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NULL-CONTROLLABILITY OF SOME SYSTEMS OF PARABOLIC TYPE
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Abstract. We study the null controllability by one control force of some linear systems of parabolic
type. We give sufficient conditions for the null controllability property to be true and, in an abstract
setting, we prove that it is not always possible to control.
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Introduction

Null-controllability of linear and semilinear parabolic equations has been extensively studied these last ten
years. In their work, Lebeau and Robbiano [6] considered the heat equation in bounded domains Ω ⊂ Rn and
for positive times T

ut = ∆u+ fχω in QT = (0, T ) × Ω
u = 0 on ΣT = (0, T )× ∂Ω

u(0, .) = u0 ∈ L2(Ω) (1)

where ω is an open set which satisfies ω ⊂ Ω. They proved its null-controllability by a localized (in space)
control: for any u0 ∈ L2(Ω), there exists f ∈ L2(QT ) such that the associated solution of (1) satisfies u(T, .) ≡ 0
in Ω. The main tool to establish such a result is a Carleman estimate. Fursikov and Imanuvilov [7] proved the
same result for the problem:

Lu = fχω in QT
u = 0 on ΣT

u(0, .) = u0 ∈ L2(Ω) (2)

Keywords and phrases. Control, parabolic systems.
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where L is a general linear second order parabolic operator. Again, the main tool is a global Carleman es-
timate satisfied by the solutions of (2). This estimate allowed these authors to prove the null-controllability
(controllability to the trajectories) of semilinear equations:

Lu = h(u) + fχω in QT
u = 0 on ΣT

u(0, .) = u0 ∈ L2(Ω) (3)

when h is a globally Lipschitz-continuous function. Fernandez-Cara and Zuazua [8] and Barbu [4] generalized
this result to some superlinearities using a fixed point method and a precise expression of the constants appearing
in the global Carleman estimate.

In contrast, very few results are published for linear or semilinear parabolic systems. Anita and Barbu [3], for
a reaction-diffusion system, and Barbu [5] for the phase field system, proved local exact controllability results
by two localized (in space) control forces. In a recent paper [1], the authors give local exact controllability and
exact controllability results for phase field systems by only one localized control force. All these papers pass
first through the study of the controllability of a “linearized” version of the system and use some Carleman
estimate in order to apply a fixed point theorem.

As it is by now well-known, the controllability result of this linearized system amounts to prove an observ-
ability estimate for its adjoint system. This part is in a way the corner-stone for the proof of the controllability
of the initial semilinear problem when using a fixed point method. In particular if a control problem by only
one force is considered, it is to obtain this estimate that the coupling operator between the equations of the
system plays role. So in view of these facts, a natural question arises: is it always possible to control coupled
linear parabolic systems by a reduced number of control forces. It is the aim of this paper to give some partial
answers to this question.

To address this question, this article is organized as follows.
We first consider in Section 2 a linear system which naturally appears when dealing with the controllability

of some nonlinear reaction-diffusion systems. In this case, the observability estimate is related to the existence
of a definite, non-negative quadratic form Φ, which is introduced in the proof of Lemma 1. This Φ takes into
account the way in which the equations of the system are coupled and it leads to the desired observability
estimate. The goal of this section is to illustrate, in a simple case, the main ideas contained in the proof of such
a result.

In the light of Section 2, one may ask if it is possible to adapt this approach to general abstract linear
systems of parabolic type (at least to obtain some sufficient condition for their controllability). This is the goal
of Section 3 where it turns out that the observability estimate is actually related to the existence of such a
Φ which is itself related to the existence of a multiplier M as shown in Theorem 2.1. Note that this relation
between Φ and M was hidden in Section 2 since in this caseM was equal to the identity. Finally, to conclude this
third section we exhibit some examples of linear “parabolic-like” systems showing that it is not always possible
to control such coupled systems by a reduced number of control forces. In this case the non-controllability is
related to the compactness of the coupling operator (this operator being in some sense “too compact”). Note
that the operators in these examples are not of partial differential type and thus do not seem to be physically
relevant.

In order to illustrate the relevance of the assumption concerning the existence of a multiplier M in Theo-
rem 2.1, we present in Section 4 an example of linear parabolic system for which it is not possible to take the
identity for M . We show how the abstract theorem of Section 3 can be used for this example to deduce the
controllability of the system by a single (but non-localized) control force. Finally, using this first result together
with suitable Carleman estimates we obtain the controllability of the system by a single localized control force.
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1. An example: Reaction-diffusion systems

We consider a general reaction-diffusion system which arises in mathematical biology:





ψt = ∆ψ + h(ψ,w) + w on Ω × R
+

wt = ∆w + g(ψ,w) + f on Ω × R
+

ψ |δΩ = w |δΩ = 0 in R
+

ψ(x, 0) = ψ0, w(x, 0) = w0

(4)

where Ω is a bounded domain of R
nwith smooth boundary, h, g smooth functions and f a source term. Let

T > 0, f∗ in L2(QT ) (with QT = Ω×]0, T [), and (ψ∗
0 , w

∗
0) ∈ L2(Ω)2. Suppose that there exists a (ψ∗, w∗)

satisfying (4) in
(
C
(
]0, T ]× L2(Ω)

))2with (ψ(0), w(0)) = (ψ∗
0 , w

∗
0) and consider the controllability question of

finding a function f ∈ L2(QT ) such that the corresponding solution pair (ψ,w) of (4) satisfies ψ(T ) = ψ∗(T )
and w(T ) = w∗(T ). Note that this is still an open question with a single control force (even for a non-localized
control) which will be address in a future work [2]. To our knowledge, the only result in this direction is the
one of Anita and Barbu [3] for a localized control acting on both equations. The sketch of the proof of such a
result, is to set first

ψ = ψ − ψ∗

w = w − w∗

where (ψ,w) satisfies (4), to get:





ψt = ∆ψ +
(
h(ψ,w) − h(ψ∗, w∗)

)
+ w on Ω × R

+

wt = ∆w +
(
g(ψ,w) − g(ψ∗, w∗)

)
+ f − f∗ on Ω × R

+

ψ |δΩ = w |δΩ = 0 in R
+

ψ(x, 0) = ψ0 − ψ∗
0 , w(x, 0) = w0 − w∗

0 .

The main task is now to prove the controllability of a linearization of this system with suitable estimates on the
control (with the help of Carleman estimates if the control is localized) to be able to use a fixed point argument.
As mentioned in the introduction, the question under interest here is the study of the controllability of this
linearized system. This system takes here the following form:






ψt = ∆ψ + aψ + bw on Ω × R
+

wt = ∆w + dψ + cw + f on Ω × R
+

ψ |δΩ = w |δΩ = 0 in R
+

ψ(x, 0) = ψ0, w(x, 0) = w0.

(5)

We assume a, b, c, d ∈ L∞(QT ) and f ∈ L2(QT ).
The rest of this section is now devoted to the study of the controllability of (5). To begin with we recall

for completeness why this controllability property is actually equivalent to the so called observability estimate.
Then we prove in Lemma 1.2 this estimate.

