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BLOCH WAVE HOMOGENIZATION OF LINEAR ELASTICITY SYSTEM

S1sTA S1vAJI GANESH!” AND MUTHUSAMY VANNINATHAN !

Abstract. In this article, the homogenization process of periodic structures is analyzed using Bloch
waves in the case of system of linear elasticity in three dimensions. The Bloch wave method for
homogenization relies on the regularity of the lower Bloch spectrum. For the three dimensional linear
elasticity system, the first eigenvalue is degenerate of multiplicity three and hence existence of such a
regular Bloch spectrum is mot guaranteed. The aim here is to develop all necessary spectral tools to
overcome these difficulties. The existence of a directionally regular Bloch spectrum is proved and is
used in the homogenization. As a consequence an interesting relation between homogenization process
and wave propagation in the homogenized medium is obtained. Existence of a spectral gap for the
directionally regular Bloch spectrum is established and as a consequence it is proved that higher modes
apart from the first three do not contribute to the homogenization process.
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INTRODUCTION

In this article, we analyze the homogenization process of periodic structures using Bloch waves in the case
of linear elasticity system in three dimensions. As is well known, homogenization process is concerned with
macroscopic approximations of heterogeneous media. We refer the reader to the books [4,11,14,23] for a beautiful
analysis of this subject. To carry out the homogenization process various methods have been introduced in the
literature. They include the methods of multiscale asymptotic expansions [4], oscillating test functions [16],
two-scale convergence [1,17], I'-convergence [11].

In contrast to the above physical space methods, Conca and Vanninathan, in their paper [8], have followed
a purely Fourier approach using Bloch waves in the case of scalar selfadjoint problem. Their analysis has been
extended to the non-selfadjoint case in [25]. For applications of the Bloch wave method, we cite a few references
[2,3,7-9,24]. This method has also given rise to one fundamental object called Bloch approximation in the
context of both theoretical and numerical aspects of homogenization [5,6]. In the literature, one also sees some
phase space methods to homogenization: H-measures [26], defect measures [12], Wigner measures [13].

In [8], the authors work with the usual ordered Bloch spectrum and they prove the regularity of the first
eigenvalue and eigenmode for small momenta || and then use it to prove the required homogenization result.
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In fact, the homogenized matrix is a multiple of the Hessien of the first eigenvalue at n = 0. In the case of
elasticity system, we have possible presence of transverse and longitudinal waves which did not exist in the
scalar case of [8]. This gives rise to new difficulties in applying the Bloch wave method. Mathematically, the
main difficulty stems from the multiplicity of the lowest eigenvalue. It is three in the present case. Another
hurdle is that we have the presence of a vectorial perturbation parameter 7. In such a case, regularity results are
not guaranteed and the whole method seems to break down even at a heuristic level simply because the expres-
sion of the homogenized matrix does not make sense anymore. This non-regularity is not just a mathematical
artifact but has some physical significance [10]. We examine this issue in the case of isotropic homogeneous
medium in Section 2. It is proved that there is no smooth choice of eigenvalue-eigenvector pair near n = 0
whether we demand ordering of eigenvalues or not. In fact, we obtain a necessary condition for a smooth choice
to exist and it is easily seen that it is not satisfied. The upshot of the above analysis is the observation of
directional regularity of the spectrum. We conclude thus that the appropriate regularity to be sought in the
case of systems is that of directional regularity. This also enables us to overcome at the same time the difficulty
posed by vectorial perturbation parameter. The goal of the paper is to exhibit such a spectrum and exploit it in
the homogenization process. We mention that Turbé [27] applied Bloch decomposition to homogenize periodic
elastic media. Compared to [27], this paper deals with different mathematical aspects of the problem and at
the same time, elaborates certain results of [27].

The plan of the paper

In the Section 1, we introduce the shifted operator A(n), for n € R3, associated with the linear elasticity system.
We then prove the existence of ordered Bloch spectrum (Lem. 1.1) and discuss the lack of regularity. Then
fixing an arbitrary direction /) € R?, we prove in Theorem 1.6 the existence of eigenvalues and eigenvectors of
A(p7) depending analytically on the scalar variable p. This is the directional regularity that we are seeking.
We call them Rellich branches. 1t is clear that this indexing of the spectrum need not respect the usual ordering
of eigenvalues.

The Section 2 is devoted to obtaining Bloch decomposition of the space Hfl(R:‘) as this is required in
the homogenization process. Such a decomposition for L#(R?) is more classical [4]. From this, we deduce an
appropriate strengthened version of the decomposition for H!(R?) and then we treat the space H1(R3) by
duality (Th. 2.4).

In Section 3, we compute (Lem. 3.1) the Hessien of the eigenvalue in each direction. These individual Hessiens
nicely patch up to define the homogenized matrix via what we call propagation condition. It has an interesting
connection with the propagation of monochromatic waves in the homogenized medium (Lem. 3.3). Such features
were not clear in the scalar case of [8].

Section 4 contains just one result which analyzes the asymptotic behaviour of the first three Bloch modes.
The analogous property in the scalar case simply states that the first Bloch transform tends to Fourier transform
[8]. As can be seen from Lemma 4.1, the case of systems is more complicated.

In Section 5, we state and prove the homogenization result (Th. 5.1) as a by-product of our foregoing analysis.

In Section 6, we establish spectral gap between the first three Bloch modes and the rest for the directionally
regular Rellich spectrum (Lem. 6.3) and then use it to show that higher Bloch modes, apart from the first three,
do not contribute to homogenization limit (Th. 6.1).

1. THE SHIFTED OPERATOR AND ITS SPECTRUM

The periodically varying medium is represented by the operator A formally acting on vector functions ¥(y) =

(Y1(y), ¥2(y), ¥3(y) ), given by

(A%), = % e (1) (B ()] = % [apqm@)

24,

6?}3 (y):|7 p = 1,23, (11)
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where strain tensor e,s(¥) is given by

RN TA N
es(P) = 5 (8ys + (9yr)’ r,s=1,2,3, (1.2)

and the components of the elastic tensor 0,45, p, ¢, 7, s € {1,2,3}, are real valued and Y-periodic (Y = [0, 27r[3)
functions such that:

aq;m“s = CI';oq'r's = arqu = apqsr; (13)
Upgrs € LE(Y), |Opgrs(y)| < o ae.y €Y, and
Ja >0 : Apgrs(Y) EpgErs > QEpgEpg a.e.y €Y, (1.4)
for every complex-valued (3 x 3) symmetric matrix e,
where we followed the usual summation convention over repeated indices and we recall that a function u defined
on R3 is said to be Y-periodic if
u(z + 2me;) = u(z) a.e.x € R, Vj = 1,2,3,

where e, j = 1,2, 3 denotes the standard ordered basis for R®. Throughout this article, the subscript # for a
function space indicates that the space consists of periodic functions.

Bloch waves are defined to be eigenfunctions ¥ (n) of the operator A indexed by a parameter n € R3, satisfying
the (n, Y)-periodic condition, i.e.,

U(y +2mp;n)=e"P1W(y;n) Vp € Z y e R (1.5)

Since the (1, Y)-periodic condition in (1.5) is invariant under translations by elements of Z? in the n-variable,
n may be restricted to the set Y’ = [~1/2,1/2)3 which is referred to as the dual cell.

Introducing Floquet ansatz ¥(y;n) = e'¥7 ®(y;n) where ®(,;n) is Y-periodic, we have the following eigen-
value problem satisfied by ®(,;n):

. — : in R3
Am®(;n) = A(n)®(51) mR } (1.6)

and ®(.; ) is Y-periodic,

where the operator A(n) is the so-called shifted operator and is given by

A ™ ~ (5 +im) {aurt g | (5 i) vt (v i) | |- (17)

For the rest of this section, we are interested in the spectrum of A(n) considered as an unbounded operator
in Li (Y) and its dependence on n € Y.

1.1. Existence of ordered spectrum of A(n) and its lack of regularity

We start with a comment on the title of this subsection. The word “ordered spectrum” is used to remind
us that we will be discussing about the spectrum of A(n) wherein the eigenvalues are non-decreasing with the
increasing index. It is well-known that A(n) is a selfadjoint operator in Li (Y) and is non-negative definite
(see [20]) (a consequence of symmetry and ellipticity assumptions on the elastic tensor given in (1.4)). As a
consequence of the compact embedding of HL, (V) into L2, (Y), (A(n) + C.1)"" is a compact operator on L(Y)
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for some C, > 0. All these properties are sufficient to apply spectral theorem for selfadjoint operators with
compact resolvent and we have the following result asserting the ordered spectrum (see [20]):

Lemma 1.1 (existence of ordered spectrum). For n € Y', there exist sequences of eigenvalues {ur(n)}re,
and eigenvectors {O(n )}, belonging to H;#(Y) for the problem (1.6) satisfying 0 < p1(n) < pa(n) < ... <
pr(n) < ... — oo, with each eigenvalue being repeated according as its multiplicity, and {®(n)}re, forms an
orthonormal basis in L3, (Y).

Lack of regularity of the ordered spectrum

For fixed k € N, the eigenvalues p1(n), owing to their variational characterization (see [8]) via Courant-Fischer
minimax principle, are Lipschitz continuous functions of n € Y’. This global regularity is not enough in the
process of homogenization (see [8]); we need higher local regularity. Of course, we should mention that only the
regularity of the first eigenvalue near n = 0 was needed in the case of scalar selfadjoint operator case of [8]. This
was the only eigenbranch emanating from the least eigenvalue of A(0) which is equal to zero. In the present
case, the least eigenvalue which is again equal to zero has multiplicity three. Therefore, we need to study the
splitting of this multiple eigenvalue i.e., analysis of spectrum of perturbation near a multiple eigenvalue.

