κ

m0
2

)
there exists a complete G-lines Ki1 ,Ki3 in direction H−2n2 and complete

G-lines Ki2 ,Ki4 in direction H−2n1 which satisfy the following properties.

• The connected component of Q1 (0) \
(
K̃i0 ∪ K̃i1 ∪ K̃i2 ∪ K̃i3

)
containing zero also contains Q σ3

2
√

σ6+1

(0).

• There exists a subset M ⊂ Ki0 ∪Ki1 ∪Ki2 ∪Ki3 with the property that

Card ((Ki0 ∪Ki1 ∪Ki2 ∪Ki3) \M) < cκ
m0
32 κ−

m0
2 (104)

and for some fixed R ∈ SO (2), for any P ∈M we have

∫

P

|Du (z) −RH |dL2z ≤ cκ
m0
64 κm0 . (105)
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Hn 1
−2

Hn
−2

2

1/4
2C

Θ 2

j1

j2

jk H 2
L

L

L

H 3

Figure 9. The oriented G-lines reach the C2 corner.

Proof. To start with we know by Lemma 6.1 there is a subset G of the grid G
(

H−2n1
|H−2n1| ,

H−2n2
|H−2n2| , κ

m0
2

)
with the

following properties
•

Card
(
G

(
H−2n1

|H−2n1| ,
H−2n2

|H−2n2| , κ
m0
2

)
\G
)

≤ κ
m0
4 κ−m0 . (106)

• For any P ∈ G there exists R ∈ SO (2), J ∈ {Id,H} such that
∫

P

|Du (z) −RJ |dL2z ≤ cκ
m0
4 κm0 . (107)

Let vi denote the anticlockwise rotation of H−2ni

|H−2ni| for i = 1, 2. Now G
(

H−2n1
|H−2n1| ,

H−2n2
|H−2n2| , κ

m0
2

)
is made up of

a union of complete G-lines in direction H−2n1. We denote them K1,K2, . . .Kn2 where n2 is of order κ−
m0
2 .

And in the same way G
(

H−2n1
|H−2n1| ,

H−2n2
|H−2n2| , κ

m0
2

)
is made of the union of complete G-lines in direction H−2n2.

We denote them Kn2+1,Kn2+2, . . .K2n2 .
Observe Figure 6. It should be clear that there exists some constant aσ > 0 such that for any two G-lines

Ki, Kj such that
K̃i ∩ 〈e2〉 ⊂ [−aσe2, aσe2] , K̃j ∩ 〈e2〉 ⊂ [−aσe2, aσe2]

must be such that K̃i ∩ K̃j �= ∅. Its a calculation to see

H−2n1

|H−2n1| =

(
1√

1+σ6

σ3√
1+σ6

)

. (108)
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As can been seen from Figure 6 we can take

aσ =
H−2n1

|H−2n1| ·
(

0
1

)
=

σ3

√
σ6 + 1

· (109)

Let Ỹ denote the region enclosed by the lines
{

σ3e2√
σ6 + 1

+ 〈H−2n1〉, σ3e2√
σ6 + 1

+ 〈H−2n2〉, −σ3e2√
σ6 + 1

+ 〈H−2n2〉, −σ3e2√
σ6 + 1

+ 〈H−2n1〉
}

(110)

as shown in Figure 6.
Its a routine calculation to see that

d (SO (2) , SO (2)H) ≥ σ−1 + σ − 2 =: εσ.
5 (111)

Step 1. Let

E1 :=






k ∈ {1, 2, . . . n2} : There exists P1, P2 ∈ Kk ∩G with∫
P1

d (Du (z) , SO (2)H) dL2z < cκ
m0
4 κm0

∫
P2

d (Du (z) , SO (2)) dL2z < cκ
m0
4 κm0





,

F1 :=






i ∈ {n2 + 1, n2 + 2, . . . n2} : There exists Q1, Q2 ∈ Ki ∩M with∫
Q1

d (Du (z) , SO (2)H) dL2z < cκ
m0
4 κm0

∫
Q2

d (Du (z) , SO (2)) dL2z < cκ
m0
4 κm0





,

E2 :=
{
k ∈ {1, 2, . . . n2} : Card (Kk\G) ≥ κ

m0
8 κ−

m0
2

}
, (112)

and
F2 :=

{
i ∈ {n2 + 1, n2 + 2, . . . 2n2} : Card (Ki\G) ≥ κ

m0
8 κ−

m0
2

}
. (113)

We will show
Card (E1) ≤ 4c1

εσσ3
κ−

m0
2 . (114)

Card (F1) ≤ 4c1
εσσ3

κ−
m0
2 . (115)

Card (E2) ≤ cκ
m0
8 κ−

m0
2 . (116)

Card (F2) ≤ cκ
m0
8 κ−

m0
2 . (117)

Proof of Step 1. First we estimate the cardinality of E1. Let k1 ∈ E1 and let P1, P2 ∈ Kk1 ∩G such that
∫

P1

d (Du (z) , SO (2)H) dL2z ≤ cκ
m0
4 κm0 , (118)

∫

P2

d (Du (z) , SO (2)) dL2z ≤ cκ
m0
4 κm0 .

5 Identifying 2 × 2 matrices with 4 vectors in the obvious way, its enough to notice that the projection of











σ sin α
σ−1 cos α
σ−1 sinα
−σ cos α





 : α ∈ [0, 2π)





onto the subspace span












1
0
1
0





 ,







0
1
0
−1












forms as circle of radius σ + σ−1.
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Note that, as we have seen before (see (57), Lem. 7.4)

L1
(
Pv⊥

1
(P1)

)
≥ σ3

4
κ

m0
2 . (119)

Let
B1 :=

{
x ∈ Pv⊥

1
(P1) : inf

{
d (Du (z) , SO (2)H) : z ∈ P−1

v⊥
1

(x) ∩ P1

}
≥ κ

m0
8

}
.

So by (118) L1 (B1) κ
m0
8 κ

m0
2 ≤ cκ

m0
4 κm0 . Which implies

L1 (B1) ≤ cκ
m0
8 κ

m0
2 . (120)

Let
B2 :=

{
x ∈ Pv⊥

1
(P2) : inf

{
d (Du (z) , SO (2)) : z ∈ P−1

v⊥
1

(x) ∩ P1

}
≥ κ

m0
8

}
.

