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BLOCH WAVE HOMOGENIZATION OF LINEAR ELASTICITY SYSTEM
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Abstract. In this article, the homogenization process of periodic structures is analyzed using Bloch
waves in the case of system of linear elasticity in three dimensions. The Bloch wave method for
homogenization relies on the regularity of the lower Bloch spectrum. For the three dimensional linear
elasticity system, the first eigenvalue is degenerate of multiplicity three and hence existence of such a
regular Bloch spectrum is not guaranteed. The aim here is to develop all necessary spectral tools to
overcome these difficulties. The existence of a directionally regular Bloch spectrum is proved and is
used in the homogenization. As a consequence an interesting relation between homogenization process
and wave propagation in the homogenized medium is obtained. Existence of a spectral gap for the
directionally regular Bloch spectrum is established and as a consequence it is proved that higher modes
apart from the first three do not contribute to the homogenization process.
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Introduction

In this article, we analyze the homogenization process of periodic structures using Bloch waves in the case
of linear elasticity system in three dimensions. As is well known, homogenization process is concerned with
macroscopic approximations of heterogeneous media. We refer the reader to the books [4,11,14,23] for a beautiful
analysis of this subject. To carry out the homogenization process various methods have been introduced in the
literature. They include the methods of multiscale asymptotic expansions [4], oscillating test functions [16],
two-scale convergence [1, 17], Γ-convergence [11].

In contrast to the above physical space methods, Conca and Vanninathan, in their paper [8], have followed
a purely Fourier approach using Bloch waves in the case of scalar selfadjoint problem. Their analysis has been
extended to the non-selfadjoint case in [25]. For applications of the Bloch wave method, we cite a few references
[2, 3, 7–9, 24]. This method has also given rise to one fundamental object called Bloch approximation in the
context of both theoretical and numerical aspects of homogenization [5,6]. In the literature, one also sees some
phase space methods to homogenization: H-measures [26], defect measures [12], Wigner measures [13].

In [8], the authors work with the usual ordered Bloch spectrum and they prove the regularity of the first
eigenvalue and eigenmode for small momenta |η| and then use it to prove the required homogenization result.
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In fact, the homogenized matrix is a multiple of the Hessien of the first eigenvalue at η = 0. In the case of
elasticity system, we have possible presence of transverse and longitudinal waves which did not exist in the
scalar case of [8]. This gives rise to new difficulties in applying the Bloch wave method. Mathematically, the
main difficulty stems from the multiplicity of the lowest eigenvalue. It is three in the present case. Another
hurdle is that we have the presence of a vectorial perturbation parameter η. In such a case, regularity results are
not guaranteed and the whole method seems to break down even at a heuristic level simply because the expres-
sion of the homogenized matrix does not make sense anymore. This non-regularity is not just a mathematical
artifact but has some physical significance [10]. We examine this issue in the case of isotropic homogeneous
medium in Section 2. It is proved that there is no smooth choice of eigenvalue-eigenvector pair near η = 0
whether we demand ordering of eigenvalues or not. In fact, we obtain a necessary condition for a smooth choice
to exist and it is easily seen that it is not satisfied. The upshot of the above analysis is the observation of
directional regularity of the spectrum. We conclude thus that the appropriate regularity to be sought in the
case of systems is that of directional regularity. This also enables us to overcome at the same time the difficulty
posed by vectorial perturbation parameter. The goal of the paper is to exhibit such a spectrum and exploit it in
the homogenization process. We mention that Turbé [27] applied Bloch decomposition to homogenize periodic
elastic media. Compared to [27], this paper deals with different mathematical aspects of the problem and at
the same time, elaborates certain results of [27].

The plan of the paper

In the Section 1, we introduce the shifted operator A(η), for η ∈ R
3, associated with the linear elasticity system.

We then prove the existence of ordered Bloch spectrum (Lem. 1.1) and discuss the lack of regularity. Then
fixing an arbitrary direction η̂ ∈ R

3, we prove in Theorem 1.6 the existence of eigenvalues and eigenvectors of
A(ρ η̂) depending analytically on the scalar variable ρ. This is the directional regularity that we are seeking.
We call them Rellich branches. It is clear that this indexing of the spectrum need not respect the usual ordering
of eigenvalues.

The Section 2 is devoted to obtaining Bloch decomposition of the space H−1(R3) as this is required in
the homogenization process. Such a decomposition for L2(R3) is more classical [4]. From this, we deduce an
appropriate strengthened version of the decomposition for H1(R3) and then we treat the space H−1(R3) by
duality (Th. 2.4).

In Section 3, we compute (Lem. 3.1) the Hessien of the eigenvalue in each direction. These individual Hessiens
nicely patch up to define the homogenized matrix via what we call propagation condition. It has an interesting
connection with the propagation of monochromatic waves in the homogenized medium (Lem. 3.3). Such features
were not clear in the scalar case of [8].

Section 4 contains just one result which analyzes the asymptotic behaviour of the first three Bloch modes.
The analogous property in the scalar case simply states that the first Bloch transform tends to Fourier transform
[8]. As can be seen from Lemma 4.1, the case of systems is more complicated.

In Section 5, we state and prove the homogenization result (Th. 5.1) as a by-product of our foregoing analysis.
In Section 6, we establish spectral gap between the first three Bloch modes and the rest for the directionally

regular Rellich spectrum (Lem. 6.3) and then use it to show that higher Bloch modes, apart from the first three,
do not contribute to homogenization limit (Th. 6.1).

1. The shifted operator and its spectrum

The periodically varying medium is represented by the operatorA formally acting on vector functions Ψ(y) =
(ψ1(y), ψ2(y), ψ3(y) ), given by

(AΨ)p ≡ − ∂

∂yq
[apqrs(y)ers(Ψ(y))] ≡ − ∂

∂yq

[
apqrs(y)

∂ψr
∂ys

(y)
]
, p = 1, 2, 3, (1.1)
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where strain tensor ers(Ψ) is given by

ers(Ψ) =
1
2

(
∂ψr
∂ys

+
∂ψs
∂yr

)
, r, s = 1, 2, 3, (1.2)

and the components of the elastic tensor apqrs, p, q, r, s ∈ {1, 2, 3}, are real valued and Y -periodic (Y = [0, 2π[3)
functions such that:

aqprs = apqrs = arspq = apqsr , (1.3)

apqrs ∈ L∞
# (Y ), |apqrs( y )| ≤ α′ a.e. y ∈ Y, and

∃α > 0 : apqrs(y) εpq εrs ≥ α εpq εpq a.e. y ∈ Y,

for every complex-valued (3 × 3) symmetric matrix ε,




(1.4)

where we followed the usual summation convention over repeated indices and we recall that a function u defined
on R

3 is said to be Y -periodic if

u(x + 2πej) = u(x) a.e. x ∈ R
3, ∀j = 1, 2, 3,

where ej , j = 1, 2, 3 denotes the standard ordered basis for R
3. Throughout this article, the subscript # for a

function space indicates that the space consists of periodic functions.
Bloch waves are defined to be eigenfunctions Ψ(η) of the operatorA indexed by a parameter η ∈ R

3, satisfying
the (η, Y )-periodic condition, i.e.,

Ψ( y + 2 π p; η ) = e2π i p.η Ψ( y ; η ) ∀p ∈ Z
3, y ∈ R

3. (1.5)

Since the (η, Y )-periodic condition in (1.5) is invariant under translations by elements of Z
3 in the η-variable,

η may be restricted to the set Y ′ = [−1/2, 1/2)3 which is referred to as the dual cell.
Introducing Floquet ansatz Ψ(y; η) = ei y.η Φ(y; η) where Φ(, ; η) is Y -periodic, we have the following eigen-

value problem satisfied by Φ(, ; η):

A(η)Φ(.; η ) = λ( η )Φ(.; η ) in R
3,

and Φ(.; η ) is Y-periodic,

}
(1.6)

where the operator A(η) is the so-called shifted operator and is given by

A(η)(u) def= −
(

∂

∂yq
+ i ηq

){
apqrs(y)

1
2

[(
∂

∂ys
+ i ηs

)
ur +
(

∂

∂yr
+ i ηr

)
us

]}
. (1.7)

For the rest of this section, we are interested in the spectrum of A(η) considered as an unbounded operator
in L2

#(Y ) and its dependence on η ∈ Y ′.

1.1. Existence of ordered spectrum of A(η) and its lack of regularity

We start with a comment on the title of this subsection. The word “ordered spectrum” is used to remind
us that we will be discussing about the spectrum of A(η) wherein the eigenvalues are non-decreasing with the
increasing index. It is well-known that A(η) is a selfadjoint operator in L2

#(Y ) and is non-negative definite
(see [20]) (a consequence of symmetry and ellipticity assumptions on the elastic tensor given in (1.4)). As a
consequence of the compact embedding of H1

#(Y ) into L2
#(Y ), (A(η) + C∗I)

−1 is a compact operator on L2
#(Y )
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for some C∗ > 0. All these properties are sufficient to apply spectral theorem for selfadjoint operators with
compact resolvent and we have the following result asserting the ordered spectrum (see [20]):

Lemma 1.1 (existence of ordered spectrum). For η ∈ Y ′, there exist sequences of eigenvalues {µk( η )}∞k=1

and eigenvectors {Θk( η )}∞k=1 belonging to H1
#(Y ) for the problem (1.6) satisfying 0 ≤ µ1( η ) ≤ µ2( η ) ≤ ... ≤

µk( η ) ≤ ... → ∞, with each eigenvalue being repeated according as its multiplicity, and {Θk( η )}∞k=1 forms an
orthonormal basis in L2

#(Y ).

Lack of regularity of the ordered spectrum

For fixed k ∈ N, the eigenvalues µk(η), owing to their variational characterization (see [8]) via Courant-Fischer
minimax principle, are Lipschitz continuous functions of η ∈ Y ′. This global regularity is not enough in the
process of homogenization (see [8]); we need higher local regularity. Of course, we should mention that only the
regularity of the first eigenvalue near η = 0 was needed in the case of scalar selfadjoint operator case of [8]. This
was the only eigenbranch emanating from the least eigenvalue of A(0) which is equal to zero. In the present
case, the least eigenvalue which is again equal to zero has multiplicity three. Therefore, we need to study the
splitting of this multiple eigenvalue i.e., analysis of spectrum of perturbation near a multiple eigenvalue.

The perturbation theory for linear operators is very classical and it is known that the spectrum need not
reflect the regularity of the operator in the perturbation variable; more so, if the perturbation parameter is not
a scalar and if the eigenvalue under study is not simple and is illustrated by the following classical example due
to Rellich (for example, see [15, 19]).

Example 1.2. Let us consider the family of diagonalizable matrices depending on a parameter η ∈ R
2, η =

( η1, η2 ) ∈ R
2 	−→
(
η1 η2
η2 − η1

)
∈ M2(R). We note that this is a family of symmetric matrices, and hence are

diagonalizable. Further, the matrix entries depend linearly on η. It is easy to see that eigenvalues are given
by µ1( η ) = −√η2

1 + η2
2 and µ2( η ) =

√
η2
1 + η2

2 . Note that when the parameter η is equal to 0, the two
eigenvalues coincide and the common value is 0 with eigenspace R

2, whereas for η 
= 0, µ1( η ) < µ2( η ). It is
obvious that they are Lipschitz continuous functions of the parameter η but not differentiable at η = 0. It can
be easily seen that eigenvectors can not be chosen to be continuous with respect to η at η = 0.

Next, we present a particular case of linear elasticity system wherein we see clearly the lack of regularity.

Example 1.3 (homogeneous isotropic medium). The coefficients apqrs(y) representing the isotropic homoge-
neous medium are constants, given by

apqrs(y) ≡ λδpqδrs + µ(δprδqs + δpsδqr), ∀y ∈ Y, (1.8)

where the Lamé coefficients λ, µ have the usual properties: µ > 0 and 3λ+ 2µ > 0.
Regarding the ordered spectrum in this case, Lemma 1.1 asserts the existence of eigenvalues and eigenvectors

of the operator A(η) defined by (1.7). Since eigenvectors are Y -periodic, we expand them in Fourier series,
and substitute in the eigenvalue-eigenvector relation for the operator A(η) defined by (1.7), and we reduce the
operator problem to the spectral problem of the following numerical matrix equation.