The perturbation theory for linear operators is very classical and it is known that the spectrum need not

reflect the regularity of the operator in the perturbation variable; more so, if the perturbation parameter is not
a scalar and if the eigenvalue under study is not simple and is illustrated by the following classical example due
to Rellich (for example, see [15,19]).
Example 1.2. Let us consider the family of diagonalizable matrices depending on a parameter n € R?, n =
(m,m2) € R? — (Z; 777271) € M3(R). We note that this is a family of symmetric matrices, and hence are
diagonalizable. Further, the matrix entries depend linearly on 7. It is easy to see that eigenvalues are given
by pi(n) = —/n? +n3 and pa(n) = /n? +n3. Note that when the parameter 7 is equal to 0, the two
eigenvalues coincide and the common value is 0 with eigenspace R?, whereas for n # 0, p1(n) < pa2(n). It is
obvious that they are Lipschitz continuous functions of the parameter n but not differentiable at = 0. It can
be easily seen that eigenvectors can not be chosen to be continuous with respect to n at n = 0.

Next, we present a particular case of linear elasticity system wherein we see clearly the lack of regularity.

Example 1.3 (homogeneous isotropic medium). The coefficients a,q,s(y) representing the isotropic homoge-
neous medium are constants, given by

apqv‘s(y) = AdpgOrs + N(‘Spréqs + Opslgr), Vy € Y, (1.8)

where the Lamé coefficients A, i have the usual properties: p > 0 and 3A + 2u > 0.

Regarding the ordered spectrum in this case, Lemma 1.1 asserts the existence of eigenvalues and eigenvectors
of the operator A(n) defined by (1.7). Since eigenvectors are Y-periodic, we expand them in Fourier series,
and substitute in the eigenvalue-eigenvector relation for the operator A(n) defined by (1.7), and we reduce the
operator problem to the spectral problem of the following numerical matrix equation.

A+ ) (m+1) @ (m+n) + p|m+n||? I3x3, where m € Z3, (1.9)

where (m+ ) ® (m + ) denotes a matrix whose (4, j)-th entry is (m; + 7;)(m; + n;), and I3x3 denotes the
3 x 3 identity matrix. Even though m is repeated in (1.9), there is no summation with respect to m. The
eigenelements of the operator (1.7) in the case of (1.8) are as follows:
For m € Z2, n € Y’ such that (m,7) # (0,0),
(i) (transverse waves) u||m + 7||? is an eigenvalue of multiplicity two, with eigenvectors W etm-y,

where L € R? is a unit vector satisfying L. (m + 7) = 0;
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(ii) (longitudinal waves) (A+2u) |m + 7|2 is an eigenvalue with eigenvector ﬁ e!™-¥ where K € R3
is a unit vector parallel to m + 7,

and for (m,n) = (0,0), zero is an eigenvalue with eigenspace C3.

Moreover, Vi € Y’ these eigenvectors form a complete orthonormal basis for LQ#(Y) as m € Z3 varies.

In the general case of media defined by (1.4) with symmetries (1.3), when the parameter 7 is equal to 0, any
non-zerou = constant vector in C3 is an eigenvector of the operator A(0), corresponding to the eigenvalue 0 and
hence the eigenspace is of dimension three. For each k = 1,2,3, let ux(n) and O (n) be the first three of the
ordered eigenvalues and corresponding eigenvectors of the shifted operator (1.7), whose existence is assured by
Lemma 1.1. Then p1(0) = p2(0) = p3(0) =0, and ©1(0), ©2(0), @3(0) are such that they form an orthogonal
basis for C3.

In the special case of homogeneous isotropic media defined by (1.8), we can identify the first three ordered
eigenvalues p1(n), u2(n),us(n) for n in a sufficiently small neighbourhood of zero. In fact, in the above
computations, the eigenvalue can be zero if and only if m+7n = 0, i.e., m = —p € Y’, therefore m=0 and
n = 0. Thus, we get, for |5 small, u1(n) = p2(n) = pllnl?, and pz(n) = (X + 24) [|n]|* (since A\ + 2u =
(A+ 24) + 1+ > p by our assumptions on Lamé coefficients).

For k = 1,2, 3, we claim that there cannot be a continuous choice of @ (7 ), unit eigenvectors corresponding
to the eigenvalue py(n) for n near zero. The claim will be proved only for the case k = 3 since the arguments
are more transparent. The claim will follow for the cases kK = 1,2 in a similar fashion.

Indeed, there is a unique choice for longitudinal wave ®3(7n) (up to sign) when 7 # 0, as us(n) is simple,
given by (see (ii) above)

1 m

2
(2m)32 /n +n3 +m3 \

O3(n) =

Let us fix a unit vector 7 € R3. For n = § /) with § > 0, the above eigenvectors take the following form in terms
of n:

1 T
05 (n) = 2|

(2m)3/2\/ig + 05 + 105\ g,

3

which depend on 7 and not on ¢ (i.e., they are homogeneous of order zero) and hence is not a continuous
function of n at n = 0.

However, a continuous (in fact, constant) choice of ®3(7) can be made along each fixed direction 7 € R?,
for example, ©F (1) given above. This observation will be exploited later.

Even by foregoing the ordering of the eigenvalues, we only have eigenvalues which are continuous with
respect to 17 near 7 = 0 and we cannot choose eigenvectors depending continuously on 7 near n = 0. Indeed, we
observe that the only continuous eigenvalue branches near n = 0 are given by 1 ||n]|? (of multiplicity two) and
(A +2u) ||In]|? (simple eigenvalue) from the explicit computations made above. Now it is clear that there is no
continuous choice of eigen vectors near n = 0.

One may think that the above lack of regularity of eigenvector is due to the requirement that eigenvalues are
arranged in increasing order. Actually, this is not so. In the following remark we make it precise.

Remark 1.4 (necessary conditions for the existence of smooth eigenelements near n = 0). In the general case of
media defined by (1.4), we remark that the corresponding homogenized medium should satisfy certain necessary

conditions for the existence of smooth eigenvalue and eigenvector branches. More precisely, Let X;( n),k=1,2,3
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be eigenvalues with corresponding eigenvectors (:)\;( n),k =1,2,3 satisfying all the following conditions:
limA\,(n) = 0, k=1,2,3,
n—0
X;(n)isCQ nearn = 0, (§7§(77)isC2 nearn = 0,
{ (5;(0) : k=1,2,3} are eigenvectors of A(0) and form a basis of C3.

Differentiating the eigenvalue equations (1.6), with respect to 7, and 75 and evaluating at n = 0, we obtain the
following relations:
92Xy,
InqOns
where, the symmetric matrices {Ags}i1<q,s<3 are given by
bigis + bis1g D1gas + bisag bigss + bissg
Ags = | bogis + basig bagas + basag bagss + bagsg
b3qls + stlq b3q2s + b3qu bSq3s + stBq
where the homogenized coefficients b5 are given by (3.1). We refer the reader to the section 3 for detailed

(0) Ok (y;0) = Age Ok(y;0), k= 1,2,3, (1.10)

computations. The relations (1.10) say that these matrices have common eigenvectors { O (y;0) : k =1,2,3},
which form a basis for C* and hence the matrices must commute with each other. This is a necessary condition
for the existence of smooth eigenvectors near 7 = 0 as required above. In general, this condition is not satisfied.
Let us consider the special case of isotropic homogeneous media defined by (1.8), the above matrices are

A+2100 0 A+p0 0 0OX+p
A = 0 wO|,Ap=|AX4+pn 0 0|, A1z3= 0 0 O ,
0 0pu 0 0 0 A+p0 O
0 0 0 w0 0 w0 0
Ax3=10 0 A+ pu|,An=]10A4+2p0],A33=]0pu 0
OXx+p O 0 0 pu 00X+ 2u

But, A15 and As3 commute with each other if and only if A+ p = 0. Since A+ 1 # 0 by our assumptions on A
and u, we conclude that a smooth choice of eigenvalues and eigenvectors is not possible in this case.

1.2. Existence of eigenvalues and eigenvectors with directional regularity

We investigate the possibility of choosing directionally regular eigenvectors in the more general case of op-
erator A(n) guided by the Example 1.3. In this paragraph, the existence of a directionally regular spectrum
is proved (Th. 1.6). This notion of directionally regular spectrum is also consistent with the polarization phe-
nomenon already observed in the case of isotropic homogeneous medium. This will be further explained in
Section 3.

In the sequel, it will be convenient to work with direction 7) defined below.

Let us note that for every non-zero n € Y’, there exists a unique p € R and a unique vector 7 on the
boundary of Y’ whose first non-zero component is positive, such that n = p7), and |p| < 1. The set where 7
belongs will be denoted by 0Y and we have

Y, ={nedY i >0 U{nedY :f =0, >0}U{nedY :f =i =01 >0}

Geometrically 7 is the point where the straight line passing through the origin and 7 meets 9Y[. Let n # 0
and [ be the least index such that 1; # 0. Then the p, n and 7 are related by

1
= o4, — 2., Ao 1.11
n=pn p=2m =g (1.11)
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We now fix a vector /) € 9Y|. Now the operator A(7) given by (1.7) is equal to A(p7) which depends on a
scalar parameter p. We first prove that a suitable extension A(z 1) of A(p7) to z € C is a holomorphic family of
type (B) in the sense of Kato and then appeal to Kato-Rellich theorem to assert the existence of directionally
regular spectrum. For the definition of a holomorphic family of sesquilinear forms, we refer to Kato’s book [15].
We begin by recalling few notations. In this section, (. )Li (v) always denotes the scalar product in the Hilbert

space Li#(Y). The quadratic form t[u] corresponding to a sesquilinear form t with domain ®(t) C Li (Y) is
defined by

t[u] := t[u,ul.