Existence and uniqueness for (5) follow from classical results on parabolic systems (see [9]). System (5) can
be written in the following abstract form:

Yt = A(t)Y +Bf

with

A(t) =
(

∆ + aI bI
dI ∆ + cI

)

,

Y =
(
ψ
w

)

, B =
(

0
I

)

.
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One gets that for all initial data (ψ0, w0) ∈ H = L2(Ω)× L2(Ω) and all f in L2(QT ), there exists a unique
solution (ψ,w) ∈ C([0, T ];H).

Our aim is to prove that for all initial data Y0 =
(
ψ0

w0

)

∈ H , one can find f ∈ L2(QT ) such that the

corresponding solution of (5) satisfies
Y (T ) = 0. (6)

As in [13], for any t > 0, we define the operators St which associates with an initial data Y0 ∈ H the solution
of the homogeneous system ((5) (f = 0) at time t and Lt which associates with f ∈ L2(QT ) the solution at
time t of (5) corresponding to null initial data. Then, the controllability property is equivalent to the existence,
for all initial data in H , of f ∈ L2(Ω) such that

STY0 + LT f = 0, (7)

which is equivalent to
R (ST ) ⊂ R ( LT ) . (8)

This last inclusion holds if and only if (see for instance [13], Th. 2.2, p. 208) there exists CT > 0 such that

‖S∗
T (Y0)‖H ≤ CT ‖L∗

TY0‖L2(0,T ;H) ∀Y0 ∈ H,

where, for any bounded operator M , M∗ denotes the adjoint operator. Since (L∗
Th) (t) = B∗S∗

T−t h for any
h ∈ H and if A∗(t) denotes the adjoint operator in H of A(t), this last inequality can be written as

|φ(T )|2 + |u(T )|2 ≤ CT

∫ T

0

∫

Ω

|u(t, x)|2 dxdt, (9)

where |.| stands for the L2-norm and (φ, u) is the solution of the adjoint problem:






φt = ∆φ+ aφ+ du on Ω × R
+

ut = ∆u + cu+ bφ on Ω × R
+

φ |δΩ = u |δΩ = 0 in R
+

φ(x, 0) = φ0, u(x, 0) = u0.

(10)

Remark 1.1. We insist again here on the fact that the purpose of this article is to study the way to prove the
observability estimate in the case of a reduced number of control forces. In particular we are not interested at
this level by the localization in space of the control. However let us mention that if f = gχω in (5) then the
corresponding observability estimate (namely with ω instead of Ω in the right-hand-side of (9)) can be deduced
by using some suitable Carleman estimate (see [2]).

Let us show the observability inequality (9) for solutions of (10).

Lemma 1.2. For T > 0, assume that b ≥ δ > 0 a.e in QT . Then there exists a positive constant CT such that
for all initial data (φ0, u0) ∈ L2(Ω) × L2(Ω) the corresponding solution of (10) satisfies (9).

Proof. (9) is an observability estimate. It shows the possibility of recovering the total L2-norm at time T by
observing only the L2-norm of u from t = 0 to t = T . The proof of this Lemma is based on the introduction of
a suitable functional itself based on suitable multipliers. Let us introduce, for any solution (φ, u) of (10), the
functional:

Φ(φ, u ) = t4 |φ|2 + λt2 |u|2 − µt3 (φ, u) ,

where λ, µ are positive constants witch will be chosen later.
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One has

d
dt

(
t4 |φ|2

)
= 4t3 |φ|2 + 2t4 (φ, φt)

≤ 4t3 |φ|2 − 2t4 |∇φ|2 + 2t4 ‖a‖L∞(QT ) | φ|2

+2t4 ‖d‖L∞(QT ) |(φ,u)|

d
dt

(
t2 |u|2

)
= 2t |u|2 + 2t2 (u, ut)

≤ 2t |u|2 − 2t2 |∇u|2 + 2t2 ‖c‖L∞(QT ) | u|2
+2t2 ‖b‖L∞(QT ) |(φ, u)| ,

and

− d
dt
t3 (φ, u) ≤ 3t2 |(φ, u)|

+t3
{

2 |(∇φ ,∇u)| +
(
‖a‖L∞(QT ) + ‖c‖L∞(QT )

)
|(φ,u)|

}

−t3 (bφ, φ) + t3 ‖d‖L∞(QT ) |u|2 .

Thus, differentiating Φ with respect to time, we obtain:

d
dt

Φ(u, v) ≤ I1 + I2 + I3

where we have introduced the following notations

I1 = 4t3 |φ|2 − 2t4 |∇φ|2 + 2t4 ‖a‖L∞(QT ) | φ|2 − µt3 (bφ, φ) ,

I2 =
(
2 ‖d‖L∞(QT ) t

4 + µ ‖(a, c)‖L∞(QT ) t
3 +
(
2λ ‖b‖L∞(QT ) + 3µ

)
t2
)
|(φ,u)|

+2µ |(∇φ ,∇u)| t3,

where ‖(a, c)‖L∞(QT ) = ‖a‖L∞(QT ) + ‖c‖L∞(QT ) .

I3 = 2λt |u|2 − 2λt2 |∇u|2 + 2λt2 ‖c‖L∞(QT ) | u|2 + µt3 ‖d‖L∞(QT ) |u|2 .

Now we estimate each of the three quantities I1, I2 and I3.
• Estimate of I1.
Recall that we have assumed that b ≥ δ > 0 a.e. in QT . Therefore, choosing

µ =
8 + 4T ‖a‖L∞(QT )

δ
(11)

leads to

I1 ≤ −2(2 + T ‖a‖L∞(QT ))t
3 |φ|2 − 2t4 |∇φ|2 .
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• Estimate of I2.
Using Cauchy-Schwarz’s and Young’s inequalities, we have:

I2 ≤ (2 + T ‖a‖L∞(QT ))t
3 |φ|2 + 2t4 |∇φ|2 +

µ2

4
t2 |∇u|2

+
[
2 ‖d‖L∞(QT ) t

2 + µ ‖(a, c)‖L∞(QT ) t

+ 2λ ‖b‖L∞(QT ) + 3µ
]2 t |u|2
(
2 + T ‖a‖L∞(QT )

)2 ·

• Estimate of I3.

I3 ≤ P1(t) |u|2 − 2λt2 |∇u|2
where

P1(t) = µ ‖d‖L∞(QT ) t
3 + 2λ ‖c‖L∞(QT ) t

2 + 2λt.

In view of these last estimates, choosing λ ≥ µ2

8
, one gets

d
dt

Φ(u, v) ≤ P (t) |u|2

with

P (t) = P1(t) +
t

(2 + T ‖a‖L∞(QT ))2
[
2 ‖d‖L∞(QT ) t

2

+ µ
(
‖a‖L∞(QT ) + ‖c‖L∞(QT )

)
t+ 2λ ‖b‖L∞(QT ) + 3µ2

]2
.

To end the proof, it remains to show that Φ(u, v) is a quadratic definite form in L2(Ω) for t = T . This is a
direct consequence of the definition of Φ, with λ = µ2. Actually, one has:

Φ(u, v)(T ) ≥
(

1
2
T 2 +

1
2
λ− 1

2

√
(T 4 − λT 2 + λ2)

)

T 2
(
|φ(T )|2 + |u(T )|2

)
.