(λ+ µ) (m + η) ⊗ (m + η) + µ ‖m + η‖2 I3×3, where m ∈ Z
3, (1.9)

where (m + η) ⊗ (m + η) denotes a matrix whose (i, j)-th entry is (mi + ηi)(mj + ηj), and I3×3 denotes the
3 × 3 identity matrix. Even though m is repeated in (1.9), there is no summation with respect to m. The
eigenelements of the operator (1.7) in the case of (1.8) are as follows:

For m ∈ Z
3, η ∈ Y ′ such that (m, η) 
= (0, 0),

(i) (transverse waves) µ ‖m + η‖2 is an eigenvalue of multiplicity two, with eigenvectors L
(2π)3/2 eim. y,

where L ∈ R
3 is a unit vector satisfying L. (m + η) = 0;



546 S. SIVAJI GANESH AND M. VANNINATHAN

(ii) (longitudinal waves) (λ+2µ) ‖m + η‖2 is an eigenvalue with eigenvector K
(2π)3/2 eim. y, where K ∈ R

3

is a unit vector parallel to m + η,

and for (m, η) = (0, 0), zero is an eigenvalue with eigenspace C
3.

Moreover, ∀η ∈ Y ′ these eigenvectors form a complete orthonormal basis for L2
#(Y ) as m ∈ Z

3 varies.
In the general case of media defined by (1.4) with symmetries (1.3), when the parameter η is equal to 0, any

non-zero u ≡ constant vector in C
3 is an eigenvector of the operatorA(0), corresponding to the eigenvalue 0 and

hence the eigenspace is of dimension three. For each k = 1, 2, 3, let µk( η ) and Θk( η ) be the first three of the
ordered eigenvalues and corresponding eigenvectors of the shifted operator (1.7), whose existence is assured by
Lemma 1.1. Then µ1(0) = µ2(0) = µ3(0) = 0, and Θ1(0), Θ2(0), Θ3(0) are such that they form an orthogonal
basis for C

3.
In the special case of homogeneous isotropic media defined by (1.8), we can identify the first three ordered

eigenvalues µ1( η ), µ2( η ), µ3( η ) for η in a sufficiently small neighbourhood of zero. In fact, in the above
computations, the eigenvalue can be zero if and only if m + η = 0, i.e., m = −η ∈ Y ′, therefore m=0 and
η = 0. Thus, we get, for ‖η‖ small, µ1( η ) = µ2( η ) = µ ‖η‖2, andµ3( η ) = (λ + 2µ) ‖η‖2 (since λ + 2µ =
(λ+ 2

3µ) + 1
3µ+ µ > µ by our assumptions on Lamé coefficients).

For k = 1, 2, 3, we claim that there cannot be a continuous choice of Θk( η ), unit eigenvectors corresponding
to the eigenvalue µk( η ) for η near zero. The claim will be proved only for the case k = 3 since the arguments
are more transparent. The claim will follow for the cases k = 1, 2 in a similar fashion.

Indeed, there is a unique choice for longitudinal wave Θ3( η ) (up to sign) when η 
= 0, as µ3( η ) is simple,
given by (see (ii) above)

Θ3( η ) =
1

(2π)3/2
√
η2
1 + η2

2 + η2
3


 η1η2
η3


 .

Let us fix a unit vector η̂ ∈ R
3. For η = δ η̂ with δ > 0, the above eigenvectors take the following form in terms

of η̂:

Θ+
3 ( η ) =

1
(2π)3/2

√
η̂2
1 + η̂2

2 + η̂2
3


 η̂1η̂2
η̂3


 ,

which depend on η̂ and not on δ (i.e., they are homogeneous of order zero) and hence is not a continuous
function of η at η = 0.

However, a continuous (in fact, constant) choice of Θ3( η ) can be made along each fixed direction η̂ ∈ R
3,

for example, Θ+
3 ( η ) given above. This observation will be exploited later.

Even by foregoing the ordering of the eigenvalues, we only have eigenvalues which are continuous with
respect to η near η = 0 and we cannot choose eigenvectors depending continuously on η near η = 0. Indeed, we
observe that the only continuous eigenvalue branches near η = 0 are given by µ ‖η‖2 (of multiplicity two) and
(λ + 2µ) ‖η‖2 (simple eigenvalue) from the explicit computations made above. Now it is clear that there is no
continuous choice of eigen vectors near η = 0.

One may think that the above lack of regularity of eigenvector is due to the requirement that eigenvalues are
arranged in increasing order. Actually, this is not so. In the following remark we make it precise.

Remark 1.4 (necessary conditions for the existence of smooth eigenelements near η = 0). In the general case of
media defined by (1.4), we remark that the corresponding homogenized medium should satisfy certain necessary
conditions for the existence of smooth eigenvalue and eigenvector branches. More precisely, Let λ̃k( η ), k = 1, 2, 3
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be eigenvalues with corresponding eigenvectors Θ̃k( η ), k = 1, 2, 3 satisfying all the following conditions:



lim
η→0

λ̃k( η ) = 0, k = 1, 2, 3,

λ̃k( η ) isC2 near η = 0, Θ̃k( η ) isC2 near η = 0,

{ Θ̃k(0) : k = 1, 2, 3 } are eigenvectors ofA(0) and form a basis of C
3.

Differentiating the eigenvalue equations (1.6), with respect to ηq and ηs and evaluating at η = 0, we obtain the
following relations:

∂2λ̃k
∂ηq∂ηs

(0) Θ̃k(y; 0) = Aqs Θ̃k(y; 0), k = 1, 2, 3, (1.10)

where, the symmetric matrices {Aqs}1≤q,s≤3 are given by

Aqs =




b1q1s + b1s1q b1q2s + b1s2q b1q3s + b1s3q

b2q1s + b2s1q b2q2s + b2s2q b2q3s + b2s3q

b3q1s + b3s1q b3q2s + b3s2q b3q3s + b3s3q




where the homogenized coefficients bpqrs are given by (3.1). We refer the reader to the section 3 for detailed
computations. The relations (1.10) say that these matrices have common eigenvectors { Θ̃k(y; 0) : k = 1, 2, 3 },
which form a basis for C

3 and hence the matrices must commute with each other. This is a necessary condition
for the existence of smooth eigenvectors near η = 0 as required above. In general, this condition is not satisfied.
Let us consider the special case of isotropic homogeneous media defined by (1.8), the above matrices are

A11 =



λ + 2µ 0 0

0 µ 0
0 0 µ


 , A12 =




0 λ + µ 0
λ + µ 0 0

0 0 0


 , A13 =




0 0 λ + µ

0 0 0
λ + µ 0 0


 ,

A23 =




0 0 0
0 0 λ + µ

0 λ + µ 0


 , A22 =



µ 0 0
0 λ + 2µ 0
0 0 µ


 , A33 =



µ 0 0
0 µ 0
0 0 λ + 2µ


 .

But, A12 and A23 commute with each other if and only if λ+ µ = 0. Since λ+ µ 
= 0 by our assumptions on λ
and µ, we conclude that a smooth choice of eigenvalues and eigenvectors is not possible in this case.

1.2. Existence of eigenvalues and eigenvectors with directional regularity

We investigate the possibility of choosing directionally regular eigenvectors in the more general case of op-
erator A(η) guided by the Example 1.3. In this paragraph, the existence of a directionally regular spectrum
is proved (Th. 1.6). This notion of directionally regular spectrum is also consistent with the polarization phe-
nomenon already observed in the case of isotropic homogeneous medium. This will be further explained in
Section 3.

In the sequel, it will be convenient to work with direction η̂ defined below.
Let us note that for every non-zero η ∈ Y ′, there exists a unique ρ ∈ R and a unique vector η̂ on the

boundary of Y ′ whose first non-zero component is positive, such that η = ρ η̂, and | ρ | < 1. The set where η̂
belongs will be denoted by ∂Y ′

+ and we have

∂Y ′
+ = { η̂ ∈ ∂ Y ′ : η̂1 > 0} ∪ { η̂ ∈ ∂ Y ′ : η̂1 = 0, η̂2 > 0} ∪ { η̂ ∈ ∂ Y ′ : η̂1 = η̂2 = 0, η̂3 > 0}.

Geometrically η̂ is the point where the straight line passing through the origin and η meets ∂Y ′
+. Let η 
= 0

and l be the least index such that η l 
= 0. Then the ρ, η and η̂ are related by

η = ρ η̂, ρ = 2η l, η̂ =
1

2η l
η. (1.11)
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We now fix a vector η̂ ∈ ∂Y ′
+. Now the operator A(η) given by (1.7) is equal to A(ρ η̂) which depends on a

scalar parameter ρ. We first prove that a suitable extension A(z η̂) of A(ρ η̂) to z ∈ C is a holomorphic family of
type (B) in the sense of Kato and then appeal to Kato-Rellich theorem to assert the existence of directionally
regular spectrum. For the definition of a holomorphic family of sesquilinear forms, we refer to Kato’s book [15].
We begin by recalling few notations. In this section, (. )L2

#(Y ) always denotes the scalar product in the Hilbert
space L2

#(Y ). The quadratic form t[u ] corresponding to a sesquilinear form t with domain D(t) ⊆ L2
#(Y ) is

defined by

t[u ] := t[u,u ].

The real and imaginary parts of t[u ] are denoted by �t[u ] and �t[u ] respectively. In our context, there exists
a canonical family of sesquilinear forms associated with the operator A(ρ η̂), namely, the family of sesquilinear
forms t(z η̂) depending on z ∈ C, with same domain given by D(t(z)) = H1

#(Y ) contained in L2
#(Y ), defined by

t(z η̂)[u,v ] =
∫
Y

apqrs(y)
∂uq
∂yp

∂vr
∂ys

dy + i z

∫
Y

apqrs(y)
(
η̂p uq

∂vr
∂ys

− η̂s vr
∂uq
∂yp

)
dy

+ z2

∫
Y

apqrs(y) η̂p η̂s uq vr dy, (1.12)

which when z = ρ ∈ R, reduces to the sesquilinear form corresponding to the operator A(η). In view of | ρ | < 1,
we restrict z to the set R := { z ∈ C : z = a+ ib, | a | < 1, | b | < 1 }.
Theorem 1.5. t(z η̂) is a holomorphic family of type (a).

Proof. The quadratic form corresponding to the sesquilinear form in (1.12) is

t(z η̂)[u ] =
∫
Y

apqrs(y)
∂uq
∂yp

∂ur
∂ys

dy + i z

∫
Y

apqrs(y)
(
η̂p uq

∂ur
∂ys

− η̂s ur
∂uq
∂yp

)
dy

+z2

∫
Y

apqrs(y) η̂p η̂s uq ur dy.

Step (i). t(z η̂) is sectorial

The sectorial property of the form t(z η̂) is essentially a consequence of the ellipticity of the elastic tensor
(see (1.4)). The generic constants C∗, C∗ etc. appearing in the estimates below are independent of u and z ∈ R.
For some C∗ > α

4 , the following inequality holds (see [20], for a proof):

�t(z η̂)[u ] + C∗ ‖u ‖2
L2

#(Y ) ≥ α

4
‖u ‖2

H1
#(Y ). (1.13)

We consider the new family of forms t̃(z η̂), with same domain as that of the family t(z η̂), namely H1
#(Y )

contained in L2
#(Y ), defined by

t̃(z η̂)[u,v ] := t(z η̂)[u,v ] + C∗(u,v )L2
#(Y ).

For the new family t̃(z η̂), the inequality (1.13) reads as

�t̃(z η̂)[u ] ≥ α

4
‖u ‖2

H1
#(Y ). (1.14)
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The following estimate holds for the imaginary part �t̃(z η̂)[u ] of t̃(z η̂)[u ] for some C∗ > 0:

∣∣�t̃(z η̂)[u ]
∣∣ ≤ C∗

(
�t̃(z η̂)[u ] − α

4
‖u ‖2

L2
#(Y )

)
.

Thus, t̃(z η̂) is sectorial for each z and uniformly with respect to z ∈ R. Since the addition of a scalar does not
affect the sectorial nature, it follows that t(z η̂) is sectorial.

Step (ii). t(z η̂) is closed

It is an easy consequence of (1.14).