The real and imaginary parts of t[u] are denoted by ft[u] and It[u] respectively. In our context, there exists
a canonical family of sesquilinear forms associated with the operator A(p7), namely, the family of sesquilinear
forms t(z 77) depending on z € C, with same domain given by D (t(z)) = HL(Y') contained in L% (Y'), defined by

ou, 00, 0v, ou
tzn)[w,v] = [ apprs(y)——d —l—iz/a rs (A U —T—Asm—q>d
(z0)[u,v] Y/ pa (y)ayp oy, ¥ J pars(Y) | p 1 Tye T gy, )W

+Z2/apq7's(y)77p s Uq Ur dy, (1.12)
v

which when z = p € R, reduces to the sesquilinear form corresponding to the operator A(n). In view of | p| < 1,
we restrict z to theset R:={z€ C: z=a+1b, |a| <1, |b| <1}

Theorem 1.5. t(z17) is a holomorphic family of type (a).

Proof. The quadratic form corresponding to the sesquilinear form in (1.12) is

. Oou, Ou,. . R ou, . _ Ou
t(zn)[u] = }/apqm(y)a—yz 9. dy +17«'Y/apq7's(y) (np Ug BN — s Up _q) dy

+2° / Apgrs (y) Np Ns Ug Uy dy.
Y

Step (i). t(z7) is sectorial
The sectorial property of the form t(z7) is essentially a consequence of the ellipticity of the elastic tensor

(see (1.4)). The generic constants C*, C, etc. appearing in the estimates below are independent of u and z € R.
For some C, > ¢, the following inequality holds (see [20], for a proof):

. 2 a 2
Re(i)u] + O llulfy ) > 71l - (1.13)

We consider the new family of forms t(z#), with same domain as that of the family t(z#), namely H;E(Y)
contained in Liﬁ (Y), defined by

E(zﬁ)[u,v] = t(zﬁ)[u,v] + C*(uav)Li(Y)'
For the new family t(z 7)), the inequality (1.13) reads as

~ «
RE(=i)u] > 5l ulf - (1.14)
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The following estimate holds for the imaginary part St(z9)[u] of t(z7)[u] for some C* > 0:
g ~ * I ~ o 2
[Steilu]| < ¢ (REGEDu) - Sl ).

Thus, t(z17) is sectorial for each z and uniformly with respect to z € R. Since the addition of a scalar does not
affect the sectorial nature, it follows that t(z 7)) is sectorial.

Step (ii). t(z7) is closed
It is an easy consequence of (1.14).
Step (iii). t(z7) is a holomorphic family of type (a)

We proved that each t(z 1) is closed, sectorial and since t(z7)[u] is a quadratic polynomial in z for each fixed
u € H(Y), it follows that it is a holomorphic family of type (a). O

Associated with each t(z 1), there exists a unique m-sectorial operator with domain contained in H;E(Y)
thanks to the first representation theorem, a proof of which is available on page 322 of Kato’s book [15]. The
family of such operators associated with a holomorphic family of sesquilinear forms of type (a) is called a
holomorphic family of type ( B ). The aforementioned m-sectorial operator is given by

A(zn)(u) = - (aiyq +izﬁq) {a,,qrs(y)% [(835 +izﬁs) ur + (c‘fn —i—izﬁ,«) u]}

Since t(z7)* = t(Z7), where t(z7)* is defined by t(z1)*[u,v] := t(z9)[v,u], we have A(z7)* = A(Z#). Thus
the family A(z7) is a selfadjoint holomorphic family of type (B ). Since the embedding of H}#(Y) in Li(Y) is
compact by Rellich’s theorem, it follows that the operator ( A(z7) + C.I) has compact resolvent Vz € R,
where C is as in (1.13).

The following theorem (see [15], p. 392 and p. 408) asserts the existence of sequences of eigenvalues and
eigenvectors of the operator A(p7)) that are analytic on p € (—1, 1) with values in C and Li (Y) respectively.
That is, eigenvalues and eigenvectors can be expanded in Taylor’s series in p, where the coefficients are in C
and Li (Y') respectively. We refer to the eigenvalue curves and the eigenvector curves obtained in the above
result as Rellich branches. For more details on Banach space valued holomorphic functions, we refer to [15,21].

Theorem 1.6 (Kato-Rellich). Let A(z7) be a selfadjoint holomorphic family of type (B) defined for z in a
neighbourhood R in the complex plane of the interval I := (—1, 1), with domains D (A(z 1)) contained in Li (Y).
Furthermore, let A(z 7))+ CiI have compact resolvent for some C, € R. Then, there exist a sequence of scalar-
valued functions { Xy k(p) } ey and a sequence of L2, (Y)-valued functions { ® 4 (p) Y, defined on I such that:

(i) For each fized p € I, the sequence { X s k(p) }re, represents all the eigenvalues of A(pn) including multi-
plicities (need not be a non-decreasing sequence) and the sequence { ®; x(p) Yoo represents corresponding
etgenvectors.

(ii) Foreachk € Nand i € Y], Xy k(p) and ® ; k(p) are analytic on I with values in C and LZ,(Y) respectively.
(ili) The sequence { @ k(p) }rey is an orthonormal basis for L, (Y).

Moreover, each of the elements of these eigenvalue-eigenvector sequences is holomorphic in a region Ry con-
taining I of the complex plane, representing eigenelements of the operator A(z1) for z € Ry .

Corollary 1.7. The Rellich branches can be re-indezed so that X4 5(0) = pug(0) where { ui(n) }oey is the
sequence of ordered eigenvalues given by Lemma 1.1 and, as a consequence, have the property

A3,1(0) < X52(0) < Aj3(0) <o < Ajk(0) < oo (1.15)
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Proof. This follows from the fact that each of the two sequences { ux(p7) }re; and { A5.x(p) }oe, represents all
the eigenvalues including multiplicities of A(p7), for fixed 7 € 9Y] and fixed p € I. O

Remark 1.8. Such a re-indexing as in the previous corollary can be done at any fixed pg but not for two values
of p simultaneously. Therefore, it may not be possible to re-index Rellich branches in such a way that the
sequence of functions {Xjx(.) }o—, is non-decreasing with k € N. Unlike eigenvalues, this re-indexing cannot
be done with eigenvectors even at p = 0. Also, ® 5 ,(0) cannot be prescribed in advance. To put it in Rellich’s
words, “the perturbation method itself selects them” (see [19]).

From the Theorem 1.6, we have for each k € N, @5 x(p) is analytic on I with values in L% (Y). As a conse-
quence of the function || ® 5 1(.) || (v being locally bounded (which is a consequence of the inequality (1.13))
#

and the density of Li (Y) in H;I(Y), it follows that the Rellich eigenvector branches are also analytic with
values in HL (Y) (see p. 365 of [15]). We state this in the following lemma.

Lemma 1.9. FEach of the Rellich eigenvector branches is analytic from (—1,1) to H;(Y)

Remark 1.10. Not much can be said about the behaviour of the ordered eigenvalues { ur(n), & =1,2,3}
near the origin. As seen below, in homogenization analysis, we will mainly deal with the directional spectrum
{X4k(), k € N} introduced above. However, in Section 6, we present some properties of the ordered eigenvalues
near the origin (see (6.10) in particular).

2. BLOCH WAVE DECOMPOSITION

In this section we introduce an operator A€, an e-scaled version of A. We then define Bloch waves and Bloch
waves at e-scale associated with the operators A and A€ respectively and then prove that these waves give rise
to a decomposition of the spaces L?(R?), H!(R?) and H~}(R3). As we shall see, the difference between the
various cases lies in the nature of the convergence. Further, Parseval’s equality holds only for L2(R3); it is
replaced by two inequalities in other cases (see (2.8), (2.24)).

First, we introduce the operator

ous

(A ue), = —a% (50 (@) €rs (0 (2))] = —a% [a;q,«s<x>a—gs’s“<x>] b =123 (2.1)

pqrs
and ¢,5(.) as defined in (1.2). The associated shifted operator is given by

i (- 16) o () (1) o ()]}

Definition of Bloch eigenvalues and Bloch eigenvectors

where the coefficients a¢ . (z) = apqm(f) and O,q-s(.) are as introduced in Section 1 and satisfy (1.3), (1.4),
€

Recall from Section 1.2 that, n € Y', p € I and /) € Y are related by the relations (1.11). We define two
sequences of functions defined for almost every n € Y/ indexed by m € N, A,,,(n) and ®,,(n), called Bloch
eigenvalues and Bloch eigenvectors (Bloch waves) associated with the operator A respectively in the
following canonical way.

For non-zero nn € Y’, we define

An(n) = Xgm(p), Pwm(y;n) == ®ym(y;p).
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We now define the Bloch eigenvalues Ay, (€ ) and Bloch eigenfunctions @, (.; £) € HL(eY'), associated with the
operator A€ for 0 < € < 1 as follows: For non-zero £ € e 'Y’ and z € R?, let

Xou(§) 1= €2 An(€€), @5 (:6) = @ (T3 )

where A, (.) and ®,,,(.;.) are as introduced above. That is, A%,(&) and ®¢,(.; £) are eigenvalue and eigenfunc-
tions of the operator A¢(£) The Bloch eigenvectors ®¢, (&) are called Bloch waves at e-scale.

Owing to their definition A\, (7 ) and ®,,(n) have the following properties: the sequence { A (1) }men may
not be an increasing sequence for 7 # 0. The set { @,,(n) : m € N} forms an orthonormal basis for L% (Y') for
each 0 £neY’.

