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HOMOGENIZATION OF PERIODIC NONCONVEX INTEGRAL FUNCTIONALS
IN TERMS OF YOUNG MEASURES
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Abstract. Homogenization of periodic functionals, whose integrands possess possibly multi-well struc-
ture, is treated in terms of Young measures. More precisely, we characterize the Γ-limit of sequences of
such functionals in the set of Young measures, extending the relaxation theorem of Kinderlherer and
Pedregal. We also make precise the relationship between our homogenized density and the classical
one.
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1. Introduction and main results

Letm,N ≥ 1 be two integer, p > 1, Ω ⊂ RN a bounded open set with Lipschitz boundary ∂Ω, and Y =]0, 1[N .
We denote the space of all real m×N matrices by M. Consider the integral

Fε

(
uε

)
:=

∫
Ω

f
(x
ε
,∇uε(x)

)
dx, (1)

where ε > 0, uε : Ω → R
m and f : R

N × M → [0,+∞[ is a Carathéodory integrand, possibly with multi-well
structure, satisfying the following two conditions:

(C1) for every ξ ∈ M, f(·, ξ) is Y -periodic, i.e., f(x+ z, ξ) = f(x, ξ) for all x ∈ R
N and all z ∈ Z

N .
(C2) α|ξ|p ≤ f(x, ξ) ≤ β(1 + |ξ|p) for all x ∈ RN , all ξ ∈ M and some α, β > 0.

In pseudo1-nonlinear elasticity, when m = N = 3, Fε in (1) is the free-energy functional at a microscopic scale ε
of an elastic material which occupies the bounded open set Ω ⊂ R3 in a reference configuration, the body is
assumed to have a periodic structure with period εY at any scale ε. Roughly, following the idea of Ball and
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James [4], the fine microstructure of the material can be thought of as an element of an ε-minimizing sequence
{uε}ε for Fε in U with

U :=
{
u ∈W 1,p(Ω; Rm) : u = 0 on Γ

}
,

where Γ is a subset of ∂Ω with positive (N −1)-dimensional Hausdorff measure. The homogenization theorem2,
firstly established by Braides in [6] and then completed by Müller in [19], states that if f satisfies (C1) and (C2)
then the homogenized free-energy functional of the material in terms of Sobolev functions

Fhom(u) :=
∫

Ω

fhom

(∇u(x)
)
dx, (2)

where fhom : M → [0,+∞[ (the homogenized free-energy density of the material) is defined by

fhom(ξ) := inf
k∈N∗

inf
{
−
∫

kY

f(x, ξ + ∇φ(x))dx : φ ∈ W 1,p
0 (kY ; Rm)

}
,

characterizes the W 1,p-weak limits of ε-minimizing sequences for Fε in U . More precisely: limε→0 infU Fε =
minU Fhom; the W 1,p-weak limit u of any ε-minimizing sequence {uε}ε for Fε in U is a minimizer for Fhom in U ;
conversely, any minimizer u for Fhom in U is the W 1,p-weak limit of some ε-minimizing sequence for Fε in U .
Such a u can be thought of as a “macroscopic representation” of the fine microstructure of the material.

In the homogeneous case, when f does not depend on x (so that Fε = F ), another characterization can be
obtained by using the notion of gradient Young measure due to Kinderlehrer and Pedregal [15,16]: a W-gradient
Young measure, with W ⊂ W 1,p(Ω; Rm), is a Young measure µ on Ω × M for which there exists a bounded
sequence {uε}ε in W such that µ is the narrow limit of δ∇uε(x) ⊗ dx as ε → 0 (cf. Sect 2.1)3. The relaxation
theorem of Kinderlehrer and Pedregal states that under (C2), the relaxed free-energy functional of the material
in terms of Young measures

F (µ) :=
∫

Ω

(∫
M

f(ξ)dµx(ξ)
)

dx, (3)

where the variable µ = µx ⊗ dx is a W 1,p(Ω; Rm)-gradient Young measure, characterizes the weak limits of
minimizing sequences for F in U as follows: infU F = minU F , where U is the set of all U-gradient Young
measures; the narrow limit µ of any δ∇uε(x)⊗dx as ε→ 0, where {uε}ε is minimizing for F in U , is a minimizer
for F in U; conversely, any minimizer µ for F in U is the narrow limit of some δ∇uε(x) ⊗ dx as ε → 0, where
{uε}ε is minimizing for F in U . Moreover, minU QF = minU F , where

QF (u) :=
∫

Ω

Qf(∇u(x)
)
dx

(the relaxed free-energy functional of the material in terms of Sobolev functions) with Qf : M → [0,+∞[ the
quasiconvexification of f (the relaxed free-energy density of the material) given by4

Qf(ξ) = inf
{∫

Y

f(ξ + ∇φ(x))dx : φ ∈ W 1,p
0 (Y ; Rm)

}
.

Finally, u is a minimizer for QF in U if and only if there exists µ = µx ⊗ dx minimizer for F in U such that
∇u(x) =

∫
M
ζdµx(ζ) for a.e. x ∈ Ω. Such a µ can be thought of as a “microscopic representation” of the fine

microstructure of the material.

2 In the convex case, the homogenization theorem was proved by Marcellini in [18].
3 To simplify the presentation of the paper, we will denote by dx the Lebesgue measure restricted to any bounded open subset

of RN .
4 The quasiconvexification formula was established by Dacorogna in [10].
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In our paper we extend the relaxation theorem of Kinderlherer and Pedregal to the periodic homogenization
by means of a Γ-convergence procedure (for an other approach about Γ-convergence through Young measures, we
refer to [21]). In the classical homogenization process, gradient solutions of minU Fhom capture the oscillations
due to the periodic structure. Unfortunately, as the density fhom is quasiconvex, we loose the information
about the oscillations developed by the gradient minimizing sequences because of the multi-well structure. By
considering our process, every probability solution of the new limit problem captures two kinds of oscillations:
those due to the ε-periodicity (by its barycenter) and those due to the multi-well structure (see Cor. 1.2(iv) and
Rem. 3.1). However, the homogenized density ḡ in (4) is given by a complicated formula, and our paper can be
seen as a first attempt in the scope of homogenization with gradient oscillations analysis.

Denote the set of all Young measures on Ω × M by Y(Ω; M). For each ε > 0, let Fε : Y(Ω; M) → [0,+∞] be
defined by

Fε(µ) :=

⎧⎨⎩
∫

Ω

(∫
M

f
(x
ε
, ξ

)
dµx(ξ)

)
dx if µ = µx ⊗ dx ∈ ∆(U)

+∞ otherwise,

where

∆(U) :=
{
µx ⊗ dx ∈ Y(Ω; M) : µx = δ∇u(x) with u ∈ U

}
.

Let P(M) be the set of all probability measures on M, and, for every ξ ∈ M, let Hξ(M) be the set of λ ∈ P(M)
fulfilling the following three conditions (cf. also Rem. 2.2):

–
∫

M
ζdλ(ζ) = ξ;

– h(ξ) ≤ ∫
M
h(ζ)dλ(ζ) for every quasiconvex function h : M → R bounded below and satisfying h(ζ) ≤

c
(
1 + |ζ|p) for all ζ ∈ M and some c > 0;

–
∫

M
|ζ|pdλ(ζ) < +∞.