Step (iii). t(z η̂) is a holomorphic family of type ( a )

We proved that each t(z η̂) is closed, sectorial and since t(z η̂)[u ] is a quadratic polynomial in z for each fixed
u ∈ H1

#(Y ), it follows that it is a holomorphic family of type (a). �

Associated with each t(z η̂), there exists a unique m-sectorial operator with domain contained in H1
#(Y )

thanks to the first representation theorem, a proof of which is available on page 322 of Kato’s book [15]. The
family of such operators associated with a holomorphic family of sesquilinear forms of type (a) is called a
holomorphic family of type ( B ). The aforementioned m-sectorial operator is given by

A(z η̂)(u) ≡ −
(

∂

∂yq
+ i z η̂q

){
apqrs(y)

1
2

[(
∂

∂ys
+ i z η̂s

)
ur +
(

∂

∂yr
+ i z η̂r

)
us

]}
.

Since t(z η̂)∗ = t(z η̂), where t(z η̂)∗ is defined by t(z η̂)∗[u,v ] := t(z η̂)[v,u ], we have A(z η̂)∗ = A(z η̂). Thus
the family A(z η̂) is a selfadjoint holomorphic family of type (B ). Since the embedding of H1

#(Y ) in L2
#(Y ) is

compact by Rellich’s theorem, it follows that the operator (A(z η̂) + C∗I ) has compact resolvent ∀z ∈ R,
where C∗ is as in (1.13).

The following theorem (see [15], p. 392 and p. 408) asserts the existence of sequences of eigenvalues and
eigenvectors of the operator A(ρ η̂) that are analytic on ρ ∈ (−1, 1) with values in C and L2

#(Y ) respectively.
That is, eigenvalues and eigenvectors can be expanded in Taylor’s series in ρ, where the coefficients are in C

and L2
#(Y ) respectively. We refer to the eigenvalue curves and the eigenvector curves obtained in the above

result as Rellich branches. For more details on Banach space valued holomorphic functions, we refer to [15,21].

Theorem 1.6 (Kato-Rellich). Let A(z η̂) be a selfadjoint holomorphic family of type (B ) defined for z in a
neighbourhood R in the complex plane of the interval I := (−1, 1), with domains D(A(z η̂)) contained in L2

#(Y ).
Furthermore, let A(z η̂) +C∗I have compact resolvent for some C∗ ∈ R. Then, there exist a sequence of scalar-
valued functions {λ η̂,k(ρ) }∞k=1 and a sequence of L2

#(Y )-valued functions {Φ η̂,k(ρ) }∞k=1 defined on I such that:

(i) For each fixed ρ ∈ I, the sequence {λ η̂,k(ρ) }∞k=1 represents all the eigenvalues of A(ρ η̂) including multi-
plicities (need not be a non-decreasing sequence) and the sequence {Φ η̂,k(ρ) }∞k=1 represents corresponding
eigenvectors.

(ii) For each k ∈ N and η̂ ∈ ∂Y ′
+, λ η̂,k(ρ) and Φ η̂,k(ρ) are analytic on I with values in C and L2

#(Y ) respectively.

(iii) The sequence {Φ η̂,k(ρ) }∞k=1 is an orthonormal basis for L2
#(Y ).

Moreover, each of the elements of these eigenvalue-eigenvector sequences is holomorphic in a region R η̂,k con-
taining I of the complex plane, representing eigenelements of the operator A(z η̂) for z ∈ R η̂,k.

Corollary 1.7. The Rellich branches can be re-indexed so that λ η̂,k(0) = µk(0) where {µk(η) }∞k=1 is the
sequence of ordered eigenvalues given by Lemma 1.1 and, as a consequence, have the property

λ η̂,1(0) ≤ λ η̂,2(0) ≤ λ η̂,3(0) ≤ · · · ≤ λ η̂,k(0) ≤ · · · (1.15)
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Proof. This follows from the fact that each of the two sequences {µk(ρ η̂) }∞k=1 and {λ η̂,k(ρ) }∞k=1 represents all
the eigenvalues including multiplicities of A(ρ η̂), for fixed η̂ ∈ ∂Y ′

+ and fixed ρ ∈ I. �

Remark 1.8. Such a re-indexing as in the previous corollary can be done at any fixed ρ0 but not for two values
of ρ simultaneously. Therefore, it may not be possible to re-index Rellich branches in such a way that the
sequence of functions {λ η̂,k(.) }∞k=1 is non-decreasing with k ∈ N. Unlike eigenvalues, this re-indexing cannot
be done with eigenvectors even at ρ = 0. Also, Φ η̂, k( 0 ) cannot be prescribed in advance. To put it in Rellich’s
words, “the perturbation method itself selects them” (see [19]).

From the Theorem 1.6, we have for each k ∈ N, Φ η̂,k(ρ) is analytic on I with values in L2
#(Y ). As a conse-

quence of the function ‖Φ η̂, k(.) ‖H1
#(Y ) being locally bounded (which is a consequence of the inequality (1.13))

and the density of L2
#(Y ) in H−1

# (Y ), it follows that the Rellich eigenvector branches are also analytic with
values in H1

#(Y ) (see p. 365 of [15]). We state this in the following lemma.

Lemma 1.9. Each of the Rellich eigenvector branches is analytic from (−1, 1 ) to H1
#(Y ).

Remark 1.10. Not much can be said about the behaviour of the ordered eigenvalues {µk(η), k = 1, 2, 3 }
near the origin. As seen below, in homogenization analysis, we will mainly deal with the directional spectrum
{λ η̂,k(.), k ∈ N } introduced above. However, in Section 6, we present some properties of the ordered eigenvalues
near the origin (see (6.10) in particular).

2. Bloch wave decomposition

In this section we introduce an operator Aε, an ε-scaled version of A. We then define Bloch waves and Bloch
waves at ε-scale associated with the operators A and Aε respectively and then prove that these waves give rise
to a decomposition of the spaces L2(R3), H1(R3) and H−1(R3). As we shall see, the difference between the
various cases lies in the nature of the convergence. Further, Parseval’s equality holds only for L2(R3); it is
replaced by two inequalities in other cases (see (2.8), (2.24)).

First, we introduce the operator

(Aε uε)p ≡ − ∂

∂xq

[
aεpqrs(x)ers(u

ε(x))
] ≡ − ∂

∂xq

[
aεpqrs(x)

∂uεr
∂xs

(x)
]
, p = 1, 2, 3, (2.1)

where the coefficients aεpqrs(x) = apqrs(
x

ε
) and apqrs(.) are as introduced in Section 1 and satisfy (1.3), (1.4),

and ers(.) as defined in (1.2). The associated shifted operator is given by

Aε(ξ)(u)
def
= −
(

∂

∂xq
+ i ξq

){
apqrs
(x
ε

) 1
2

[(
∂

∂xs
+ i ξs

)
ur +
(

∂

∂xr
+ i ξr

)
us

]}
.

Definition of Bloch eigenvalues and Bloch eigenvectors

Recall from Section 1.2 that, η ∈ Y ′, ρ ∈ I and η̂ ∈ ∂Y ′
+ are related by the relations (1.11). We define two

sequences of functions defined for almost every η ∈ Y ′ indexed by m ∈ N, λm( η ) and Φm( η ), called Bloch
eigenvalues and Bloch eigenvectors (Bloch waves) associated with the operator A respectively in the
following canonical way.

For non-zero η ∈ Y ′, we define

λm( η ) := λ η̂,m( ρ ), Φm( y ; η ) := Φ η̂,m( y ; ρ ).
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We now define the Bloch eigenvalues λεm( ξ ) and Bloch eigenfunctions Φε
m(. ; ξ ) ∈ H1

#(εY ), associated with the
operator Aε for 0 < ε� 1 as follows: For non-zero ξ ∈ ε−1Y ′ and x ∈ R

3, let

λεm( ξ ) := ε−2 λm( ε ξ ),Φε
m(x ; ξ ) := Φm

( x
ε

; ε ξ
)

where λm(.) and Φm(.; . ) are as introduced above. That is, λεm( ξ ) and Φε
m(. ; ξ ) are eigenvalue and eigenfunc-

tions of the operator Aε(ξ) The Bloch eigenvectors Φε
m( ξ ) are called Bloch waves at ε-scale.

Owing to their definition λm( η ) and Φm( η ) have the following properties: the sequence {λm( η ) }m∈N may
not be an increasing sequence for η 
= 0. The set {Φm(η) : m ∈ N } forms an orthonormal basis for L2

#(Y ) for
each 0 
= η ∈ Y ′.

2.1. Bloch wave decomposition of L2(R3)

Bloch waves give rise to the following decomposition of the space of vector valued functions L2(R3). Since
the proof is classical (see, [4,8,27]), we do not repeat the same. The key idea in its proof is to use the fact that
for 0 
= ξ ∈ ε−1Y ′,

{
ε−3/2Φε

m(ξ) : m ∈ N
}

forms an orthonormal basis for L2
#(εY ).

Theorem 2.1. Let g be an arbitrary element of the Hilbert space L2(R3).

(i) For m ∈ N, the following limit in L2(ε−1Y ′) exists, and is called the mth Bloch coefficient of g:

Bε
mg(ξ) := lim

R→∞

∫
|x|≤R

gp(x) e−i x. ξ (Φε
m)p (x; ξ) dx. (2.2)

(ii) Then the following inverse formula holds, where the limit is taken in the space L2(R3):

g(x) = lim
k→∞

∫
ε−1Y ′

k∑
m= 1

Bε
mg(ξ) ei x. ξ Φε

m (x; ξ) dξ. (2.3)

(iii) Also, we have the following Plancheral identity: ∀g,h ∈ L2(R3),
∫
R3

gp(x) hp(x) dx =
∫

ε−1Y ′

B
ε
mg(ξ)Bε

mh(ξ) dξ. (2.4)

We recall that the usual summation convention is followed in (2.4). This means that LHS is summed up with
respect to p = 1, 2, 3 and the RHS is summed up with respect to m ∈ N. Above result says that we can identify
the space L2(R3) with L2(ε−1Y ′; l2(N)). Observe that, for each m ∈ N, the m-th Bloch coefficient B

ε
mg(ξ)

defined above is scalar valued even though g is a vector valued function.

2.2. Bloch wave decomposition of H1(R3)

Following the analysis presented in the Section 1.2, the form tε(ξ) corresponding to the operator Aε(ξ) defined
on the space H1

#(εY ) given by

tε(ξ)[u,v ] =
∫
εY

apqrs
(x
ε

) ∂uq
∂xp

∂vr
∂xs

dx+ i

∫
εY

apqrs
(x
ε

)(
ξp uq

∂vr
∂xs

− ξs vr
∂uq
∂xp

)
dx

+
∫
εY

apqrs
(x
ε

)
ξp ξs uq vr dx



552 S. SIVAJI GANESH AND M. VANNINATHAN

satisfies, for some Cε∗ > α/4,

C1 ‖ g ‖2
H1

#(εY ) ≤ tε(ξ)[g,g ] + Cε∗(g,g )L2
#(εY ) ≤ C2 ε

−2‖ g ‖2
H1

#(εY ) (2.5)

for some positive constants C1, C2 independent of g and ξ ∈ ε−1Y ′. Thanks to the symmetries of the elastic
tensor,

tε(ξ)[., . ] + Cε∗ (., . )L2
#(εY ) (2.6)

defines an inner product in H1
#(εY ).

With respect to the inner product (2.6), the family
{

ε−3/2√
Cε∗+λε

m(ξ)
Φε
m(x; ξ) : m ∈ N

}
is an orthonormal basis

for H1
#(εY ). This observation will now be used to obtain the following decomposition of H1(R3).

Theorem 2.2. Let ε > 0 be fixed and g be an arbitrary element of H1(R3).

(i) For m ∈ N, we define the mth Bloch coefficient B
ε
mg(ξ) by (2.2) with limit being taken in the weighted L2

space with weight (Cε∗ + λεm(ξ)) on ε−1Y ′.
(ii) Then the following inverse formula holds, where the limit is taken in the space H1(R3):

g(x) = lim
k→∞

∫
ε−1Y ′

k∑
m= 1

B
ε
mg( ξ ) ei x. ξ Φε

m(x; ξ) dξ. (2.7)

(iii) Also, we have the following inequalities:

C1ε
2 ‖ g ‖2

H1(R3) ≤
∫

ε−1Y ′

∞∑
m=1

(Cε∗ + λεm(ξ))
∣∣Bε

mg(ξ)
∣∣2 dξ ≤ C2ε

−4 ‖ g ‖2
H1(R3), (2.8)

where C1, C2 are positive constants independent of g and ε.

