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OPTIMAL CONTROL PROBLEMS ON PARALLELIZABLE RIEMANNIAN
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Abstract. The motivation for this work is the real-time solution of a standard optimal control prob-
lem arising in robotics and aerospace applications. For example, the trajectory planning problem for air
vehicles is naturally cast as an optimal control problem on the tangent bundle of the Lie Group SE(3),
which is also a parallelizable Riemannian manifold. For an optimal control problem on the tangent
bundle of such a manifold, we use frame co-ordinates and obtain first-order necessary conditions em-
ploying calculus of variations. The use of frame co-ordinates means that intrinsic quantities like the
Levi-Civita connection and Riemannian curvature tensor appear in the equations for the co-states. The
resulting equations are singularity-free and considerably simpler (from a numerical perspective) than
those obtained using a local co-ordinates representation, and are thus better from a computational
point of view. The first order necessary conditions result in a two point boundary value problem which
we successfully solve by means of a Modified Simple Shooting Method.
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1. Introduction

This paper studies regular solutions of optimal control problems for simple mechanical systems both from a
theoretical and a computational point of view. The motivation for this paper is the real-time trajectory planning
problem for hypersonic aircraft. The usual separation of time-scales assumption that is made for air-vehicles
fails for such aircraft. Therefore the trajectory planning must be done simultaneously for both the attitude and
position variables. An air-vehicle can be thought of as evolving on the tangent bundle of the Lie Group SE(3)
with a Riemannian metric that is obtained from the total kinetic energy. We assume that the center-of-mass
and principal moments-of-inertias do not change during the flight, and consider the aerodynamic forces and
moments to be input variables.

Jurdejevic [9] and Krishnaprasad [10] have considered optimal control problems for left-invariant systems
on Lie Groups, with the input variables affecting the velocity vector field on the configuration space. Simple
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mechanical systems that are the focus of this paper, with forces and moments as inputs, do not satisfy this
framework. Sussmann [18] tackled the problem of generalizing the Pontryagin’s Minimum Principle to man-
ifolds (without any affine-connection structure), by developing the co-ordinate free maximum principle. For
computational purposes, when this principle is applied to an air-vehicle problem, one employs local co-ordinates
and the equations reduce to the necessary conditions for an optimal control problem in co-ordinates. Local
co-ordinates might not be the best choice possible for the real-time computation of the optimal trajectory when
one has an additional Lie Group structure. This is because a suitable choice of co-ordinates depends on the
initial and final conditions on the optimal control problem, which makes it unsuitable for real-time computation
of optimal trajectories. If the configuration space is a connected Lie Group G with Lie Algebra G, then one
can represent any point as a product of exponentials using the exponential map, exp : G → G. In general, this
map is not globally one-to-one or onto, but in the case of groups that semi-direct products of a connected and
compact group and a connected Abelian group, it is globally one-to-one and onto (except on a set of measure
zero). Such groups arise naturally in robotics and simple mechanical systems. The first order necessary condi-
tions obtained in this paper using frame co-ordinates on the tangent bundle are especially suited for real-time
computation in such applications. We obtain our results for a parallelizable Riemannian manifold, though our
main interest lies in simple mechanical systems on Lie Groups. Thus the method is frame dependent rather than
invariant. This approach can also be seen in the work of Crouch, Camarinha and Silva Leite [3–5]. Crouch et al.
consider a special case of the problem investigated in this paper. Their work and ours differ in the nature of
variations considered, and therefore the necessary conditions obtained in this paper are different from those of
Crouch et al.

The main motivation for the choice of frame co-ordinates, is that the resulting first-order necessary conditions
can be solved using a numerical method called the Modified Simple Shooting Method [8]. Though numerical
methods for optimal control problems on local co-ordinates have a long history, there is a dearth of literature on
numerical methods using frame co-ordinates. This paper, we believe, is the first to address this issue. Usually
optimal control problems in local co-ordinates are tackled either by a direct method [1, 13] using non-linear
programming methods, or by an indirect method that uses Pontryagin’s Minimum Principle, resulting in a
two-point boundary value problem [16, 17]. In this paper, we use the indirect approach to the solution of an
optimal control problem. Among the indirect methods, the Modified Simple Shooting Method (MSSM) has
been shown to be more accurate and resulting in faster computation times than other methods such as the
Multiple Shooting (MSM), Finite Difference and Collocation methods [8]. In related research, it was found that
the earlier MSM failed to converge numerically for an optimal control problem on TSO(3) while using frame
co-ordinates, while the MSSM converged successfully [7]. In this paper, we consider the more complex problem
of a rigid body and show that the MSSM converges successfully in this case also.

2. Optimal control on parallelizable Riemannian manifolds

In this section, we derive necessary conditions for regular solutions of optimal control problems on paralleliz-
able Riemannian manifolds. Previous work in this area was done by P. Crouch, M. Camarinha and F. Silva Leite
in a series of papers [3–5]. They considered a special case of the problem considered here and use a different
approach to obtain first-order necessary conditions.