For each bounded open set A ⊂ RN , we define SA(ξ, ·) : Hξ(M) → [0,+∞[ by

SA(ξ, λ) := inf
{∫

A

(∫
M

f(x, ζ)dσx(ζ)
)

dx : σx ⊗ dx ∈ ∇Yξ(A), −
∫

A

σxdx = λ

}
,

where ∇Yξ(A) is the set of all lξ +W 1,p
0 (A; Rm)-gradient Young measures, lξ denoting the affine function with

constant gradient ξ. The equality −∫
A
σxdx = λ means that −∫

A

( ∫
M
ϕ(ζ)dσx(ζ)

)
dx = 〈λ, ϕ〉 for all ϕ in the

space Cc(M) of all real-valued and continuous functions with compact support on M. Let g : M × P(M) →
[0,+∞] be the measurable function defined by

g(ξ, λ) :=

⎧⎨⎩ inf
k∈N∗

SkY (ξ, λ)
kN

if λ ∈ Hξ(M)

+∞ otherwise.

Then, for each fixed ξ in M, we consider ḡ(ξ, ·) : P(M) → [0,+∞], the weak lower semicontinuous envelope
of g(ξ, ·), i.e., the function defined by

ḡ (ξ, λ) := inf
{

lim
n→+∞

g(ξ, λn) : P(M) � λn
∗
⇀ λ

}
, (4)

where λn
∗
⇀ λ means that for every ϕ ∈ Cc(M), limn→+∞〈λn, ϕ〉 = 〈λ, ϕ〉. It is worth noticing that, if f

does not depend on x, then ḡ(ξ, λ) =
∫

M
f(ζ)dλ(ζ) for all ξ ∈ M and all λ ∈ Hξ(M) (cf. Prop. 2.7). Let
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F : Y(Ω; M) → [0,+∞] be defined by

F(µ) :=

⎧⎨⎩
∫

Ω

ḡ
(
bar(µx), µx

)
dx if µ = µx ⊗ dx ∈ U

+∞ otherwise
(5)

with bar(µx) :=
∫

M
ζdµx(ζ). Here are the main results of the paper.

Theorem 1.1. Under (C1) and (C2), we have F = Γ(nar)- limε→0 Fε.

The Γ-convergence process stated in Theorem 1.1 is taken with respect to the narrow convergence of Young
measures because of its compactness property (cf. Prokhorov’s compactness theorem in Sect. 2 and Cor. 1.2(iii)).

According to the previous discussion, F (resp. ḡ) in (5) (resp. (4)) can be called the homogenized free-
energy functional (resp. homogenized free-energy density) of the material in terms of Young measures. Since
Fε(u) = Fε

(
δ∇u(x)⊗dx

)
for all u ∈ U , as a direct consequence of Theorem 1.1, Proposition 2.3 and Remark 2.1,

we obtain

Corollary 1.2. Under the hypotheses of Theorem 1.1, we have:
(i) limε→0 infU Fε = minU F = minU Fhom;
(ii) if δ∇uε(x) ⊗ dx nar

⇀ µ, with {uε}ε an ε-minimizing sequence for Fε in U , then µ is a minimizer for F in
U;

(iii) if µ is a minimizer for F in U, then, there exists an ε-minimizing sequence {uε}ε for Fε in U , such that
δ∇uε(x) ⊗ dx nar

⇀ µ;
(iv) u is a minimizer for Fhom in U if and only if, there exists a minimizer µ = µx ⊗ dx for F in U, such

that ∇u(x) = bar(µx) for a.e. x ∈ Ω.

Remark 1.3. In contrast to the relaxed functional in (3), the homogenized functional in (5) is “quasi-local”:
it is local with respect to dx but, in general, non-local with respect to µx, i.e., ḡ has, a priori, no integral
representation with respect to µx.

Finally, the following result makes clear the link between fhom and ḡ.

Theorem 1.4. Assume that conditions (C1) and (C2) hold. Then,

fhom(ξ) = inf
{∫

Y

ḡ(ξ, µx)dx : µx ⊗ dx ∈ ∇Y(Y ), bar(µx) = ξ

}
(6)

for all ξ ∈ M, where ∇Y(Y ) denotes the set of all W 1,p(Y ; Rm)-gradient Young measures.

A concrete example of our nonlinear homogenization process can be given when considering the free-energy
functional of a polycristal with shape Ω. In this particular case

f(x, ξ) = h
(t
R(x)ξR(x)

)
,

where R is a spatially periodic (or random) piecewise constant rotation-valued function, and h has a finite num-
ber of wells (in the setting of linear elasticity these wells are called the stress-free strains of martensite variants,
see Bhattacharya and Kohn [5] for more details). Minimizers of the homogenized free-energy functional Fhom

in (2) characterize the mixtures of martensite variants in the austenite/martensite phase transformation below
the transition temperature. According to the point of view of Bhattacharya and Kohn, and taking formula (6)
into account, we can say that ḡ is the microscopic free-energy density corresponding to the macroscopic one fhom.

The plan of the paper is as follows. Section 2 presents some preliminaries. In Section 2.1 we review some
of the standard facts on Young (and gradient Young) measures. In Section 2.2, we briefly recall the notion of
Γ-convergence. In Section 2.3 we point out a subadditive result (cf. Prop. 2.4) for the set function A �→ SA(ξ, λ)
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with ξ ∈ M and λ ∈ Hξ(M) (Prop. 2.4 is used in the proof of the upper bound in Th. 1.1). Properties of ḡ
(cf. Props. 2.5 and 2.7) are established in Section 2.4. Section 3 (resp Sect. 4) is devoted to the proof of
Theorem 1.1 (resp. Th. 1.4). Finally, in Section 5 we discuss on some open questions and possible extensions.

2. Preliminaries

2.1. Young measures

Let N,m ≥ 1 be two integers let M denote the space of all real m×N matrices, and consider a bounded open
set Ω ⊂ RN . A Young measure on Ω × M is a positive Radon measure µ on Ω × M such that µ(B × M) = |B|
for all Borel set B ⊂ Ω, where |B| denotes the Lebesgue measure of B. The set of all Young measures on Ω×M

is denoted by Y(Ω; M). By Cthb(Ω; M) we denote the space of all bounded Carathéodory integrands on Ω×M.
Given µ ∈ Y(Ω; M) and {µn}n≥1 ⊂ Y(Ω; M), we say that µn narrow converges to µ, and we write µn

nar
⇀ µ, if

for every ϕ ∈ Cthb(Ω; M),

lim
n→+∞

∫
Ω×M

ϕ(x, ξ)dµn(x, ξ) =
∫

Ω×M

ϕ(x, ξ)dµ(x, ξ).

We denote the set of all probability measures on M by P(M). For a proof of the following theorem we refer to
[13], Theorem 10, p. 14 (see also [22], Th. A4 and Cor. A5).

Slicing theorem. Given µ ∈ Y(Ω; M), there exists a unique (up to the equality a.e.) family {µx}x∈Ω ⊂ P(M)
such that:

(i) the function x �→ ∫
Ω×M

ϕ(x, ξ)dµx is measurable;
(ii)

∫
Ω×M

ϕ(x, ξ)dµ(x, ξ) =
∫
Ω

( ∫
M
ϕ(x, ξ)dµx(ξ)

)
dx,

for every ϕ ∈ L1
µ(Ω × M). To summarize it, we will write µ = µx ⊗ dx.