Remark 2.3. As is evident, one of the new features in Theorem 2.2 when compared with Theorem 2.1 is the
stronger convergence in (2.7). The Parseval’s equality for (2.4) is replaced by two inequalities in (2.8).

Proof of Theorem 2.2. By density arguments, we are reduced to the case of g ∈ H1(R3) having compact support
in R

3.

Step 1. The basic device of the proof is to associate periodic functions g̃(.; ξ) ∈ H1
#(εY ) as follows:

g̃(x; ξ) =
∑

γ ∈ 2πεZ3

g(x+ γ) e−i (x+γ) . ξ. (2.9)

Thanks to the observation preceding the statement of Theorem 2.2, we can write

g̃(x; ξ) =
∞∑

m=1

cεm(ξ)
ε−3/2Φε

m(x; ξ )√
Cε∗ + λεm(ξ)

(2.10)
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where the convergence is in H1
#(εY ). Using the eigenvalue-eigenvector relation

tε(ξ) [v, Φε
m(ξ) ] = λεm(ξ) (v, Φε

m(ξ) )L2
#(εY ) , ∀v ∈ H1

#(εY )

and εY-periodicity of Φε
m(.; ξ), the coefficient cεm(ξ) can be easily calculated as

cεm(ξ) = ε−3/2
√
Cε∗ + λεm(ξ)

∫
R3

gp(x) e−i x . ξ (Φε
m)p(x; ξ) dx,

which by our definition, is equal to ε−3/2
√
Cε∗ + λεm(ξ)Bε

mg(ξ). Thus (2.10) becomes

g̃(x; ξ) = ε−3
∞∑

m=1

B
ε
mg(ξ)Φε

m (x; ξ) . (2.11)

Step 2 (Proof of inverse formula). To prove the inverse formula given in (2.7), we multiply both sides of the
equation (2.9) by ei x. ξ, and integrate with respect to ξ ∈ ε−1Y ′. Now, by observing that

∫
ε−1Y ′

e−i γ . ξ dξ = 0 for γ 
= 0, (2.12)

we get

g(x) = ε3
∫

ε−1Y ′

g̃(x; ξ ) ei x. ξ dξ. (2.13)

Using (2.11) in the above relation, we get

g(x) =
∫

ε−1Y ′

∞∑
m=1

Bε
mg(ξ) ei x. ξ Φε

m ( x; ξ) dξ. (2.14)

The relation (2.14) yields (2.7) by justifying the interchanging of the integral and the sum, which we do here.
For each k ∈ N, let gk ∈ H1(R3) be defined by

gk(x) =
∫

ε−1Y ′

k∑
m=1

Bε
mg(ξ) ei x. ξ Φε

m (x; ξ) dξ.

If we show that gk is a Cauchy sequence in the space H1(R3), the proof of the inverse formula will be finished.

Step 3 (gk is Cauchy in H1(R3)). Thanks to inequalities (2.8) whose proof will be given shortly, the real valued
function ‖g‖ defined for elements g ∈ H1(R3) by

‖g‖2 :=
∫
Y ′

∞∑
m=1

(Cε∗ + λεm(ξ))
∣∣Bε

mg(ξ)
∣∣2 dξ,
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is an equivalent norm on H1(R3). We prove that gk is a Cauchy sequence in this norm. This follows easily by
noting that for a.e. ξ ∈ ε−1Y ′, we have

Bε
mgk(ξ) =

{
Bε

mg(ξ) if 1 ≤ m ≤ k

0 if m > k.
(2.15)

Step 4 (Proof of (2.8)). By Parseval theorem applied to (2.10), we have

tε(ξ)[ g̃(., ξ), g̃(., ξ) ] + Cε∗( g̃(., ξ), g̃(., ξ) )L2
#(εY ) = ε−3

∞∑
m=1

(Cε∗ + λεm(ξ))
∣∣Bε

mg(ξ)
∣∣2.

Therefore, for g̃(., ξ) the inequalities (2.5) read as

C1 ‖ g̃(., ξ) ‖2
H1

#(εY ) ≤ ε−3
∞∑

m=1

(Cε∗ + λεm(ξ))
∣∣Bε

mg(., ξ)
∣∣2 ≤ C2 ε

−2‖ g̃(ξ) ‖2
H1

#(εY ).

Integrating the above inequality with respect to ξ ∈ ε−1Y ′, we get

C1

∫
ε−1Y ′

‖ g̃(., ξ) ‖2
H1

#(εY ) dξ ≤ ε−3

∫
ε−1Y ′

∞∑
m=1

(Cε∗ + λεm(ξ))
∣∣Bε

mg(ξ)
∣∣2 dξ ≤ C2 ε

−2

∫
ε−1Y ′

‖ g̃(., ξ) ‖2
H1

#(εY ) dξ.

(2.16)

To complete the proof, it remains to estimate
∫

ε−1Y ′

‖ g̃(., ξ) ‖2
H1

#(εY ) dξ. Now we will show that

C3 ε
2‖ g ‖2

H1(R3) ≤ ε3
∫

ε−1Y ′

‖ g̃(., ξ) ‖2
L2

#(εY ) dξ + ε3
3∑
j=1

∫
ε−1Y ′

∥∥∥∥ ∂ g̃
∂ xj

(., ξ)
∥∥∥∥

2

L2
#(εY )

dξ ≤ C4 ε
−2‖ g ‖2

H1(R3), (2.17)

where C3, C4 are positive constants. Combining (2.17) with (2.16), we see that the proof of (2.8) is finished.

Step 5 (Proof of (2.17)). Indeed by (2.9), we have

∂ g̃
∂ xj

(x, ξ) =
∂̃ g
∂ xj

(x; ξ) − i ξj g̃(x; ξ). (2.18)

It is classical that

ε3
∫

ε−1Y ′

‖ g̃(., ξ) ‖2
L2

#(εY ) dξ =
∫
R3

|g(x) |2 dx, ε3
∫

ε−1Y ′

∥∥∥∥∥
∂̃ g
∂ xj

(., ξ)

∥∥∥∥∥
2

L2
#(εY )

dξ =
∫
R3

∣∣∣∣ ∂ g
∂ xj

(x)
∣∣∣∣
2

dx. (2.19)



BLOCH WAVE HOMOGENIZATION OF LINEAR ELASTICITY SYSTEM 555

The second inequality in (2.17) follows from (2.19), in view of the relation (2.18). Also, we have (for each fixed
j = 1, 2, 3)

∥∥∥∥ ∂ g̃
∂ xj

(., ξ)
∥∥∥∥

2

L2
#(εY )

≥

|ξj | ‖ g̃(., ξ) ‖L2

#(εY ) −
∥∥∥∥∥
∂̃ g
∂ xj

(., ξ)

∥∥∥∥∥
L2

#(εY )




2

= |ξj |2 ‖ g̃(., ξ) ‖2
L2

#(εY ) +

∥∥∥∥∥
∂̃ g
∂ xj

(., ξ)

∥∥∥∥∥
2

L2
#(εY )

− 2|ξj | ‖ g̃(., ξ) ‖L2
#(εY )

∥∥∥∥∥
∂̃ g
∂ xj

(., ξ)

∥∥∥∥∥
L2

#(εY )

≥
∥∥∥∥∥
∂̃ g
∂ xj

(., ξ)

∥∥∥∥∥
2

L2
#(εY )

− ε−1 ‖ g̃(., ξ) ‖L2
#(εY )

∥∥∥∥∥
∂̃ g
∂ xj

(., ξ)

∥∥∥∥∥
L2

#(εY )

≥ 1
2

∥∥∥∥∥
∂̃ g
∂ xj

(., ξ)

∥∥∥∥∥
2

L2
#(εY )

− 1
2ε2

‖ g̃(., ξ) ‖2
L2

#(εY ) .

On summing up the above inequalities corresponding to j = 1, 2, 3, and integrating on ε−1Y ′, we get the left
inequality in (2.17). �

Finally, we have an alternate expression for the inner product, given by,

tε(ξ)[g,h ] + Cε∗ (g,h )L2
#(εY ) =

∞∑
m=1

(Cε∗ + λεm(ξ))
(
g, ε−3/2 Φε

m

)
L2

#(εY )

(
h, ε−3/2 Φε

m

)
L2

#(εY ),
(2.20)

for g,h ∈ H1
#(ε Y ), and follows on substituting the expansions for g and h in terms of Bloch waves in the LHS

expression.

2.3. Bloch wave decomposition of H−1(R3)

We equip the space H−1
# (ε Y ) with the inner product

[F,F′ ] :=
∞∑

m=1

1
Cε∗ + λεm(ξ)

〈
F, ε−3/2 Φε

m

〉 〈
F′, ε−3/2 Φε

m

〉
, (2.21)

where < ., . > denotes the duality product between H−1
# (εY ) and H1

#(εY ), which extends the L2
#(εY )-inner

product. The corresponding norm is equivalent to the usual norm on H−1
# (εY ) and in fact, is equal to the norm

of the dual space of H1
#(εY ) with the norm given by the inner product (2.6) (see [22]).

The family
{
ε−3/2
√
Cε∗ + λεm(ξ)Φε

m(x; ξ) : m ∈ N

}
forms an orthonormal basis for H−1

# (εY ), for each fixed
ξ 
= 0 with respect to the inner product (2.21).
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We now have the following result concerning the space H−1(R3).

Theorem 2.4. Let ε > 0 be fixed and F = u0 +
3∑
j=1

∂

∂ xj
uj ∈ H−1(R3) be arbitrary.

(i) For m ∈ N, we define the mth Bloch coefficient by

BεmF( ξ ) := lim
R→∞

∫
|x|≤R

e−i x . ξ
{

(u0)p(x)(Φε
m)p(x; ξ) + i

3∑
j=1

ξj (uj)p(x)(Φε
m)p(x; ξ)

}
dx

− lim
R→∞

∫
|x|≤R

e−i x . ξ
3∑
j=1

(uj)p(x)
∂(Φε

m)p
∂xj

(x; ξ) dx, (2.22)

where the limit is taken in the weighted L2 space with weight (Cε∗ + λεm(ξ))−1 on ε−1Y ′. Also, this definition
is independent of the representation used for F.

(ii) The following Plancheral identity holds: For F ∈ H−1(R3), g ∈ H1(R3),

H−1(R3)〈F, g 〉H1(R3) =
∫

ε−1Y ′

BεmF(ξ)Bε
mg(ξ) dξ. (2.23)

Thus, using the Bloch decomposition of H1(R3) elements of Theorem 2.2, we see that F ∈ H−1(R3) may be
expanded as

F(x) =
∞∑

m=1

∫
ε−1Y ′

BεmF( ξ ) ei x. ξ Φε
m(x; ξ) dξ.

(iii) Also, we have the following inequalities

C4 ε
2 ‖F ‖2

H−1(R3) ≤
∫

ε−1Y ′

∞∑
m=1

|BεmF(ξ)|2
Cε∗ + λεm(ξ)

dξ ≤ C5 ε
−4 ‖F ‖2

H−1(R3), (2.24)

where C4, C5 are positive constants independent of F and ε.
(iv) Also, for F ∈ H1(R3), we have AεF ∈ H−1(R3) and

Bεm (Aε F) (ξ) = λεm(ξ)BεmF(ξ), ∀m ∈ N. (2.25)

Remark 2.5. There is nothing mysterious about the definition (2.22). It is formally obtained by a simple
integration by parts in the definition (2.2) of B

ε
mF(ξ). Further, it is obvious that BεmF(ξ) = B

ε
mF(ξ), if

F ∈ L2(R3). Because of this, we see that the relation (2.23) is a generalization of (2.4) in the sense that if
F ∈ L2(R3) then both (2.4) and (2.23) coincide.

Proof of Theorem 2.4. Let F ∈ H−1(R3) be given by

F = u0 +
3∑
j=1

∂

∂ xj
uj , withuj ∈ L2(R3), j = 1, 2, 3.

We assume that uj , j = 0, 1, 2, 3, have compact support. Under this assumption, we prove the theorem. For
general F ∈ H−1(R3), the theorem follows by the density of compactly supported functions in L2(R3).