Therefore, all solutions of (10) satisfy (9) with

CT =
‖P‖L∞(O,T )

(
1
2T

2 + 1
2λ− 1

2

√
(T 4 − λT 2 + λ2)

)
T 2

∼
0

C

T 3
,

since ‖P‖L∞(O,T ) ∼
0
c1T and 1

2

(
T 2 + λ−√(T 4 − λT 2 + λ2)

)
T 2 ∼

0
c2T where C, c1, c2 are positive constants

independent of T . �

Remark 1.3. The question of the optimality of the minimal norm steering control as T ↓ 0 is by now well-
known. Let’s briefly recall some background connected to this question. Consider an abstract and general
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control problem:

Yt = AY +Bu,

Y (0) = Y0 ∈ H.

where (A,D(A)) is an unbounded operator in a Hilbert space H and B, the control operator , is defined from
the control Hilbert space X in H . If the null controllability property holds for this abstract system, then for
arbitrary T > 0 and Y0 ∈ H , there exists u ∈ L2((0, T );X) such that the corresponding solution satisfies
Y (T ) = 0. Then one can look for the control u which minimizes ‖u‖L2(0,T ;X). Let us denote it by uT and let
the minimal energy function Emin(T ) defined by

Emin(T ) := sup
‖Y0‖=1

‖uT (Y0)‖L2(0,T ;X) .

When dimH <∞, it is well known that Emin(T ) is exactly the best constant
√
CT of the observability inequality

and it has been proved (see [11, 12]) that
√
CT ∼

0
T−k− 1

2 where k is the smallest integer such that






A ∈Mn(R) et B ∈Mn,m(R)

rg[B,AB, ..., AkB] = n.

If we consider the correspondence between our system and a finite dimensional one with:

A =
( −λ+ a d

b −λ+ c

)

, B =
(

0
1

)

, d = 0

then a simple computation gives k = 1 and then T−k− 1
2 = T− 3

2 . Therefore it is interesting to notice that our
computations leads to the same behavior near T = 0 since we have obtained

√
CT ∼

0
CT− 3

2 .

2. Null-controllability for general systems

2.1. Sufficient conditions

This section is devoted to the question of null-controllability for some general systems of parabolic type when
using control forces acting on a single equation of the system.

More precisely, let U and V be two real Hilbert spaces with scalar-product ( , )U and ( , )V respectively, and
let | |U and | |V denote the corresponding norms. Let A and C be linear self-adjoint operators with the domains
D(A) ⊂ U and D(C) ⊂ V , respectively. We assume that these operators are positive definite. We also introduce
two linear, possibly unbounded, densely defined operators B : D(B) ⊂ V → U and D : D(D) ⊂ U → V. Assume
also that the sets

D(A) ∩ D(D) ∩ D(B∗), D(C) ∩ D(B) ∩ D(D∗)

are dense in U and V so that the matrix operators

A =
(

A2 −D∗

−B∗ C2

)

, Â =
(

A2 −B
−D C2

)

be defined on a common dense set F ⊂ U × V . Finally, suppose that for any (u, v) ∈ U × V the inequality

(Bv, u)U + (Du, v)V ≤ |Au|2U + |Cu|2V
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holds. Thus A is a densely defined dissipative operator. It is therefore closable [10], p. 15, Theorem 4.5. Let
us retain the notation A for its closure. The domain of the adjoint operator A∗ contains the dense set F
and thus A∗ is also dissipative. Therefore both A and A∗ generate C0 semigroups of contractions [10], p. 15,
Corollary 4.4.

This allows us to consider the following initial value problem






ψt = −A2ψ +D∗w U
wt = B∗ψ − C2w + f V
ψ(0) = ψ0, w(0) = w0,

(12)

where f ∈ L2(R+, V) is the control force.
The aim of this section is to find conditions under which system (12) is L2-null-controllable at any time T > 0,

i.e., for any time T > 0 and any initial data Y0 = (ψ0, w0) ∈ U × V there exists a control force f ∈ L2(R+,V) for
which the corresponding solution (ψ,w) of (12) vanishes at time T . It is by now classical (see for instance [13],

Th. 2.6, p. 213) that, if we denote by R : V → U × V the operator defined by Rf =
(

0
f

)

, this property is

equivalent to the existence of a constant cT > 0 such that for all (ψ0, w0) ∈ U × V
∥
∥
∥eA

∗TY0

∥
∥
∥

2

≤ cT

∫ T

0

∥
∥
∥R∗ eA

∗tY0

∥
∥
∥

2

dt,

which reads

|u(T )|2U + |v(T )|2V ≤ cT

∫ T

0

|v(t)|2V dt, (13)

for the solution (u, v) of the adjoint system,






ut = −A2u+Bv
vt = Du− C2v
u(0) = u0, v(0) = v0.

(14)

Throughout this section we agree to denote by c a constant depending only on the operators A, B, C, and D.
The main result of this section reads as follows:

Theorem 2.1. Let (u0, v0) ∈ D(A). Assume that there exists a linear (maybe unbounded but not necessarily
closed) operator M : D(M) ⊂ V → U such that for some p ∈ R the following inequalities are defined and hold
for any (u, v) ∈ D(A):

− (Bv,Mv)U ≤ c |Cv|2V (15)

|M∗u|2V ≤ c
∣
∣A−pu

∣
∣2
U (16)

∣
∣A−1−pBv

∣
∣2
U ≤ c |Cv|2V (17)

(MDu, u)U ≥ c
∣
∣A−pu

∣
∣2
U (18)

∣
∣A1+pMv

∣
∣2
U ≤ c |Cv|2V (19)

∣
∣A−1+pMC2v

∣
∣2
U ≤ c |Cv|2V . (20)
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Assume also that there exists a positive constant γ such that for all ε > 0,
∣
∣A−1+pD∗v

∣
∣2
U ≤ ε |Cv|2V +

c

εγ
|v|2V (21)

∣
∣A−1+pMv

∣
∣2
U ≤ ε |Cv|2V +

c

εγ
|v|2V (22)

for any (u, v) ∈ F . Then for any T > 0 the solution of problem (14) satisfies the estimate

∣
∣A−pu(T )

∣
∣2
U + |v(T )|2V ≤ cT−2γ−4

∫ T

0

|v(t)|2V dt.

If, in addition, there exists a constant q > 0 such that the estimate

|u(T )|2U + |v(T )|2V ≤ c(1 + T−q)(|A−pu0|2U + |v0|2V) (23)

holds for any T > 0, then system (12) is L2 null-controllable at any time.