The slicing theorem leads to the following version of the narrow convergence, (see [22] for more details).
Given µ ∈ Y(Ω; M) and {µn = µn

x ⊗ dx}n≥1 ⊂ Y(Ω; M), we have: µn
nar
⇀ µ if and only if for every ψ ∈ Cc(M),∫

M

ψ(ξ)dµn
x(ξ) ⇀

∫
M

ψ(ξ)dµx(ξ) in L∞(Ω) weak∗,

i.e., for every ψ ∈ Cc(M) and every ϕ ∈ L1(Ω),

lim
n→+∞

∫
Ω

ϕ(x)
(∫

M

ψ(ξ)dµn
x(ξ)

)
dx =

∫
Ω

ϕ(x)
(∫

M

ψ(ξ)dµx(ξ)
)

dx.

We say that {µn} ⊂ Y(Ω; M) is tight if for every δ > 0, there exists a compact set K ⊂ M such that sup
{
µn

(
Ω×

(M \K)
)

: n ≥ 1
}
< δ. A proof of the following compactness result can be found in [22], Theorem 11 (see also

[23], Th. 7 and Comments 1), 2) and 3)).

Prokhorov’s compactness theorem. If {µn} ⊂ Y(Ω; M) is tight, then there exists µ ∈ Y(Ω; M) such that,
up to a subsequence, µn

nar
⇀ µ.

Remark 2.1. A straightforward consequence of Prokhorov’s compactness theorem is the following: if {ξn}n≥1

is a bounded sequence in L1(Ω; M), then the sequence {δξn(x) ⊗dx}n≥1 is narrow relatively compact. Indeed, by
Markov’s inequality, i.e., |{x ∈ Ω : |ξn(x)| ≥ c}| ≤ (1/c)

∫
Ω |ξn(x)|dx for any c > 0 and any n ≥ 1, it is obvious

that {δξn(x) ⊗ dx}n≥1 is tight.

The result below is usually referred as the continuity theorem. For a proof we refer to [23], Theorem 6 and
Comments 1), 2), 3) and 4).
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Continuity theorem. Let {ξn}n≥1 be a sequence of measurable functions from Ω to M, let ϕ : Ω×M → R be
a Carathéodory integrand, and let µ ∈ Y(Ω; M). If δξn(x)⊗dx nar

⇀ µ and the sequence
{
ϕ(·, ξn)

}
n≥1

is uniformly
integrable, then

lim
n→+∞

∫
Ω

ϕ
(
x, ξn(x)

)
dx =

∫
Ω×M

ϕ(x, ξ)dµ(x, ξ).

Finally, we say that µ ∈ Y(Ω; M) is a U-gradient Young measure if there exists a bounded sequence {un}n≥1

in U such that δ∇un(x)⊗dx nar
⇀ µ. The set of all U-gradient Young measures is denoted by U. A characterization

of U was established by Kinderlehrer and Pedregal in [16], Theorem 1.1 (see also [20], Th. 8.14 p. 150).

Kinderlehrer-Pedregal’s characterization theorem. µ ∈ U if and only if the following three conditions
hold:

(i) there exists u ∈ U such that ∇u(x) =
∫

M
ζdµx(ζ) =: bar(µx) for a.e. x ∈ Ω;

(ii) h
( ∫

M
ζdµx(ζ)

) ≤ ∫
M
h(ζ)dµx(ζ) for a.e. x ∈ Ω and for every quasiconvex function h : M → R bounded

below, and satisfying h(ζ) ≤ c
(
1 + |ζ|p) for all ζ ∈ M and some c > 0;

(iii)
∫
Ω

( ∫
M
|ζ|pdµx(ζ)

)
dx < +∞.

Remark 2.2. Given ξ ∈ M and a bounded open set A ⊂ RN , the set of all lξ +W 1,p
0 (A; Rm)-gradient Young

measures is denoted by ∇Yξ(A). Similarly, we have: µ ∈ ∇Yξ(A) if and only if (i), (ii) and (iii) are satisfied
with Ω replaced by A and U by lξ +W 1,p

0 (A; Rm). Thus, the elements of Hξ(M) are the homogeneous elements
of ∇Yξ(A) whose barycenter is equal to ξ, i.e.,

Hξ(M) ≡
{
µx ⊗ dx ∈ ∇Yξ(A) : ∀x ∈ Ω, µx = λ with λ ∈ P(M) and bar(λ) = ξ

}
.

2.2. Γ-convergence

Let {Fε}ε be a sequence of functionals from Y(Ω; M) to [0,+∞] and let F : Y(Ω; M) → [0,+∞]. We say
that Fε Γ(nar)-converges to F as ε → 0, and we write F = Γ(nar)- limε→0 Fε, if the following two assertions
hold:
Lower bound: for every µ ∈ Y(Ω; M), and every µε

nar
⇀ µ,

F(µ) ≤ lim
ε→0

Fε(µε);

Upper bound: for every µ ∈ Y(Ω; M), there exists µε
nar
⇀ µ such that

F(µ) ≥ lim
ε→0

Fε(µε).

The following proposition is a well-known result that makes precise the variational nature of Γ-convergence.

Proposition 2.3. If F = Γ(nar)- limε→0 Fε and if {µε}ε is an ε-minimizing sequence for {Fε}ε which is narrow
relatively compact, then any cluster point µ of {µε}ε is a minimizer for F , and limε→0 inf Fε(µε) = F(µ).

For a proof and a deeper discussion of the Γ-convergence theory we refer the reader to the books [3, 7, 11].

2.3. A subadditive result

Denote the class of all bounded open subsets of RN by Ob. A set function S : Ob → [0,+∞[, A �→ SA, is
called subadditive if SA ≤ SA′ + SA′′ for all A,A′, A′′ ∈ Ob such that A′ ⊂ A, A′′ ⊂ A and |A′ ∩ A′′| = 0,
|A \A′ ∪A′′| = 0. The following well-known result is substantially the subadditive ergodic theorem of Akcoglu
and Krengel (see [1]) in the deterministic case. For a proof we refer to [17], Theorem 2.1 (see also [2], Lem.
B.1).
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Akcoglu-Krengel’s subadditive theorem. Let Cub(RN ) be the class of all open cubes in RN , and consider
a subadditive set function S : Ob → [0,+∞[ satisfying the following two conditions:

(S1) SA ≤ c|A| for all A ∈ Ob and some c > 0;
(S2) S is ZN -invariant, i.e., SA+z = SA for all z ∈ ZN and all A ∈ Ob.