BLOCH WAVE HOMOGENIZATION OF LINEAR ELASTICITY SYSTEM 557

Step 1. We now associate an element F̃(.; ξ) ∈ H−1
# (εY ) for ξ ∈ ε−1Y ′ defined by

F̃(x, ξ ) = ũ0(x, ξ ) +
3∑
j=1

∂̃

∂xj
uj(x, ξ ),

where we recall

ũj(x, ξ) :=
∑

γ ∈ 2πεZ3

uj(x+ γ) e−i (x+γ) . ξ, j = 0, 1, 2, 3,

∂̃

∂xj
uj(x, ξ) :=

∑
γ ∈ 2πεZ3

∂

∂xj
uj(x+ γ) e−i (x+γ) . ξ =

(
∂

∂xj
+ i ξj

)
ũj(x, ξ), j = 1, 2, 3. (2.26)

Step 2. The map F ∈ H−1(R3) 	−→ F̃(.; ξ) ∈ H−1
# (εY ) is well-defined. That is, though the definition of F̃(.; ξ)

uses explicitly the given representation of F ∈ H−1(R3), it is actually independent of the representation used.
Let F1 and F2 be any two representations of F given by

F1 = u0 +
3∑
j=1

∂

∂ xj
uj , F2 = v0 +

3∑
j=1

∂

∂ xj
vj .

We prove that F̃1(.; ξ) = F̃2(.; ξ) as distributions. Since the equality is posed component-wise, we can assume
that uj , vj are scalar valued. That is, let u0, u1, u2, u3 and v0, v1, v2, v3 be scalar valued and satisfy F =
u0 + div u = v0 + div v in H−1(R3), where u = (u1, u2, u3), v = (v1, v2, v3). That is,

∫
R3

(
u0χ− uj

∂χ

∂xj

)
dx =
∫
R3

(
v0χ− vj

∂χ

∂xj

)
dx, (2.27)

for every χ ∈ C∞
0 (R3). We now compute ũ0(., ξ) + d̃iv u(., ξ) ∈ H−1

# (εY ) and find

ũ0(x, ξ) + d̃iv u(x, ξ) = ũ0(x, ξ) + div ũ(x, ξ) + i ξj ũj(x, ξ).

Simple calculations yield

〈ũ0(., ξ) + div ũ(., ξ) + i ξj ũj(., ξ), χ〉 = 〈ṽ0(., ξ) + div ṽ(., ξ) + i ξj ṽj(., ξ), χ〉.

Thus, we have proved ũ0(., ξ) + d̃iv u(., ξ) = ṽ0(., ξ) + d̃iv v(., ξ).

Step 3. We expand F̃(x, ξ) in the orthonormal basis
{
ε−3/2
√
Cε∗ + λεm(ξ)Φε

m(x; ξ) : m ∈ N

}
of H−1

# (εY )
with respect to the inner product (2.21) as follows:

F̃(x, ξ) =
∞∑

m= 1

cεm(ξ) ε−3/2
√
Cε∗ + λεm(ξ)Φε

m(x; ξ), (2.28)

where the convergence of the series is in the space H−1
# (εY ) and

cεm(ξ) =
[
F̃(., ξ), ε−3/2

√
Cε∗ + λεm(ξ)Φε

m(x; ξ)
]
. (2.29)
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We now compute and find that, in view of the definition (2.22), cεm(ξ) is given by

cεm(ξ) =
ε−3/2√

Cε∗ + λεm(ξ)
BεmF(ξ). (2.30)

Thus, the relation (2.28) becomes

F̃(x; ξ) = ε−3
∞∑

m= 1

BεmF( ξ )Φε
m(x; ξ). (2.31)

Step 4 (Proof of Plancheral identity). We now have the following equality which follows via an easy computation
of the RHS:

H−1(R3)〈F, g 〉H1(R3) =
∫

ε−1Y ′
H−1

# (εY )

〈
ε3/2F̃(ξ), ε3/2g̃(ξ)

〉
H1

#(εY )
dξ, (2.32)

where g and g̃ are related by (2.13). Substituting in (2.32), the expressions for F̃(x; ξ) and g̃(x; ξ) from (2.31)
and (2.11) respectively, we get the Plancheral identity (2.23).

Step 5 (Proof of (2.24)). From the Plancheral identity (2.23) and (2.8), we get the inequalities (2.24) by duality.

Step 6 (Proof of (2.25)). Since the operator Aε is in the divergence form, it follows that AεF belongs to
H−1(R3) for every F ∈ H1(R3). By (2.26), clearly ÃεF(x; ξ) = Aε(ξ)F̃(x; ξ). By the definition of Bεm (AεF)
(see (2.29) and (2.30)), we have

Bεm (AεF) (ξ) = (Cε∗ + λεm(ξ))
[
Aε(ξ)F̃(., ξ), Φε

m(.; ξ)
]

=
〈
Aε(ξ)F̃(., ξ), Φε

m(.; ξ)
〉

=
〈
F̃(., ξ), Aε(ξ)Φε

m(.; ξ)
〉

= λεm(ξ)
〈
F̃(., ξ), Φε

m(.; ξ)
〉

= λεm(ξ)BεmF(ξ). �

Remark 2.6 (a comment on the inner products used). We employed the inner product given by (2.6) for the
space H1

#(εY ). Indeed this inner product (2.6) arises from the bilinear forms associated with shifted opera-
tors Aε(ξ). The space H−1

# (εY ), which is the dual space of H1
#(εY ), was then given the inner product (2.21).

The norm of Bloch eigenvectors in the spaces H1
#(εY ), measured with respect to the inner product (2.6),

is related to the corresponding Bloch eigenvalue. As a consequence the norm of eigenvectors in the dual
space H−1

# (εY ) is reciprocal to the norm measured in (2.6). This approach was convenient for us in proving
Theorems 2.2 and 2.4.

The following result provides the crucial estimates uniform with respect to ε. We do not prove it here and
we refer the reader to a similar estimates in the scalar case (Lems. 2.1 and 2.2 in [6]).

Lemma 2.7.

(i) There exist positive constants α1 and α2 (independent of ε) such that

α1 ‖ g ‖2
H1(R3) ≤

∫
ε−1Y ′

∞∑
m= 1

(1 + λεm(ξ)) |Bεmg(ξ)|2 dξ ≤ α2 ‖ g ‖2
H1(R3), ∀g ∈ H1(R3).

(ii) There exist positive constants β1 and β2 (independent of ε) such that

β1 ‖F ‖2
H−1(R3) ≤

∫
ε−1Y ′

∞∑
m=1

|BεmF(ξ)|2
1 + λεm(ξ)

dξ ≤ β2 ‖F ‖2
H−1(R3), ∀F ∈ H−1(R3).
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3. Computations with Bloch spectrum

In this section, we make connections between Bloch space and physical space. The test functions wrs defined
by the cell problem (3.2), the homogenized coefficients given by (3.1) naturally appear in these conditions and
we recall them here. The classical homogenized coefficients bpqrs are given by (see, for instance, [4, 18, 23])

bpqrs =
1
|Y |
∫
Y

apqrs ( y ) dy +
1
|Y |
∫
Y

apqlm ( y )elm(wrs( y )) dy, (3.1)

where wrs ∈ H1
#(Y ) solves the following cell problem:

(Awrs)p ≡ − ∂

∂yq
(apqlm(y)elm(wrs)) =

∂ apqrs(y)
∂yq

in Y, p ,= 1, 2, 3. (3.2)

We already noted (see Rem. 1.8) that Φ η̂,m(0) cannot be prescribed in advance and the perturbation itself
selects them. This natural selection follows a rule (see (3.5) below).

The following result is concerning the relations between the first and second order derivatives of eigenval-
ues λ η̂, m(ρ), and first order derivatives of eigenvectors Φ η̂,m(ρ). In the calculations that follow, we suppress
the dependence on y in Φ η̂,m(y; ρ), for m = 1, 2, 3, for convenience, and denote by Φ η̂,m(ρ); the prime denotes
the derivative with respect to ρ.

Lemma 3.1. For m = 1, 2, 3, and for fixed η̂ ∈ ∂Y ′
+, we have:

(i) λ η̂,m(0) = 0, and corresponding eigenvector Φ η̂,m(0) is independent of y.
(ii) The eigenvalue λ η̂,m(ρ) has a critical point at ρ = 0. That is,

λ′η̂,m(0) = 0. (3.3)

(iii) The derivative of the eigenvector Φ η̂,m(ρ) at ρ = 0 satisfies:

Φ′
η̂,m(0) − i η̂swrs(y)(Φ η̂, m(0))r (3.4)

is a constant vector in C
3 i.e., independent of y, where wrs, r, s = 1, 2, 3 solves the cell problem (3.2).

(iv) The second derivative of the eigenvalue λ η̂,m(ρ) at ρ = 0 satisfies the relation

1
2
λ′′η̂,m(0)Φ η̂,m(0) = M(η̂;b)Φ η̂,m(0) (3.5)

where M(η̂;b) is a matrix whose (p,r)-th entry Mpr(η̂;b) is given by Mpr(η̂;b) = bpqrs η̂q η̂s, and bpqrs are
the classical homogenized coefficients as given in (3.1). The above relation is referred to as propagation
condition.

Proof. We use that for Φ η̂,m(ρ) ∈ H1
#(Y ) is an eigenvector of the operator A(ρ η̂) corresponding to the

eigenvalue λ η̂,m(ρ); that is

A(ρ η̂)Φ η̂,m(ρ) = λ η̂,m(ρ)Φ η̂,m(ρ) inY,

which reads as

−
(

∂

∂yq
+ i ρ η̂q

){
apqrs(y)

(
∂

∂ys
+ i ρ η̂s

)
(Φ η̂,m)r (ρ)

}
= λ η̂,m(ρ) (Φ η̂,m)p (ρ), p = 1, 2, 3. (3.6)
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We write the above equation as

(A0 + ρA1 + ρ2A2) (Φ η̂,m(ρ)) = λ η̂,m(ρ)Φ η̂,m(ρ), (3.7)

where the operators A0, A1, A2 formally acting on vector functions u = u(y), are given by

(A0u )p = − ∂

∂yq

(
apqrs(y)

∂ur
∂ys

)
,

(A1u )p = − i η̂s
∂

∂yq
(apqrs(y)ur ) − i η̂q

(
apqrs(y)

∂ur
∂ys

)
,

(A2u )p = apqrs(y) η̂q η̂s ur, p = 1, 2, 3.

Step 1 (Proof of (3.3)). Differentiating (3.7) with respect to ρ, we get

{
A(ρ η̂)

(
Φ′
η̂, m(ρ)
)}
p

+
(
A1 (Φ η̂,m (ρ))

)
p

+ 2 ρapqrs η̂q η̂s (Φ η̂,m(ρ))r =

λ′η̂,m(ρ)Φ η̂,m(ρ) + λ η̂,m(ρ)Φ′
η̂,m(ρ). (3.8)

Evaluating the equation (3.8) at ρ = 0, and taking L2(Y )-innerproduct with Φ η̂,m(0), and integrating by parts
we get

λ′η̂, m(0) =
(
A1 (Φ η̂,m(0)) , Φ η̂,m(0)

)
L2(Y )

= 0, (3.9)

by using the structure of the operator A1 and noting that Φ η̂,m(0) is independent of y for m = 1, 2, 3. This
proves (3.3).

Step 2 (Proof of (3.4)). From (3.3) and (3.8), we get

A0
(
Φ′
η̂,m(0)
)

= −A1 (Φ η̂,m(0)) = − i η̂s
∂

∂yq
(apqrs(y) ) (Φ η̂,m(0) )r .

Recalling that wrs(y) solves the cell problem (3.2), we get (3.4).

Step 3 (Proof of (3.5)). Differentiating (3.8) with respect to ρ, we get
[
(A(ρ η̂) − λ η̂,m(ρ))Φ′′

η̂,m(ρ)
]
p

+
[
A1
(
Φ′
η̂,m(ρ)
) ]

p
+ 4 ρapqrs η̂q η̂s

(
Φ′
η̂,m(ρ)
)
r

+ 2apqrs η̂q η̂s (Φ η̂,m(ρ))r − i η̂s
∂

∂yq

(
apqrs(y)

(
Φ′
η̂,m(ρ)

)
r

)

− i η̂q apqrs
∂

∂ys

(
Φ′
η̂,m(ρ)

)
r
− 2λ′η̂,m(ρ)

[
Φ′
η̂,m(ρ)

]
p

= λ′′η̂,m(ρ) [Φ η̂,m(ρ) ]p , p = 1, 2, 3.