2.1. Bloch wave decomposition of L?(R?)

Bloch waves give rise to the following decomposition of the space of vector valued functions L?(R?). Since
the proof is classical (see, [4,8,27]), we do not repeat the same. The key idea in its proof is to use the fact that
for 0 # ¢ € e 'Y, { €3/2®5,(€) : m € N} forms an orthonormal basis for L, (¢Y).

Theorem 2.1. Let g be an arbitrary element of the Hilbert space L?(R3).
(i) For m € N, the following limit in L?(e~'Y") exists, and is called the m'™ Bloch coefficient of g:

Brg(©) = Jim [ (e @, (i) do (22)

|z|<R

(ii) Then the following inverse formula holds, where the limit is taken in the space L?(R3):

k
glo) = Jim [ D0 B g(e) o' B, (i) e (23)
e~y m=1

(iii) Also, we have the following Plancheral identity: Vg, h € L%(R3),

/ 0p(x) Topl) dar = / B g(6) Boh(E) de. (2.4)

R3 e~y

We recall that the usual summation convention is followed in (2.4). This means that LHS is summed up with
respect to p = 1,2, 3 and the RHS is summed up with respect to m € N. Above result says that we can identify
the space L2(R?) with L?(e~'Y”;1?(N)). Observe that, for each m € N, the m-th Bloch coefficient B}, g(¢)
defined above is scalar valued even though g is a vector valued function.

2.2. Bloch wave decomposition of H!(R?)

Following the analysis presented in the Section 1.2, the form t¢(§) corresponding to the operator A€(£) defined
on the space Hy (€Y) given by

t (5)[11;‘7] = /apqrs (E) 6—.;)6,% dl’+l /aquS (E) (gpuq%s 7551}70 6_xZ> dz

eY €Y

+ /apqm (%) & ougvraa

eY
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satisfies, for some C¢ > a/4,
O llg s oy < (O8] + OS2 8)u vy < Co el g s o) (2.5)

for some positive constants Cy, Co independent of g and ¢ € e 'Y’. Thanks to the symmetries of the elastic
tensor,

t ([ ]+ O (s )Li(eY) (2.6)

defines an inner product in H (eY).
. . . —3/2
With respect to the inner product (2.6), the family { Toi®

for HJ, (¢Y'). This observation will now be used to obtain the following decomposition of H'(R3).

e (;6) : meN } is an orthonormal basis

Theorem 2.2. Let € > 0 be fired and g be an arbitrary element of H(R?).

(i) For m € N, we define the m*™ Bloch coefficient B, g(€) by (2.2) with limit being taken in the weighted L?
space with weight (C€ + X¢,(€)) on e 1Y,
(ii) Then the following inverse formula holds, where the limit is taken in the space H*(R3):

k
go) = Jim [ D7 Big(e)e @ (i) de (2.7)

k—o0

e~y M= 1

(iii) Also, we have the following inequalities:

oo

Crélglfnmn < [ D0 (€54 () 1Brg@ d < ot g e 2.8

e~y m=1

where Cp, Cy are positive constants independent of g and €.

Remark 2.3. As is evident, one of the new features in Theorem 2.2 when compared with Theorem 2.1 is the
stronger convergence in (2.7). The Parseval’s equality for (2.4) is replaced by two inequalities in (2.8).

Proof of Theorem 2.2. By density arguments, we are reduced to the case of g € H!(R?) having compact support
in R3.

Step 1. The basic device of the proof is to associate periodic functions g(.;€) € H;é (eY) as follows:

g0 = Y gla+y)e L (2.9)
v € 2mweZ3

Thanks to the observation preceding the statement of Theorem 2.2, we can write

e 32@E (1;€)

Ce+ A5, (9) (219)

g6 = D (9

m=1
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where the convergence is in H;ﬁ(eY). Using the eigenvalue-eigenvector relation
() [v, @7,(6)] = A5 (€) (v, 0, (8) ) ey » ¥V € Hiy(eY)

and eY-periodicity of ®¢, (.; ), the coeflicient c¢,(£) can be easily calculated as

¢, (6) = 32 /T 120 (@) / gp(@) e @) (:€) du

R3

which by our definition, is equal to €=3/2/C¢ + e (€) B, g(£). Thus (2.10) becomes

Blai€) = 3 Ble(6) 2, (558) (2.11)

Step 2 (Proof of inverse formula). To prove the inverse formula given in (2.7), we multiply both sides of the
equation (2.9) by €% ¢, and integrate with respect to & € e 1Y”. Now, by observing that

/ e "78d¢ =0 for v # 0, (2.12)
6—1Y/
we get
g(z) =€ / g(a;¢)e' ™o de. (2.13)
e~ 1y’
Using (2.11) in the above relation, we get
Z B.g(6) e " B, (w;6) dE (2.14)

m =
e—1y”’

The relation (2.14) yields (2.7) by justifying the interchanging of the integral and the sum, which we do here.
For each k € N, let gi, € H*(R?) be defined by

Z B85 e @5, (2:€) de.

e—lyr M=
If we show that gy is a Cauchy sequence in the space H!(R?), the proof of the inverse formula will be finished.

Step 3 (g is Cauchy in H*(R?)). Thanks to inequalities (2.8) whose proof will be given shortly, the real valued
function ||g|| defined for elements g € H!(R?) by

o

gl := / SO (4 () [ B (6P de.

v m=1
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is an equivalent norm on H!(R?). We prove that gy, is a Cauchy sequence in this norm. This follows easily by
noting that for a.e. ¢ € e 'Y, we have

Bg€) f1<m<k

) (2.15)
0 ifm > k.

%:ngk(f) = {

Step 4 (Proof of (2.8)). By Parseval theorem applied to (2.10), we have

t(O)[E(- ), 8( )]+ CL(B(-€): 8 )z vy =€ ° D (CE+ AL (9) |B:.2(6)]"

m=1

Therefore, for g(., &) the inequalities (2.5) read as
= — = € € € 2 =25
Crll &8 8) oy < €7° 21 (Cs+ X5 (6)) B8 (- )" < Coe 18O ey (ov-
m=
Integrating the above inequality with respect to € € e 'Y”, we get

[ 18O By de<e® [ X (CErx©) [ Blp© de < Cac? [ B Iy dé

ey’ e 1Yy’ m=1 ey’
(2.16)
To complete the proof, it remains to estimate / 180 &) I3 (ev) d€. Now we will show that
#
6—1y/
3 ~ 2
) - g _
Co gl < [ 188 Ty d+*Y H 98 (g 06 < Co e g 2wy, (217)
=1 ¥ L, (eY)

e~ 1y’ ey’

where C5, Cy are positive constants. Combining (2.17) with (2.16), we see that the proof of (2.8) is finished.

Step 5 (Proof of (2.17)). Indeed by (2.9), we have

08 dg _
a—i(%ﬁ) = a—xg(ﬂc;é) — 1&gz §). (2.18)

J

It is classical that

& [ 1B Ry o té = [le@Pan @ [
R3

e~ 1Y’ e~ 1y’
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The second inequality in (2.17) follows from (2.19), in view of the relation (2.18). Also, we have (for each fixed
Jj=12,3)

~ g
> | I&G1T86 O ez o) = || 5546
H axa L2 (eY) dx; L2, (ev)
— 2 N
. g - g
— .12 2 = _ . =
= & 1800 Mg + | 5 (-0 20 1806 I o) | o (-8
Li(ey) L;(ey)
— 2 —_—
og o~ og
2 6—3@("5) — 1808 ez o) 6—%("5)
Li(eY) Li(eY)
1| og 1
255200 —galEhO It
Li(eY)

On summing up the above inequalities corresponding to j = 1,2, 3, and integrating on e 'Y”, we get the left
inequality in (2.17). O

Finally, we have an alternate expression for the inner product, given by,

oo

COleh]+C (g by = 3 OEH0E) (8e78) | BTFR ), (220

—1 Li&(eY)

for g,h € H;#(e Y'), and follows on substituting the expansions for g and h in terms of Bloch waves in the LHS
expression.

2.3. Bloch wave decomposition of H™!(R3)
We equip the space H;l (eY) with the inner product

[F,F'] Z Yoz AE F,e—3/2 o) <F',e_3/2 <I>fn>, (2.21)

where < .,. > denotes the duality product between H;I(GY) and H, (¢Y'), which extends the L (eY)-inner
product. The corresponding norm is equivalent to the usual norm on H;l (6Y) and in fact, is equal to the norm
of the dual space of HJ, (¢Y) with the norm given by the inner product (2.6) (see [22]).

The family { €32 /C+ X (&) ®E, (1;6) : meN } forms an orthonormal basis for H,' (eY"), for each fixed
& # 0 with respect to the inner product (2.21).



556 S. SIVAJI GANESH AND M. VANNINATHAN
We now have the following result concerning the space H™1(R?).
0
Theorem 2.4. Let € > 0 be fivred and F =u° + Z —uj € H Y(R?) be arbitrary.