Then, for every Q ∈ Cub(RN ) and every real sequence {rk}k≥1 with rk → +∞ as k → +∞,

lim
k→+∞

SrkQ

|rkQ| = inf
k∈N∗

SkY

kN
·

In our framework, we are led to consider, for each ξ ∈ M and each λ ∈ P(M), the set function Ob � A �→ SA(ξ, λ)
given by

SA(ξ, λ) := inf
{∫

A

(∫
M

f(x, ζ)dσx(ζ)
)

dx : σx ⊗ dx ∈ ΓA(ξ, λ)
}
,

where ΓA : M × P(M)−→−→Y(A; M) is the multifunction defined by

ΓA(ξ, λ) :=
{
σx ⊗ dx ∈ ∇Yξ(A) : −

∫
A

σxdx = λ

}
. (7)

According to Remark 2.2, it is clear that for every A ∈ Ob,

ΓA(ξ, λ) = ∅ if and only if λ �∈ Hξ(M). (8)

For λ ∈ Hξ(M) with ξ ∈ M, we see that λ ⊗ dx ∈ ΓA(ξ, λ). From the second inequality in (C2), it follows
that SA(ξ, λ) ≤ β

(
1 +

∫
M
|ζ|pdλ(ζ)

)|A| for all A ∈ Ob. Thus S(·)(ξ, λ) satisfies (S1). Condition (C1) makes
it is obvious that (S2) holds, and we let the reader to verify that S(·)(ξ, λ) is subadditive. Applying Akcoglu-
Krengel’s subadditive theorem, we obtain the following proposition used in the proof of the upper bound in
Theorem 1.1 (cf. Sect. 3.2).

Proposition 2.4. If (C1) and the second inequality in (C2) hold, then for every ξ ∈ M and every λ ∈ Hξ(M),

lim
k→+∞

SkY (ξ, λ)
kN

= inf
k∈N∗

SkY (ξ, λ)
kN

·

2.4. Properties of ḡ

We begin with the following proposition.

Proposition 2.5. For every µx ⊗ dx ∈ U, we have:
(i) the function x �→ ḡ

(
bar(µx), µx

)
is measurable;

(ii) if (C2) holds then α
∫

M
|ζ|pdµx(ζ) ≤ ḡ

(
bar(µx), µx

) ≤ β
(
1 +

∫
M
|ζ|pdµx(ζ)

)
for a.e. x ∈ Ω.

Remark 2.6. As a consequence of Kinderlehrer-Pedregal’s characterization theorem(iii) and the second in-
equality in Proposition 2.5(ii), we have dom

(F)
= U.

Proof of Proposition 2.5. (i) For every A ∈ Ob, the mesurability of the function

M × P(M) � (ξ, λ) �→ SA(ξ, λ) = inf
{

F
(
σx ⊗ dx

)
: σx ⊗ dx ∈ ΓA(ξ, λ)

}
,

where F : Y(A; M) → [0,+∞] is defined by F
(
σx⊗dx

)
=

∫
A

( ∫
M
f(x, ζ)dσx(ζ)

)
dx and ΓA : M×P(M)−→−→Y(A; M)

is given by (7), comes from [9], Lemma III.39. Taking (8) into account, we see that g(ξ, λ) = infk∈N∗ SkY (ξ, λ)/kN

for all ξ ∈ M and all λ ∈ P(M), hence g is measurable and (i) follows.
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(ii) Fix x ∈ Ω. From the second inequality in (C2), we have∫
Y

(∫
M

f(y, ζ)dµx(ζ)
)

dy ≤ β

(
1 +

∫
M

|ζ|pdµx(ζ)
)
,

and the second inequality in (ii) follows since ḡ(bar(µx), µx) ≤ SY (bar(µx), µx) and µx ⊗dy ∈ ΓY (bar(µx), µx).
On the other hand, considering {λn}n≥1 ⊂ P(M) such that λn

∗
⇀ µx and ḡ(bar(µx), µx) = limn→+∞ g(bar(µx),

λn), and using the first inequality in (C2), we see that

ḡ
(
bar(µx), µx

) ≥ lim
n→+∞

α

∫
M

|ζ|pdλn(ζ) ≥ α

∫
M

|ζ|pdµx(ζ),

which completes the proof. �
The next proposition shows that the relaxation theorem of Kinderlehrer and Pedregal is a particular case of

Corollary 1.2.

Proposition 2.7. If the second inequality in (C2) holds and if f does not depend on x, then ḡ(ξ, λ) =∫
M
f(ζ)dλ(ζ) for all ξ ∈ M and all λ ∈ Hξ(M).

Proof. Taking the second inequality in (C2) into account, it is clear that for every k ≥ 1, every ξ ∈ M and
every λ ∈ Hξ(M), −∫ kY

( ∫
M
f(ζ)dσx(ζ)

)
dx =

∫
M
f(ζ)dλ(ζ) whenever σx ⊗ dx ∈ ∇Yξ(kY ) with −∫ kyσxdx = λ. It

follows that g(ξ, λ) =
∫

M
f(ζ)dλ(ζ) for all ξ ∈ M and all λ ∈ Hξ(M), which gives the desired conclusion because

the mapping λ �→ ∫
M
f(ζ)dλ(ζ) is weakly lower semicontinuous on P(M). �

3. Proof of Theorem 1.1

3.1. Proof of the lower bound

Let µ = µx ⊗ dx ∈ Y(Ω; Rm), and µε
nar
⇀ µ. We have to prove that

F(µ) ≤ lim
ε→0

Fε(µε). (9)

Without loss of generality we can assume that

lim
ε→0

Fε(µε) < +∞. (10)

Thus, µε ∈ ∆(U), i.e., there exists uε ∈ U such that µε = δ∇uε(x) ⊗ dx, and so

Fε(µε) =
∫

Ω

f
(x
ε
,∇uε(x)

)
dx.

From the first inequality in (C2), we see that {µε}ε is tight. Using Prokorov’s compactness theorem, we deduce
that there exists µ ∈ U such that (up to a subsequence) µε

nar
⇀ µ (cf. Rem. 2.1). Then µ = µ, and so µ ∈ U.

According to Kinderlehrer-Pedregal’s characterization theorem, there exists u ∈ U such that bar(µx) = ∇u(x)
for a.e. x ∈ Ω.

In order to obtain (9) we proceed in three steps. Firstly, using a standard blow-up technique near x0, we
show that is sufficient to prove

ḡ
(∇u(x0), µx0

) ≤ lim
ρ→0

lim
ε→0

−
∫

Qρ(x0)

f
(x
ε
,∇uε(x)

)
dx. (11)
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The two last steps consist in establishing (11) by means of De Giorgi’s slicing method together with a lower
semicontinuous regularization.
Step 1 (localization and blow-up). Denote the space of all Radon measures on Ω by M(Ω), and set M+(Ω) :=
{Θ ∈ M(Ω) : Θ ≥ 0}. Let {Θε}ε ⊂ M+(Ω) be defined by

Θε := f
( ·
ε
,∇uε

)
dx.

By (10), {Θε}ε is bounded in M+(Ω), hence there exists Θ ∈ M+(Ω) such that (up to a subsequence) Θε
∗
⇀ Θ.