In related work, A. Lewis studied the first order necessary conditions arising from PMP for affine connection
control systems that are also affine in the controls [11]. By studying the splitting of T �TM which arises from an
Ehresmann connection associated with the affine connection, he directly derives the equation for the costates.
This equation that he terms the adjoint Jacobi equation is compatible with the first-order necessary conditions
derived in this paper, once suitable modifications of the cost function and system equations are carried out.

2.1. Parallelizable manifolds and Cartan formalism

The mathematical background in Riemannian geometry used in this paper can be found in standard sources
such as Frankel [6] or Boothby [2]. If there exists a set of n smooth vector fields on a manifold M of dimension
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n that are linearly independent at each point, then the manifold M is said to be parallelizable [2]. Such a set
of n linearly independent vector fields is referred to as a field of co-ordinate frames or briefly as a frame. It is
well known that the condition of being parallelizable is very special for a manifold. For example, among the
spheres Sn, n = 1, 2, · · · , only S1, S3 and S7 are parallelizable. However, it is well known that all Lie Groups
are parallelizable [2]. In the case of air vehicles, the configuration space is the Lie Group SE(3). However the
manifold on which the air vehicle dynamics can be described is TSE(3) – the tangent bundle of SE(3). The
following lemma states that TSE(3) is parallelizable. The proof follows from the observation that locally TM
is a product manifold U × IRn where U is a co-ordinate neighborhood of M.

Lemma 2.1. Let M be a parallelizable manifold. Then TM is parallelizable.

Let M be a manifold with a symmetric, positive definite, and bilinear form (called a Riemannian metric)
defined on TqM where q ∈ M, denoted by 〈·, ·〉q . We assume it to be smooth for each q ∈ M and C1 as a
function of q. A Riemannian metric defines a linear isomorphism: Σ : TqM → T ∗

q M (where q ∈ M and T ∗
q M is

the dual of TqM) by: (Σ(v)) (w) := 〈v, w〉q ; v, w ∈ TqM. As Σ is an isomorphism, we also have the inverse
map Σ−1 : T ∗

q M → TqM where q ∈ M.

Assume M to be parallelizable and consider a frame {Ei} and a dual co-frame {θi}, i = 1, 2, · · ·n with
θi(Ej) = δi

j . Then the Levi-Civita connection is defined by the functions ωk
ij(q) in the equation: ∇EiEj =

ωk
ijEk, 1 ≤ i, j ≤ n. If we denote ωk

j := ωk
ij θi, then we can define the n× n matrix ω of connection one-forms

by ω = (ωk
j), where k indicates the row index and j the column index. The following proposition is useful in

the computation of ω :

Proposition 2.1 [2]. Let 〈Ei, Ej〉 = mij . Define dθ = (dθ1, · · · , dθn). Then there is a unique matrix of 1-forms
ω =

(
ωi

j

)
such that: dθ = −ω ∧ θ, that is, dθi = −ωi

j ∧ θj and ωr
imrj + ωr

jmri = 0; i, j = 1, · · · , n.

The computation of dθi is done using Theorem 4.25 of Frankel [6]. Cartan showed that the curvature
tensor R(·, ·)· can be computed from the connection matrix as follows:

Proposition 2.2 [6]. The equations Ω = dω + ω ∧ ω, that is, Ωi
j = dωi

j + ωi
k ∧ ωk

j define a skew-symmetric
matrix of 2-forms that is related to the curvature tensor via R(X, Y )Ej = Ωi

j (X, Y ) · Ei.

2.2. Derivation of first-order necessary conditions

Let M be a parallelizable Riemannian manifold. If c : [0, 1] → M is a differentiable curve on M, and
X : M → TM is a differentiable vector field, then the co-variant derivative of X along c(·) is defined to be
DX
dt = ∇ċ(t)X(t), t ∈ (0, 1). Let {E1, · · · , En} be a frame of vector fields and let {θ1, · · · , θn} be a frame of

co-vector fields on M, so that θi(Ej) = δi
j ; 1 ≤ i, j ≤ n. Let q ∈ M ; V ∈ TqM and u ∈ IRm denote the control

variables. We define a control system on TM by a second-order vector field F : TM × IRm → TTM defined as
follows. If π : TM → M denotes the projection operator, then a second-order vector field is one that satisfies
dπ ◦ F((q,V ),u) = (q, V ). Using the Levi-Civita connection on M, we can write the above system as one on TM
described by the equations:

q̇ = V = V iEi, and
DV

dt
= f(q, V, u) = f i(q, V, u)Ei. (1)

The conditions on the function f will be set forth in our theorem on necessary conditions. Such a set of
equations is useful in describing the equations of motion of an air vehicle that is subject to aerodynamic forces
and moments (as well as gravity) that depend on its orientation with respect to its velocity vector, its altitude
above sea level, current speed and the deflections of its control surfaces.