In the same way we have that
L1 (B2) ≤ cκ

m0
8 κ

m0
2 . (121)

Now for any x ∈ Pv⊥
1

(P1) \(B1 ∪B2) we have a point p (x) ∈ P1 such that d (Du (p (x)) , SO (2)H) < κ
m0
8 and

q (x) ∈ P2 such that d (Du (p (x)) , SO (2)) < κ
m0
8 and thus by using (111) we have

∣
∣
∣
∣
∣

∫ p(x)

q(x)

D2u (z)
H−2n1

|H−2n1|

∣
∣
∣
∣
∣

= |Du (p (x)) −Du (q (x))|

≥ εσ

2
·

So by Fubini and (119), (121), (120)
∫

⋃
P∈Kk

P

∣
∣D2u (z)

∣
∣dL2z ≥ εσ

2
L1 (Pv⊥ (P1) \ (B1 ∪B2))

≥ εσ

4
σ3κ

m0
2 .

Thus from (102) we have

c1 ≥
∫

Q1(0)

∣∣D2u (z)
∣∣dL2z

≥ εσ

4
σ3Card (E1)κ

m0
2 .

And thus we have (114). In exactly the same way we obtain the upper bound (115).
Now we estimate the cardinality of E2. From (106)

Card (E2)κ
m0
8 κ−

m0
2 ≤ Card

(
G

(
H−2n1

|H−2n1| ,
H−2n2

|H−2n2| , κ
m0
2

)
\G
)

≤ cκ
m0
4 κ−m0

and thus we have (116). In exactly the same way we have (117).

Step 2. We will show that for any i ∈ {1, 2, . . . n2} \ (E1 ∪ E2) and for any P ∈ Ki ∩G we have
∫

P

d (Du (z) , SO (2)H) dL2z ≤ cκ
m0
4 κm0 .
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And for any j ∈ {n2 + 1, n2 + 2, . . . 2n2} \ (F1 ∪ F2) we have
∫

P

d (Du (z) , SO (2)H) dL2z ≤ cκ
m0
4 κm0 for any P ∈ Kj ∩G. (122)

Proof of Step 2. Let

∆1 :=
{
i ∈ {1, 2, . . . n2} : K̃i ∩Q σ3

2
√

1+σ6
(0) �= ∅

}
.

Let

∆2 :=
{
j ∈ {n2 + 1, n2 + 2, . . . 2n2} : K̃j ∩Q σ3

2
√

1+σ6
(0) �= ∅

}
.

Let

ΨH :=
{
P : P ∈ G,

∫

P

d (Du (z) , SO (2)H) dL2z ≤ cκm0κ
m0
4 , P ⊂ Q σ3

2
√

1+σ6
(0)
}
.

Let

ΨR :=
{
P : P ∈ G,

∫

P

d (Du (z) , SO (2)) dL2z ≤ cκm0κ
m0
4 , P ⊂ Q σ3

2
√

1+σ6
(0)
}
. (123)

First note that if there exists i0 ∈ ∆1\ (E1 ∪ E2) such that Ki0 ∩ G ∩ ΨH �= ∅ then by definition of E1, every
P1 ∈ Ki0 ∩ G will be such that P1 ∈ ΨH . Now take j ∈ ∆2\ (F1 ∪ F2) such that Kj ∩ Ki0 ∩ G �= ∅ then by
definition of F1, for every P2 ∈ Kj ∩G we must also have P2 ∈ ΨH . Note

{j ∈ ∆2\ (F1 ∪ F2) : Kj ∩Ki0 ∩G �= ∅} = {j ∈ ∆2\ (F1 ∪ F2)} \ {j : Kj ∩Ki0 ∩G = ∅}

and as Card ({j : Kj ∩Ki0 ∩G = ∅}) ≤ Card (Ki0\G) so from (115), (117) and definition (113) we have

Card ({j ∈ ∆2\ (F1 ∪ F2) : Kj ∩Ki0 ∩G �= ∅}) ≥ Card ({j ∈ ∆2\ (F1 ∪ F2)})
−Card (Ki0\G)

(115),(117),(113)

≥ Card (∆2) − 8c1
εσσ3

κ−
m0
2 .

We have a large number of G-lines in {Kj : j ∈ ∆2\ (F1 ∪ F2)} with all the P ∈ Kj∩G being such thatDu on P is
close to SO (2)H . From this, using similar arguments its easy to show that all G-linesKj with j ∈ ∆1\ (E1 ∪ E2)
satisfy (122). And consequently all G-lines Ki with i ∈ {1, 2, . . . n1} \ (F1 ∪ F2) also satisfy (122).

Thus we only need to argue the case where
⋃

i∈∆1\(E1∪E2)

{P : P ∈ Ki ∩G} ⊂ ΨR. (124)

Let

Θ0 :=
{
P ∈ G

(
H−2n1

|H−2n1| ,
H−2n2

|H−2n2| , κ
m0
2

)
: P ⊂ Q σ3

2
√

1+σ6
(0)
}
. (125)

Since from inequalities (114), (116) and definition (112)

Card



Θ0\



⋃

i∈∆1\(E1∪E2)

{P : P ∈ Ki ∩G}








≤ Card (E1 ∪ E2)κ−
m0
2 + cκ

m0
8 κ−

m0
2

≤ 16c1κ−m0

εσσ3
·
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So from (124) we have

Card (Θ0\ΨR) ≤ 16c1κ−m0

εσσ3
·

Since obviously ΨH ∩ ΨR = ∅ so

Card (ΨH) ≤ Card (Θ0\ΨR)

≤ 16c1κ−m0

εσσ3
· (126)

Note that for any P ∈ ΨR

κ
m0
8 L2

({
x ∈ P : d (Du (x) , SO (2)) ≥ κ

m0
8

})
≤
∫

P

d (Du (z) , SO (2)) dL2z

≤ cκm0κ
m0
4 .

So E (P ) :=
{
x ∈ P : d (Du (x) , SO (2)) < κ

m0
8

}
is such that

L2 (E (P )) ≥ L2 (P ) − cκ
m0
8 κm0 .