As Θ(Ω) ≤ limε→0 Θε(Ω), if we prove that∫
Ω

ḡ
(∇u(x), µx

)
dx ≤ Θ(Ω),

then (9) will follow. Consider the Lebesgue decomposition of Θ = Θa + Θs, where Θa,Θs ∈ M+(Ω) are
respectively the absolutely continuous and the singular part with respect to dx. Radon-Nikodym’s theorem
asserts that there exists θ ∈ L1(Ω; R+) such that Θa = θdx, and by Lebesgue’s differentiation theorem,

θ(x0) = lim
ρ→0

Θa
(Qρ(x0)

)∣∣Qρ(x0)
∣∣ = lim

ρ→0

Θ
(Qρ(x0)

)∣∣Qρ(x0)
∣∣ (12)

for a.e. x0 ∈ Ω, where Qρ(x0) is the open cube centered at x0 and of side ρ. From now on, one fix any x0

outside a negligible set of Ω, such that the following four assertions hold:
– bar(µx0) = ∇u(x0);
– (12) holds;
– for every ψ ∈ D,

lim
ρ→0

−
∫

Qρ(x0)

(∫
M

ψ(ξ)dµx(ξ)
)

dx =
∫

M

ψ(ξ)dµx0 (ξ), (13)

where D is a countable subset of Lipschitz function from M to R which is dense in Cc(M);
– for ū : RN → Rm denoting the affine function defined by ū(x) := u(x0) + ∇u(x0) · (x − x0), we have

(see [24], Th. 3.4.2)

lim
ρ→0

1
ρ
−
∫

Qρ(x0)

∣∣u− ū
∣∣dx = 0. (14)

As Θε
∗
⇀ Θ, one has Θ

(Qρ(x0)
)

= limε→0 Θε

(Qρ(x0)
)

whenever Θ
(
∂Qρ(x0)

)
= 0. Since Θ is finite,

Θ
(
∂Qρ(x0)

)
= 0 for all but countably many ρ > 0. In the sequel, we will take ρ such that Θ

(
∂Qρ(x0)

)
= 0.

Consequently, it is sufficient to prove (11).
Step 2 (decreasing the energy by slicing De Giorgi’s method). Fix any t ∈]0, 1[ and any � ∈ N∗. For each
i ∈ {0, · · · , �}, define Qi := Qtρ+i(1−t)ρ/�(x0) and consider a cut-off function φi between Qi−1 and Qi (i ≥ 1) such
that ‖∇φi‖∞ ≤ 2�

(1−t)ρ . Setting ui
ε(x) := ū(x) + φi(x)(uε(x) − ū(x)), we have ui

ε ∈ l∇u(x0) +W 1,p(Qρ(x0); Rm)
and

∇ui
ε =

⎧⎨⎩
∇uε on Qi−1

∇u(x0) + (uε − ū) ⊗∇φi + φi(∇uε −∇u(x0)) on Qi \ Qi−1

∇u(x0) on Qρ(x0) \ Qi.
(15)

Using the second inequality in (C2), we obtain

1
�

�∑
i=1

−
∫

Qρ(x0)

f
(x
ε
,∇ui

ε(x)
)
dx ≤ −

∫
Qρ(x0)

f
(x
ε
,∇uε(x)

)
dx+ Â(ε, ρ) (16)
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with Â(ε, ρ) := 1
�

∑�
i=1 Ai(ε, ρ) and

Ai(ε, ρ) :=
1
ρN

∫
Qi\Qi−1

f
(x
ε
,∇ui

ε(x)
)
dx+ β

(
1 + |∇u(x0)|p

)(
1 − tN

)
.

Let kε ∈ N∗ be the smallest integer such that 1
εQρ(x0) ⊂ kεY + zε for an appropriate zε ∈ ZN . Consider

ı̄(ε, ρ, t, �) =: ı̄ ∈ {1, · · · , �} such that

−
∫

Qρ(x0)

f
(x
ε
,∇uı̄

ε(x)
)
dx ≤ 1

�

�∑
i=1

−
∫

Qρ(x0)

f
(x
ε
,∇ui

ε(x)
)
dx, (17)

and define wı̄
ε ∈ l∇u(x0) +W 1,p

0

(
kεY ; Rm

)
by

wı̄
ε(x) :=

{ 1
εv

ı̄
n

(
ε(x+ zε)

)
if x ∈ 1

εQρ(x0) − zε

l∇u(x0)(x) if x ∈ kεY \ (
1
εQρ(x0) − zε

)
with vı̄

ε ∈ l∇u(x0) +W 1,p
0

(Qρ(x0); Rm
)

given by vı̄
ε(x) := uı̄

ε(x) − u(x0) + ∇u(x0) · x0. By (C1), we thus have

−
∫

1
ε Qρ(x0)

f
(
x,∇wı̄

ε(x− zε)
)
dx = −

∫
Qρ(x0)

f
(x
ε
,∇uı̄

ε(x)
)
dx. (18)

Setting γ := β
(
1 + |∇u(x0)|

)
and ∆ε := k−N

ε

[
kN

ε − (kε − 2)N
]
, it is easily seen that

−
∫

kεY

f
(
x,∇wı̄

ε(x)
)
dx ≤ −

∫
1
εQρ(x0)

f
(
x,∇wı̄

ε(x− zε)
)
dx+ γ∆ε.

Let λı̄
ε ∈ H∇u(x0)(M) be defined by

λı̄
ε := −

∫
kεY

δ∇wı̄
ε(x)dx.

By definition, limε→0 kε = +∞, hence limε→0 ∆ε = 0, and consequently

lim
ε→0

inf
k∈N∗

SkY (ξ, λı̄
ε)

kN
= lim

ε→0
g
(∇u(x0), λı̄

ε

)
(19)

≤ lim
n→+∞−

∫
1
εQρ(x0)

f
(
x,∇wı̄

n(x− zε)
)
dx.

Using (14), we see that limρ→0 limε→0 Â(ε, ρ) ≤ c
[(

1 − tN
)

+ 1
�

]
, where c > 0 is a constant independent of ε,

ρ, t and �. Taking (16), (17) and (18) into account, from (19) we deduce that

lim
�→+∞

lim
t→1

lim
ρ→0

lim
ε→0

g
(∇u(x0), λı̄

ε

) ≤ lim
ρ→0

lim
ε→0

−
∫

Qρ(x0)

f
(x
ε
,∇uε(x)

)
dx. (20)

Step 3 (end of the proof). There is no loss of generality in assuming that there exist λρ(t, �), λt(�), λ�, λ ∈ P(M)
such that λı̄

ε
∗
⇀ λρ(t, �) as ε → 0, λρ(t, �)

∗
⇀ λt(�) as ρ → 0, λt(�)

∗
⇀ λ� as t → 1 and λ�

∗
⇀ λ as � → +∞. We

claim that
λ = µx0 .
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Indeed, given any ϕ ∈ Cc(M) and any η > 0, consider ψ ∈ D a C-Lipschitz function such that ‖ϕ− ψ‖∞ ≤ η.
Then, ∣∣〈λı̄

ε − µx0 , ϕ〉
∣∣ ≤ ∣∣〈λı̄

ε − µx0 , ψ〉
∣∣ + 2η.

Moreover, ∣∣〈λı̄
ε − µx0 , ψ〉

∣∣ ≤ ∣∣∣∣∣−
∫

Qρ(x0)

ψ
(∇uε(x)

)
dx − 〈µx0 , ψ〉

∣∣∣∣∣ +
∣∣ψ(∇u(x0)

)∣∣∆ε + Bı̄(ε, ρ)

with
Bı̄(ε, ρ) := −

∫
Qρ(x0)

∣∣ψ(∇uı̄
ε(x)

) − ψ
(∇uε(x)

)∣∣dx.
Since µε

nar
⇀ µ, from (13) we have

lim
ρ→0

lim
ε→0

∣∣∣∣∣−
∫

Qρ(x0)

ψ
(∇uε(x)

)
dx− 〈µx0 , ψ〉

∣∣∣∣∣ = 0.

