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Abstract. We study the Hamilton-Jacobi equation of the minimal time function in a domain which
contains the target set. We generalize the results of Clarke and Nour [J. Convex Anal., 2004], where the
target set is taken to be a single point. As an application, we give necessary and sufficient conditions
for the existence of solutions to eikonal equations.
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Introduction

Let F be a multivalued function mapping IRn to the subsets of IRn. We assume throughout this paper
that F satisfies the standing hypotheses; that is, F takes nonempty compact convex values, has closed graph,
and satisfies a linear growth condition: for some positive constants γ and c, and for all x ∈ IRn,

v ∈ F (x) =⇒ ‖v‖ ≤ γ‖x‖ + c.

The multivalued function F is also taken to be locally Lipschitz: every x ∈ IRn admits a neighborhood U = U(x)
and a positive constant K = K(x) such that

x1, x2 ∈ U =⇒ F (x2) ⊆ F (x1) +K‖x1 − x2‖B̄.

We associate with F the following function h, the lower Hamiltonian:

h(x, p) := min{〈p, v〉 : v ∈ F (x)}.

Now let S be a nonempty compact subset of IRn, we denote by T (·, S) the well-known minimal time function
associated to S (for the dynamic F ). We recall that this function is defined as follows:

T (α, S) :=

⎧⎪⎪⎨
⎪⎪⎩

inf T ≥ 0,
ẋ(t) ∈ F (x(t)) a.e. t ∈ [0, T ],
x(0) = α,
x(T ) ∈ S.
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If no trajectory between α and S exists, then T (α, S) := +∞. The minimal time function associated to S for
the dynamic −F is denoted by T (S, ·). We set

RS
+ := {α ∈ IRn : T (S ,α) < +∞},

the set of points attainable (in finite time) by trajectories beginning from S. For more information about the
minimal time function, see for example [3, 5, 20, 22]. We also define the bilateral minimal time function, see
[16, 17], T : IRn × IRn −→ [0,+∞] as follows:

T (α, β) :=

⎧⎨
⎩

Inf T ≥ 0,
ẋ(t) ∈ F (x(t)) a.e. t ∈ [0, T ],
x(0) = α and x(T ) = β,

(if no trajectory between α from β exists, then T (α, β) is taken to be +∞). We denote by R the effective
domain of T (·, ·); that is,

R := {(α, β) ∈ IRn × IRn : T (α, β) < +∞}.
In this paper we study the following Hamilton-Jacobi equation:

1 + h(x, ∂Pϕ(x)) = 0 ∀x ∈ RS
+, ϕ(S) = 0, (HJS)

where ∂P is the proximal subdifferential. We recall that for a lower semicontinuous function f : IRn −→ IR∪{+∞}
and a point x ∈ dom f := {x′ : f(x′) < +∞}, ζ ∈ ∂P f(x) if and only if there exists σ = σ(x, ζ) ≥ 0 such that

f(y) − f(x) + σ‖y − x‖2 ≥ 〈ζ, y − x〉,

for all y in a neighborhood of x. A solution of (HJS) means a lower semicontinuous function ϕ : RS
+ −→

IR∪{+∞} such that ϕ(S) = 0 and for every x ∈ RS
+, for every ζ ∈ ∂Pϕ(x) (if any), we have h(x, ζ)+1 = 0 (we

say that ϕ(x) is a proximal solution, see [8]). This is equivalent to the statement that ϕ is a lower semicontinuous
viscosity solution of the following Hamilton-Jacobi equation:

H(x,−ϕ′(x)) − 1 = 0 ∀x ∈ RS
+, ϕ(S) = 0,

where H is the upper Hamiltonian associated to F defined by H(x, p) := max
v∈F (x)

〈p, v〉1.
It is well-known that the minimal time function T (·, S) is a solution of (HJS) if we replace RS

+ by RS
+ \ S

(see for example [1, 3, 7, 18, 22]), but it is never a solution on RS
+ since for all α ∈ S we have 0 ∈ ∂PT (·, S)(α)

and h(α, 0) = 0. In [11], Clarke and Nour study the Hamilton-Jacobi equation (HJS) in the case S = {α0}
(we denote this equation by (HJα0

))2. Let us recall the principal result of [11]. We say that −F is α0-STLC
(α0-small-time locally controllable) if and only if the minimal time function T (α0, ·) is continuous at α0. This
is equivalent to: Rα0

+ is open, T (α0, ·) is continuous in Rα0
+ and for any β ∈ ∂Rα0

+ we have

lim
α−→β

T (α0, α) = +∞.

We define Gα0 := {Γ ⊂ Rα0
+ : there exists a sequence βi ∈ Γ such that T (α0, βi) −→ +∞}. The following

theorem is proven in [11] (see [11], Ths. 5.2 and 5.3).

1See [4,15,18] for the definition of lower semicontinuous viscosity solutions. For an historical references about viscosity solution,
see [12–14].

2 When S = {β} then in all our notations, we replace S by β.
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Theorem 0.1 (existence of solutions of (HJα0)). Assume that −F is α0-STLC. Then Gα0 is nonempty and for
Γ ∈ Gα0 the function ϕΓ : RS

+ −→ IR ∪ {−∞,+∞} defined by:

ϕΓ(α) := lim inf
α′−→α, β∈Γ

T (α0,β)−→+∞

[T (α′, β) − T (α0, β)],

is a solution of (HJα0). Moreover, if we denote by ϕα0 the function ϕΓ corresponding to the choice Rα0
+ of Γ,

then ϕα0 is the minimal solution of (HJα0).