Note that for each x ∈ E (P ), d (Du (x) , SO (2)H) > 3εσ

4 and hence
∫

P

d (Du (x) , SO (2)H) dL2x ≥
(
L2 (P ) − cκ

m0
8 κm0

) 3εσ

4
·

Thus since P ∈ ΨR (recall definition (123)) we have
∫

P

d (Du (z) , SO (2)H) − d (Du (z) , SO (2)) dL2z ≥
(
L2 (P ) − cκ

m0
8 κm0

) 3εσ

4
− cκ

m0
8 κm0

≥ εσ

2
L2 (P ) .

Multiplying by −1 gives
∫

P

d (Du (z) , SO (2)) − d (Du (z) , SO (2)H) dL2z ≤ −εσ

2
L2 (P ) . (127)

Let A := L2 (P ) for any P ∈ G
(

H−2n1
|H−2n1| ,

H−2n2
|H−2n2| , κ

m0
2

)
. So using (103) and (106)

0
(103)

≤
∫

Q σ3

2
√

σ6+1

(0)

d (Du (z) , SO (2)) − d (Du (z) , SO (2)H) dL2z

≤
∑

P∈ΨR

∫

P

d (Du (z) , SO (2)) − d (Du (z) , SO (2)H) dL2z

+
∑

P∈ΨH

∫

P

d (Du (z) , SO (2)) − d (Du (z) , SO (2)H) dL2z

+2ζ2Card
(
G

(
H−2n1

|H−2n1| ,
H−2n2

|H−2n2| , κ
m0
2

)
\G
)
κm0

(106),(127)

≤ −Card (ΨR)
εσ

2
A+ 2ζ2Card (ΨH)A+ cκ

m0
4 .
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Thus
Card (ΨR)

εσ

2
A ≤ 2ζ2Card (ΨH)A+ cκ

m0
4 .

Now as we have seen before (see (109)) A ≥ σ3

2 κ
m0 so using (126)

Card (ΨR)
εσ

2
≤ 2ζ2Card (ΨH) + cκ

m0
4 κ−m0

(126)

≤ 32c1ζ2κ−m0

εσσ3
+ cκ

m0
4 κ−m0

≤ 64c1ζ2κ−m0

εσσ3
·

Thus

Card (ΨR) ≤ 128c1ζ2κ−m0

ε2σσ
3

· (128)

Since G = ΨH ∪ ΨR we know from (106) Card (Θ0\ (ΨH ∪ ΨR)) ≤ cκ
m0
4 κ−m0 so using (126), (128)

Card (Θ0) ≤ Card (ΨH) + Card (ΨR) + cκ
m0
4 κ−m0

≤ 256ζ2c1
ε2σσ

3
κ−m0 .

Since from definition (125) we know

Card (Θ0) ≥
(
σ3κ−

m0
2

2
√

1 + σ6

)2

≥ σ6

8
κ−m0

so we know
σ6κ−m0

8
≤ 256ζ2c1

ε2σσ
3
κ−m0 ,

and assuming sufficient smallness of c1 we have a contradiction. So we have established Step 2.

Notation for Step 3.
Firstly we note that for any k ∈ {1, 2, . . . n1} \E1 ∪E2 by definition of E2 (see (112) and (107)) we have the

hypotheses (88) and (89) of Lemma 8.1, by (101) we also have hypothesis (87) so by the lemma there there
exists a subset U (k) ⊂ Kk with the following properties

• For fixed Rk ∈ SO (2) we have for any P ∈ U (k)
∫

P

|Du (z) −RkH |dL2z ≤ cκ
m0
64 κm0 . (129)

•
Card (Kk\U (k)) ≤ cκ

m0
32 κ−

m0
2 . (130)

Similarly for any i ∈ {n1, n1 + 1, . . . 2n1} \ (F1 ∪ F2) there is a subset U (i) ⊂ Ki with the following properties
• For fixed Ri ∈ SO (2) we have for any P ∈ U (i)

∫

P

|Du (z) −RiH | dL2z ≤ cκ
m0
64 κm0 . (131)

•
Card (Ki\U (i)) ≤ cκ

m0
32 κ−

m0
2 . (132)
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Observe the Figure 7.
Let Vi := H−2ni

|H−2ni| for i = 1, 2. Define

H1 := P−1
V ⊥
2

(
PV ⊥

2

([
V1

4
,
V1

2

]))
,

H2 := P−1
V ⊥
1

(
PV ⊥

1

([
V2

4
,
V2

2

]))
,

H3 := P−1
V ⊥
2

(
PV ⊥

2

([
−V1

2
,−V1

4

]))
,

H4 := P−1
V ⊥
1

(
PV ⊥

1

([
−V2

2
,−V2

4

]))
·

(133)

And define

J1 :=
{
k ∈ {1, 2, . . . n2} : K̃k ⊂ H1, k �∈ E1 ∪ E2

}
,

J3 :=
{
k ∈ {1, 2, . . . n2} : K̃k ⊂ H3, k �∈ E1 ∪ E2

}
,

J2 :=
{
i ∈ {n2 + 1, n2 + 2, . . . 2n2} : K̃i ⊂ H2, i �∈ F1 ∪ F2

}
,

J4 :=
{
i ∈ {n2 + 1, n2 + 2, . . . 2n2} : K̃i ⊂ H4, i �∈ F1 ∪ F2

}
.

Step 3. We will show we can find i0 ∈ J1, j1, j2, . . . jξ1 ∈ J2 where

ξ1 ≥ κ−
m0
2

128
(134)

such that for some fixed R̃ ∈ SO (2), for any P ∈ U (i0) ∪
⋃ξ1

k=1 U (jk) we have
∫

P

∣
∣
∣Du (z) − R̃H

∣
∣
∣dL2z ≤ cκ

m0
64 κm0 . (135)

Proof of Step 3. Its helpful to observe Figure 8.
As shown in Figure 7. We let C1 := H1 ∩H2, C2 := H2 ∩H3, C3 := H3 ∩H4, C4 := H1 ∩H4.
Its easy to see the convex hull of the set {C1, C2, C3, C4} will be contained the region Ỹ shown of Figure 6,

see (110) and (133) for definitions. As shown in Figure 8, let

Θ1 := {P : P ∈ U (i) for some i ∈ J2, P ⊂ C1} .
We start by estimating the cardinality of Θ1. Let

Z1 :=
{
P ∈ G

(
V1, V2, κ

m0
2

)
: P ⊂ C1

}
.