(3.10)

We first evaluate the equation (3.10) at ρ = 0, and then take L2(Y )-innerproduct with the constant vector
Φ η̂,m(0) ∈ C

3. We then integrate the resultant expression over Y . Using the observation that derivative of a
periodic function integrates to zero on the basic periodic cell, We see that only the fourth and sixth terms on the
left hand side of (3.10) have non-zero contribution and this involves the classical homogenized coefficients bpqrs.
This follows from the relations (3.3) and (3.4). Thus we get (3.5). �

3.1. Few remarks on propagation condition

In this paragraph we highlight the differences between the scalar case of [8] and the present case of systems
with respect to the propagation condition. Propagation condition determines uniquely the homogenized coeffi-
cients. This is more direct in the scalar case but is somewhat implicit in the case of systems. We also explain
the reason behind the nomenclature “propagation condition” for the relation (3.5).
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Remark 3.2 (comparison with scalar case). In the scalar case (see [8]) the propagation condition involves
only m = 1 since λ1(0) is a simple eigenvalue of A(0). Also λ′′η̂, 1(0) is quadratic in η̂ due to the fact that λ1(η)
is analytic in the variable η near η = 0. Since Φ η̂, 1(0) is a non-zero scalar (being an eigenvector of A(0)),
we cancel out Φ η̂, 1(0) in the relation (3.5) to get an equality of two quadratic forms: the quadratic form
associated with the Hessien of λ1(η) at η = 0 and the one corresponding to the homogenized coefficients bkl.
It is well-known that the homogenized matrix (bkl) is symmetric and therefore we get the equality of matrices(

1
2

∂2λ1
∂ηk∂ηl

(0)
)

= (bkl) since they give rise to the same quadratic form.
In the present case of elasticity system, there are two striking differences compared to the scalar case.

They are as follows:

(i) We cannot cancel Φ η̂,m(0) as they are vectors. In fact the propagation condition is an eigenvalue relation
for the matrix M(η̂).

(ii) Even though M(η̂) depends quadratically on η̂,
1
2
λ′′η̂,m(0), m = 1, 2, 3 need not be quadratic in η̂.

However the relations (3.5) are enough to obtain the homogenized elasticity system.

Lemma 3.3.

(i) The propagation condition characterizes the homogenized coefficients. That is, if there is a tensor cpqrs with
the same symmetries as that of bpqrs satisfying the propagation condition then cpqrs = bpqrs.

(ii) The numbers
√

1
2 λ

′′
η̂,m(0), m = 1, 2, 3, are the speeds of propagation of waves propagating in the homogenized

medium in the direction η̂.

Proof.

Proof of (i). If cpqrs has symmetries (1.3) and satisfies the propagation condition with cpqrs replacing bpqrs,
then clearly M(η̂;b) = M(η̂; c) i.e., cpqrs η̂q η̂s = bpqrs η̂q η̂s for every p and r since the action of two matrices
M(η̂;b) and M(η̂; c) is the same on a basis for C

3. This implies that bpqrs − cpqrs is skew-symmetric in q, s,
for each fixed p, r. Let us denote dpqrs ≡ bpqrs − cpqrs. From the symmetries of bpqrs, cpqrs, we get dpqrs also
satisfies the same symmetries (1.4). We also have from our observation, dpqrs = −dpsrq. These observations
are enough to conclude that dpqrs = 0 for every p, q, r, s = 1, 2, 3. �
Proof of (ii). Consider the following elastic-wave equation in the homogenized medium:

utt =
∂

∂xq

(
bpqrs ers(u(x))

)
. (3.11)

We look for travelling wave solutions of (3.11) which are of the form u(x, t) ≡ f(η̂. x− ct)L. Clearly, u(x, t) ≡
f(η̂. x− ct)L is a solution of (3.11) if and only if

c2 L = M(η̂;b)L (3.12)

where M(η̂;b) is a matrix whose (p,r)-th entry Mpr(η̂;b) is given by Mpr(η̂;b) = bpqrs η̂q η̂s. Clearly (ii) follows
on comparing (3.12) and (3.5). �
Interpretation

In the context of wave propagation in a homogeneous medium, it is customary to seek solutions of the form

u(x, t) = f(η̂. x− ct)L.

From this representation, it is clear that η̂ represents the direction of propagation; c, the speed; L, the polariza-
tion vector. From the relations (3.12) and (3.5), we can say that Φ η̂,m(0) (m = 1, 2, 3) are polarization vectors
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and
√

1
2 λ

′′
η̂,m(0) (m = 1, 2, 3) are speeds of waves propagating in the direction η̂. This conclusion was possi-

ble because of our approach of fixing a direction η̂ and looking for directional regularity of spectral elements.
Recall that we were led into this approach in order to overcome certain difficulties involved in multi-parameter
problems.

4. Asymptotic behaviour of the first three Bloch transforms

In the scalar case treated in [8], it was shown that the first Bloch transform converges to Fourier transform.
This can be interpreted as saying that the periodic medium approaches a homogeneous medium. In the case
of systems, such a result is, strictly speaking, not valid. What is true is the following lemma which is precisely
what is needed in the passage to the limit carried out in Section 5.

Lemma 4.1. Let g, gε ∈ L2(R3) be such that the support of gε is contained in a fixed compact subset K ⊆ R
3,

independent of ε. Let .̂ denote the Fourier transform. If gε converges weakly to g in L2(R3), then we have

χε−1 Y ′( ξ )Bεmgε( ξ ) ⇀ |Y |1/2 (Φη̂,m)p(0) ĝp( ξ ) (4.1)

in L2
loc(R

3
ξ)-weak, for m = 1, 2, 3, where we recall that η̂ depends on ξ and in fact ξ and η̂ ∈ ∂Y ′

+ are related
by the relation η̂ = 1

2 ξl
ξ, where l is the least index such that ξl 
= 0.

Proof.

Step 1. From the definition of Bεmgε( ξ ), we have

Bεmgε( ξ ) =
∫
R3

e−i x . ξ gεp(x) (Φε
m)p(x; ξ ) dx =

∫
R3

e−i x . ξ gεp(x) (Φm)p
( x
ε
; ε ξ
)

dx.

We add and subtract e−i x . ξ gεp(x) (Φ η̂, m)p(xε ; 0) to the integrand above, and this yields

χε−1 Y ′( ξ )Bεmgε( ξ ) = χε−1 Y ′( ξ )
∫
K

e−i x . ξ gεp(x) (Φ η̂,m)p
(x
ε
; 0
)

dx

+ χε−1 Y ′( ξ )
∫
K

e−i x . ξ gεp(x)
(

(Φ η̂,m)p

(
x

ε
; ε

(ξ. η̂)
|η̂|2
)
− (Φ η̂,m)p

(x
ε
; 0
))

dx.




(4.2)

Step 2. The second term on the right hand side of (4.2) is estimated using Cauchy-Schwarz inequality as
follows:

∣∣∣∣∣∣χε−1 Y ′( ξ )
∫
K

e−i x . ξ gεp(x)
(

(Φ η̂,m)p

(
x

ε
; ε

(ξ. η̂)
|η̂|2
)
− (Φ η̂,m)p

(x
ε
; 0
))

dx

∣∣∣∣∣∣

≤ ‖ gε(x) ‖L2(K)


∫
K

∣∣∣∣ (Φ η̂,m)p

(
x

ε
; ε

(ξ. η̂)
|η̂|2
)
− (Φ η̂,m)p

(x
ε
; 0
) ∣∣∣∣

2

dx




1/2

≤ c

∥∥∥∥Φ η̂,m

(
y; ε

(ξ. η̂)
|η̂|2
)
− Φ η̂, m(y; 0)

∥∥∥∥
L2(Y )

, (4.3)
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where c depends on the measure of the compact set K, and on the bound of ‖ gε(x) ‖L2(K) but independent
of ξ. The RHS of the inequality (4.3) is bounded by 2 c, since by our normalization of eigenvectors, we have

∥∥∥∥Φ η̂,m

(
y; ε

(ξ. η̂)
|η̂|2
)∥∥∥∥

L2(Y )

= ‖Φ η̂,m(0) ‖L2(Y ) = 1,

and converges to 0 as ε → 0, for each fixed ξ since Φ η̂,m(ρ) depends continuously on ρ with values in L2
#(Y ).

Now, applying the dominated convergence theorem, we see that the second term on the right hand side of (4.2)
goes to zero in L2

loc(R
3).

Step 3. Since Φ η̂,m(0) is independent of x, the first term on the right hand side of (4.2) is equal to

χε−1 Y ′( ξ ) |Y |1/2 (Φ η̂,m)p(0) ĝεp( ξ ).

As the Fourier transform operator is weakly continuous on L2(R3), we get ĝεp ⇀ ĝp in L2(R3
ξ)-weak. As a

consequence, the first term on the RHS of (4.2) converges in L2(R3
ξ)-weak to

|Y |1/2 (Φ η̂,m)p(0) ĝp( ξ ).

This finishes the proof of (4.1). �

Also, in view of the following pointwise convergence of the sequence
(√

1 + λεm(ξ)
)−1

which is uniformly
bounded by 1:

(√
1 + λεm(ξ)

)−1

−→
(√

1 +
(ξ. η̂)2

2 |η̂|4 λ′′η̂,m(0)

)−1

.

As a consequence, the above convergence holds in L2
loc(R

3
ξ) as well. Combining this observation with Lemma 4.2,

we obtain the following result.

Corollary 4.2. For m = 1, 2, 3, under the hypotheses and in the notations of Lemma 4.1, we have the following
convergence in L2

loc(R
3
ξ)-weak:

χε−1 Y ′( ξ )
Bεmgε( ξ )√
1 + λεm(ξ)

⇀
|Y |1/2 (Φη̂,m)p(0)√
1 +

(ξ. η̂)2

2 |η̂|4 λ′′η̂,m(0)

ĝp( ξ ).

5. Homogenization result and its proof

In this section we state the classical homogenization result for the three dimensional linear elasticity system
and prove it via Bloch wave method. We recall that the tensor bpqrs is already defined in the Section 3 by (3.1).
We now state the homogenization result.

Theorem 5.1 (homogenization result). Let Ω be an arbitrary domain in R
3 and f ∈ L2(Ω). Let uε ∈ H1(Ω),

u∗ ∈ H1(Ω) be such that uε converges weakly to u∗ in H1(Ω), and

Aε uε = f in Ω. (5.1)
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Then

(i) We have the following convergence of stresses:

apqrs
(x
ε

)
ers(uε(x)) ⇀ bpqrs ers(u∗(x )) in L2(Ω) − weak, ∀p, q = 1, 2, 3.

(ii) The limit u∗ ∈ H1(Ω) satisfies homogenized system of equations:

(A∗ u∗)p ≡ − ∂

∂xq

[
bpqrs ers(u∗(x ))

]
= fp in Ω, p = 1, 2, 3. (5.2)

(iii) Moreover, the tensor (bpqrs) has the symmetries: bqprs = bpqrs = brspq = bpqsr.

The (5.2) above is called the homogenized system corresponding to the problem (5.1).
We now turn to the proof of Theorem 5.1. We indicate an outline of the proof. The first step is to localize

the equation (5.1) which is in Ω to get an equation in R
3. We obtain a set of relations in Bloch space indexed

by m ∈ N which is equivalent to the localized equation by taking Bloch coefficients of the localized equation.
We then pass to the limit in these relations corresponding to m = 1, 2, 3. The limiting system can be thought
of as the homogenized system in the Fourier space. An application of inverse Fourier transform yields the
homogenized system.

Finally, we recall that in the scalar case (see [8]), the first eigenmode plays the dominant role. Its counterpart
in the case of system is the set of three Bloch modes, which are indexed by m = 1, 2, 3.

5.1. Localization

Let ψ0 be a fixed element in D(Ω ) with support K. Suppose uε satisfy Aεuε = f in Ω and bounded in H1(Ω).
Then, ψ0uε satisfies:

Aε(ψ0 uε)(x) = ψ0 f(x) + gε(x) + hε(x) in R
3, (5.3)

where gεp(x) := −∂ψ0

∂xq
(x) aεpqrs(x)

∂ uεr
∂xs

(x), p = 1, 2, 3, (5.4)

hεp(x) := − ∂

∂xq

(
∂ψ0

∂xs
(x) aεpqrs(x) u

ε
r(x)
)
, p = 1, 2, 3. (5.5)

Note that gε is bounded in L2(R3), and hε is bounded only in H−1(R3). By Theorem 2.4, the localized
equation (5.3) is equivalent to the set of relations: For ξ ∈ ε−1Y ′ a.e., m ∈ N,

λεm(ξ)Bεm(ψ0uε)(ξ) = Bεm(ψ0 f)(ξ) +Bεmgε(ξ) +Bεmhε(ξ). (5.6)

The relation (5.6) follows from the relation (2.25).