Remark 2.2. The assumptions of Theorem 2.1 may seem strange. Indeed, they naturally appear when we
apply to the abstract system the same ideas which allowed us to treat the example in the previous section. Let
us briefly explain these ideas. If we had to control system (12) by two functions (one for each equation of the
system), we should have to prove the estimate:

|u(T )|2U + |v(T )|2V ≤ cT

(∫ T

0

|u(t)|2V dt+
∫ T

0

|v(t)|2V dt

)

, (24)

for the solution (u, v) of the adjoint system (14). If this estimate is obtained, the difficulty now is to get rid
of
∫ T
0 |u(t)|2V dt. Roughly speaking, it is the role of the second equation to allow this: thus we have to find a

suitable multiplier (the operator M of the theorem) leading to an estimate of
∫ T
0
|u(t)|2V dt. If we multiply the

second equation of the adjoint system (14) by M∗u, we are naturally led to the assumption (18) and the other
assumptions are here to manage the “bad” terms appearing after this. For instance, if D was invertible (with
a bounded inverse) and of the same “order” as B, the natural choice is M = D−1 and p = 0 (it corresponds to
the situation in the example treated in the previous section). Based on these ideas, the functional we introduce
allows both to prove (24) and to get rid of

∫ T
0
|u(t)|2V dt but, in doing this, the condition (23) (it is a kind of

parabolic property) becomes necessary to end the proof.

Remark 2.3. For another application of this process, the reader should refer to the third section (system (41)).

Proof. For u and v satisfying (14), define the quadratic form Φ by

Φ(u, v) = tl+2
∣
∣A−pu

∣
∣2
U + λtl |v|2V − µtl+1 (Mv, u)U , (25)

where the positive parameters l, λ, and µ will be chosen later. The first step of the proof is to show that there
exists a positive constant c such that

d
dt

Φ(u, v) ≤ c |v|2V .
Using (14) we deduce that:

d
dt

(
tl+2 |A−pu|2U

)
= (l + 2)tl+1 |A−pu|2U + 2tl+2

(
A−2pu, ut

)

U

= (l + 2)tl+1 |A−pu|2U − 2tl+2
∣
∣A1−pu

∣
∣2
U

+2tl+2
(
Bv,A−2pu

)

U , (26)
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and
d
dt

(
tl |v|2V

)
= ltl−1 |v|2V + 2tl (v, vt)V

= ltl−1 |v|2V − 2tl |Cv|2V + 2tl (Du, v)V , (27)

as well as
d
dt
(
tl+1 (Mv, u)U

)
= (l + 1)tl (Mv, u)U + tl+1 (Mvt, u)U + tl+1 (Mv, ut)U
= (l + 1)tl (Mv, u)U + tl+1 (MDu, u)U

−tl+1
(
u, (A2M +MC2)v

)

U + tl+1 (Bv,Mv)U . (28)

Thus, differentiating Φ with respect to time, in view of (26)–(28) we obtain

d
dt

Φ(u, v) = I1 + I2 + I3, (29)

where we have introduced the following notations

I1 = (l + 2)tl+1
∣
∣A−pu

∣
∣2
U − 2tl+2

∣
∣A1−pu

∣
∣2
U − µtl+1 (MDu, u)U ,

= 2tl+2
(
Bv,A−2pu

)

U + 2λtl (Du, v)V
−µ(l + 1)tl (Mv, u)U + µtl+1

(
u, (A2M +MC2)v

)

U ,

I3 = λltl−1 |v|2V − 2λtl |Cv|2V − µtl+1 (Bv,Mv)U .

Now we estimate each of the three quantities I1, I2 and I3.
• Estimate of I1.
In view of (18), one can choose µ large enough so that

I1 ≤ tl+1(l + 2 − cµ) |A−pu|2U − 2tl+2
∣
∣A1−pu

∣
∣2
U

≤ −2tl+2
∣
∣A1−pu

∣
∣2
U .

(30)

• Estimate of I2.
Using Cauchy-Schwarz’s and then Young’s inequality, we have

I2 = 2tl+2
(
A−1−pBv,A1−pu

)

U
+2λtl

(
A1−pu,A−1+pD∗v

)

U
−µ(l + 1)tl

(
A−1+pMv,A1−pu

)

U
+µtl+1

(
A1−pu, (A1+pM +A−1+pMC2)v

)

U

≤ 1
2 t
l+2
∣
∣A1−pu

∣
∣2
U + 2tl+2

∣
∣A−1−pBv

∣
∣2
U

+ 1
2 t
l+2
∣
∣A1−pu

∣
∣2
U + 2λ2tl−2

∣
∣A−1+pD∗v

∣
∣2
U

+ 1
2 t
l+2
∣
∣A1−pu

∣
∣2
U + 1

2µ
2(l + 1)2tl−2

∣
∣A−1+pMv

∣
∣2
U

+ 1
2 t
l+2
∣
∣A1−pu

∣
∣2
U + µ2tl

∣
∣A1+pMv

∣
∣2
U + µ2tl

∣
∣A−1+pMC2v

∣
∣2
U ,
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and therefore
I2 ≤ 2tl+2

(∣
∣A1−pu

∣
∣2
U +

∣
∣A−1−pBv

∣
∣2
U
)

+µ2tl
(∣
∣A1+pMv

∣
∣2
U +

∣
∣A−1+pMC2v

∣
∣2
U
)

+2tl−2
(
λ2
∣
∣A−1+pD∗v

∣
∣2
U + 1

4µ
2(l + 1)2

∣
∣A−1+pMv

∣
∣2
U
)
.

Using (17) and (19)–(22), we have

I2 ≤ 2tl+2
∣
∣A1−pu

∣
∣2
U

+2c(tl+2 + µ2tl) |Cv|2V
+2tl−2(λ2 + 1

4µ
2(l + 1)2)

(
ε |Cv|2V + cε−γ |v|2V

)
,

or, setting

ε = t2(λ2 +
1
4
µ2(l + 1)2)−1 and l = 2 + 2γ ≥ 0, (31)

I2 ≤ 2t2γ+4
∣
∣A1−pu

∣
∣2
U

+(2ct2γ+4 + 2cµ2t2γ+2 + 2t2γ+2) |Cv|2V
+4
(
λ2 + 1

4µ
2(2γ + 3)2

)1+γ |v|2V .

(32)

• Estimate of I3.
To estimate I3 we use (15) to obtain

I3 ≤ λ(2 + 2γ)t2γ+1 |v|2V +
(−2λt2γ+2 + cµt2γ+3

) |Cv|2V (33)

Now in view of (30), (32) and (33), which we substitute into (29) we have

d
dt

Φ(u, v) ≤ (−2λt2γ+2 + cµt2γ+3 + 2ct2γ+4 + 2cµ2t2γ+2 + 2t2γ+2
) |Cv|2V

+
(
4(λ2 + 1

4µ
2(2γ + 3)2)1+γ + λ(2 + 2γ)t2γ+1

) |v|2V .
(34)

Going back to (25), recalling (16) and making λ larger if necessary, we remark that

Φ(u, v) ≥ 1
2

(
t2γ+4 |A−pu|2U + t2γ+2 |v|2V

)
.