Note that

Card (Z1) ≥ κ−m0

32
· (136)

If P ∈ Z1\Θ1 then either P ∈ Ki for some i ∈ F1 ∪ F2 or P ∈ Ki\U (i) for some some i ∈ J2. Formally;

Z1\Θ1 ⊂
(

⋃

i∈F1∪F2

Ki

)

∪
(
⋃

i∈J2

Ki\U (i)

)

.
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So from (115), (117), (132)

Card (Z1\Θ1) ≤ Card (F1 ∪ F2)κ−
m0
2 +

∑

i∈J2

Card (Ki\U (i))

(132),(115),(117)

≤ 8c1
εσσ3

κ−m0 + cκ
m0
32 κ−m0

≤ 16c1
εσσ3

κ−m0 . (137)

Let Ψ1 := {P : P ∈ Ki for some i ∈ J1}. So from (114), (116)

Card (Z1\Ψ1) ≤ Card (E1 ∪ E2)κ−
m0
2

≤ 16c1
εσσ3

κ−m0 . (138)

Note from (137), (138), (136) (assuming c1 is small enough)

Card (Ψ1 ∩ Θ1)
(137),(138)

≥ Card (Z1) − 32c1
εσσ3

κ−m0

(136)

≥ κ−m0

32
− 32c1
εσσ3

κ−m0

≥ κ−m0

64
· (139)

Now we have the obvious estimate Card (J1) ≤ κ−
m0
2 . And as

Ψ1 ∩ Θ1 =
⋃

i∈J1

Ki ∩ Θ1

so (139) implies there must exist i0 ∈ J1 such that

Card (Ki0 ∩ Θ1) ≥ κ−
m0
2

64
·

So using (130) we have

Card (Ki0 ∩ Θ1 ∩ U (i0)) ≥ κ−
m0
2

128
· (140)

Now by definition of U (i0) (since i0 ∈ J1) there exists R̃ ∈ SO (2) such that for every P ∈ U (i0) we have

∫

P

∣
∣
∣Du (z) − R̃H

∣
∣
∣dL2z ≤ cκ

m0
64 κm0 . (141)

Let {P1, P2, . . . Pξ1} := Ki0 ∩ Θ1 ∩ U (i0), so of course from (140) we know ξ1 ≥ κ− m0
2

128 . By definition of Θ1 for
every k ∈ {1, 2, . . . ξ1} we have that Pk ∈ U (jk) for some jk ∈ J2. And by definition of U (jk) we have for some
fixed R (jk) ∈ SO (2) such that for any P̃ ∈ U (jk)

∫

P̃

|Du (z) −R (jk)H |dL2z ≤ cκ
m0
64 κm0 for some fixed R (jk) ∈ SO (2) .
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So putting this together with (141)
∫

Pk

∣
∣
∣Du (z) − R̃H

∣
∣
∣+ |Du (z) −R (jk)H | dL2z ≤ cκ

m0
64 κm0

and hence as L2 (Pk) ≥ σ3

2
√

1+σ6κ
m0 (see (109)) there must be a point zk ∈ Pk such that

∣
∣
∣Du (zk) − R̃H

∣
∣
∣+ |Du (zk) −R (jk)H | ≤ cκ

m0
64

which implies ∣∣
∣R (jk) − R̃

∣∣
∣ ≤ cκ

m0
64 .

From this and (141) Step 3 follows.

Step 4. Let

T3 :=
{
i ∈ J3 : Card (Ki ∩ Θ2) ≥ cκ

m0
32 κ−

m0
2

}
. (142)

We will show we can find r1, r2, . . . rξ2 ∈ T3 with ξ2 >
κ− m0

2

2048 with the property that for any P ∈ ⋃ξ2
i=1 U (ri)

satisfies inequality ∫

P

∣
∣∣Du (z) − R̃H

∣
∣∣dL2z ≤ cκ

m0
64 κm0 . (143)

Proof of Step 4. Let
Θ2 := {P : P ∈ U (jk) for k ∈ {1, 2, . . . ξ1} , P ∈ C2} . (144)

From (132), (134) and Figure 9 we see that

Card (Θ2)
(132),Figure 9

≥ ξ1

(
1
4
− cκ

m0
32

)
κ−

m0
2

(134)

≥ κ−m0

1024
· (145)

Since for any i ∈ H3 we have trivially that Card (Ki ∩ Θ2) ≤ κ−
m0
2 . So

Card (Θ2) ≤ Card (T3)κ−
m0
2 + cκ

m0
32 κ−

m0
2 Card (J3\T3) .

Hence from (145) and the trivial estimate Card (J3\T3) ≤ κ−
m0
2 .

κ−m0

1024
≤ Card (T3)κ−

m0
2 + cκ

m0
32 κ−m0

we have

Card (T3) ≥ κ−
m0
2

2048
· (146)

Now from (130) since (definition (142)) T3 ⊂ J3 ⊂ {1, 2, . . . n2} \ (E1 ∪ E2) so by (129), (130) for any i ∈ T3,
Card (Ki\U (i)) ≤ cκ

m0
32 κ−

m0
2 . So by definition of T3, U (i) ∩ Θ2 �= ∅ so we can pick P0 ∈ U (i) ∩ Θ2. Now by

definition of Θ2, (see (144)) and of the set {j1, j2, . . . jξ1} (see (134), (135)) we have

∫

P0

∣
∣
∣Du (z) − R̃H

∣
∣
∣ dL2z ≤ cκ

m0
64 κm0 .
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Also by definition of U (i), (see (129), (130)) we know there exists Ri ∈ SO (2) such that

∫

P̃

|Du (z) −RiH |dL2 ≤ cκ
m0
64 κm0 for all P̃ ∈ U (i) .

Hence as we have argued before (since P0 ∈ U (i)), there must be a point z0 ∈ P0 such that

∣
∣∣R̃−Ri

∣
∣∣ ≤

∣
∣∣Du (z0) − R̃H

∣
∣∣+ |Du (z0) −RiH |

≤ cκ
m0
64 .

And so for all P ∈ U (i) ∫

P

∣∣
∣Du (z) − R̃H

∣∣
∣dL2z ≤ cκ

m0
64 κm0 .

Let {r1, r2, . . . rξ2} be an ordering of T3. Note that from (146) we have

ξ2 ≥ κ−
m0
2

2048
· (147)

So we have shown all the P ∈ G inside the set of G-lines
{
Kr1 ,Kr2 , . . .Krξ2

}
are such that Du on P is orientated

by R̃. This completes the proof of Step 4.