Now, let q̂0, q̂f ∈ M, V0 ∈ Tq̂0M and Vf ∈ Tq̂f
M. Consider the space C2[t0, tf ] of twice-differentiable maps

q : [t0, tf ] → M that satisfy equations (1), where tf > t0, q(t0) = q̂0, q(tf ) = q̂f , q̇(t0) = V0 and q̇(tf ) = Vf .

Then along one such map q(·) the control system takes the form: q̇(t) = V (t), and DV
dt = f(q(t), V (t), u(t)),



4 R.V. IYER, R. HOLSAPPLE AND D. DOMAN

where u(·) ∈ Cm[t0, tf ], the (m-vector valued) space of continuous functions. Suppose that one is required to
find a function u(·) such that the above boundary conditions are satisfied by q(·) while minimizing:

J(u(·)) =
∫ tf

t0

L(q(t), V (t), u(t))dt. (2)

We need the following standard construction to describe the notion of variations of a curve. Let (t, σ) →
q(t, σ), t ∈ [t0, tf ] and σ ∈ (−ε, ε), ε > 0, be a parametrized family of curves satisfying

q(t, 0) = q(t); q(t0, σ) = q̂0; q(tf , σ) = q̂f ; q̇(t0, σ) = V0; q̇(tf , σ) = Vf . (3)

For V (t) ∈ Tq(t)M and p1(t), p2(t) ∈ T ∗
q(t)M, we define the associated variations: V (t, σ) = V i(t, σ)Ei(q(t, σ)) ∈

Tq(t,σ)M and p1(t, σ) = p1i(t, σ)θi(q(t, σ)), p2(t, σ) = p2i(t, σ)θi(q(t, σ)) ∈ T ∗
q(t,σ)M. Define the variational

vector fields W (t) = δq(t) := ∂q
∂σ (t, 0) ∈ Tq(t)M, t ∈ [t0, tf ], with W (t0) = W (tf ) = 0; and δV (t) :=

DV
dσ (t, 0) ∈ Tq(t)M, t ∈ [t0, tf ]. The variations in the input are denoted by u(t, σ) ∈ IRm with δu(t) :=
∂u
∂σ (t, 0) ∈ IRm. In the following, any quantity that is described with the second variable σ suppressed, should
be construed as having σ = 0 (so, q(t) = q(t, 0)).

Then we have the following lemma proved by Noakes, Heinzinger and Paden.

Lemma 2.2 [15]. DV
dσ (t0, σ) = 0 and DV

dσ (tf , σ) = 0 for all σ ∈ (−ε, ε).

We need the following simple lemmata in the proof of the main theorem (Th. 2.1).

Lemma 2.3. ∫ tf

t0

p1(t)
(

Dq̇

dσ
(t)
)

dt = −
∫ tf

t0

Dp1

dt
(δq(t))dt. (4)

Proof. We have Dq̇
dσ (t) = DW

dt (t) because the Levi-Civita connection is symmetric and [ ∂
∂t ,

∂
∂σ ] = 0. Therefore:

∫ tf

t0

d
dt

p1(δq) dt =
∫ tf

t0

d
dt

〈
Σ−1p1, δq

〉
dt =

∫ tf

t0

(〈
d
dt

Σ−1p1, δq

〉
+
〈

Σ−1p1,
D

dt
δq

〉)
dt

p1(δq)
∣∣∣tf

t0
=
∫ tf

t0

(
Dp1

dt
(δq) + p1

(
D

dt
δq

))
dt.

The result follows by noting that W (t0) = W (tf ) = 0. �

Lemma 2.4. ∫ tf

t0

p2(t)
D

dσ

DV

dt
dt =

∫ tf

t0

(
(ΣR(Σ−1p2, V )V )δq − Dp2

dt
(δV (t))

)
dt. (5)

Proof. First we note that:
∫ tf

t0
p2(t) D

dσ
DV
dt dt =

∫ tf

t0
p2(t)

(
R(W, V )V + D

dt
DV
dσ

)
dt, by the definition of the curva-

ture tensor [2, 6], and the fact that [ ∂
∂t ,

∂
∂σ ] = 0. By the definition of the linear isomorphism Σ, and standard

properties of the curvature tensor [6] we have: p2 (R(W, V )V ) = 〈Σ−1p2, R(W, V )V 〉 = 〈R(Σ−1p2, V )V, W 〉 =
(ΣR(Σ−1p2, V )V )(W ). On integrating the second term by parts and using Lemma 2.2, we have the claim. �

For p ∈ T ∗M, denote: [ω(f)]∗p := piω
i
j (f)θj = piω

i
kj fkθj . Let Ci

kj denote the structure constants for
the Jacobi-Lie brackets of the coordinate vector fields. Also denote: [C(f)]∗p := piC

i
j (f)θj = piC

i
kj fkθj . The

following theorem is the main result of this paper. It establishes the first-order necessary conditions for the
curve (q0, V0, u0)(t), t ∈ [t0, tf ] to be optimal.
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Theorem 2.1. Suppose that (q0, V0, u0)(t), t ∈ [t0, tf ] minimizes the cost function (2), while satisfying equa-
tions (1) and boundary conditions q(t0) = q̂0, q(tf ) = q̂f , q̇(t0) = V0 and q̇(tf ) = Vf . Further suppose that f
and L are differentiable functions of their arguments, and the linearized system is controllable at the origin.
Then there exists one-forms p1(t), p2(t) differentiable almost everywhere on [t0, tf ] such that:

•
Dp1
dt = Lq(q0, V0, u0) + ΣR(Σ−1p2, V0)V0 − (f∗

q (q0, V0, u0) + ω∗(f) − C∗(f))p2

Dp2
dt = −p1 + LV (q0, V0, u0) − f∗

V (q0, V0, u0)p2;

• f∗
u(q0, V0, u0)p2 = Lu(q0, V0, u0);

• the function H(q0, V0, u0, p1, p2)(t) = L(q0, V0, u0)(t) − p1(V0)(t) − p2(f(q0, V0, u0))(t) is a constant for
t ∈ [t0, tf ].

The proof of the above theorem will be given shortly. The assumption of controllability of the linearized system
is strong, and can be weakened along the lines of Pontryagin’s maximum principle [18], once the symplectic
2-form on T ∗TM is written in frame co-ordinates. Such a symplectic form is not intrinsic and depends on
the Riemannian metric on TM as we show in a future publication. In any case, the results of this paper will
serve as a check for the first order necessary conditions that can be obtained using more sophisticated tools
of symplectic geometry. The proof here follows Luenberger [12], and uses the Lagrange Multiplier theorem
to obtain the existence of the one-forms p1(·), p2(·). Please refer to Luenberger to see how the controllability
assumption enters the proof.

Proof of Theorem 2.1. For each σ ∈ (−ε, ε), consider the augmented cost function:

J̄(q(·, σ), V (·, σ), p1(·, σ), p2(·, σ)) =
∫ tf

t0

(
L(q, V, u) + p1 (q̇ − V ) + p2

(
DV

dt
− f(q, V, u)

))
dt, (6)

where q, V, p1, p2 in the integral are functions of (t, σ). By the Chain Rule:

∂

∂σ
L(q, V, u)(t, 0) = Lq(q, V, u)(t, 0)(δq(t)) + LV (q, V, u)(t, 0)

(
DV

dσ
(t)
)

+ Lu(q, V, u)(t, 0)(δu(t)). (7)

∂

∂σ
f(q, V, u)(t, 0) =

(
fk

q (q, V, u)(t, 0)(δq) + fk
V (q, V, u)(t, 0)

(
DV

dσ
(t)
)

· · ·

+fk
u (q, V, u)(t, 0)

(
∂u

∂σ
(t)
))

Ek(t, 0) + fk(q, V, u)(t, 0)
DEk(t, 0)

dσ
· (8)

Lets consider the last term in the above equation.

fk(q, V, u)(t, 0)
DEk(t, 0)

dσ
= fk(q, V, u)(t)ωi

jkδqjEi = fk(q, V, u)(t)(ωi
kj − Ci

kj)δq
jEi. (9)

Now by Lebesgue’s Dominated Convergence Theorem, we have:

∂J̄

∂σ
(q, V, p1, p2)(·, 0) =

∫ tf

t0

(
∂

∂σ
L(q, V, u) + p1

(
Dq̇

dσ

)
− p1(δV ) + p2

(
D

dσ

DV

dt

)
− p2

∂

∂σ
f(q, V, u)

)
dt.

By Lemmas 2.3, 2.4 and equations (7)–(9), we get:

∂J̄

∂σ
(q, V, p1, p2)(·, 0) =

∫ tf

t0

((
Lq(q, V, u) − Dp1

dt
+ ΣR(Σ−1p2, V )V − (f∗

q + [ω(f)]∗ − [C(f)]∗)p2

)
δq

+(LV (q, V, u) − p1 − Dp2

dt
− f∗

v p2)δV + (Lu(q, V, u) − f∗
up2)δu

)
dt.
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As the variations δq, δV and δu are arbitrary, subject to δq(t0) = δq(tf ) = δV (t0) = δV (tf ) = 0 we have the
first two statements of the theorem.