(i) For m € N, we define the m'™ Bloch coeﬂiczejn_t by

3
B F(¢) = lim S {(uo)p(w)(‘ﬁin)p(x;é) +i Z & (0)y(2)(@5,),(2:6) } dz

R—o0
|z|<R
, 5.0 o(®¢,)
ERRT —ix. € i m/p .
Jm [ e Y W) G () e (2.22)
|z|<R

where the limit is taken in the weighted L? space with weight (CS + XS, («f))_l on e~ YY'. Also, this definition

is independent of the representation used for F.
(ii) The following Plancheral identity holds: For F € H™1(R?), g € H}(R?),

o P ey = | BB Blg(€)de. (2.23)
671YI

Thus, using the Bloch decomposition of H*(R3) elements of Theorem 2.2, we see that F € H™1(R3) may be
expanded as

-3 / (€)™ € ®5, (2:) de.
= 1y

E

(iii) Also, we have the following inequalities

LG ;
Cie Pl < [ Z RN A < G P oo, (2.24)
e~y M

where Cy, C5 are positive constants independent of F and €.
(iv) Also, for F € HY(R?), we have AF € H™}(R3) and

By, (ATF) (&) = A5, (§) B, F(§), Ym € N. (2.25)

Remark 2.5. There is nothing mysterious about the definition (2.22). It is formally obtained by a simple
integration by parts in the definition (2.2) of B; F(¢). Further, it is obvious that BS,F(¢) = B, F(€), if
F € L2(R3). Because of this, we see that the relation (2.23) is a generalization of (2.4) in the sense that if
F € L?(R?) then both (2.4) and (2.23) coincide.

Proof of Theorem 2.4. Let F € H™'(R?) be given by
3

F=u'+)" %uﬁ', withu’ € L2(R%), j =1,2,3.

x
j=1""7

We assume that u’/, j = 0,1,2,3, have compact support. Under this assumption, we prove the theorem. For
general F € H™1(R?), the theorem follows by the density of compactly supported functions in L?(R?).
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Step 1. We now associate an element f‘(.;f) € H;l (€Y) for £ € e 1Y defined by

f‘(x’g) :1:6(I,€)+Z%uj($,§)7

where we recall

wir, &)= > w(z+q)e @€ 201,23,

v € 2mweZ3
i/\/11](30 ) = Z iuj(ac—l—’y)e_i(’H'”’)'5 = 9 +i&; a;(x £),j=1,2,3. (2.26)
al’j ’ s al’j aCL']’ J ) ’ ) &y

Step 2. The map F € H'(R3) — F(;¢) € H_,'(eY) is well-defined. That is, though the definition of F(;¢)

uses explicitly the given representation of F € H™1(R?), it is actually independent of the representation used.
Let F; and Fs be any two representations of F given by

3 3
2 o .
= —u/, Fy=v° — I,
Z o F2=vH ) Gy
j=1 j=1
We prove that fl(.; &) = fg(.; €) as distributions. Since the equality is posed component-wise, we can assume

that u/, v/ are scalar valued. That is, let ug,u1,us, us and vg,v1,v2,v3 be scalar valued and satisfy F =
up + divu = vy + divv in H~1(R3), where u = (u1, uz2, uz), v = (v1,v2,v3). That is,

Ox 0
/(uox—u] 8:E-) dz = / (%X—U_jaTX) dx, (2.27)
R3 ! RS !

for every x € C§°(R3). We now compute ug(.,€) + m(,«f) € H;l(eY) and find

o (x, €) + divu(z, ) = tig(x, ) + divii(z, €) + i &1 (x, €).
Simple calculations yield
(o (- €) + diva(., &)+ &i5( €),x) = (0( &) + div (., &) +i&T5(€),X)-
Thus, we have proved wo(.,¢) + divu(., &) = vo(.,€) + divv(., &).

Step 3. We expand F(z,¢) in the orthonormal basis {6’3/2 Ce+ X, (&) BE,(x3€) - m € N} of H;l (eY)

with respect to the inner product (2.21) as follows:
o0
1,6) = Y (&) €2/ CEH A, () By (3:6), (2.28)
m=1

where the convergence of the series is in the space H;l (eY) and

(€)= [F(.6), €2 VO3, () @5, (3:6) | (2.29)
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We now compute and find that, in view of the definition (2.22), c¢,(£) is given by
—3/2
€5,(6) = ————— B5F(E). (2.30)
" Cit (@ "

Thus, the relation (2.28) becomes

F(z;8) =Y BLF(E)®5,(3;9). (2.31)

Step 4 (Proof of Plancheral identity). We now have the following equality which follows via an easy computation
of the RHS:

- R Fs 8 ) (ms) = / H;l(eY)< 7R (¢), 63/2§(€)> dg, (2.32)

quge (eY)
e~ 1y’
where g and g are related by (2.13). Substituting in (2.32), the expressions for f(:ﬂ, £) and g(z;€) from (2.31)
and (2.11) respectively, we get the Plancheral identity (2.23).
Step 5 (Proof of (2.24)). From the Plancheral identity (2.23) and (2.8), we get the inequalities (2.24) by duality.

Step 6 (Proof of (2.25)). Since the operator A€ is in the divergence form, it follows that AF belongs to
H1(R3) for every F € H(R?). By (2.26), clearly A°F(z;&) = A°(§)F(z;€). By the definition of B, (A°F)
(see (2.29) and (2.30)), we have

By, (AF) () = (C£+ 3, (9) | AC©F (&), @5,(+) | = (AOF(.9), @5,(:9))

= (F(.9). A©5,(:8)) = X () (F(. ), @5,(56)) = Ay (€) B, F(©): O

Remark 2.6 (a comment on the inner products used). We employed the inner product given by (2.6) for the
space H;léyé (6Y). Indeed this inner product (2.6) arises from the bilinear forms associated with shifted opera-

tors A°(§). The space H;I(GY), which is the dual space of H}, (¢Y"), was then given the inner product (2.21).

The norm of Bloch eigenvectors in the spaces H;é (6Y), measured with respect to the inner product (2.6),
is related to the corresponding Bloch eigenvalue. As a consequence the norm of eigenvectors in the dual
space H;l (eY) is reciprocal to the norm measured in (2.6). This approach was convenient for us in proving
Theorems 2.2 and 2.4.

The following result provides the crucial estimates uniform with respect to e. We do not prove it here and
we refer the reader to a similar estimates in the scalar case (Lems. 2.1 and 2.2 in [6]).

Lemma 2.7.
(i) There exist positive constants oy and as (independent of €) such that

o0

a1 || g i sy < / Y 1+ X5,(9) 1B ¢ < as g (gs), Ve € H(RY).

e—lyr M= 1

(ii) There exist positive constants $1 and B2 (independent of €) such that

RG]
Pl < [ 3 RO d§<ﬁ||F||H Loy VF € HOI(EY)
—ly/ m=1
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3. COMPUTATIONS WITH BLOCH SPECTRUM

In this section, we make connections between Bloch space and physical space. The test functions w”* defined
by the cell problem (3.2), the homogenized coefficients given by (3.1) naturally appear in these conditions and
we recall them here. The classical homogenized coefficients b5 are given by (see, for instance, [4,18,23])

1 1
bpgrs = m/apqv's(y)dy + m/apqlm(y)elm(wm(y)) dy, (3.1)
v v

where w”* € HJ, (Y) solves the following cell problem:

. 0 ) .
(AW™)p, = —=—(Apgim (y)im (W) nY, p,=1,2,3. (3.2)

8yq

We already noted (see Rem. 1.8) that ®; ,,(0) cannot be prescribed in advance and the perturbation itself
selects them. This natural selection follows a rule (see (3.5) below).

The following result is concerning the relations between the first and second order derivatives of eigenval-
ues A\ m(p), and first order derivatives of eigenvectors @ ,(p). In the calculations that follow, we suppress
the dependence on y in ® 5 . (y; p), for m = 1, 2, 3, for convenience, and denote by ® ; ,(p); the prime denotes
the derivative with respect to p.

Lemma 3.1. Form = 1,2,3, and for fized 1) € Y], we have:
(1) X4,m(0) =0, and corresponding eigenvector ® ; ,(0) is independent of y.
(ii) The eigenvalue Ay m(p) has a critical point at p = 0. That is,
Ny m(0) = 0. (3.3)
(ili) The derwative of the eigenvector ®; m(p) at p =0 satisfies:

P’y 1 (0) = i W (y)(® 4, m (0))r (34)

is a constant vector in C? i.e., independent of y, where w"*, r,s = 1,2,3 solves the cell problem (5.2).
(iv) The second derivative of the eigenvalue \j m(p) at p =0 satisfies the relation

1

5 X7.m(0) @ 5,m(0) = M (7 6) @ 5, m (0) (3.5)

where M (); 0) is a matriz whose (p,r)-th entry My, (1}; 0) is given by My, (7); 0) = bygrs g fis, and Bpgrs are
the classical homogenized coefficients as given in (3.1). The above relation is referred to as propagation
condition.

Proof. We use that for ®; ,,(p) € HL(Y) is an eigenvector of the operator A(pi) corresponding to the
eigenvalue Ay n,(p); that is

A(p )@ 4,m(p) = i, m(p) ®a,m(p) inY,

which reads as

_ <8in +z‘pﬁq> {apqm(y) (0(11 +z‘pﬁs) (®4,m), (p)} = Xiym(p) (Ba,m), (p); p=1,2,3.  (3.6)
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We write the above equation as
(AO +pA+p° AQ) (®a,m(p) = Aj,m(p) ®i,m(p), (3.7)
where the operators AY, A', A% formally acting on vector functions u = u(y), are given by
0 ou,
— 25— | Opgrs(Y) 2— |
DYy ( pars(Y) 8ys)

1o} ou
Alu = —1 AS — ( Apars Uy ) — i1 (a rs —T) 3
( )p n 8yq( pars(Y) Ur) Tq pars(Y) E

(Aou)p =

(A2u)p = Opgrs (Y) flg Ns Ur, p=1,23.
Step 1 (Proof of (3.3)). Differentiating (3.7) with respect to p, we get

{Alp) (25, m()}, + (AN (R g.m (p)),, + 2P Opgrs ilg s (B 5. m (p))r =
N m(P) @ 5,m(p) + Xig.m(p) %5 1n(p). (3.8)

Evaluating the equation (3.8) at p = 0, and taking L?(Y)-innerproduct with @ ; ,,(0), and integrating by parts
we get

Ny m(0) = (A" (@4, 11(0)), <I>ﬁ,m(0))L2(Y) =0, (3.9)
by using the structure of the operator A' and noting that ® ;; 1 (0) is independent of y for m = 1,2,3. This
proves (3.3).