Step 5. We will show we can find i0 ∈ J1, i1 ∈ J2, i2 ∈ J3 and i3 ∈ J4 such that for some fixed R̃ ∈ SO (2),
for any P ∈ U (i1) ∪ U (i3) ∪ U (i2) ∪ U (i4) we have

∫

P

∣
∣
∣Du (z) − R̃H

∣
∣
∣dL2z ≤ cκ

m0
64 κm0 .

Proof of Step 5. Let
Θ3 := {P : P ∈ U (ri) , for i = 1, 2, . . . ξ2, P ∈ C3} .

We make the same estimates as before, from (147)

Card (Θ3) ≥ ξ2
κ−

m0
2

8

≥ κ−m0

16 384
·

Let T4 :=
{
i ∈ H4 : Card (Ki ∩ Θ3) ≥ cκ−

m0
2

}
, as before

Card (Θ3) ≤ Card (T4)κ−
m0
2 + cκ

m0
32 κ−m0 .

So κ−m0

22768 ≤ Card (T4)κ−
m0
2 which implies κ− m0

2

22768 ≤ Card (T4).
So as in Step 4 since T4 ⊂ J4 ⊂ {1, 2, . . . n1} \ (F1 ∪ F2) so by (131), (132) we must be able to find a G-line

Kl0 where l0 ∈ T4 and Card (Kl0\U (l0)) ≤ cκ
m0
32 κ−

m0
2 . Hence U (l0)∩Θ3 �= ∅ so as before we have the property

that there exists Rl0 ∈ SO (2) such that for any P ∈ U (l0) ∩ Θ3

∫

P

∣
∣∣Du (z) − R̃H

∣
∣∣+ |Du (z) −Rl0H |dL2z ≤ cκ

m0
64 κm0 .
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So there must exists a point z0 ∈ P such that
∣
∣
∣Du (z0) − R̃H

∣
∣
∣+ |Du (z0) −Rl0H | ≤ cκ

m0
64 .

Hence
∣
∣
∣R̃− Rl0

∣
∣
∣ ≤ cκ

m0
64 and thus for every P̃ ∈ U (l0) we have

∫

P̃

∣
∣
∣Du (z) − R̃H

∣
∣
∣dL2z ≤ cκ

m0
64 κm0 .

We have already chosen i0 in Step 3, see (134). Let i1 be any member of {j1, j2, . . . jξ1} (see again Step 3) and
let i2 be any member of {r1, r2, . . . rξ2} (see Step 4) and let i3 = l0. Now i0, i1, i2, i3 satisfy all the properties
required.

Proof of Lemma continued.
Now since the G-line Kl0 must intersect the original G-line Ki0 . And since any G-line Krk

, k ∈ {1, 2, . . . ξ2}
must intersect any G-line Kjk

for k ∈ {1, 2, . . . ξ1}. So the G-lines Ki1 , Ki2 , Ki3 , Ki4 from Step 5 (and
inequalities (130), (132)) satisfy all the properties of the statement of the lemma. �

10. Proof of Theorem 2.1

The strategy of the proof of Theorem 2.1 is as has been outlined in the introduction to Lemma 9.1. Lemma 9.1
gives us four lines L1, L2, L3, L4 (parallel either to H−2n1 or H−2n2) that contain the boundary of a “diamond”
surrounding a central subsquare. These lines have the property that “most” of the grid elements that intersect
them are such that Du on these elements will be L1 close to matrix RH for some fixed R ∈ SO (2).

We will be considering lines in direction H−2n1 that start and end on the boundary of the diamond. However
before applying Lemma 7.4 we need to know that “most”of the grid elements along the line are such that Du
is close to a matrix in the well SO (2)H . Note that we know from Lemma 6.1 that most of the grid elements
are such that Du is either close to a matrix in the well SO (2) or close to a matrix in the well SO (2)H .

So we need to rule out the possibility that there are many grid elements inside the diamond for which Du
is close to SO (2). Now note that |He2| = σ−1 > 1, so if for some line Q (inside the diamond) in direction e2,
many of the grid elements intersecting Q are such that Du is close to a matrix in SO (2), letting a, b denote
the endpoints of Q where (say) a ∈ L1 and b ∈ L3 we would have H1 (u ([a, b])) � |He2| |a− b| which is a
contradiction because u ([a, b]) has to connect u (a) to u (b) and integrating from a to L1∩L3, then from L1∩L3

to b we see that |u (a) − u (b)| ≈ |RH (a− b)| = |He2| |a− b|. Thus there can not be many grid elements in the
diamond for which Du is close to a matrix in SO (2) and thus we can apply Lemma 7.4 to control “most” of
the lines in direction H−2n1.

Proof of Theorem 2.1. First note by Lemma 6.1 there exists G ⊂ G
(

H−2φ1
|H−2φ1| ,

H−2φ2
|H−2φ2| , κ

m0
2

)
with the following

properties
•

Card
(
G

(
H−2φ1

|H−2φ1| ,
H−2φ2

|H−2φ2| , κ
m0
2

)
\G
)

≤ cκ
m0
4 κ−m0. (148)

• For any P ∈ G there exists R ∈ SO (2), J ∈ {H, Id} such that
∫

P

|Du (z) −RJ |dL2z ≤ cκ
m0
4 κm0 . (149)

By Lemma 9.1 there exists G-lines Ki1 ,Ki3 in direction H−2n1 and G-lines Ki2 ,Ki4 in direction H−2n2 which
satisfy the following properties.
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Figure 10. Vertical lines connecting the oriented G-lines.

• Let W be the connected component of Q1 (0) \
(
K̃i0 ∪ K̃i1 ∪ K̃i2 ∪ K̃i3

)
containing zero, then

Q σ3

2
√

σ6+1

(0) ⊂W. (150)

• There exists a subset M ⊂ Ki0 ∪Ki1 ∪Ki2 ∪Ki3 with the property that

Card ((Ki0 ∪Ki1 ∪Ki2 ∪Ki3) \M) < cκ
m0
32 κ−

m0
2 (151)

and for some fixed R̃ ∈ SO (2), for any P ∈M we have

∫

P

∣
∣
∣Du (z) − R̃H

∣
∣
∣dL2z ≤ cκ

m0
64 κm0 . (152)

Let

B :=
{
P ∈ G

(
H−2φ1

|H−2φ1| ,
H−2φ2

|H−2φ2| , κ
m0
2

)
: P ⊂W

}
.