To prove the last statement of the theorem, consider

Ḣ(t) =
d
dt

L(q0, V0, u0)(t) − Dp1

dt
(V0) − p1

(
DV

dt

)
(t) − Dp2

dt
(f(q0, V0, u0))(t) − p2

(
D

dt
f(q0, V0, u0)

)
(t)

= Lq(q0, V0, u0)(V0) + LV (q0, V0, u0)
(

DV

dt

)
+ Lu(q0, V0, u0)(u̇)

− (Lq(q0, V0, u0) + ΣR(Σ−1p2, V0)V0 − (f∗
q (q0, V0, u0) + ω∗(f) − C∗(f))p2

)
(V0)(t)

−p1 (f(q0, V0, u0)) (t) − (−p1 + LV (q0, V0, u0) − f∗
V (q0, V0, u0)p2) (f(q0, V0, u0))(t)

−p2

(
fq(q0, V0, u0)(V0) + fV (q0, V0, u0)

(
DV

dt

)
+ fu(q0, V0, u0)(u̇) + f i DEi

dt

)
= 0,

due to the fact that 〈R(Σ−1p2, V0)V0, V0〉 = 0 and fk(q, V, u)(t, 0)DEk(t,0)
dt = fk(q, V, u)(t)ωi

jk q̇jEi =
fk(q, V, u)(t)(ωi

kj − Ci
kj)V

jEi. �

3. Applications

3.1. Cubic splines on Riemannian manifolds

Here we specialize Theorem 2.1 and recover the Noakes, Heinzinger and Paden formula for cubic splines on
Riemannian manifolds [15]. Let M be a parallelizable Riemannian manifold and let q0, q1 ∈ M, V0 ∈ Tq0M

and V1 ∈ Tq1M. Consider the problem: Minimize J(u(·)) =
∫ tf

t0
‖u(t)‖2dt subject to: q̇(t) = V (t), DV

dt =
u(t) = ui(t)Ei(t), and boundary conditions q(t0) = q0; q(tf ) = qf ; q̇(t0) = V0; q̇(tf ) = Vf .

Thus we have f(q, V, u) = u and Σ is the identity matrix. Therefore, there is an identification of vectors
and co-vectors. Then, Theorem 2.1 asserts the existence of one-form sections p1(t), p2(t) such that: Dp1

dt =
R(p2, V )V − (ω∗(f) − C∗(f))p2,

Dp2
dt = −p1 and p2 = u, where we have used the identification of vectors and

co-vectors in the last equation. Thus D2V
dt2 = Du

dt = Dp2
dt = −p1 which implies D3V

dt3 = −Dp1
dt = −R(p2, V )V +

(ω∗(f) − C∗(f))p2. Now ((ω∗(f) − C∗(f))p2)w = p2i(ωi
j (p2) − Ci

j (p2))wj = p2i ωi
jk pk

2 wj = ωi
k(w) pk

2 p2i = 0

for all w ∈ Ψ(M), because ωi
k = −ωk

i by Proposition 2.1. Therefore, D3V
dt3 + R(DV

dt , V )V = 0, which is the
equation for a cubic spline that was first obtained by Noakes, Heinzinger and Paden [15].

3.2. Rigid body translation and rotation

In this subsection, we consider the problem of numerically solving the optimal control problem (1), (2)
and (3) for a rigid body that is free to rotate and translate. Consider a rigid body with principal moment of
inertia matrix II and mass M (a scalar). The configuration space of a rigid body SE(3) is the space of rotations
given by the set of 3 × 3 matrices SO(3) = {Q |Q′Q = I; det(Q) = 1}, and space of translations IR3. Q
is the orientation of the rigid body with respect to an earth-fixed co-ordinate system, while b is the position
of the center of mass of the rigid body with respect to the origin of the earth-fixed co-ordinate system. The
angular velocity of the body in the principal axis system (called the body axis system) centered at the center
of mass is defined as: Ω = Q′Q̇ where Q′ denotes the transpose of Q, while the linear velocity of the center
of mass expressed in the body axis system is denoted by: v = Q′ḃ. If we define the skew-symmetrization of

Ω′ = [Ω1, Ω2, Ω3] to be Ω̂ =

⎡
⎣ 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎤
⎦ then the Euler’s equations for a rigid body can be written in a
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compact form as:

Q̇ = QΩ̂ (10)

ḃ = Qv (11)

Ω̇ − II−1(IIΩ × Ω) = II−1Te (12)
v̇ + Ω × v = M−1Fe, (13)

where Te, Fe are the moments and forces acting on the body (expressed in the principal body-axis system). In the
notation of Theorem 2.1, q = (Q, b), V = (Ω, v) and u = (II−1Te, M

−1Fe). Given (Q, b, Ω, v)(0), (Q, b, Ω, v)(1),
and L(q, V, u) = 1

2 〈u, u〉, the optimal control problem is to determine u(t); t ∈ [0, 1]. We set up a two-point
boundary value problem using Theorem 2.1, and then obtain a numerical solution using the Modified Simple
Shooting method [8].