Step 2 (Proof of (3.4)). From (3.3) and (3.8), we get
.. 0
A% (@5, 1,(0)) = — AT (B 5,m(0)) = — i, o (@pgrs()) (®4,m(0)), -
Recalling that w”*(y) solves the cell problem (3.2), we get (3.4).
Step 3 (Proof of (3.5)). Differentiating (3.8) with respect to p, we get
(A =X (0) @ (0) |+ [ A (2,000)) |+ 40 puraiy e (2,00(0))

+20pgrs 77!1 s ((I) 7, m(p))r — if)s qu (apqrs (y) (q)/ﬁ, m(P) )T ) (3.10)

T

. 0

— 17q Apgrs @ ((I)/ﬁ7m(p) )7- - 2)‘/ﬁ,m(p) [(I)/fhm(p)}p = X?/?,m(p) [(I)ﬁ,m(/))]p s p=123.
S

We first evaluate the equation (3.10) at p = 0, and then take L?(Y)-innerproduct with the constant vector

®;.,(0) € C3. We then integrate the resultant expression over Y. Using the observation that derivative of a

periodic function integrates to zero on the basic periodic cell, We see that only the fourth and sixth terms on the

left hand side of (3.10) have non-zero contribution and this involves the classical homogenized coefficients byg;.s.
This follows from the relations (3.3) and (3.4). Thus we get (3.5). O

3.1. Few remarks on propagation condition

In this paragraph we highlight the differences between the scalar case of [8] and the present case of systems
with respect to the propagation condition. Propagation condition determines uniquely the homogenized coeffi-
cients. This is more direct in the scalar case but is somewhat implicit in the case of systems. We also explain
the reason behind the nomenclature “propagation condition” for the relation (3.5).
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Remark 3.2 (comparison with scalar case). In the scalar case (see [8]) the propagation condition involves
only m = 1 since A1(0) is a simple eigenvalue of A(0). Also A} ;(0) is quadratic in 7) due to the fact that Ai(n)
is analytic in the variable  near n = 0. Since ®; 1(0) is a non-zero scalar (being an eigenvector of A(0)),
we cancel out ®; 1(0) in the relation (3.5) to get an equality of two quadratic forms: the quadratic form
associated with the Hessien of \;(n) at n = 0 and the one corresponding to the homogenized coefficients by;.

It is well-known that the homogenized matrix (by;) is symmetric and therefore we get the equality of matrices
(% %(0)) = (bg;) since they give rise to the same quadratic form.

In the present case of elasticity system, there are two striking differences compared to the scalar case.
They are as follows:

(i) We cannot cancel @ ,,,(0) as they are vectors. In fact the propagation condition is an eigenvalue relation
for the matrix M (7).

1

ii) Even though M (7)) depends quadratically on 7, = A2 . (0), m = 1,2, 3 need not be quadratic in 7).
9 'h,m

However the relations (3.5) are enough to obtain the homogenized elasticity system.

Lemma 3.3.

(i) The propagation condition characterizes the homogenized coefficients. That is, if there is a tensor Cpqrs with
the same symmetries as that of B,qrs satisfying the propagation condition then Cpgrs = Bpgrs-

(ii) The numbers % )\’7’7 m(0), m =1,2,3, are the speeds of propagation of waves propagating in the homogenized

medium in the direction 7).
Proof.

Proof of (i). If ¢pqrs has symmetries (1.3) and satisfies the propagation condition with €5 replacing bpgrs,
then clearly M (7; b) = M(7); ) i.e., Cpgrs Nlg s = Bpgrs Tlg Ns for every p and r since the action of two matrices
M (7; b) and M (n); ) is the same on a basis for C3. This implies that b,q-s — Cpgrs is skew-symmetric in g, s,
for each fixed p,r. Let us denote 0pgrs = bpqm — Cpgrs- From the symmetries of bpqm, Cpgrs, We get Dpgrs also
satisfies the same symmetries (1.4). We also have from our observation, Opgrs = —0psrq. These observations
are enough to conclude that 0p4rs = 0 for every p,q,7,s =1,2,3. O

Proof of (ii). Consider the following elastic-wave equation in the homogenized medium:

Wy = 8%1 (bpqm em(u(z))). (3.11)

We look for travelling wave solutions of (3.11) which are of the form u(z,t) = f(7.x — ct) L. Clearly, u(z,t) =
f(7. — ct) L is a solution of (3.11) if and only if

L =M(7;b)L (3.12)
where M (7); b) is a matrix whose (p,r)-th entry M,,.(7); b) is given by M, (7); 0) = b,grs g fis. Clearly (ii) follows
on comparing (3.12) and (3.5). d
Interpretation

In the context of wave propagation in a homogeneous medium, it is customary to seek solutions of the form
u(z,t) = f(f.x — ct) L.

From this representation, it is clear that 7 represents the direction of propagation; ¢, the speed; L, the polariza-
tion vector. From the relations (3.12) and (3.5), we can say that ®; ,,,(0) (m = 1,2, 3) are polarization vectors
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and ,/%)\’7’77m(0) (m = 1,2,3) are speeds of waves propagating in the direction 7. This conclusion was possi-
ble because of our approach of fixing a direction 7 and looking for directional regularity of spectral elements.

Recall that we were led into this approach in order to overcome certain difficulties involved in multi-parameter
problems.

4. ASYMPTOTIC BEHAVIOUR OF THE FIRST THREE BLOCH TRANSFORMS

In the scalar case treated in [8], it was shown that the first Bloch transform converges to Fourier transform.
This can be interpreted as saying that the periodic medium approaches a homogeneous medium. In the case
of systems, such a result is, strictly speaking, not valid. What is true is the following lemma which is precisely
what is needed in the passage to the limit carried out in Section 5.

Lemma 4.1. Let g, g€ € L2(R3) be such that the support of g€ is contained in a fized compact subset K C R3,
independent of €. Let - denote the Fourier transform. If g¢ converges weakly to g in L?(R3), then we have

Xe1y/(€) Bog (&) = Y[V (@4,m)p(0) 3(€) (4.1)

; 2
m Lloc

(Rg)—weak, for m = 1,2,3, where we recall that 1) depends on & and in fact & and 1) € OY are related
by the relation 1 = QL& &, where | is the least index such that & # 0.

Proof.

Step 1. From the definition of BS,g°( ), we have

Brg () = [ e g @ (ni)do = [ @)@, (Fiee) d,

RS RS
We add and subtract e "¢ g () (® 4, m)p(£;0) to the integrand above, and this yields
—ix. € & ) (L
X vi(€) B (§) = xey(€) [ € g5(a) @5y (£50) do

e iT € gy Ki v €N\ (. N (4.2)
+x61y,<s>! $gpta) (@ (L E )~ @y (£50) )

Step 2. The second term on the right hand side of (4.2) is estimated using Cauchy-Schwarz inequality as
follows:

€ [e i) (@ay (LelS ) - @y (S0) ) ao

7] €
K
. 9 1/2
< Ne@ oo | [ @i, (LR - @am, (50) | @
K
<c <I>ﬁ,m(y,e(§i7z)) ® 5, m(y; 0) , (4.3)
I L2(Y)
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where ¢ depends on the measure of the compact set K, and on the bound of || g°() ||r2(x) but independent
of £&. The RHS of the inequality (4.3) is bounded by 2 ¢, since by our normalization of eigenvectors, we have

J2un (v G2

and converges to 0 as € — 0, for each fixed £ since @ n,(p) depends continuously on p with values in Li (Y).
Now, applying the dominated convergence theorem, we see that the second term on the right hand side of (4.2)

goes to zero in L} (R?).

= H‘I’ﬁm(o)Hm(Y) =1,
L2(Y)

Step 3. Since ®; ,,(0) is independent of z, the first term on the right hand side of (4.2) is equal to
Xe-1 v (E) Y12 (@5, m)p(0) g5 ()

As the Fourier transform operator is weakly continuous on L?(R?), we get gff, — gp in LQ(Rg)—Weak. As a
consequence, the first term on the RHS of (4.2) converges in LQ(RE’)—Weak to

Y2 (@ 5,m)p(0) Gp(€).

This finishes the proof of (4.1). O

Also, in view of the following pointwise convergence of the sequence ( 1+ s, («f)) which is uniformly
bounded by 1:

—1

(1+&@)3~<w+§%xbw0

2

As a consequence, the above convergence holds in L7,

we obtain the following result.

(R?) as well. Combining this observation with Lemma 4.2,

Corollary 4.2. Form = 1,2,3, under the hypotheses and in the notations of Lemma 4.1, we have the following

convergence in L7, (Rg’ )-weak:

Brg (&) Y|V (®4.m)p(0)

Xe*lY/(g) - ~
VI+25,©) \/1 L (&0 N0

9p(€)-

27l
5. HOMOGENIZATION RESULT AND ITS PROOF

In this section we state the classical homogenization result for the three dimensional linear elasticity system
and prove it via Bloch wave method. We recall that the tensor bpq,«s is already defined in the Section 3 by (3.1).
We now state the homogenization result.