As ψ is C-Lipschitz, using (C2) and (15), we obtain the following estimate:

Bı̄(ε, ρ) ≤ Ĉ
(
1 − tN

)p−1/p

[
1 +

(
Θε(Qρ(x0))
|Qρ(x0)|

)1/p
]

+
2C�

(1 − t)ρ
−
∫

Qρ(x0)

∣∣u− ū
∣∣dx

with Ĉ := max
{
C

∣∣∇u(x0)
∣∣, (1/α)1/p

}
. Taking (14) into account, we see that

lim
ρ→0

lim
ε→0

Bı̄(ε, ρ) ≤ Ĉ
(
1 − tN

)p−1/p
(∣∣∇u(x0)

∣∣ + θ(x0)1/p
)

with θ(x0) given by (12). Thus lim�→+∞ limt→1 limρ→0 limε→0

∣∣〈λı̄
ε − µx0 , ψ〉

∣∣ = 0. As η is arbitrary, we deduce
that for every ϕ ∈ Cc(M),

lim
�→+∞

lim
t→1

lim
ρ→0

lim
ε→0

〈λı̄
ε, ϕ〉 = 〈µx0 , ϕ〉,

and the claim follows. We thus have:
– ḡ

(∇u(x0), λρ(t, �)
) ≤ lim

ε→0
g
(∇u(x0), λı̄

ε

)
;

– ḡ
(∇u(x0), λt(�))

) ≤ lim
ρ→0

ḡ
(∇u(x0), λρ(t, �)

)
;

– ḡ
(∇u(x0), λ�

) ≤ lim
t→1

ḡ
(∇u(x0), λt(�)

)
;

– ḡ
(∇u(x0), µx0

) ≤ lim
�→+∞

ḡ
(∇u(x0), λ�

)
.

Hence, ḡ
(
µx0 ,∇u(x0)

) ≤ lim�→+∞ limt→1 limρ→0 limε→0 g
(
λı̄

ε,∇u(x0)
)
, and (11) follows from (20).

3.2. Proof of the upper bound

Let µ ∈ Y(Ω; M). We have to prove that there exists {µε}ε ⊂ Y(Ω; M) such that µε
nar
⇀ µ and

F(µ) ≥ lim
ε→0

Fε(µε).

Without loss of generality we can assume that F(µ) < +∞. Thus µ ∈ U (cf. Rem. 2.6), and

F(µ) =
∫

Ω

ḡ
(
bar(µx), µx

)
dx.

We proceed in three steps. For a comprehensive reading we refer to Remark 3.1 before Step 3.
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Step 1 (localization by generalized Riemann summation). Taking Proposition 2.5(i) into account and using [16],
Lemma 5.1, we can assert that for every integer j ≥ 1, there exists a countable family (ai,j +si,jΩ)i≥1 of disjoint
subsets of Ω, with ai,j ∈ Ω and 0 < si,j <

1
j , such that:

∣∣Ω \ ∪∞
i=1(ai,j + si,jΩ)

∣∣ = 0;

∫
Ω

ḡ
(
bar(µx), µx

)
dx = lim

j→+∞

∞∑
i=1

∣∣Ωi,j

∣∣ḡ(bar(µai,j ), µai,j

)
(21)

with Ωi,j := ai,j + si,jΩ; and

∫
Ω

ϕ(x)
(∫

M

ψ(ξ)dµx(ξ)
)

dx = lim
j→+∞

∞∑
i=1

∫
M

ψ(ξ)dµai,j (ξ)
∫

Ωi,j

ϕ(x)dx (22)

for all ϕ ∈ L1(Ω) and all ψ ∈ D, where D is a dense countable subset of Cc(M).

Step 2 (Proof of the upper bound on Ωi,j). Fix any i, j ≥ 1. Set ξi,j := bar(µai,j ) and consider {λn}n≥1 ⊂
Hξi,j (M) such that:

(A1) λn
∗
⇀ µai,j , and so λn ⊗ dx nar

⇀ µai,j ⊗ dx as n→ +∞;
(B1) lim

n→+∞ g
(
ξi,j , λn

)
= ḡ

(
ξi,j , µai,j

)
.

By Proposition 2.4, we have g
(
ξi,j , λn

)
= limk→+∞ SkY

(
ξi,j , λn

)
/kN for all n ≥ 1. Moreover, there is no

loss of generality in assuming that to every n, k ≥ 1, there corresponds σn,k
x ⊗ dx ∈ ∇Yξi,j (kY ) such that

−∫ kY σ
n,k
x dx = λn and SkY

(
ξi,j , λn

)
=

∫
kY

(∫
M
f(x, ζ)dσn,k

x (ζ)
)
dx. Thus:

(A2) −
∫

kY

σn,k
x dx = λn for all k ≥ 1;

(B2) lim
k→+∞

−
∫

kY

(∫
M

f(x, ζ)dσn,k
x (ζ)

)
dx = g

(
ξi,j , λn

)
.

For each n, k ≥ 1 and each ε > 0, set Zk,ε :=
{
z ∈ ZN : ε(kY + z) ⊂ Ωi,j

}
, Uk,ε := ∪z∈Zk,ε

ε(kY + z), and define
{σn,k,ε

x }x∈Ωi,j by

σn,k,ε
x :=

{
σn,k,#

x
ε

if x ∈ Uk,ε

δξi,j if x ∈ Ωi,j \ Uk,ε

where y �→ σn,k,#
y denotes the kY -periodic extension of y �→ σn,k

y to RN . Using classical convergence results on
oscillating sequences, it is easy to see that:

(A3) σn,k,ε
x ⊗ dx nar

⇀

(
−
∫

kY

σn,k
y dy

)
⊗ dx as ε→ 0;

(B3) lim
ε→0

∫
Ωi,j

(∫
M

f
(x
ε
, ζ

)
dνn,k,ε

x (ζ)
)

dx =
∣∣Ωi,j

∣∣−∫
kY

(∫
M

f(x, ζ)dσn,k
x (ζ)

)
dx.

Since σn,k
x ⊗ dx ∈ ∇Yξi,j (kY ), there exists a bounded sequence {un,k

� }�≥1 ⊂ lξi,j + W 1,p
0 (kY ; Rm) such that

δ∇un,k
� (x) ⊗ dx nar

⇀ σn,k
x ⊗ dx as �→ +∞. For each � ≥ 1, define un,k,ε

� ∈ lξi,j +W 1,p
0 (Ωi,j ; Rm) by

un,k,ε
� (x) :=

{
un,k,#

�

(
x
ε

)
if x ∈ Uk,ε

lξi,j (x) if x ∈ Ωi,j \ Uk,ε

where un,k,#
� denotes the kY -periodic extension of un,k

� to RN . An easy computation shows that

(A4) δ∇un,k,ε
� (x) ⊗ dx nar

⇀ σn,k,ε
x ⊗ dx as �→ +∞.
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By using a truncation argument, we can modify un,k,ε
� (on a 1/�-neighborhood of ∂Ωi,j) in a function ûn,k,ε

� ∈
W 1,p

0 (Ωi,j ; Rm) such that ∇ûn,k,ε
� −∇un,k,ε

� → 0 in measure on Ωi,j as �→ +∞. Therefore (A4) is satisfied with
un,k,ε

� replaced by ûn,k,ε
� . We can also assume that the sequence {|∇ûn,k,ε

� |p}�≥1 is uniformly integrable (see
[20], Lem. 8.15 p. 151), and so is {f( · /ε,∇ûn,k,ε

�

)}�≥1 by the second inequality in (C2). Still denoting ûn,k,ε
�

by un,k,ε
� , the continuity theorem then gives

(B4) lim
�→+∞

∫
Ωi,j

f
(x
ε
,∇un,k,ε

� (x)
)
dx =

∫
Ωi,j

(∫
M

f
(x
ε
, ζ

)
dσn,k,ε

x (ζ)
)

dx.