5.2. Limit of Bε
mgε

We will apply the Corollary 4.2 with gε given by (5.4), which is bounded in L2(R3), and hence has a
subsequence weakly converging to g∗ in L2(R3). This subsequence (still denoted by ε) satisfies the hypothesis of
the Corollary 4.2. We will compute g∗ now. Since the sequence σεpq(x) := aεpqrs(x)

∂ uε
r

∂xs
(x) is bounded in L2(Ω),

there exists a subsequence which converges weakly in L2(Ω), which we denote by σ∗
pq for all p, q = 1, 2, 3. We

extend σ∗
pq by zero outside Ω, and we still denote the extension by σ∗

pq. Thus, we see that g∗ is given by
(from (5.4))

g∗p(x) = −σ∗
pq(x)

∂ψ0

∂xq
(x), p = 1, 2, 3.
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Thus, by Corollary 4.2 we have

χε−1 Y ′( ξ )
Bεmgε( ξ )√
1 + λεm(ξ)

⇀
−|Y |1/2 (Φη̂,m)p(0)√
1 +

(ξ. η̂)2

2 |η̂|4 λ′′η̂,m(0)

̂
(
σ∗
pq(x)

∂ψ0

∂xq
(x)
)

( ξ ) (5.7)

in L2
loc(R

3
ξ)-weak, for m = 1, 2, 3.

5.3. Limit of Bε
mhε

Regarding the asymptotic behaviour of Bεmhε, m = 1, 2, 3, we have the following lemma.

Lemma 5.2. Let hε be defined by (5.5). For m = 1, 2, 3, we have the following convergence
in L2

loc(R
3
ξ)-weak:

χε−1 Y ′( ξ )
Bεmhε( ξ )√
1 + λεm(ξ)

⇀ −− i |Y |1/2 (Φ η̂,m)p (0)√
1 +

(ξ. η̂)2

2 |η̂|4 λ′′η̂,m(0)

ξq bpqrs
̂

(
∂ψ0

∂xs
(x)u∗r(x)

)
. (5.8)

Proof.

Step 1. By the definition of the Bloch transform (see Th. 2.4 for elements of H−1(R3)), we have

Bεmhε( ξ )√
1 + λεm(ξ)

= − i ξq√
1 + λεm(ξ)

∫
R3

e−i x . ξ aεpqrs(x)
∂ψ0

∂xs
(x)uεr(x)(Φ η̂,m)p

(
x

ε
; ε

(ξ. η̂)
|η̂|2
)

dx

+
1√

1 + λεm(ξ)

∫
R3

e−i x . ξ apqrs
(x
ε

) ∂ψ0

∂xs
(x)uεr(x)

∂(Φ η̂,m)p
∂xq

(
x

ε
; ε

(ξ. η̂)
|η̂|2
)

dx. (5.9)

Step 2. Denoting by lp(x) := − i ξq a
ε
pqrs(x)

∂ψ0
∂xs

(x)uεr(x), p = 1, 2, 3, the first integral on the right hand side

of (5.9) is equal to
(√

1 + λεm(ξ)
)−1

Bεmlε( ξ ). Applying Corollary 4.2 to lε, we get

χε−1 Y ′( ξ )
Bεmlε( ξ )√
1 + λεm(ξ)

⇀
− i ξq |Y |1/2 MY (apqrs) (Φη̂,m)p(0)√

1 +
(ξ. η̂)2

2 |η̂|4 λ′′η̂,m(0)

̂
(
∂ψ0

∂xs
(x)u∗r(x)

)
( ξ ) (5.10)

in L2
loc(R

3)-weak, for m = 1, 2, 3.

Step 3. We now find limit of the second term on the right hand side of (5.9) as follows. In this step, we use
the directional regularity of the Bloch modes i.e., the analyticity of Φ η̂,m(y; ρ), m = 1, 2, 3; with respect to the
parameter ρ near zero. We have the following Taylor series expansion in H1

#(Y ) of Φ η̂,m(y; ρ) near ρ = 0:

Φ η̂,m(y; ρ) = Φ η̂,m(y; 0) + ρΦ′
η̂,m(y; 0) + γ η̂,m(y; ρ). (5.11)

Since γ η̂,m(y; 0) =
∂γ η̂,m
∂ρ

(y; 0) = 0, we have γ η̂,m(.; ρ) = O(|ρ|2) in L∞(I;H1
#(Y )). We also have

∂γ η̂,m
∂yk

(.; ρ) =

O(|ρ|2) in L∞(I;L2
#(Y )).



566 S. SIVAJI GANESH AND M. VANNINATHAN

Substituting y = x/ε and η = εξ in (5.11), we get

Φ η̂,m

(
x

ε
; ε

(ξ. η̂)
|η̂|2
)

= Φ η̂,m

(x
ε
; 0
)

+ ε
(ξ. η̂)
|η̂|2 Φ′

η̂,m

(x
ε
; 0
)

+ γ η̂,m

(
x

ε
; ε

(ξ. η̂)
|η̂|2
)
·

Differentiating the last expression with respect to xk yields

∂

∂xk
Φ η̂,m

(
x

ε
; ε

(ξ. η̂)
|η̂|2
)

=
(ξ. η̂)
|η̂|2

∂

∂yk
Φ′
η̂,m

(x
ε
; 0
)

+ ε−1∂γ η̂,m
∂yk

(
x

ε
; ε

(ξ. η̂)
|η̂|2
)
·

For ξ belonging to the set
{
ξ : εξ ∈ U and |ξ| ≤M

}
, we have

∂γ η̂, m
∂yk

(.; ε
(ξ. η̂)
|η̂|2 ) = O(|ε (ξ. η̂)|η̂|2 |2) = ε2O(|ξ|2) ≤ CM2ε2.

This implies that

ε−2 ∂γ η̂,m
∂yk

(
x

ε
; ε

(ξ. η̂)
|η̂|2
)

∈ L∞
loc

(
R
N
ξ ;L2

#(εY )
)
. (5.12)

The second term on the RHS of (5.9) is given by

χε−1 Y ′( ξ )
Bεm(hε − lε)( ξ )√

1 + λεm(ξ)
=

χε−1 Y ′( ξ )√
1 + λεm(ξ)

{∫
K

e−i x . ξ apqrs
(x
ε

) ∂ψ0

∂xs
(x)uεr(x)

∂

∂xq

(
Φ η̂,m

(
x

ε
; ε

(ξ. η̂)
|η̂|2
))

p

dx

}
. (5.13)

Using the Taylor expansion of Φ η̂,m(y; ρ) near ρ = 0, the RHS of (5.13) becomes

χε−1 Y ′( ξ )√
1 + λεm(ξ)

ε−1

∫
R3

e−i x . ξ
∂ψ0

∂xs
(x)apqrs

(x
ε

)
uεr(x)

∂

∂yq

[
ε

(ξ. η̂)
|η̂|2 Φ′

η̂,m

(x
ε
; 0
)

+ γ η̂,m

(
x

ε
; ε

(ξ. η̂)
|η̂|2
)]

p

·(5.14)

In view of (5.12), the quantity (5.14) converges pointwise to

MY

(
apqrs(y)

∂

∂yq

(
Φ′
η̂, m(y; 0)

)
p

)
(ξ. η̂) |η̂|−2√

1 +
(ξ. η̂)2

2 |η̂|4 λ′′η̂,m(0)

∫
R3

∂ψ0

∂xs
(x) e−i x . ξ u∗r(x), (5.15)

and hence it is also its L2
loc(R

3
ξ)-weak limit.

Step 4. Calculation of MY

(
apqrs(y)

∂

∂yq

(
Φ′
η̂,m(y; 0)

)
p

)

From Lemma 3.1, we have

Φ′
η̂,m(y; 0) − i η̂swrs(y)(Φ η̂, m(y; 0))r

is a constant vector in C
3, where wrs, r, s = 1, 2, 3 solves the cell problem (3.2).

Hence we have

∂

∂yq

(
Φ′
η̂,m(y; 0)

)
p

= i η̂s
∂

∂yq
(wrs)p (y) (Φ η̂,m(y; 0))r.
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Therefore, we have

MY

(
apqrs(y)

∂

∂yq

(
Φ′
η̂,m(y; 0)

)
p

)
= − i η̂lMY

(
apqrs(y)

∂

∂yq

(
wkl
)
p
(y)
)

(Φ η̂,m)k(0). (5.16)

Step 5. Combining (5.10), (5.15) and (5.16), we get

χε−1 Y ′( ξ )
Bεmhε( ξ )√
1 + λεm(ξ)

⇀
− i |Y |1/2√

1 +
(ξ. η̂)2

2 |η̂|4 λ′′η̂,m(0)

{
ξqMY (apqrs) (Φ η̂,m)p (y; 0)

+ ξlMY

(
apqrs(y)

∂

∂yq

(
wkl
)
p
(y)
)

(Φ η̂,m)k(0)

}
̂

(
∂ψ0

∂xs
(x)u∗r(x)

)
. (5.17)

We recall the classical expressions for the homogenized coefficients bpqrs given in (3.1) here:

bpqrs = MY (apqrs) + MY

(
apqlm(y) elm(wrs(y))

)
.

Thus we have the following weak convergence in L2(R3
ξ):

lim
ε→ 0

χε−1 Y ′( ξ )
Bεmhε( ξ )√
1 + λεm(ξ)

= −− i |Y |1/2 (Φ η̂,m)p (0)√
1 +

(ξ. η̂)2

2 |η̂|4 λ′′η̂,m(0)

ξq bpqrs
̂

(
∂ψ0

∂xs
(x)u∗r(x)

)
.

Thus Lemma 5.2 is proved. �

5.4. Proof of Theorem 5.1

We put together the results of the previous paragraph to find limits of the relations (5.6), for m = 1, 2, 3.

Step 1. Using the definition of λεm( ξ ) in the equation (5.6) and dividing both sides by
√

1 + λεm(ξ), for
m = 1, 2, 3, we have

χε−1 Y ′( ξ )λεm(ξ)
Bεm(ψ0uε)( ξ )√

1 + λεm(ξ)
= χε−1 Y ′( ξ )

Bεm(ψ0 f)(ξ) +Bεmgε(ξ) +Bεmhε(ξ)√
1 + λεm(ξ)

, (5.18)

where we recall that

λεm(ξ) = ε−2λ η̂,m

(
ε

(ξ. η̂)
|η̂|2
)
·

We note that Aε (ψ0uε) is bounded in H−1(R3) (refer Eq. (5.3) ). Thanks to Lemma 2.7, it follows that right
hand side of (5.18) is bounded in L2(R3). Therefore for a subsequence both sides of the relation (5.18) converge
weakly in L2(R3

ξ).
As a corollary to the proof of Lemma 4.1, the left hand side of (5.18) converges pointwise for a subsequence

as the sequence ψ0uε converges strongly in L2(R3).
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Step 2. Using the expression (5.3), (5.7), and Lemma 5.2, we see that the right hand side of the equation (5.18)
converges weakly in L2

loc(R
3
ξ) to

|Y |1/2√
1 +

(ξ. η̂)2

2 |η̂|4 λ′′η̂,m(0)

[
ψ̂0fp(ξ) −

̂
(
σ∗
pq(x)

∂ψ0

∂xq

)
(ξ) − i ξq bpqrs

̂
(
∂ψ0

∂xs
(x)u∗r(x)

)
(ξ)

]
(Φ η̂,m)p(0), (5.19)

and the left hand side of the equation (5.18) converges weakly in L2
loc(R

3
ξ) to

|Y |1/2√
1 +

(ξ. η̂)2

2 |η̂|4 λ′′η̂,m(0)

[
(ξ. η̂)2

|η̂|4
1
2
λ′′η̂,m(0) ψ̂0u∗( ξ )

]
.Φ η̂,m(0). (5.20)