And let

D :=
{
P ∈ G ∩ B :

∫

P

|Du (z) −R| dL2z ≤ cκm0κ
m0
4 for some R ∈ SO (2)

}
.

Part 1. We will show
Card (D) ≤ 5κ

m0
100 κ−m0 . (153)

Proof of Part 1. Suppose not, so
Card (D) ≥ 5κ

m0
100 κ−m0 . (154)
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Let C (P ) denote the center of each P . We can partition B into columns parallel to e2 in the following way. Let

R (α) := {P ∈W : C (P ) · e1 = α} .

As we can see from Figure 10, for some constant �σ > 0 we have

B ⊂
2
[
κ− m0

2
]

⋃

k=−2
[
κ− m0

2
]
R

(
k�σκ

m0
2

)
.

Let
Φ :=

{
k ∈

{
−2
[
κ−

m0
2

]
, . . . 2

[
κ

m0
2

]}
: Card

(
R

(
k�σκ

m0
2

)
∩ D

)
≥ κ

m0
100κ−

m0
2

}
. (155)

By (154) 5κ
m0
100 κ−m0 ≤ 2κ−

m0
2 Card (Φ) + κ

m0
100κ−m0 so we have

Card (Φ) ≥ 2κ
m0
100 κ−

m0
2 . (156)

Step 1.1. We claim we must be able to find k1 ∈ Φ such that

Card
(
R

(
j�σκ

m0
2

)
\G
)
≤ κ

m0
20 κ−

m0
2 for j ∈ {k1 − 1, k1, k1 + 1} . (157)

Proof of Step 1.1. Suppose not. So we have a subset Φ̃ ⊂ Φ with

Card
(
Φ̃
)

≥ Card (Φ)
3

− 2

(156)

≥ κ
m0
100

2
κ−

m0
2 (158)

and for every k ∈ Φ̃ we have
Card

(
R

(
k�σκ

m0
2

)
\G
)
≥ κ

m0
20 κ−

m0
2 .

So

Card
(
G

(
H−2φ1

|H−2φ1| ,
H−2φ2

|H−2φ2| , κ
m0
2

)
\G
)

≥ Card
(
Φ̃
)
κ

m0
20 κ−

m0
2

(158)

≥ κ
m0
100

2
κ

m0
20 κ−m0

≥ κ
3m0
50

2
κ−m0

which contradicts (148), hence we have established (157).

Step 1.2. Let S := W ∩ P−1
e⊥
2

([(
k1 − 1

2

)
�σ,
(
k1 + 1

2

)
�σ

])
and we define function E : S → R by

E (z) :=






d (Du (z) , SO (2)) if z ∈ P ∈ D

d (Du (z) , SO (2)H) if z ∈ P ∈ G\D

2ζ2 if z ∈ P �∈ G.

We will show ∫

S

E (z) dL2z ≤ 7ζ2κ
m0
20 κ

m0
2 . (159)
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Proof of Step 1.2. To begin with note that if P ∩ S �= ∅ and P �∈ G then P ∈ R

(
j�σκ

m0
2

)
\G for some

j ∈ {(k1 − 1) , k1, (k1 + 1)}.
So

{P : P ∩ S �= ∅, P �∈ G} ⊂
⋃

j∈{(k1−1),k1,(k1+1)}
R

(
j�σκ

m0
2

)
\G

and hence from (157)

Card ({P : P ∩ S �= ∅, P �∈ G}) ≤ 3κ
m0
20 κ−

m0
2 . (160)

Thus

∫

S\(⋃P∈G P)
E (z) dL2z ≤ 2ζ2κm0Card ({P : P ∩ S �= ∅, P �∈ G})

≤ 6ζ2κ
m0
20 κ

m0
2 . (161)

On the other hand from the definition of G specifically from (149) we have

∫

S∩(⋃P∈G P)
E (z) dL2z ≤

∑

j∈{(k1−1),k1,(k1+1)}

∑

P∈R(�σj)∩G

∫

P

d (Du (z) , SO (2) ∪ SO (2)H) dL2z

≤ 3cκ
m0
2 κ

m0
4 . (162)

Hence putting (161), (162) together gives us (159) and this completes the proof of Step 1.2.

Step 1.3. Now since k1 ∈ Φ (see definition (155)) its clear that L1
(
P−1

e⊥
2

(
k1�σκ

m0
2

)
∩ {P : P ∈ D}

)
≥ κ

m0
100 σ3

4 .

Now from Figure 10 its easy to see that for any x0 ∈
[(
k1 − 1

2

)
�σκ

m0
2 ,
(
k1 + 1

2

)
�σκ

m0
2

]
we have

L1
(
P−1

e⊥
2

(x0) ∩ {P : P ∈ D}
)
≥ 1

2
L1
(
P−1

e⊥
2

(
k1�σκ

m0
2

)
∩ {P : P ∈ D}

)

≥ κ
m0
100σ3

8
· (163)

Now by a Fubini type argument using (159) there must exists x1 ∈
[(
k1 − 1

2

)
�σκ

m0
2 ,
(
k1 + 1

2

)
�σκ

m0
2

]
such that

∫

P−1
e⊥2

(x1)∩W

E (z) dL1z ≤ cκ
m0
20 . (164)

Now we must be able to find Pw0 , Pw1 ∈ Ki0 ∪Ki1 ∪Ki2 ∪Ki3 with P−1
e⊥
2

(x1) ∩ Pw0 �= ∅, P−1
e⊥
2

(x1) ∩ Pw1 �= ∅.
Without loss of generality assume Pw0 ∈ Ki0 and Pw1 ∈ Ki3 . See Figure 10.