Theorem 5.1 (homogenization result). Let Q be an arbitrary domain in R and f € L*(Q). Let u® € HY(Q),
u* € HY(Q) be such that u® converges weakly to u* in H(Q), and

Au® =fin Q. (5.1)
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Then

(i) We have the following convergence of stresses:
x « .
Opgrs (;) ers(u(w)) = Bpgrs €r5(u () in L*(Q) — weak, Vp,q = 1,2,3.

(ii) The limit u* € HY(Q) satisfies homogenized system of equations:

0 .
(A* u*)p = 78—% [bpqm ers(u*(x))} =fp, mQ, p=123. (5.2)

(iii) Moreover, the tensor (bygrs) has the symmetries: bgprs = bpgrs = Brspg = bpgsr-

The (5.2) above is called the homogenized system corresponding to the problem (5.1).

We now turn to the proof of Theorem 5.1. We indicate an outline of the proof. The first step is to localize
the equation (5.1) which is in © to get an equation in R®. We obtain a set of relations in Bloch space indexed
by m € N which is equivalent to the localized equation by taking Bloch coefficients of the localized equation.
We then pass to the limit in these relations corresponding to m = 1, 2, 3. The limiting system can be thought
of as the homogenized system in the Fourier space. An application of inverse Fourier transform yields the
homogenized system.

Finally, we recall that in the scalar case (see [8]), the first eigenmode plays the dominant role. Its counterpart
in the case of system is the set of three Bloch modes, which are indexed by m = 1,2, 3.

5.1. Localization

Let 1) be a fixed element in D( ) with support K. Suppose u€ satisfy A‘u¢ = f in Q and bounded in H!(Q).
Then, 1pu® satisfies:

A (o u)(z) = Yo f(z) + g(x) + h'(z) in R?, (5:3)
0 ous.
where g5(x) = ~ 9L (@) afyr. (r) T (), p=12.3, (5.)
q s
o (0
h(x) = O, (a—fj(ac) Upgrs (T) ui(x)) , p=1,2,3. (5.5)

Note that g€ is bounded in L2(R?), and h¢ is bounded only in H~!(R3). By Theorem 2.4, the localized
equation (5.3) is equivalent to the set of relations: For ¢ € ¢ 'Y’ a.e., m € N,

A (8) By, ($ou) (§) = By, (vo £)(€) + By,g°(€) + B;,he(§). (5.6)
The relation (5.6) follows from the relation (2.25).

5.2. Limit of B, g°

We will apply the Corollary 4.2 with g¢ given by (5.4), which is bounded in L?(R3), and hence has a
subsequence weakly converging to g* in L2(R?). This subsequence (still denoted by ) satisfies the hypothesis of

pa
there exists a subsequence which converges weakly in L?(Q), which we denote by 0,4 forall p,g =1,2,3. We

E:Xtend( U;%)by zero outside €2, and we still denote the extension by oy, . Thus, we see that g* is given by
from (5.4

the Corollary 4.2. We will compute g* now. Since the sequence oy, (z) = aj,,., () g—g;—(x) is bounded in L?(9),

" N
gp(l') - 7O—pq(z) 8—;(33)7 p= ]-a 273
q
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Thus, by Corollary 4.2 we have

L —

B;g(§) —[Y['2(®5,m),(0) < Mo )
- opq(2) 7= () ) (£) (5.7)
1+ A, P Oy
\/ + (5) \/1+ (2§|7777|) )\// (0)

Xe*lY/(f)

2
in Lj,,.

5.3. Limit of B h¢

(Rg’)—weak, for m = 1,2, 3.

Regarding the asymptotic behaviour of By, h¢, m = 1,2, 3, we have the following lemma.
Lemma 5.2. Let h¢ be defined by (5.5). For m = 1,2,3, we have the following convergence

in L, (RE)-weak:
Byhe(¢) | - i[Y]2 (@ #,m)p (0) 31/}0/\*
S 1T+ a Sq Opars (8—8(93) %-(fv)). (5.8)
O n© \/1 N :
Proof.

Step 1. By the definition of the Bloch transform (see Th. 2.4 for elements of H™1(R?)), we have

BLh(§) g —iz.€ e Mo\ 7({ (5-77))
VIO Vi@ ) o, (e ()
! s 00 (e iy OBy (2 (€ 0)
+mm e g (2 5, (7) U5 (@)= <€,e o >d:c (5.9)
Step 2. Denoting by [,(z) := —i&,a5,,.(7) gi’” () us(z), p = 1,2,3, the first integral on the right hand side
of (5.9) is equal to ( 1+ )\;L(E))ilenlf(f). Applying Corollary 4.2 to 1¢, we get
B I¢ —ig, V|12 o) @ )p(0) (000, . .
ngly/(é-) m (é-) N Zé—‘]' | MY(a;vq )( , ) ( ) ( wO( )U (x))(é-) (510)
LA (8) €0)? Oz
1+ TE N m (0)

in L? (R3)-weak, for m = 1,2,3.
Step 3. We now find limit of the second term on the right hand side of (5.9) as follows. In this step, we use

the directional regularity of the Bloch modes i.e., the analyticity of ® 5 (y; p), m = 1,2, 3; with respect to the
parameter p near zero. We have the following Taylor series expansion in H} 4(Y) of ‘I’n m(y, p) near p = 0:

D5 m(y;0) = @i m(y;0) + p®5 1 (4:0) + v, m (Y3 p)- (5.11)

Since v, m (y;0) =
O(lpl?) in L= (I; LE,(Y)).

0 v
,ya"[’)m (;0) = 0, we have v, m(-; p) = O(|p|?) in L>=(I; Hj,(Y)). We also have %(7/)) =
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Substituting y = /e and i = €€ in (5.11), we get
z  (§1) T (€M) &/ T z  (£.1)
P (‘ 7P ) =2 (510) i Fan (50) 20 (T )
Differentiating the last expression with respect to zj yields

i%,m (%;e(;ﬁ)) _ (5.77)1@,7%({;0)“71% (g;e({-ﬁ))

Iy iz ) 1Al oy €

For £ belonging to the set {E ce€eUand (¢ < M}, we have

D L)y o1le ey — 20(1gf2) < care.

Oy Uls Uls
This implies that
2 Vim (. (§-1)
2077, m ) N. 72
< o (;,e HE € L5, (RY; L (eY)) . (5.12)

The second term on the RHS of (5.9) is given by

B, (he —19(§)
XE?IYI(f)H—)\gn(é-) =

% {I[e—”‘-f Apgrs (%) g—fj(m)uf«(x)% (‘I’ﬁ,m (%;6 (fm?z)))p dx}. (5.13)

Using the Taylor expansion of ® j; ,,(y; p) near p = 0, the RHS of (5.13) becomes

X1y (§) 4 ﬂ'z.gawo z € i[ (577)(1,/— E'O ) <E M)} -(5.14
v ] e @ (0) e T T (G0) + i (G )| 010

In view of (5.12), the quantity (5.14) converges pointwise to

My (“”W‘*” % (ﬁ(m))p) \/1 &

|—2 0o

O
3

(z) e Sk (z), (5.15)

1) 17
(gﬁ)2 "
2|ﬁ|4 Aﬁ,m(o) R

and hence it is also its LIQOC

(Rg)—weak limit.

Step 4. Calculation of My (@ (y) —— (<1>a (y;O))
Pq ayq 7, m »

From Lemma 3.1, we have

(ilﬁ, m(y; 0) -1 775 w'’ (y)((ﬁ 7, m(y; 0))r

is a constant vector in C3, where w"®, 7, s = 1,2, 3 solves the cell problem (3.2).
Hence we have

o (% (350), = 1 5 (), 0) (1, 4:0)-
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Therefore, we have

My <apm(y) aiyq (%ﬁ(y;@)p) = —imMy (apqm(y) = (w'), (y)) (@ 5,m)x(0). (5.16)

Step 5. Combining (5.10), (5.15) and (5.16), we get

By h(¢) iy { YW
Xe-1y(§) - §g My (Opgrs) (P 4,m),, (45 0)
L+ X5(6) )2 !
e \/1 S X
&My (Gpa0) e (84, 0)) B } (52w u) (5.17)

We recall the classical expressions for the homogenized coefficients b5 given in (3.1) here:

bpqrs = MY(apq'r‘s) + MY ( apqlm(y) Cim (W’,‘s (y)) ) .

Thus we have the following weak convergence in L?(R):

_ Bohe(e)  —ilV[2(®@5..),(0) Mo,
e e G b (G0
1+ ~ A% m(o)
2|+
Thus Lemma 5.2 is proved. O

5.4. Proof of Theorem 5.1
We put together the results of the previous paragraph to find limits of the relations (5.6), for m = 1,2, 3.

Step 1. Using the definition of AS,(£) in the equation (5.6) and dividing both sides by /1 + A, (€), for
m =1,2,3, we have

B )(€) _ o Balbo(©) + Bug'(©) + Byhe(e)

Xe-1v/ (&) A\ (6) EYNE) 1+ A5, (€)

, (5.18)

where we recall that
Xn() = €N jm (6 (giz)) '
17|

We note that A€ (1pu®) is bounded in H™1(R3) (refer Eq. (5.3)). Thanks to Lemma 2.7, it follows that right
hand side of (5.18) is bounded in L?*(R?). Therefore for a subsequence both sides of the relation (5.18) converge
weakly in L*(R?).