We will first find the Levi-Civita connection that corresponds to the Kinetic Energy metric: K(Q, b, Q̇, ḃ) =
− 1

4 trace(Ω̂ ˆIIΩ) + 1
2MḃT ḃ. Let {e1, · · · , e6} form a basis for the Lie algebra se(3) = so(3) ⊕ IR3 of the Lie

Group SE(3), where e1, e2, e3 form a basis for so(3) and e4, e5, e6 form a basis for IR3. Then one can form a
parallel frame Ei = Qei, i = 1, · · · , 6 for TSE(3) via the lift of the left translation action. For this parallel
frame {E1, · · · , E6} let the structure constants Ck

ij for the Jacobi-Lie bracket be given by:

C3
12 = 1 C1

23 = 1 C2
31 = 1 C6

15 = 1 C5
16 = −1

C6
24 = −1 C4

26 = 1 C5
34 = 1 C4

35 = −1 Ck
ij = 0 for all other 1 ≤ i, j, k ≤ 6.

The Riemannian metric is defined via the following table:

〈E1, E1〉 = 1
2I1 〈E2, E2〉 = 1

2I2 〈E3, E3〉 = 1
2I3

〈E4, E4〉 = 1 〈E5, E5〉 = 1 〈E6, E6〉 = 1
〈Ei, Ej〉 = 0 for all other 1 ≤ i, j ≤ 6.

We can compute the connection matrix for the rigid body using Proposition 2.1 and Theorem 4.25 of Frankel [6].
As θi(Ej) = δi

j , we have: dθi(Ej , Ek) = Ej(θi(Ek)) − Ek(θi(Ej)) − θi([Ej , Ek]) = −θi([Ej , Ek]). Using Propo-
sition 2.1 we compute the following connection matrix:

[
ωk

i

]
=

[
α 03×3

03×3 β

]
, where α =

⎡
⎢⎢⎣

0 ω1
32θ

3 ω1
23θ

2

ω2
31θ

3 0 ω2
13θ

1

ω3
21θ

2 ω3
12θ

1 0

⎤
⎥⎥⎦ , β =

⎡
⎢⎢⎣

0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

⎤
⎥⎥⎦

where ω1
32 = 1

2

(
−I1−I2+I3

I1

)
, ω1

23 = 1
2

(
I1−I2+I3

I1

)
, ω2

31 = 1
2

(
I1+I2−I3

I2

)
, ω2

13 = 1
2

(
I1−I2−I3

I2

)
, ω3

21 = 1
2

(
−I1+I2−I3

I3

)
,

and ω3
12 = 1

2

(
−I1+I2+I3

I3

)
. Next, we compute the matrix ∇EE [6]:

[∇Ej Ei

]
=

[
L M

03×3 03×3

]
, where L =

⎡
⎢⎢⎣

0 ω3
12E3 ω2

13E2

ω3
21E3 0 ω1

23E1

ω2
31E2 ω1

32E1 0

⎤
⎥⎥⎦ , M =

⎡
⎢⎢⎣

0 E6 −E5

−E6 0 E4

E5 −E4 0

⎤
⎥⎥⎦ .

Let X = (Ω, v), Y = (ξ, v̄) ∈ Ψ(SE(3)); Ω, v, ξ, v̄ ∈ IR3 and q(t) be the curve obtained by solving the system
q̇(t) = X ; q(t0) = q̂0; t ∈ [t0, tf ]. Then along the curve q(·), we compute:

∇XY =

⎡
⎢⎣ ξ̇ +

3∑
i,j,k=1

ξi ωk
i (Ej)ΩjEk

˙̄v − v̄ × Ω

⎤
⎥⎦ =

[ ∇̄Ωξ

˙̄v − v̄ × Ω

]
, (14)
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where ∇̄ is the Levi-Civita connection on SO(3) compatible with the Kinetic energy metric K̄(Q, Q̇) =

− 1
4 trace(Ω̂ ˆIIΩ). In particular, DX

dt = ∇XX =
[

Ω̇ − II−1(IIΩ × Ω)
v̇ − v × Ω

]
. We compute the curvature tensor R(Y, X)X

using Proposition 2.2. The curvature two-form Ωk
i matrix turns out to be:

[
Ωk

i

]
=

[
P 03×3

03×3 R

]
, where P =

⎡
⎢⎢⎣

0 Aθ1 ∧ θ2 Bθ3 ∧ θ1

Dθ1 ∧ θ2 0 Cθ2 ∧ θ3

Eθ3 ∧ θ1 Fθ2 ∧ θ3 0

⎤
⎥⎥⎦ ,

and R =

⎡
⎢⎣

0 Hθ1 ∧ θ2 Iθ3 ∧ θ1

Kθ1 ∧ θ2 0 Jθ2 ∧ θ3

Lθ3 ∧ θ1 Mθ2 ∧ θ3 0

⎤
⎥⎦ , where, A = −ω1

32−ω1
23 ω3

12; B = −ω1
23+ω1

32 ω2
13; C = −ω2

13−ω2
31 ω1

23;

D = −ω2
31 + ω2

13 ω3
21; E = −ω3

21 − ω2
31 ω3

12; F = −ω3
12 + ω3

21 ω1
32 and H = I = J = K = L = M = 0. Next, as

R(Y, X)Ej = Ωi
j ((ξ, v̄), (Ω, v))Ei, we have:

R((ξ, v̄), (Ω, v))(Ω, v) =

⎡
⎢⎢⎢⎢⎢⎣

AΩ2(ξ1Ω2 − ξ2Ω1) + BΩ3(ξ3Ω1 − ξ1Ω3)

DΩ1(ξ1Ω2 − ξ2Ω1) + CΩ3(ξ2Ω3 − ξ3Ω2)

EΩ1(ξ3Ω1 − Ω3ξ1) + FΩ2(ξ2Ω3 − ξ3Ω2)

03×1

⎤
⎥⎥⎥⎥⎥⎦ . (15)

Finally, we compute the (ω∗(f) − C∗(f))p2 term that appears in the equation for Dp1
dt ·

(ω∗(f) − C∗(f))p2 =

⎡
⎢⎢⎢⎢⎢⎣

1
I1

(I2ω
2
13 + I3ω

3
12)η

2η3

1
I2

(I1ω
1
23 + I3ω

3
21)η

1η3

1
I3

(I1ω
1
32 + I2ω

2
31)η

2η1

03×1

⎤
⎥⎥⎥⎥⎥⎦ . (16)

If we define the vectors (ξ, v̄1) and (η, v̄2) via the identification (ξ, v̄1)(t) = Σ−1p1(t) and (η, v̄2)(t) = Σ−1p2(t)
then, we can write the necessary conditions in terms of (Q, b, Ω, v, ξ, v̄1, η, v̄2). The full set of equations
are (10)–(13) along with u = (η, v̄2) and:

[
ξ̇

˙̄v1

]
= −

⎡
⎣ 3∑

i,j,k=1

ξi ωk
ji ΩjEk

−v̄1 × Ω

⎤
⎦+ R((ξ, v̄), (Ω, v))(Ω, v) − (ω∗(f) − C∗(f))p2 (17)

[
η̇

˙̄v2

]
= −

⎡
⎣ 3∑

i,j,k=1

ηi ωk
ji ΩjEk

−v̄2 × Ω

⎤
⎦−

[
η

v̄2

]
, (18)

with (Q, Ω, b, v)(0) and (Q, Ω, b, v)(1) specified.

4. Numerical experiments

Equations (10)–(13), (17)–(18) along with u = (η, v̄2) constitute a two-point boundary value problem. We
used a modified shooting method technique [8] to numerically solve for the unknown “Lagrange multipliers”
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(ξ, v̄1, η, v̄2) at initial time. The first equation (10) is a matrix equation that we integrated using the well-known
Rodriguez’s formula [14]:

Q(t + h) = Q(t)

(
I +

Ω̂
‖Ω‖sin(‖Ω‖h) +

Ω̂2

‖Ω‖2
(1 − cos(‖Ω‖h))

)
, (19)

where h is the time-step for integration. This results in a Q matrix that “stays” on the group SO(3) at each
time-step.

The moments of inertia constants for the numerical simulation were I1 = 10; I2 = 7.5; I3 = 5. The initial
time t0 was set to 0 and the final time tf was set to 1.
We chose the initial states (Q, Ω, b, v)(0) and the desired final states (Q, Ω, b, v)(1) using the MATLAB random
number generator. Their values for a simulation run are listed in the following table (to 2 significant digits).

Q(0) Ω(0) b(0) v(0)
0.572 0.817 0.079
−0.783 0.572 −0.246
−0.246 0.079 0.966

1.160
0.781
3.693

0.950
4.337
7.092

0.336
1.922
4.714

Qdes(1) Ωdes(1) bdes(1) vdes(1)
−0.268 0.963 −0.011
−0.838 −0.227 0.497
0.476 0.142 0.868

2.319
1.562
7.385

1.901
8.673
4.185

0.673
3.843
9.427

The modified simple shooting method involves the choice of a continuous, time-parametrized reference path that
connects the initial and final points. For t ∈ [0, 1], we picked the reference path to be: Qref (t) = Q(0) exp(φ̂t),
where φ̂ = ln(Q(0)−1Qd), Ωref (t) = Ω(0)+(Ωd−Ω(0))t, bref (t) = b(0)+(bd−b(0))t, vref (t) = v(0)+(vd−v(0))t.

The equations were integrated in the forward direction until at some time t ∈ (0, 1], we had

100 ∗ ‖ln(Q(t)) − ln(Qref (t))‖ + ‖Ω(t) − Ωref (t)‖ + ‖b(t) − bref (t)‖ + ‖v(t) − vref (t)‖ ≥ 60. (20)

At this point, the initial guesses on the Lagrange multipliers were updated via the modified Newton’s method
until the sum on the left hand side is less than or equal to 0.5. Then we shoot forward again until the inequality
in (20) was satisfied and the iteration was repeated. The norm on the orientation matrix was multiplied by 100
so that the final orientation is met accurately. The time step for the integration was 0.02 seconds. The CPU
time taken for the compuations run in a MATLAB environment running on a 1.8 GHz PC was 73 seconds. The
solution of the two-point boundary value problem led to the following final states at t = 1:

Q(1) Ω(1) b(1) v(1)
−0.268 0.963 −0.011
−0.838 −0.227 0.497
0.476 0.142 0.868

2.319
1.562
7.384

1.901
8.674
4.185

0.672
3.843
9.426

The initial value for the co-states (ξ, v̄1, η, v̄2)(0) was chosen at random using the MATLAB random number
generator (shown in the table in the left below) and converged to the table on the right below.