Finally, taking (A1),(A2),(A3) and (A4) together with (B1), (B2), (B3) and (B4) into account, and using standard
diagonalization arguments5, we can assert that there exist mappings ε �→ nε, ε �→ kε and ε �→ �ε, tending to +∞
as ε→ 0, such that:
(Ai,j) δ∇ui,j

ε (x) ⊗ dx nar
⇀ µai,j ⊗ dx as ε→ 0;

(Bi,j) lim
ε→0

∫
Ωi,j

f
(x
ε
,∇ui,j

ε (x)
)
dx =

∣∣Ωi,j

∣∣ḡ(ξxi,j , µai,j

)
,

where ui,j
ε := unε,kε,ε

�ε
.

Remark 3.1. Roughly, the parameter � accounts for the oscillations of the gradients ∇un,k,ε
� due to the multi-

well structure, the parameter ε for the oscillations of the corresponding generated Young measure due to the
the periodic structure of the material. The parameter n can be seen as a lower semicontinuous regularization
parameter.

Step 3 (end of the proof). For each j, q ≥ 1 and each ε > 0, define uj
q,ε ∈ U by

uj
q,ε(x) :=

{
ui,j

ε (x) if x ∈ Ωi,j with i ∈ {1, · · · , q}
0 if x ∈ Ω \ ∪q

i=1Ωi,j .

Then we have ∫
Ω

f
(x
ε
,∇uj

q,ε(x)
)
dx =

q∑
i=1

∫
Ωi,j

f
(x
ε
,∇ui,j

ε (x)
)
dx+

∫
Ω\∪q

i=1Ωi,j

f
(x
ε
, 0

)
dx.

But, since f(·, 0) is Y -periodic and
∣∣Ω \ ∪∞

i=1Ωi,j

∣∣ = 0,

lim
q→+∞ lim

ε→0

∫
Ω\∪q

i=1Ωi,j

f
(x
ε
, 0

)
dx = lim

q→+∞
∣∣Ω \ ∪q

i=1Ωi,j

∣∣ ∫
Y

f(y, 0)dy = 0,

hence by (Bi,j)

lim
q→+∞ lim

ε→0

∫
Ω

f
(x
ε
,∇uj

q,ε(x)
)
dx =

∞∑
i=1

∣∣Ωi,j

∣∣ḡ(bar(µai,j ), µai,j

)
.

From (21) it follows that

lim
j→+∞

lim
q→+∞ lim

ε→0

∫
Ω

f
(x
ε
,∇uj

q,ε(x)
)
dx =

∫
Ω

ḡ
(
bar(µx), µx

)
dx. (23)

Similarly, from (Ai,j) and (22) we obtain

δ∇uj
q,ε(x) ⊗ dx nar

⇀ µ as first ε→ 0, then q → +∞ and finally j → +∞. (24)

5 Such arguments are valid because the set Y(Ωi,j , M) endowed with the narrow topology is metrizable (see [8], Prop. 2.3.1).
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Taking (23) together with (24) into account and using a diagonalization argument, we deduce that there exist
mappings ε �→ qε and ε �→ jε, tending to +∞ as ε→ 0, such that:

– µε
nar
⇀ µ;

– lim
ε→0

F(µε) = F(µ),

where µε := δ∇ujε
qε,ε(x) ⊗ dx, and the proof of the upper bound is complete. �

4. Proof of Theorem 1.4

Fix ξ ∈ M. Let µx ⊗dx ∈ ∇Y(Y ) be such that bar(µx) = ξ, and let {λn}n≥1 ⊂ P(M) be such that λn
∗
⇀ µx.

It is clear that for any n ≥ 1,

g(ξ, λn) ≥ inf
k∈N∗

SkY (ξ, λn)
kN

≥ inf
k∈N∗

inf
{
−
∫

kY

(∫
M

Qf(x, ζ)dσx(ζ)
)

dx : σ ∈ ∇Yξ(kY )
}
.

Moreover, Kinderlehrer-Pedregal’s characterization theorem asserts that for every σ ∈ ∇Yξ(kY ), there exists
φ ∈ W 1,p

0 (Ω; Rm) such that
∫

M
Qf(x, ζ)dσx(ζ) ≥ Qf(x,

∫
M
ζdσx(ζ)) = Qf(x, ξ + ∇φ(x)) for a.e. x ∈ Ω, hence

g(ξ, λn) ≥ inf
k∈N∗

inf
{
−
∫

kY

Qf(
x, ξ + ∇φ(x)

)
dx : φ ∈ W 1,p

0 (kY ; Rm)
}

= (Qf)hom(ξ) = fhom(ξ).

Letting n→ +∞, we have ḡ(ξ, µx) ≥ limn→+∞ g(ξ, λn) ≥ fhom(ξ), and consequently

inf
{∫

Y

ḡ(ξ, µx) dx : µx ⊗ dx ∈ ∇Y(Y ), bar(µx) = ξ

}
≥ fhom(ξ).

From the homogenization theorem of Braides and Müller, we deduce that there exists a sequence {uε}ε ⊂
W 1,p(Y ; Rm) such that uε ⇀ lξ in W 1,p(Y ; Rm) and

lim
ε→0

∫
Y

f
(x
ε
,∇uε(x)

)
dx = fhom(ξ). (25)

Using Prokorov’s compactness theorem (cf. Rem. 2.1) together with the continuity theorem, we obtain the
existence of µx ⊗ dx ∈ ∇Y(Y ) such that bar(µx) = ξ for a.e. x ∈ Ω and (up to a subsequence) δ∇uε(x) ⊗ dx nar

⇀
µx ⊗ dx. By (25) and Theorem 1.1, it follows that∫

Y

ḡ(ξ, µx) dx ≤ lim
ε→0

∫
Y

f
(x
ε
,∇uε(x)

)
dx = fhom(ξ).

Thus

inf
{∫

Y

ḡ(ξ, µx) dx : µx ⊗ dx ∈ ∇Y(Y ), bar(µx) = ξ

}
≤ fhom(ξ),

and the proof of Theorem 1.4 is complete. �
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5. Extensions and open questions

5.1. Extension to the stochastic case

Let I denote the class of all Carathéodory integrands w : RN ×M → R such that α|ξ|p ≤ w(x, ξ) ≤ β(1+ |ξ|p)
for all x ∈ RN , all ξ ∈ M and some α, β > 0. Let (Σ,T,P) be a probability space and let f : Σ× RN × M → R

be a measurable function such that
f(ω, ·, ·) ∈ I for all ω ∈ Σ.

Such a f is called a random integrand: when m = N = 3, it can be interpreted as the free-energy density of a
randomly heterogeneous material. Consider I the trace on I of the product σ-algebra of R

R
N×M, and, for each

z ∈ ZN , define τz : I → I by (
τzw

)
(x, ξ) := w(x+ z, ξ).