Thus integration of (34) over [0, T/2] yields:

|A−pu(T/2)|2U + |v(T/2)|2V ≤ c(T )
∫ T/2
0

|v(t)|2V dt, (35)

with for T small:
c(T ) ∼ T−2γ−4

which already implies the null-controllability of system (12) in the case p ≤ 0. Otherwise use first (23) on the
interval [T/2, T ] and then (35) to obtain

|u(T )|2U + |v(T )|2V ≤ (1 + cT−q)
(
|A−pu(T/2)|2U + |v(T/2)|2V

)

≤ cT−q−2γ−4
∫ T/2
0

|v(t)|2V dt

≤ cT−q−2γ−4
∫ T
0 |v(t)|2V dt. �
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2.2. Some necessary conditions: a counterexample

Here, we construct an example showing that for some coupling operator, the system cannot be null-controllable.
Let A be an unbounded positive definite self-adjoint operator in a Hilbert space H with discrete spectrum

{λk}k∈N (definitely, A could be viewed as −∆ with Dirichlet homogeneous boundary conditions). If we denote
by {φk}k the corresponding orthonormal basis of eigenfunctions, A may be written

A =
∑

k

λk 〈., φk〉φk.

Therefore, if f is a real function defined on spec(A), we set

f(A) :=
∑

k

f(λk) 〈., φk〉φk.

Assume f : spec(A) → R satisfies

0 < |f(s)| < s, ∀s, and f(s) = o(s) as s→ ∞,

so that the operator f(A) is relatively compact with respect to A.
Consider the following control problem: given u0, v0 ∈ H and a positive number T , find a function h ∈

L2((0, T ), H) such that the solution of the Cauchy problem





ut = −Au+ f(A)v
vt = −Av + f(A)u+ h
u(0) = u0, v(0) = v0

(36)

satisfies u(T ) = 0 and v(T ) = 0.
The desired h exists if and only if there exists a positive constant CT such that any solution (u, v) of the

homogeneous problem 




ut = −Au+ f(A)v
vt = −Av + f(A)u
u(0) = u0, v(0) = v0

satisfies the estimate

‖u(T )‖2 + ‖v(T )‖2 ≤ CT

∫ T

0

‖v(t)‖2dt, (37)

where we denote by ‖.‖ the norm in H .
The main result of this section is:

Theorem 2.4.
1/- System (36) is null-controllable in time T if and only if the function s−3f2(s)e2Ts stays bounded away

from zero as s→ ∞.
2/- If f(s) decays polynomially, the system is null-controllable for any T > 0.
3/- For f(s) = e−s we have the null-controllability result for any T > 1, but not for smaller values of T .
4/- If the decay rate of f(s) is super-exponential, the system is never null-controllable.

Remark 2.5. Note that if f satisfies one of the condition of this theorem, then f(A) is a compact operator (as
a limit of finite rank operators).

From an heuristic point of view, this result gives some indications on the “order” of the coupling operators for
the null-controllability property to hold. For instance, if the coupling operator is a partial differential operator
of order 0 or 1, or if it is of order A−p for some real p > 0, then (may be with some additional assumptions) the
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null-controllability of the system should hold. If the coupling operator is “too compact” (by this, we mean that
its sequence of eigenvalues decays very fast to 0), then the null-controllability property will in general be false.

Proof. In terms of quadratic forms, (37) reads as follows:

e−2LT ≤ CT

∫ T

0

e−LtP e−Lt dt (38)

where L and P are operators in H ×H given by

L =
(

A −f(A)
−f(A) A

)

, P =
(

0 0
0 I

)

.

It is easy to see that the eigenvalues of the 2 × 2 matrix L are λ±(A), where λ±(s) = s ± |f(s)|, and that the
orthogonal matrix

V =
1√
2

(
1 −1
1 1

)

diagonalizes L with

Λ =
(

λ+(A) 0
0 λ−(A)

)

= V LV ∗.

So, it is easy to check that
e−Λt = V e−LtV ∗.

Thus:

e−2ΛT ≤ CT

∫ T

0

e−ΛtV PV ∗e−Λt dt (39)

with

V PV ∗ =
1
2

(
I −I
−I I

)

.

For any real s we set η(s) = (es − 1)/s. Computing explicitly the integral at the right-hand side of (39), one
can rewrite the null-controllability condition in the form

I ≤ CT
2
B(A) (40)

where

B(s) =

(
η(2Tλ+(s)) −η(−Tλ+(s) − Tλ−(s))

−η(−Tλ+(s) − Tλ−(s)) η(2Tλ−(s))

)

.

Denote by σ(s) the smallest eigenvalue of the 2 × 2 matrix B(s). Clearly, using assumptions on f(s)

detB(s)
trB(s)

≤ σ(s) ≤ 2
detB(s)
trB(s)

·

Since inequality (40) is equivalent to the positive definiteness of the operator σ(A), we arrive at the following
assertion: system (36) is null-controllable if and only if the function detB(s)/trB(s) is bounded away from zero.

To estimate detB(s)/trB(s) first note that

(ln η(s))′′ =
1
s2

− 1
es + e−s − 2

·
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Thus the function η is log-convex and

1
s2 + 12

≤ (ln η(s))′′ ≤ 1
s2

·

Applying the Taylor formula to ln η(s), for two real numbers s1 and s2 we have

η(2s1)η(2s2) = η2(s1 + s2)e(ln η(s̄))′′(s1−s2)2 ,

where s̄ ∈ [s1, s2]. Replacing s1 and s2 by λ+(s) and λ−(s), respectively, we obtain the following expression for
the determinant of the matrix B(s):

detB(s) = η(2Tλ+(s))η(2Tλ−(s))
[
1 − e−4f2(s)T 2ψ(s)

]
,

where
1

4T 2λ2
+(s) + 12

≤ ψ(s) ≤ 1
4T 2λ2−(s)

·

This, in particular, shows that the function detB(s)/trB(s) is strictly positive for any value of s. To verify if
it is bounded away from zero it suffices to study its asymptotic behavior as s→ ∞. As is easy to see,

λ±(s) = s(1 + o(1)),

η(2λ±(s)) =
e2Ts

2Ts
(1 + o(1)), ψ(s) =

1
4Ts2

(1 + o(1)),

1 − e−4f2(s)T 2ψ(s) =
f2(s)
s2

(1 + o(1)),

and therefore

detB(s) =
f2(s)e4Ts

4T 2s4
(1 + o(1)), trB(s) =

e2Ts

Ts
(1 + o(1)).

Finally we obtain
detB(s)
trB(s)

=
f2(s)e2Ts

4Ts3
(1 + o(1)). �

3. Application to the null-controllability of power-like systems

3.1. Preliminaries

Let Ω be a bounded domain in Rn with C∞ boundary and let ω be any subdomain of Ω with characteristic
function χω. For T > 0, we set QT = (0, T )× Ω and we consider the system of parabolic equations:






ϕt = −Lϕ+ Lαw in (0, T )× Ω

wt = Lαϕ− Lβw + χωu in (0, T )× Ω

ϕ(0) = ϕ0, w(0) = w0 in Ω,

(41)

where L is the realization of the Dirichlet Laplacian operator on Ω:

L = −∆, D(L) = H2(Ω) ∩H1
0 (Ω),
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α ∈ R, β ∈ R
+∗, ϕ0, w0 ∈ L2(Ω) and u ∈ L2(QT ). We then set H = L2(Ω) × L2(Ω) and we define the linear

and unbounded operator:

L =

(
L −Lα

−Lα Lβ

)

with domain D(L) = (D(L) ∩D(Lα)) × (D(Lα) ∩D(Lβ)
)
.