Let z0 ∈ P−1
e⊥
2

(x1) ∩ Pw0 and z1 ∈ P−1
e⊥
2

(x1) ∩ Pw1 . We will show

|u (z0) − u (z1)| ≤ σ−1 |z0 − z1| −
(
σ−1 − 1

) κ
m0
100 σ3

8
+ cκ

m0
20 . (165)
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Proof of Step 1.3.

|u (z1) − u (z0)| =
∫ z1

z0

Du (z) · e2dL1z

≤
∫

[z0,z1]∩{P :P∈D}
|Du (z) · e2| dL1z +

∫

[z0,z1]∩{P :P∈G\D}
|Du (z) · e2| dL1z

+
∫

[z0,z1]∩{P :P 	∈G}
|Du (z) · e2| dL1z. (166)

We define a function
Γ1 : [z0, z1] ∩ {P : P ∈ D} → SO (2)

such that Γ1 (x) ∈ SO (2) is the unique matrix such that d (Du (x) , SO (2)) = |Du (x) − Γ1 (x)|.
Define

Γ2 : [z0, z1] ∩ {P : P ∈ G\D} → SO (2)H
such that Γ2 (x) ∈ SO (2)H is the unique matrix such that d (Du (x) , SO (2)H) = |Du (x) − Γ2 (x)|.

So
∫

[z0,z1]∩{P :P∈D}
|Du (z) · e2| dL1z ≤

∫

[z0,z1]∩{P :P∈D}
|Γ1 (z) · e2| dL1z +

∫

[z0,z1]∩{P :P∈D}
E (z) dL1z

≤ L1 ([z0, z1] ∩ {P : P ∈ D}) +
∫

[z0,z1]∩{P :P∈D}
E (z) dL1z. (167)

Similarly
∫

[z0,z1]∩{P :P∈G\D}
|Du (z) · e2|dL1z

≤
∫

[z0,z1]∩{P :P∈G\D}
|Γ2 (z) · e2| dL1z +

∫

[z0,z1]∩{P :P∈G\D}
E (z) dL1z

≤ |He2|L1 ([z0, z1] ∩ {P : P ∈ G\D}) +
∫

[z0,z1]∩{P :P∈G\D}
E (z) dL1z. (168)

So using (160), (163), (164), (166), (167), (168) we have

|u (z0) − u (z1)|
(166),(167),(168)

≤ L1 ([z0, z1] ∩ {P : P ∈ D}) + |He2|L1 ([z0, z1] ∩ {P : P ∈ G\D})
+2ζ2L1 ([z0, z1] ∩ {P : P �∈ G}) +

∫

[z0,z1]∩{P :P∈G}
E (z) dL1z

= (1 − |He2|)L1 ([z0, z1] ∩ {P : P ∈ D}) + |He2|L1 ([z0, z1] ∩ {P : P ∈ G})
+
∫ z1

z0

E (z) dL1z + 2ζ2L1 ([z0, z1] ∩ {P : P �∈ G})
(160),(163),(164)

≤ (
1 − σ−1

) κ
m0
100 σ3

8
+ σ−1 |z0 − z1| + cκ

m0
20 .

Hence we have completed the proof of Step 1.3.

Step 1.4. We will show ∣
∣
∣|u (z1) − u (z0)| − |z1 − z0| R̃H · e2

∣
∣
∣ ≤ cκ

m0
64 .
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Proof of Step 1.4. Now recall Pw0 , Pw1 ∈ Ki0 ∪Ki1 ∪Ki2 ∪Ki3 . Assume without loss of generality Pw1 ∈ Ki0 ,
Pw0 ∈ Ki3 , see Figure 10.

Now from (151), (152) we know that

∫

K̃i2∪K̃i3

∣
∣
∣Du (z) − R̃H

∣
∣
∣dL2z ≤ cκ

m0
64 κm0Card (Ki2 ∪Ki3) + cκ

m0
32 κ

m0
2

≤ cκ
m0
64 κ

m0
2 .

So by a Fubini argument (using the fact that the width of K̃i1 and K̃i3 is bigger than σ3κ
m0
2

4 ) we must be able
to find points y0 ∈ Pw0 , y1 ∈ Pw1 such that

∫

(y0+〈H−2n2〉)∩Q1(0)

∣∣
∣Du (z) − R̃H

∣∣
∣dL1z ≤ cκ

m0
64 .

And ∫

(y1+〈H−2n1〉)∩Q1(0)

∣
∣∣Du (z) − R̃H

∣
∣∣dL1z ≤ cκ

m0
64 .

Let ỹ :=
{
y0 + 〈H−2n2〉

} ∩ {y1 + 〈H−2n1〉
}
. So

∣
∣∣
∣
∣

(∫ ỹ

y0

Du (z) · H
−2n2

|H−2n2|dL
1z +

∫ y1

ỹ

Du (z) · H
−2n1

|H−2n1|dL
1z

)

−
(∫ ỹ

y0

R̃H · H
−2n2

|H−2n2|dL
1z +

∫ y1

ỹ

R̃H · H
−2n1

|H−2n1|dL
1z

)∣∣
∣
∣∣

≤
∫ ỹ

y0

∣
∣
∣Du (z) − R̃H

∣
∣
∣dL1z +

∫ y1

ỹ

∣
∣
∣Du (z) − R̃H

∣
∣
∣dL1z

≤ cκ
m0
64 . (169)

As
∫ ỹ

y0

R̃H · H
−2n1

|H−2n1|dL
1z +

∫ y1

ỹ

R̃H · H
−2n2

|H−2n2|dL
1z =

∫ y1

y0

R̃H · e2

= |y1 − y0| R̃H · e2.

And as (∫ ỹ

y0

Du (z) · H
−2n1

|H−2n1|dL
1z +

∫ y1

ỹ

Du (z) · H
−2n2

|H−2n2|dL
1z

)

= u (y1) − u (y0) .

So (169) becomes ∣
∣
∣|u (y1) − u (y0)| − |y1 − y0| R̃H · e2

∣
∣
∣ ≤ cκ

m0
64 . (170)

By Lipschitzness this implies
∣
∣
∣|u (z1) − u (z0)| − |z1 − z0| R̃H · e2

∣
∣
∣ ≤ cκ

m0
64 . (171)

This completes the proof of Step 1.4.
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Proof of Part 1 continued.
So in particular, from (171)

|u (z1) − u (z0)| ≥ σ−1 |z1 − z0| − cκ
m0
64 . (172)

Putting this together with (165) we have

σ−1 |z1 − z0| − cκ
m0
64 ≤ − (σ−1 − 1

) κ
m0
100 σ3

8
+σ−1 |z0 − z1| + cκ

m0
20 .

This implies (
σ−1 − 1

)

8
κ

m0
100 σ3 ≤ cκ

m0
64 + cκ

m0
20

which is a contradiction for small enough κ. Hence we have shown Part 1.