Then, {τz}z∈ZN is an additive group of measurable transformations on (I, I). Let f#P denote the image of the
probability P by the measurable map Σ � ω �→ f(ω, ·, ·) ∈ I. The Y -periodicity assumption (corresponding to
the deterministic case) is replaced by the following:

(H1) f is periodic in law, i.e., f#P(E) = f#P
(
τz(E)

)
for all z ∈ ZN and all E ∈ I.

For every ε > 0, we define Fε : Σ × Y(Ω; M) → [0,+∞] by

Fε(ω, µ) :=

⎧⎨⎩
∫

Ω

(∫
M

f
(
ω,
x

ε
, ξ

)
dµx(ξ)

)
dx if µ = µx ⊗ dx ∈ ∆(U)

+∞ otherwise.

In order that the Γ(nar)-limit of {Fε(ω, ·)}ε does not depend on ω, it is usual to make the following assumption
(see [12, 17] for more details):

(H2) f is ergodic, i.e., f#P(E) ∈ {0, 1} whenever E ∈ I is τ -invariant (τz(E) = E for all z ∈ ZN ).
For every A ∈ Ob, we consider SA : I × M × P(M) → [0,+∞] given by

SA(w, ξ, λ) := inf
{∫

A

(∫
M

w(x, ζ)dσx(ζ)
)

dx : σx ⊗ dx ∈ ΓA(ξ, λ)
}

with ΓA : M × P(M)−→−→Y(A; M) defined by (7). Taking (8) into account, we see that for every w ∈ I,
SA(w, ξ, λ) = +∞ if and only if λ �∈ Hξ(M). For λ ∈ Hξ(M) with ξ ∈ M, it is clear that

SA

(
w, ξ, λ

) ≤ β

(
1 +

∫
M

|ζ|pdλ(ζ)
) ∣∣A∣∣ for all A ∈ Ob and all w ∈ I.

Condition (H1) implies that S(·)(·, ξ, λ) is τ -covariant, i.e.,

SA

(
τzw, ξ, λ

)
= SA+z

(
w, ξ, λ

)
for all z ∈ Z

N , all A ∈ Ob and all w ∈ I,

and (H2) exactly means that the group {τz}z∈ZN is ergodic on the probability space (I, I, f#P). The set
function S(·)(w, ξ, λ) being subadditive for each w ∈ I, as a consequence of Akcoglu-Krengel’s subadditive
ergodic theorem, we obtain the following “ergodic version” of Proposition 2.4.
Proposition 2.4′. Given ξ ∈ M and λ ∈ Hξ(M), if (H1) and (H2) hold then for f#P-a.e. w ∈ I,

lim
k→+∞

SA(w, ξ, λ)
kN

= inf
k∈N∗

ESkY

(·, ξ, λ)
kN

= inf
k∈N∗

1
kN

∫
Σ

SkY

(
f(ω, ·, ·), ξ, λ)dP(ω),

where E denotes the expectation operator with respect to f#P.
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Proposition 2.4′ leads us to define g : M × P(M) → [0,+∞] by

g(ξ, λ) :=

⎧⎨⎩ inf
k∈N∗

1
kN

∫
Σ

SkY

(
f(ω, ·, ·), ξ, λ)dP(ω) if λ ∈ Hξ(M)

+∞ otherwise.

Then, similarly to the deterministic case, we consider ḡ : M × P(M) → [0,+∞] given by

ḡ(ξ, λ) := inf
{

lim
n→+∞

g(ξ, λn) : P(M) � λn
∗
⇀ λ

}
,

and we define F : Y(Ω; M) → [0,+∞] by

F(µ) :=

⎧⎨⎩
∫

Ω

ḡ
(
bar(µx), µx

)
dx if µ = µx ⊗ dx ∈ U

+∞ otherwise.

In our opinion, it is not difficult to extend Theorem 1.1 to the stochastic case as follows.

Conjecture 5.1. Under (H1) and (H2), Γ(nar)-limε→0 Fε(ω, .) = F for P-a.e. ω ∈ Σ.

5.2. Toward the analysis of oscillations-concentrations

The gradient Young measure associated with a bounded sequence {uε}ε in W 1,p(Ω; Rm) is convenient to
describe the oscillations of {∇uε}ε. On the other hand, the effects of concentrations are completely missed
by this tool. Indeed, any {vε}ε, with vε ∈ W 1,p

0 (Ω; Rm) and ∇uε − ∇vε → 0 in measure on Ω as ε → 0,
generates the same gradient Young measure. Thus, the (possible) concentrations, for example on ∂Ω, cannot
be characterized in this way. In fact, to account for the development of concentrations, we need the notion of
W 1,p-varifold introduced by Fonseca, Müller and Pedregal [14]. We are thus led to consider another formulation
of the functional Fε in (1) in terms of Young measures-varifolds.

Let M+(Ω × S) be the set of all positive Radon measures on Ω × S, where S is the unit sphere in M. Since
concentration phenomena are related to the behavior of f(x, ·) at infinity, we make the following assumption:

(C3) there exists a function f∞ : RN × M → [0,+∞[ such that for every x ∈ RN ,

lim
|ξ|→+∞

1
|ξ|p

(
f(x, ξ) − f∞(x, ξ)

)
= 0,

and, for each ε > 0, we consider Fε : Y(Ω; M) ×M+(Ω × S) → [0,+∞] defined by

Fε(µ, ν) :=

⎧⎨⎩
∫

Ω×M

[
f − f∞] (x

ε
, ξ

)
dµ+

∫
Ω×S

f∞
(x
ε
, ξ

)
dν if (µ, ν) ∈ ∆(U)

+∞ otherwise

with

∆(U) :=
{(
δ∇̃u(x) ⊗ dx, δ ∇̃u

|∇̃u| (x)
⊗ |∇̃u|pdx) : u ∈ U

}
,
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where ∇̃u is the zero extension of ∇u to RN \ Ω. Denoting by U the set of all (µ, ν) ∈ Y(Ω; M) ×M+(Ω × S)
such that:

– µ is a U-gradient Young measure on Ω × M;
– ν is a U-varifold on Ω × S, i.e., there exists a bounded sequence {uε}ε in U such that ν is the weak*

limit of δ ∇̃uε
|∇̃uε| (x)

⊗ |∇̃uε|pdx as ε→ 0,

it seems to us reasonable to make the following conjecture that we hope to study in a future work.

Conjecture 5.2. Under (C1), (C2) and (C3), we have6 Γ(nar, ∗)-limε→0 Fε = F with F : Y(Ω; M)×M+(Ω×
S) → [0,+∞] of the form:

F(µ, ν) =

⎧⎨⎩
∫

Ω

f̄1

(
bar(µx), µx,

dπ
dx
νx

)
dx+

∫
Ω

f̄2(bar(νx), νx)dπs if (µ, ν) ∈ U

+∞ otherwise,

where f̄1 : M ×P(M) ×M+(S) → [0,+∞[, f̄2 : S ×P(S) → [0,+∞[, π is a positive measure on Ω, ν = νx ⊗ π,
bar(νx) :=

∫
S
ζdνx(ζ) and π = dπ

dxdx+ πs is the Radon-Nikodym decomposition of π.
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