We also denote by < ., . > and ‖.‖ the scalar product and associated norm in H and by (., .) and |.| the scalar
product and associated norm in L2(Ω). Introducing (µk)k∈N∗ and (ϕk)k∈N∗ the sequences of eigenvalues and
normalized eigenfunctions of L, the eigenvalues and corresponding normalized (in H) eigenfunctions of L are
given by:

λ±k =
µk + µβk ∓

√

(µk − µβk )2 + 4µ2α
k

2
(42)

Φ±
k =

1
√

µ2α
k +

(−λ±k + µk
)2

(
µαk

−λ±k + µk

)

ϕk, (43)

To simplify the notations, we set:

λk =
{
λ+
k if k ≥ 1
λ−k if k ≤ −1,

Φk =
{

Φ+
k if k ≥ 1

Φ−
k if k ≤ −1.

Clearly (Φk)k∈Z∗ is an orthonormal family in H . Actually, it is total (i.e. span {(Φk)k∈Z∗} = H).
We can now introduce the self-adjoint extension of L (for which we keep the same notation) with respect to

its base of eigenfunctions according to:

L =
∑

k∈Z∗
λk < .,Φk > Φk (44)

D(L) =

{

Y ∈ H,
∑

k∈Z∗
λ2
k ‖Yk‖2

<∞
}

· (45)

where Yk :=< Y,Φk >. A necessary and sufficient condition for −L to generate a C0-semigroup
(
e−Lt) is then

that:
∃C > 0, − λk ≤ C, ∀k ∈ Z

∗,
and this last condition is, from the expression of λ+

k (see (42)), equivalent to:

2α ≤ β + 1. (46)

Together with L defined by (44)–(45), we introduce the control operator B : L2(Ω) → H by setting

Bu =
(

0
χωu

)

.

Using the notation Y0 = (ϕ0, w0), system (41) can be rewritten as:
{

Y ′ = −LY +Bu
Y (0) = Y0 ∈ H.

(47)
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We will now prove the null-controllability of (47) namely that, for any Y0 ∈ H , there exists a control u ∈ L2(QT )
such that the solution Y of (47) satisfies Y (T ) = 0. Noting that B∗ = (0, χω), this property amounts to prove

that any solution Y =
(
ϕ
w

)

of the adjoint problem

{
Y ′ = −LY

Y (0) = Y0,
(48)

satisfies the estimate:

|ϕ(T )|2 + |w(T )|2 ≤ CT

∫ T

0

∫

ω

|w(t, x)|2 dxdt, (49)

For a single parabolic equation, this property is well-known and has been obtained in particular by
Lebeau-Robbiano [6] and Fursikov-Imanuvilov [7]. In our case two more difficulties occur. The first one is
due to the fact that the control force only acts on a single equation of this system and the second one is that
this control force is localized in a subdomain of Ω.

To prove (49), we will find in a first step the set of α and β for which this inequality is valid if ω = Ω. This
result is obtained as a direct consequence of Theorem 2.1 in the particular case of system (47). We will restrict
ourselves to the case

2α < β + 1. (50)

For these values of α and β, we then adapt the method developed in [6] to prove (49).

3.2. Null controllability when ω = Ω

The main result of this section is:

Theorem 3.1. Assume that β > 0 and 2α < β + 1. Then for all ϕ0, w0 ∈ L2(Ω) and all time T > 0 there
exists a constant CT > 0 such that the corresponding solution of (48) satisfies

|ϕ(T )|2 + |w(T )|2 ≤ CT

∫ T

0

∫

Ω

|w(t, x)|2 dxdt. (51)

Proof. We prove Theorem 3.1 by showing that the assumptions (15)–(23) of Theorem 2.1 hold.
We first concentrate on (15)–(22). Therefore we have to find p ∈ R and M : L2(Ω) → L2(Ω) such that
D(M∗) ⊂ D(L− p

2 ) and such that the estimates (15)–(22) are satisfied.
We seek M as a power of L namely M := L−α−p. Estimates (15) and (18) are then automatically satisfied
while the estimates (16)–(22) give

(S)






−α− p ≤ −p
2 for (16)

−1−p
2 + α ≤ β

2 for (17)
1+p
2 − α− p ≤ β

2 for (19)
−1+p

2 − α− p+ β ≤ β
2 for (20)

−1+p
2 + α < β

2 for (21)
−1+p

2 − α− p < β
2 for (22)

with for (21)
∣
∣
∣L

−1+p
2 +αw

∣
∣
∣
2

≤ ε
∣
∣
∣L

β
2w
∣
∣
∣
2

+
c

εγ
|w|2 (52)

and for (22)
∣
∣
∣L

−1+p
2 −α−pw

∣
∣
∣
2

≤ ε
∣
∣
∣L

β
2w
∣
∣
∣
2

+
c

εγ
|w|2 . (53)
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In order to find γ, remark that the first inequality of system (S) leads to

∣
∣
∣L

−1+p
2 −α−pw

∣
∣
∣ =
∣
∣
∣L

−1−p
2 −αw

∣
∣
∣ ≤ c

∣
∣
∣L

−1+p
2 +αw

∣
∣
∣ ,

so that (52) implies (53). If −1+p
2 +α ≤ 0, then (52) holds with γ = 0. Otherwise, recall that (see [10] Th. 6.10,

p. 73) for a positive selfadjoint operator Γ, for any r ∈ (0, 1) there exists C > 0 such that for any ρ > 0 and
x ∈ D(Γ)

|Γrx| ≤ Cρr |x| + ρr−1 |Γx| .
Setting ε = ρr−1, this last inequality writes:

|Γrx| ≤ C

ε
r

1−r
|x| + ε |Γx| .

Applying this with Γ = Lβ/2 , r =
(−1+p

2 + α
) 2
β

, we get (52) with:

γ =
r

1 − r

= max
{

0,
−1 + 2α+ p

β + 1 − 2α− p

}

. (54)

Finally we have to find p ∈ R such that system (S) holds. This is equivalent to:

max (2α− 1 − β, |β − 1| − 2α) < p < 1 + β − 2α (55)

and it is now easily seen that the assumptions β > 0 and 2α < 1 + β imply the existence of such a real p. For
example, one can verify that

p := max{0, |1 − β| − 2α}, (56)

is convenient.
Thus the assumptions (15)–(22) of Theorem 2.1 are satisfied and this implies the existence of a constant c

independent of T such that the solution of (48) satisfies

∣
∣
∣L− p

2 ϕ(T )
∣
∣
∣
2

+ | w(T )|2 ≤ cT−2γ−4

∫ T

0

|w(τ)|2 dτ.

It remains to verify that Assumption (23) also holds for the solution of system (48). In this case, Assumption (23)
becomes: there exists q > 0 such that the solution of system (48) satisfies

|ϕ(T )|2 + |w(T )|2 ≤ c(1 + T−q)
(∣
∣
∣L

−p
2 ϕ(0)

∣
∣
∣
2

+ |w(0)|2
)

.