In view of the relations (3.5) of Lemma 3.1, the expression in (5.20) is equal to

|Y |1/2√
1 +

(ξ. η̂)2

2 |η̂|4 λ′′η̂,m(0)

[
bpqrs ξq ξs ψ̂0u∗r( ξ )

]

p

. (Φ η̂,m)p(0). (5.21)

Step 3. We recall that for each fixed η̂, the set {Φ η̂,m(0) : m = 1, 2, 3 } forms an orthonormal basis for L2
#(Y ),

and hence forms an orthogonal basis for C
3, as they are independent of y. Consequently, (5.19) and (5.21) give,

for each p = 1, 2, 3,

bpqrs ξq ξs ψ̂0u∗r( ξ ) = ψ̂0fp( ξ ) −
̂

(
σ∗
pq(x)

∂ψ0

∂xq

)
(ξ) − i ξq bpqrs

̂
(
∂ψ0

∂xs
(x)u∗r(x)

)
(ξ). (5.22)

Step 4. By taking inverse Fourier transform in (5.22), we get

(A∗(ψ0u∗)(x))p = ψ0fp(x) − σ∗
pq(x)

∂ψ0

∂xq
(x) − bpqrs

∂

∂xq

(
∂ψ0

∂xs
(x)u∗r(x)

)
, (5.23)

where the operator A∗ is defined by (5.2). By calculating via Leibnitz rule, we get

(A∗(ψ0u∗)(x))p = (ψ0(x)A∗u∗(x))p − bpqrs
∂

∂xq

(
∂ψ0

∂xs
(x)u∗r(x)

)
− bpqrs

∂ψ0

∂xq
(x)

∂u∗r
∂xs

(x). (5.24)

From (5.23), (5.24), we have

ψ0(x) (A∗u∗ − f )p(x) =
[
bpqrs

∂u∗r
∂xs

(x) − σ∗
pq(x)
]
∂ψ0

∂xq
(x), p = 1, 2, 3. (5.25)

Step 5. Note that ψ0 ei x. ω ∈ D( Ω ) where ω is a unit vector in R
3, and hence substituting in the relation (5.25),

we get

i ωq ψ0(x)
[
bpqrs

∂u∗r
∂xs

(x) − σ∗
pq(x)
]

= 0, p = 1, 2, 3.
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Choosing ω from the standard ordered basis for R
3, we get ∀ψ0 ∈ D( Ω ),

ψ0(x)
[
bpqrs

∂u∗r
∂xs

(x) − σ∗
pq(x)
]

= 0, p, q = 1, 2, 3. (5.26)

Let x0 ∈ Ω be arbitrary and let ψx0 ∈ D(Ω ) be such that ψx0 is equal to one near x0 and is zero outside a
small neighbourhood of x0. For x belonging to a small neighbourhood of x0, from the relation (5.26), we get

[
bpqrs

∂u∗r
∂xs

(x) − σ∗
pq(x)
]

= 0, p, q = 1, 2, 3.

Since x0 ∈ Ω is arbitrary, we get

A∗u∗ = f , and σ∗
pq(x) = bpqrs

∂u∗r
∂xs

(x), ∀p, q = 1, 2, 3.

Since the problem (5.2) has unique solution, and the homogenized coefficients bpqrs are independent of the
subsequence used, it follows that the entire sequence uε converges to u∗.

Step 6. The symmetries of the homogenized coefficients follow from the alternate expressions for them given
below.

bpqrs =
1
|Y |
∫
Y

auvlm (y) elm(wrs(y) + yrs) euv(wpq(y) + ypq) dy,

where yrs
def
= yr es + ys er, and er, es are the rth and sth basis vectors in the standard ordered basis for R

3.
This finishes the proof of the homogenization result Theorem 5.1. �

6. Higher modes do not contribute

As we have seen in the last section, the part of uε which contributes to the homogenization process, denoted
by vε, is its projection onto the space spanned by the Bloch modes indexed by 1, 2 and 3. It is interesting to
know what happens to the rest of uε. This remainder part contains the components of uε along higher modes
present (i.e., modes with indices greater than or equal to 4). We denote the remainder by Eε(x) which is equal
to uε(x) − vε(x). That is,

Eε(x) =
∞∑

m=4

∫
ε−1Y ′

Bε
muε( ξ )ei x . ξ Ψε

m(x; ξ) dξ.

The following result says that the L2-energy contained in these higher modes tends to zero in the homogenization
limit.

Theorem 6.1. ‖Eε‖L2(R3) ≤ Cε.

Referring to earlier works, [8, 25], we know that the existence of spectral gap between the lower part of the
spectrum and the rest plays an important role in proving Theorem 6.1. In the case of the scalar equation treated
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in [8], eigenvalues with the usual ordering satisfied this requirement. In the case of systems, as will be seen
below, Rellich branches possess the aforesaid spectral gap. More precisely we have:

Lemma 6.2. Let u ∈ H1
#(η, Y ) and v ∈ H1

#(Y ) be such that u(y) = eiy.ηv(y). Then there exists a positive
constant C (independent of u, v and η ∈ Y ′) satisfying

C
{
‖∇v‖L2(Y ) + |η|‖v‖L2(Y )

}
≤ ‖ekl(u)‖L2(Y ) ≤

{
‖∇v‖L2(Y ) + |η|‖v‖L2(Y )

}
. (6.1)

Proof. Recalling the notation u = (u1, u2, u3) and ekl(u) (see, (1.2)) from Section 1, we have

∫
Y

ekl(u) ekl(u)dy =
1
2

∫
Y

∂uk
∂yl

∂uk
∂yl

dy +
1
2

∫
Y

∂uk
∂yl

∂ul
∂yk

dy. (6.2)

Step 1. For each fixed k = 1, 2, 3, we have the following inequality (see [7] p. 190):

C
{
‖∇vk‖L2(Y ) + |η|‖vk‖L2(Y )

}
≤ ‖∇vk + iηvk‖L2(Y ) = ‖∇uk‖L2(Y ). (6.3)

Adding the above inequalities for k = 1, 2, 3, we get

C
{
‖∇v‖L2(Y ) + |η|‖v‖L2(Y )

}
≤ ‖∇v + iηv‖L2(Y ) = ‖∇u‖L2(Y ) (6.4)

for some positive constant C. Thus, the first term in the RHS of (6.2) is bounded below.

Step 2. We now show that the second term in the RHS of (6.2) is non-negative by establishing

∫
Y

∂uk
∂yl

∂ul
∂yk

dy =
∫
Y

div u div u dy ≥ 0. (6.5)

It is enough to prove (6.5) for smooth functions u as they are dense in H1
#(η, Y ). Since uk = eiy.ηvk by our

notation, we have

∫
Y

∂uk
∂yl

∂ul
∂yk

dy =
∫
Y

(
∂vk
∂yl

+ iηlvk

)(
∂vl
∂yk

+ iηkvl

)
dy

=
∫
Y

∂vk
∂yl

∂vl
∂yk

dy + iηl

∫
Y

vk
∂vl
∂yk

dy − iηk

∫
Y

vl
∂vk
∂yl

dy + ηkηl

∫
Y

vkvldy. (6.6)

We now perform integration by parts twice in the first term, once in second and third terms in (6.6). In this
process there will be no boundary contributions as the integrands are periodic functions. As a result, we get

∫
Y

∂uk
∂yl

∂ul
∂yk

dy =
∫
Y

∂vk
∂yk

∂vl
∂yl

dy − iηl

∫
Y

vl
∂vk
∂yk

dy + iηk

∫
Y

vk
∂vl
∂yl

dy + ηkηl

∫
Y

vkvldy

=
∫
Y

(
∂vk
∂yk

+ iηkvk

)(
∂vl
∂yl

+ iηlvl

)
dy

=
∫
Y

div u div u dy.
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In view of the relations (6.4) and (6.5), the first inequality in (6.1) follows. The second inequality in (6.1) is
obvious. �

Lemma 6.3. Let λm(.) for m ∈ N be as introduced in the Section 2. Then there exists a constant ν > 0 such
that

λm(η) ≥ ν, ∀m ≥ 4 and ∀η ∈ Y ′. (6.7)

Proof.

Step 1. Thanks to Lemma 6.2 and uniform ellipticity of the elastic tensor, we get

a(η)(v,v) ≥ C
{‖∇v‖2

L2(Y ) + |η|2‖v‖2
L2(Y )

}
. (6.8)

In view of the relation λm(η) = a(η)(Φm(.; η),Φm(.; η)), the inequality (6.8) yields

λm(η) ≥ C |η|2, ∀m ∈ N and ∀η ∈ Y ′. (6.9)

Step 2. Let µm(η) for m ∈ N be the ordered spectrum of the operator A(η) (see, Lem. 1.1). Since each of µm(η)
is continuous in η and since 0 = µ1(0) = µ2(0) = µ3(0) < µ4(0), there exist a µ∗ ∈ R and a ball B with centre
at η = 0 and radius r for some r > 0 such that

µ1(η) ≤ µ2(η) ≤ µ3(η) < µ∗ < µ4(η) ≤ µ5(η) ≤ . . . ∀η ∈ B. (6.10)

In particular, the inequalities (6.10) say that µ∗ is not an eigenvalue of A(η) and there are only three eigenvalues
counting multiplicities which are less than µ∗ for η ∈ B. At η = 0, we have the following equalities (see (1.15)):

λ1(0) = λ2(0) = λ3(0) = 0 = µ1(0) = µ2(0) = µ3(0).

Recall that Rellich branches {λm(η)}m∈N also give a listing of all the eigenvalues of the operator A(η) including
multiplicities and hence is a permutation of {µm(η)}m∈N for all η ∈ Y ′. If we restrict η to B, then we claim that
λ1(η), λ2(η), λ3(η) is a permutation of µ1(η), µ2(η), µ3(η). If this were not the case then for some m = 1, 2, 3
and η0 ∈ B, λm(η0) > µ∗. Letting η0 = ρ0 η̂0, by definition of λm(.), we have λη̂0,m(ρ0) > µ∗. Since the map
ρ 	−→ λη̂0,m(ρ) is continuous, there exists a ρ1 < ρ0 (as a consequence, ρ1η̂0 ∈ B) such that λη̂0, m(ρ1) = µ∗.
This contradicts the fact that µ∗ is not an eigenvalue for η ∈ B, and hence our claim follows. As a consequence,

λm(η) ≥ µ∗, ∀m ≥ 4 and ∀η ∈ B. (6.11)

The relation (6.11) provides a lower bound for λm(η) (m ≥ 4) for η ∈ B and (6.9) gives rise to a lower bound
for η outside B. Thus we obtain (6.7). �

Proof of Theorem 6.1. Thanks to the spectral gap asserted by Lemma 6.3, we obtain the required estimate as
follows. We have the relation

∫
R3

(Aεuε)p(x) uεp(x) dx =
∫
R3

fp(x) uεp(x) dx.

Since the elasticity tensor is bounded and the sequence uε is bounded in the space H1(R3), we get
∫
R3

fp(x) uεp(x) dx ≤ c ‖uε‖H1(R3) ≤ C. (6.12)
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Taking the mth Bloch transform on the equation Aε uε(x) = f(x) in R
3 yields

λεm(ξ)Bε
muε(ξ) = B

ε
mf(ξ).

Now, by Plancheral identity (2.4), the estimate (6.12) takes the form

∫
ε−1Y ′

∞∑
m=1

Bε
mf(ξ)Bε

muε(ξ) dξ ≤ C. (6.13)

Since λεm(ξ) ≥ 0 for m ∈ N, we have

∫
ε−1Y ′

∞∑
m=1

Bε
mf(ξ)Bε

muε(ξ) dξ =
∫

ε−1Y ′

∞∑
m=1

λεm(ξ) |Bε
muε(ξ)|2 dξ ≥

∫
ε−1Y ′

∞∑
m=4

λεm(ξ) |Bε
muε(ξ)|2 dξ.

Thanks to the inequality (6.7), in view of the relation λεm(ξ) = ε−2λm(ε ξ), we have

∫
ε−1Y ′

∞∑
m=4

λεm(ξ) |Bε
muε(ξ)|2 dξ ≥ ε−2ν

∫
ε−1Y ′

∞∑
m=4

|Bε
muε(ξ)|2 dξ = ε−2ν‖Eε‖2

L2(R3).

Now Theorem 6.1 follows from the above inequality and (6.13). �
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