ξ(0) v̄1(0) η(0) v̄(0)
0.145
0.718
0.662

0.432
0.446
0.508

0.528
0.573
0.361

0.336
0.173
0.086

ξ(0) v̄1(0) η(0) v̄(0)
−12.839
−18.404
−80.533

−8.620
−8.179

−122.807

−6.766
−9.251
−36.136

−7.527
−0.445
−58.068
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Figure 1. Rigid body rotation and translation problem.

Figures 1a–d show the results of the simulation. The ZYX Euler angles in Figure 1a was computed according
to: β = − sin−1(Q31); α = sin−1

(
Q32

cos(β)

)
; γ = sin−1

(
Q21

cos(β)

)
.
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5. Conclusion

In this paper, we have made three new contributions. Firstly, we have derived first order necessary conditions
for an optimal control problem on a parallelizable Riemannian manifold, using frame co-ordinates. These
equations specialize to those of cubic splines on Riemannian manifolds that were first discovered by Noakes,
Heinzinger and Paden. Secondly, we have specialized the equations to a rigid body translation and rotation
problem. Thirdly, we have presented the results of numerical experiments where we successfully computed the
two point boundary value problem (TPBVP) resulting from the necessary conditions.

Acknowledgements. We wish to sincerely thank Prof. M. Toda, Department of Mathematics and Statistics, Texas Tech
University for proof-reading this paper with great care.

References

[1] J.T. Betts, Survey of numerical methods for trajectory optimization. Journal of Guidance, Control and Dynamics 21 (1998)
193–207.

[2] W.M. Boothby, An introduction to Differential Geometry and Riemannian Manifolds. Academic Press (1975).
[3] P. Crouch, M. Camarinha and F. Silva Leite, Hamiltonian approach for a second order variational problem on a Riemannian

manifold, in Proc. of CONTROLO’98, 3rd Portuguese Conference on Automatic Control (September 1998) 321–326.
[4] P. Crouch, F. Silva Leite and M. Camarinha, Hamiltonian structure of generalized cubic polynomials, in Proc. of the IFAC

Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (2000) 13–18.
[5] P. Crouch, F. Silva Liete and M. Camarinha, A second order Riemannian varational problem from a Hamiltonian perspective.

Private Communication (2001).
[6] T. Frankel, The Geometry of Physics: An Introduction. Cambridge University Press (1998).
[7] R. Holsapple, R. Venkataraman and D. Doman, A modified simple shooting method for solving two point boundary value

problems, in Proc. of the IEEE Aerospace Conference, Big Sky, MT (March 2003).
[8] R. Holsapple, R. Venkataraman and D. Doman, A new, fast numerical method for solving two-point boundary value problems.

J. Guidance Control Dyn. 27 (2004) 301–303.
[9] V. Jurdejevic, Geometric Control Theory. Cambridge Studies in Advanced Mathematics (1997).

[10] P.S. Krishnaprasad, Optimal control and Poisson reduction. TR 93–87, Institute for Systems Research, University of Maryland,
(1993).

[11] A. Lewis, The geometry of the maximum principle for affine connection control systems. Preprint, available online at
http://penelope.mast.queensu.ca/� andrew/cgibin/pslist.cgi?papers.db, 2000.

[12] D.G. Luenberger, Optimization by Vector Space Methods. John Wiley and Sons (1969).
[13] M.B. Milam, K. Mushambi and R.M. Murray, A new computational approach to real-time trajectory generation for constrained

mechanical systems, in Proc. of 39th IEEE Conference on Decision and Control 1 (2000) 845–851.
[14] R.M. Murray, Z. Li and S.S. Sastry, A Mathematical Introduction to Robotic Manipulation. CRC Press (1994).
[15] L. Noakes, G. Heinzinger and B. Paden, Cubic splines on curved spaces. IMA J. Math. Control Inform. 6 (1989) 465–473.

[16] H.J. Pesch, Real-time computation of feedback controls for constrained optimal control problems. Part 1: Neighbouring
extremals. Optim. Control Appl. Methods 10 (1989) 129–145.

[17] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, pp. 272–286; 502–535. Springer-Verlag, New York, second edition
(1993).

[18] H. Sussmann, An introduction to the coordinate-free maximum principle, in Geometry of Feedback and Optimal Control,
B. Jakubczyk and W. Respondek Eds. Marcel Dekker, New York (1997) 463–557.