Part 2. We will complete the proof of Theorem 2.1.
As we have noted before. B is made up of a union ofG-lines in directionH−2n1. Denote themKs1 ,Ks2 , . . .Ksn4

where n4 ≥ σ3

8 κ
−m0

2 . Formally
{
Ks1 ,Ks2 , . . .Ksn4

}
:=
{
Ki : K̃i ∩W �= ∅

}
. Let

W1 :=
{
Ki : Card (Ki ∩ D) ≤ κ

m0
200 κ−

m0
2 , Ki ∩W �= ∅

}
. (173)

Note that from (153) we have
Card ({K1, . . .Kn4} \W1) ≤ 5κ

m0
200 κ−

m0
2 . (174)

Let
W2 :=

{
Ki ∈ W1 : Card (Ki\G) ≤ κ

m0
16 κ−

m0
2

}
(175)

So from (148) we know Card (W1\W2)κ
m0
16 κ−

m0
2 ≤ cκ

m0
4 κ−m0 so

Card (W1\W2) ≤ cκ
3m0
16 κ−

m0
2 . (176)

Let {q1, q2, . . . qn5} ∈ IN be such that W2 :=
{
Kq1 ,Kq2 , . . .Kqn5

}
. Note that we of course have n5 ≤ κ−

m0
2 .

Note that from (174), (176)

Card
({
Ks1 ,Ks2 , . . .Ksn4

} \{Kq1 ,Kq2 , . . .Kqn5

}) ≤ 6κ
m0
200 κ−

m0
2 . (177)

Now for any G-line Kqi ∈ W2 let P (1)
qi be the “first” parallelopiped in Kqi ∩B (i.e. the parallelopiped such that

C
(
P

(1)
qi

)
·H−2n1 ≤ C (P ) ·H−2n1 for any P ∈ Kqi ∩B). Let P (2)

qi be the similarly defined “last” parallelopiped.
Note that by (150) we have

∣
∣
∣C
(
P (1)

qi

)
− C

(
P (2)

qi

)∣∣
∣ >

σ3

4
· (178)

Let x1 := C
(
P

(1)
qi

)
and x2 := C

(
P

(2)
qi

)
. By arguing as we did to establish (170) in Part 1 we can show that

there exists R2 ∈ SO (2) independent of i such that

|(u (x2) − u (x1)) −R2H (x2 − x1)| ≤ cκ
m0
64 . (179)

Let R1 ∈ SO (2) be such that

R1

(
H−1n1

)
=

u (x2) − u (x1)
|u (x2) − u (x1)| · (180)
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Now

||u (x2) − u (x1)| − |R2H (x2 − x1)|| ≤ |(u (x2) − u (x1)) −R2H (x2 − x1)|
≤ cκ

m0
64 . (181)

As x2−x1
|x2−x1| = H−2n1

|H−2n1|

|R2H (x2 − x1)| = |x2 − x1|
∣
∣
∣
∣H
(
H−2n1

|H−2n1|
)∣∣
∣
∣

=
|x2 − x1|
|H−2n1| · (182)

Since from (69) we have H−2n1 ·n1 = 1 so H−2n1
|H−2n1| ·n1 = 1

|H−2n1| so since x2−x1
|x2−x1| = H−2n1

|H−2n1| using this on (182)
we have

|R2H (x2 − x1)| = |x2 − x1| H
−2n1

|H−2n1| · n1 = |(x2 − x1) · n1| . (183)

Applying this to (181) gives

||u (x2) − u (x1)| − |(x2 − x1) · n1|| < cκ
m0
64 . (184)

Using inequalities (179), (180) and the fact that x2−x1
|x2−x1| = H−2n1

|H−2n1|

∣
∣
∣
∣|u (x2) − u (x1)|R1

(
H−1n1

)− |x1 − x2|R2

(
H−1n1

|H−2n1|
)∣∣
∣
∣

(180)
= |(u (x2) − u (x1)) −R2H (x2 − x1)|

(179)

≤ cκ
m0
64 . (185)

And as we have see
∣∣H−2n1

∣∣−1 = H−2n1
|H−2n1| · n1 so |x1−x2|

|H−2n1| = |(x2 − x1) · n1| and so using this in (184) and
inserting it into (185) we have

∣
∣
∣
∣|x2 − x1|R1

(
H−1n1

|H−1n1|
)
− |x2 − x1|R2

(
H−1n1

|H−1n1|
)∣∣
∣
∣ < cκ

m0
64 (186)

from (178) we know |x1 − x2| > σ3

4 and so (186) implies

|R1 −R2| < cκ
m0
64 . (187)

By definition of W1 and W2 (173) and (175) we know

Card (Kqi\ (G\D)) ≤ κ
m0
16 κ−

m0
2 + κ

m0
200 κ−

m0
2

≤ 2κ
m0
200 κ−

m0
2 . (188)

So setting p0 = m0
200 , q0 = m0

128 we see (188) and (178), (179), (187) gives us the necessary conditions to apply
Lemma 7.4. So by Lemma 7.4 we have the existence of a set Mi ⊂ Kqi ∩ (G\D) such that

Card (Kqi\Mi) ≤ cκ
m0
400 κ−

m0
2 (189)
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and every P ∈Mi has the property
∫

P

|Du (z) −R2H | dL2z ≤ cκ
m0
800 κm0 . (190)

Recall (see (179)) R2 is independent of i. Let

Π = B\
n5⋃

i=1

Mi.

So by (177) and (189) we have

Card (Π) ≤ κ−
m0
2 Card

({
Ks1 ,Ks2 , . . .Ksn4

} \{Kq1 ,Kq2 , . . .Kqn5

})
+

n5∑

k=1

Card (Kqk
\Mqk

)

(177),(189)

≤ 6κ
m0
200 κ−m0 + cκ

m0
400 κ−m0

≤ cκ
m0
400κ−m0 . (191)

And note any P ∈ B\Π satisfies inequality (190) and so using (191) we have
∫

W

|Du (z) −R2H | dL2z ≤ 20ζ2κ
m0
2 +

∑

P∈B

∫

P

|Du (z) −R2H | dL2

(191)

≤ 20ζ2κ
m0
2 + Card (B\Π) cκ

m0
800 κm0 + cκ

m0
400

≤ cκ
m0
800 .

This completes the proof of the theorem. �
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