This estimate is easily proved by writing down the solution of (48) in the basis (Φk)k∈Z∗ . Indeed, we have:

Y (t) =
∑

k∈Z∗
e−λkt〈Y0,Φk〉Φk.
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Thus, using the properties of the Φk and setting Y0 = (ϕ0, w0)

‖Y (t)‖2 =
∑

k∈Z∗
e−2λkt |〈Y0,Φk〉|2

≤ C
∑

k∈Z∗

e−2λkt

µ2α
|k| +

(−λk + µ|k|
)2

(
µ2α
|k| |〈ϕ0, ϕk〉|2 +

(−λk + µ|k|
)2 |〈w0, ϕk〉|2

)

≤ C
∑

k∈Z∗

[
µ2p
|k|e

−2λkt
(
µ−2p
|k| |〈ϕ0, ϕk〉|2

)
+ |〈w0, ϕk〉|2

]
. (57)

Studying the asymptotic behavior of λk yields that there exist constants C > 0 and δ > 0 such that λk ≥ Cµδ|k|
for all k ∈ Z

∗. On the other hand, it is a matter of computation to check that for all t > 0:

µ2p
|k|e

−2Cµδ
|k|t ≤ C

tq

with q =
2p
δ

and C is a constant independent of k and t. Thus:

‖Y (t)‖2 ≤
∑

k∈Z∗

(
C

tq
µ−2p
|k| |< ϕ0, ϕk >|2 + |< w0, ϕk >|2

)

≤ C(1 +
1
tq

)
(∣
∣
∣L

−p
2 ϕ(0)

∣
∣
∣
2

+ |w(0)|2
)

which is the desired estimate.

Thus the conclusion of Theorem 2.1 follows:

|ϕ(T )|2 + |w(T )|2 ≤ CT

∫ T

0

∫

Ω

|w(t, x)|2 dxdt,

where the constant CT is estimated by
CT = c T−2p−2γ −4, (58)

γ being defined in (54). �

3.3. Null controllability when ω � Ω

This part is devoted to the proof of the main result of this section.

Remark 3.2. The abstract result does not apply in this situation because the control force is constrained to
be in a strict subspace of L2(QT ) (the abstract result gives a control function in the whole space without more
precision).

Theorem 3.3. Assume that β > 0 and 2α < β + 1. Then for any Y0 ∈ H and any T > 0, there exists a
control u ∈ L2(QT ) such that the solution Y of (47) satisfies Y (T ) = 0.

Proof. We give it for completeness because it is essentially the same than the one given by G. Lebeau and
L. Robbiano [6] in the case of a single equation. Indeed, the original point here is Lemma 3.4 which itself uses
the results of the previous section. Following [6], we fix δ ∈ (0, T/2) and ρ ∈ (0, b/n) where b = 2 min(1, β) − 1
and n is the space dimension. For l ≥ 1 we set

σl = 2l, Tl = A2−ρl

A > 0 is chosen such that 2
∑

l≥1

Tl = T − 2δ.
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Then we introduce, for any t > 0, the operator:

Lt (Y0, u) = e−tLY0 +
∫ t

0

e−(t−s)LBu(s)ds,

(so Y (t) = Lt (Y0, u) is the unique solution of (47)).
We define the sequence (al)l≥0 by setting

a0 = δ

al = al−1 + 2Tl , l ≥ 1,

and for any initial data Y0 ∈ H let ul = KT,σl
(Y0) be a control such that:

πσl
(LT (Y0, ul)) = 0,

where πσl
is the projection operator on the subspace Hσl

=span
{
Φ±
k , 1 ≤ k ≤ σl

}
of H . Of course, the control

ul needs not to be unique but we will see below that, first it exists and second that it can be chosen as the one
which minimizes a given cost functional.

We are now in position to construct a sequence of states:

Y0 ∈ H

Y1 = e−δLY0 (59)
Zl = LTl

(Yl,KTl,σl
(Yl)) (60)

Yl+1 = e−TlLZl. (61)

We first explain briefly this process: until time δ = a0 the system is freely evolving and dissipates without
control (u = 0 in (47)). On the time interval (a0, a0 + 2T1), we first introduce a control u1 which will drive Y1

to a function of H⊥
σ1

in time T1 and we then let again system (47) evolves freely (with u = 0) from t = a0 + T1

to t = a0 + 2T1. We obtain the sequence (Yl) by repeating this construction on (al−1, al). The claim of the
Theorem holds true if we are able to prove that liml→∞ Yl = 0.

Of course, this construction needs to be justified by proving that, at any step, the control ul = KTl,σl
(Yl)

which drives the initial data Yl to a function of H⊥
σl

in time Tl exists. For the solution of system (47) the
following result holds:

Lemma 3.4. Let T > 0. For any l ≥ 1 and any Y0 ∈ H, there exists at least a control u = uT,l(., Y0) ∈
L2(0, T ;U) such that

πl (Y (T )) = πl (LT (Y0, u)) = 0 (62)
where πl is the projection operator on Hl = span

{
Φ±
k , 1 ≤ k ≤ l

}
.

This control can be chosen such that:

‖u‖2
L2(0,T ;U) ≤ cT−2p−4−2γ eC2

√
µl ‖Y0‖2 . (63)

Proof of the Lemma. We fix arbitrary l ≥ 1 and Y0 ∈ H . Equality (62) can be rewritten as

πle−TLY0 + πl

(∫ T

0

e−(T−s)LBu(s)ds

)

= 0. (64)

If we denote by DT the operator defined from the space L2(0, T ;U) in H by

DTu =
∫ T

0

e−(T−s)LBu(s)ds,
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the first part of Lemma 3.4 is equivalent to

R
(
πl ◦ e−TL) ⊂ R (πl ◦DT ) . (65)

This last inclusion holds if and only if (see for instance [13] Th. 2.2, p. 208) there exists C = CT,l > 0 such that

∥
∥
∥e−TL∗

πl(Y0)
∥
∥
∥
H

≤ C ‖D∗
T πl (Y0)‖L2(0,T ;U) ∀Y0 ∈ H.

Since (D∗
T h) (t) = B∗e−(T−t)Lh for any h ∈ H and L = L∗, this last inequality can be written as

|ϕ(T )|2 + |w(T )|2 ≤ CT

∫ T

0

∫

ω

|w(t, x)|2 dxdt, (66)

for any solution Y =
(
ϕ
w

)

of System (48) with Y0 ∈ Hl. So we now prove (66). From Theorem 3.1, we have,

with p and γ satisfying (55) and (54):

|ϕ(T )|2 + |w(T )|2 ≤ cT−2p−4−2γ

∫ T

0

∫

Ω

|w(t, x)|2 dxdt, (67)

for any solution Y =
(
ϕ
w

)

of System (48) with Y0 ∈ H . Now since Y0 ∈ Hl, we deduce from the invariance

of the eigenspaces of L under e−tL, Y (t) ∈ Hl for any t ∈ (0, T ] and thus:

Y (t, .) =
l∑

k=1

{
eλ

+
k t〈Y0,Φ+

k 〉Φ+
k + eλ

−
k t〈Y0,Φ−

k 〉Φ−
k

}
.