As a corollary to the proof of Lemma 4.1, the left hand side of (5.18) converges pointwise for a subsequence
as the sequence 1ou® converges strongly in L?(R3).
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Step 2. Using the expression (5.3), (5.7), and Lemma 5.2, we see that the right hand side of the equation (5.18)
converges weakly in L%OC(Rg) to

— —

P 050 - (50 32) © - &b (G200 O @),

En)? \y
\/14— 377 N 0)

and the left hand side of the equation (5.18) converges weakly in L7 (R?) to

loc

B, m(0). (5.20)

y[L2 )2 1 _
U -
¢1+ 5o i (©)

In view of the relations (3.5) of Lemma 3.1, the expression in (5.20) is equal to

|Y|1/2
(1)
\/1+ 2t 1)

Step 3. We recall that for each fixed ), the set { ® 5 ,,(0) : m = 1,2, 3} forms an orthonormal basis for Liﬁ (Y),
and hence forms an orthogonal basis for C?, as they are independent of y. Consequently, (5.19) and (5.21) give,
for each p =1, 2, 3,

(@ 5m), (0). (5.21)

lbpquqssz%ﬁ(f)

_ _ N oy, . .
G o €0 () = ToFo(€) ~ (030 32) €)= 6 e (F2 0000} O 622
q s
Step 4. By taking inverse Fourier transform in (5.22), we get
0 o (0
(A" o))y = $0,(2) = 730) GE) = By 5 (G (o) i) ) (52
where the operator A* is defined by (5.2). By calculating via Leibnitz rule, we get
o (0 0 ou’
(A" o)y = (00(e) 470 0y = By o ( Go)03(0)) = By G20 G2 ). (528
From (5.23), (5.24), we have
ou 0
ola) (A"u* — £),(x) = {bpqm 0—;‘{@) - J;q(z)] a—i’z(x), p =123 (5.25)

Step 5. Note that g e’ “ € D(Q) where w is a unit vector in R3, and hence substituting in the relation (5.25),
we get

: duy .
iwg ho(x) [bpqm %(x) — apq(:c)} =0, p=1,23.
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Choosing w from the standard ordered basis for R3, we get Vi) € D(£2),

ou*
bo() [b O () - a;;q@c)] —0, pg=123 (5.26)

Let 29 € Q be arbitrary and let ¢,, € D() be such that v,, is equal to one near zy and is zero outside a
small neighbourhood of zg. For z belonging to a small neighbourhood of xg, from the relation (5.26), we get

ou. .
|:bpq7“3 a—l,s(x) - pq(x):| = 07 p,q= 17 2; 3.

Since xg € () is arbitrary, we get

% N ou’
A*u* = f, and o}, (x) = bpgrs 6—307(33), Vp,q = 1,2,3.

S

Since the problem (5.2) has unique solution, and the homogenized coefficients b5 are independent of the
subsequence used, it follows that the entire sequence u¢ converges to u*.

Step 6. The symmetries of the homogenized coefficients follow from the alternate expressions for them given
below.

1 » .
Opars = M/ Auvim () € (W5 (y) + ¥7°) €uo (WP (y) + yP9) dy,
Y

where y"* def Yr€s + ys e, and e,, e, are the rth and sth basis vectors in the standard ordered basis for R3.
This finishes the proof of the homogenization result Theorem 5.1. (]

6. HIGHER MODES DO NOT CONTRIBUTE

As we have seen in the last section, the part of u® which contributes to the homogenization process, denoted
by v€, is its projection onto the space spanned by the Bloch modes indexed by 1, 2 and 3. It is interesting to
know what happens to the rest of u®. This remainder part contains the components of u¢ along higher modes
present (i.e., modes with indices greater than or equal to 4). We denote the remainder by E¢(z) which is equal
to u(z) — v¢(z). That is,

B = Y. [ Bl wh o) de

m:4e—1yl

The following result says that the L2-energy contained in these higher modes tends to zero in the homogenization
limit.

Theorem 6.1. HESHL2(]R3) < Ce.

Referring to earlier works, [8,25], we know that the existence of spectral gap between the lower part of the
spectrum and the rest plays an important role in proving Theorem 6.1. In the case of the scalar equation treated
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in [8], eigenvalues with the usual ordering satisfied this requirement. In the case of systems, as will be seen
below, Rellich branches possess the aforesaid spectral gap. More precisely we have:

Lemma 6.2. Let u € HY(n,Y) and v € HL(Y) be such that u(y) = e¥""v(y). Then there exists a positive
constant C' (independent of u, v and n € Y') satisfying

c{IIVVlinaeey + nlIvlizzen < lew @)z < {I9vle + Illivizae }- (6.1)
Proof. Recalling the notation u = (uy, ug, us) and e (u) (see, (1.2)) from Section 1, we have
— 8uk 8uk 8uk aul
4 dy = = d dy. 6.2
Y/ ) euiy = 5 [ SOk Gk 3 [ G (6.2
Step 1. For each fixed k = 1,2, 3, we have the following inequality (see [7] p. 190):
c{IVorlizaw) + Inllloellaee b < 190+ inellzaey = [ Vuleae). (6.3)
Adding the above inequalities for k = 1,2, 3, we get
{I19Vler) + Ve } < 199 + invliee = [Vuli) (6.4)

for some positive constant C. Thus, the first term in the RHS of (6.2) is bounded below.

Step 2. We now show that the second term in the RHS of (6.2) is non-negative by establishing

0uk 8’ul / . B Ta——
——dy divudivudy > 0. 6.5
/ Oy Oy, V= (6.5)

It is enough to prove (6.5) for smooth functions u as they are dense in H;é(n, Y). Since up = ey, by our
notation, we have

8uk aul a’l)k . avl .
—dy = — — d
0yz oy Y Y/(&m Hmvk) (0% anvl) Y

vy, 8’1)1 / v, . / _
—dy —dy — —d dy. 6.6
8yl D0 + YUk Do y any vy o0 y+nem | vkUidy (6.6)

We now perform integration by parts twice in the first term, once in second and third terms in (6.6). In this
process there will be no boundary contributions as the integrands are periodic functions. As a result, we get

Ouy, Oy Oy avz ) /_ vy, ) / o, / ~
oy Oy Yy = ayk ayz sz vl@yk erznkY Uk_ayl y+nkmy vp Uy dy

—/ 9% 4 imon ) (2% 1 i )
*Y E Mk Vk e mu | dy

= /divudivudy.
Y
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In view of the relations (6.4) and (6.5), the first inequality in (6.1) follows. The second inequality in (6.1) is
obvious. d

Lemma 6.3. Let A\, (.) for m € N be as introduced in the Section 2. Then there exists a constant v > 0 such
that

Am(n) > v, Ym >4 and VneY'. (6.7)
Proof.

Step 1. Thanks to Lemma 6.2 and uniform ellipticity of the elastic tensor, we get
a(n)(v,v) = C{IVVILaiy) + P IVIE2ar }- (6.8)
In view of the relation A\p,(n) = a(n)(Pm(;n), Pm(-;7)), the inequality (6.8) yields

An(n) > Cnl?, ¥m € Nand ¥y € Y. (6.9)

Step 2. Let piy, () for m € N be the ordered spectrum of the operator A(n) (see, Lem. 1.1). Since each of pi, (1)
is continuous in 1 and since 0 = u1(0) = p2(0) = p3(0) < w4(0), there exist a p* € R and a ball B with centre
at 7 = 0 and radius r for some r > 0 such that

pi(n) < pa(n) < ps(n) < p* < pa(n) <ps(n) <... VYneB. (6.10)

In particular, the inequalities (6.10) say that u* is not an eigenvalue of A(n) and there are only three eigenvalues
counting multiplicities which are less than p* for n € B. At nn = 0, we have the following equalities (see (1.15)):

A1(0) = A2(0) = A3(0) = 0 = 121(0) = z2(0) = pia(0).

Recall that Rellich branches {\,,(n) }men also give a listing of all the eigenvalues of the operator A(n) including
multiplicities and hence is a permutation of { ., (7)) }men for all n € Y. If we restrict n to B, then we claim that
A1(n), A2(n), Az(n) is a permutation of pq(n), p2(n), ps(n). If this were not the case then for some m = 1,2,3
and 179 € B, An(no) > p*. Letting ny = po flo, by definition of A, (.), we have Ay m(po) > p*. Since the map
p — Aij, m(p) is continuous, there exists a p1 < po (as a consequence, p17jo € B) such that Ay m(p1) = p*.
This contradicts the fact that p* is not an eigenvalue for n € B, and hence our claim follows. As a consequence,

Am(n) > p*, ¥Ym >4 and Vn € B. (6.11)

The relation (6.11) provides a lower bound for A, (n) (m > 4) for n € B and (6.9) gives rise to a lower bound
for n outside B. Thus we obtain (6.7). O

Proof of Theorem 6.1. Thanks to the spectral gap asserted by Lemma 6.3, we obtain the required estimate as
follows. We have the relation

[ i) wye)ds = [ gy(e) wyo) o
R3 R3
Since the elasticity tensor is bounded and the sequence u¢ is bounded in the space H!(R?), we get

/fp(:c) u, () dz < cllu|giws) < C. (6.12)

R3
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Taking the mth Bloch transform on the equation A¢u®(z) = f(x) in R? yields

Ap, (€) B, uc(€) =B, £(6).

Now, by Plancheral identity (2.4), the estimate (6.12) takes the form

> BB ,uc(¢) d < C (6.13)

e~y m=1

Since A&, () > 0 for m € N, we have

> BLEEO B, uc(¢) dE = / D A () 1B () dé > / D A (©) 1B, (€] de.

-1y’ m=1 -1y m=1 Ty m=4

Thanks to the inequality (6.7), in view of the relation \¢, (£) = e 2\, (&), we have

DA B u () d§ = ey / > B uc ()] dé = e V[|E 72 gs) -

1y m=4 1y m=4

Now Theorem 6.1 follows from the above inequality and (6.13). O
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