From this last equality and (43), we deduce that:

w(t, .) =
l∑

k=1

{
eλ

+
k t〈Y0,Φ+

k 〉c+2,k + eλ
−
k t〈Y0,Φ−

k 〉c−2,k
}
ϕk

=
l∑

k=1

ak(t)ϕk,

where

c±2,k =
−λ±k + µk

√

µ2α
k +

(−λ±k + µk
)2
,

and ϕk is a normalized eigenfunction of the Dirichlet Laplacian. Now, the observability estimates on the
eigenfunctions of the Laplacian due to G. Lebeau and L. Robbiano [6] assert that there exist constantsC1, C2 > 0
such that:

l∑

k=1

|ak(t)|2 ≤ C1eC2
√
µl

∫

ω

∣
∣
∣
∣
∣

l∑

k=1

ak(t)ϕk(x)

∣
∣
∣
∣
∣

2

dx,

or, equivalently: ∫

Ω

|w(t, x)|2 dx ≤ C1eC2
√
µl

∫

ω

|w(t, x)|2 dx. (68)
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Estimates (68) and (67) yield (66) with

CT = cT−2p−4−2γ eC2
√
µl . (69)

This proves the existence of the desired control.
That u can be chosen in such a way that (63) is satisfied is classical and we recall for completeness how this

can be deduced from (66) with CT given by (69). Let Y0 ∈ H . For all ε > 0, we define the quadratic convex
and continuous functional Jε,l : Hl → R by

Jε,l(X0) =
1
2

∫ T

0

∫

ω

|v(t, x)|2 dxdt+ 〈Y0, X(0)〉 + ε ‖X0‖ ,

where X =
(
ψ
v

)

is the solution of:

X ′ = LX, X(T ) = X0 ∈ Hl. (70)

Clearly, Z(t, x) = X(T − t, x) is the solution of

Z
′
= −LZ, Z(0) = X(0),

and applying (66) with CT given by (69) yields

‖X(0)‖2 ≤ CT

∫ T

0

∫

ω

|v(T − t, x)|2 dxdt

≤ CT

∫ T

0

∫

ω

|v( t, x)|2 dxdt.

This implies that for any δ > 0

Jε,l(X0) ≥
(

1
2
− δCT

)∫

ω

|v( t, x)|2 dxdt − Cδ ‖Y0‖2 + ε ‖X0‖ ,

and then for sufficiently small values of δ we obtain

Jε,l(X0) ≥ ε ‖X0‖ − Cδ ‖Y0‖2
.

It follows that Jε,l is a strictly convex, continuous and coercive functional and, thus, achieves a unique minimum

at X̂0,ε ∈ Hl. Let X̂ε =
(
ψ̂ε
v̂ε

)

be the solution of (70) associated with the initial data X̂0,ε and let Yε the

solution of (47) with u := v̂ε. It satisfies

‖Yε(T )‖Hl
≤ ε. (71)

Besides, one has:

Jε,l(X̂0,ε) ≤ Jε,l(0) = 0,
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and thus
∫ T

0

∫

ω

|v̂ε(t, x)|2 dxdt ≤ −2〈Y0, X̂0,ε〉

≤ 2 ‖Y0‖
∥
∥
∥X̂0,ε

∥
∥
∥

≤ 2
√
CT

(∫ T

0

∫

ω

|v̂ε( t, x)|2 dxdt

)1/2

‖Y0‖ .

From this last estimate, we deduces the boundedness of {v̂ε}ε>0 in L2([0, T ]× ω). This allows us to let ε going
to 0 in (47) with u := v̂ε. From (71) we deduce that the weak limit Y of at least a subsequence of {Yε}ε>0

satisfies
πlY (T ) = 0,

and from the previous estimate, that the weak limit u of a subsequence of {v̂ε}ε>0 satisfies (63). This ends the
proof of the lemma. �

We now come back to the proof of Theorem 3.3. From (61), since Zl ∈ H⊥
σl

we get

‖Yl+1‖ =
∥
∥e−TlLZl

∥
∥

=

∥
∥
∥
∥
∥
∥

∑

k≥σl+1

{
eλ

+
k
Tl〈Zl,Φ+

k 〉Φ+
k + eλ

−
k
Tl〈Zl,Φ−

k 〉Φ−
k

}
∥
∥
∥
∥
∥
∥

=




∑

k≥σl+1

e2λ+
k Tl
∣
∣〈Zl,Φ+

k 〉
∣
∣2 + e2λ−

k Tl
∣
∣〈Zl,Φ−

k 〉
∣
∣2





1/2

≤ eλ
+
σl+1Tl ‖ Zl‖ . (72)

From (60), using that e−Lt is a semigroup of contractions together with estimate (63), we obtain that:

‖Zl‖ = ‖LTl
(Yl,KTl,σl

(Yl))‖

≤ ∥
∥e−TlLYl

∥
∥+

∥
∥
∥
∥
∥

∫ al−1+Tl

al−1

e−(Tl−s)LBul(s)ds

∥
∥
∥
∥
∥

≤ ‖Yl‖ + ‖ul‖L2((al−1,al−1+Tl)×ω)

≤ ‖Yl‖ +
√

cT−2p−4−2γ
l eC2

√
µσl ‖Yl‖

≤
(

1 +
√

cT−2p−4−2γ
l eC2

√
µσl

)

‖Yl‖ . (73)

Combining (72) and (73) yields

‖Yl+1‖ ≤ eλ
+
σl+1Tl

(

1 +
√

cT−2p−4−2γ
l eC2

√
µσl

)

‖Yl‖ . (74)
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Now, recall that σl = 2l, Tl = A2−ρl = Aσ−ρ
l and that from Weyl’s formula, µσl

∼ C(Ω) (σl)
2/n. On the other

hand, direct computations yield
λ+
σl+1 ∼ −2µθσl+1 ∼ −2Cσ2θ/n

l ,

with θ = min(1, β). Thus

λ+
σl+1Tl ∼ −2Cσ

2θ
n −ρ
l .

For simplicity we introduce the notation

−a :=
−2p− 4 − 2γ

2
·

Then a > 0 and one has:
C2

√
µσl

λ+
σl+1Tl

∼ −C σ
1/n
l

σ
2θ
n −ρ
l

= −C 1

σ
2θ−1

n −ρ
l

·

Since by assumption ρ ∈ (0, 2θ−1
n ), it appears that

C

T al
eλ

+
σl+1Tl+C2

√
µσl ≤ Cσaρl e−Cσ

2θ
n

−ρ

l .

Coming back to (74), we get

‖Yl+1‖ ≤ Cσaρl e−Cσ
2θ
n

−ρ

l ‖Yl‖

≤ Cl 2
aρl(l+1)

2 e−C2(
2θ
n

−ρ)l ‖Y1‖

≤ Cl2
aρl(l+1)

2 e−C2(
2θ
n

−ρ)l ‖Y0‖ ,

which shows that
lim
l→∞

‖Yl+1‖ = 0,

and Theorem 3.3 is proved. �
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