After Theorem 0.1, Clarke and Nour studied in [11] the regularity of solutions and the linear case. They
also proved an important relationship between these solutions and global geodesics trajectories. As in [22],
the methods used by Clarke and Nour in [11] are based upon nonsmooth proximal monotonicity-invariance
considerations developed in [10].

The purpose of this paper is the generalization of the results of [11] for a general compact target set S.
First, we show by an example (see Ex. 2.7) that if we only assume that −F is S-STLC (that is, T (S, ·) is
continuous) then we cannot guarantee the existence of solutions of (HJS) as in the case S = {α0}. Then
by adding another hypothesis (which is always satisfied if S is a single point), we show an existence theorem
for (HJS) which generalizes Theorem 0.1. We also prove that this hypothesis is a necessary condition for the
existence of solutions and then we generalize all the results of [11]. A number of examples (see Ex. 2.7 in which
we prove the existence of solutions of (HJα0

) not of the form presented in Th. 0.1)3 and some applications
concerning the global eikonal equations are also given throughout this paper.

The plan of the paper is as follows. In the next section we present some preliminaries. Several results
concerning the existence and the regularity of solutions, and their relations with semigeodesics trajectories are
presented in Section 2. In Section 3, we study the minimal solution of (HJS). The results of Sections 2 and 3
are applied to eikonal equations in Section 4. Finally, Section 5 is devoted to the existence of geodesics passing
through S.

1. Preliminaries

1.1. Notation and hypotheses

For ρ > 0 we denote by B(0; ρ) := {x ∈ IRn : ‖x‖ < ρ} and B̄(0; ρ) := {x ∈ IRn : ‖x‖ ≤ ρ}. The open (resp.
closed) unit ball in IRn is denoted by B (resp. B̄). For a set A ⊂ IRn, intA, ∂A and coA are the interior, the
boundary and the convex hull of A, respectively.

Definition 1.1. Let λ ∈ ]0, 1]. We say that:

• F is S-LC (S-locally controllable), if S ⊂ intRS
+.

• F is S-STLC (S-small-time locally controllable), if T (·, S) is continuous at every point of ∂S.
• F satisfies the hypothesis (Hλ) at β ∈ IRn, if there exist r > 0 and δ > 0 such that for any β′ ∈ B(β; r)

and for any unit vector γ we have

h(β′, γ) <
−δ‖β′ − β‖1−λ

λ
4·

We denote by RS− := {α ∈ IRn : T (α,S ) < +∞}, the set of points which can be steered to S in finite time. It
is well-known (see [3, 17, 19]) that:

• F is S-LC ⇐⇒ RS
− is open.

3 This is an important question not treated in [11].
4 The hypothesis (Hλ) is known by the Petrov λ-Hölder modulus condition.
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• F is S-STLC ⇐⇒ RS
− is open, T (·, S) is continuous in RS

− and for any β ∈ ∂RS
− we have

lim
α−→β

T (α, S) = +∞.

• For β ∈ IRn we have:
• F satisfies (Hλ) at β (λ ∈ ]0, 1]) =⇒ F is β-STLC.
• F satisfies (H1) at β ⇐⇒ 0 ∈ intF (β) =⇒ F is β-STLC.

The basic hypotheses in force throughout the article are the following:
• S is a nonempty compact set.
• intS = ∅.
• −F is S-LC (which is equivalent to RS

+ is open).
We note that we must assume that intS = ∅. This assumption is related to the nature of the semicontinuous
solution chosen here. Indeed, if intS = ∅, then a solution ϕ of (HJS) vanishes on intS and then 0 ∈ ∂Pϕ(x) for
all x ∈ intS, which gives a contradiction since h(·, 0) = 0.

1.2. Monotonicity of trajectories

Let Ω be an open subset of IRn and let ϕ : IRn −→ IR ∪ {+∞} be an extended real-valued function which is
lower semicontinuous on Ω with domϕ ∩ Ω �= ∅. We say that the system (ϕ, F ) is strongly increasing on Ω if
for any trajectory x on an interval [a, b] for which x([a, b]) ⊂ Ω, we have

ϕ(x(s)) ≤ ϕ(x(t)) ∀s, t ∈ [a, b], s ≤ t.

The system (ϕ, F ) is said to be weakly decreasing on Ω if for every α ∈ Ω there is a trajectory x on a nontrivial
interval [a, b] satisfying

x(a) = α, ϕ(x(t)) ≤ ϕ(α) ∀t ∈ [a, b];
by reducing b if necessary we may also arrange to have x([a, b]) ⊂ Ω. In each case, one obtains an equivalent
definition by requiring the inequality to hold on [a, τ [, where τ ∈ ]a,+∞] is the exit time of the trajectory x
from Ω: the supremum of all T > 0 having the property that x([a, T ]) ⊂ Ω. The following proposition is proven
in [10], Chapter 4, Section 6. See also [2] and [9].

Proposition 1.2. The system (ϕ, F ) is strongly increasing on Ω if and only if

h(x, ∂Pϕ(x)) ≥ 0 ∀x ∈ Ω,

and weakly decreasing on Ω if and only if

h(x, ∂Pϕ(x)) ≤ 0 ∀x ∈ Ω.

2. Existence of solutions

We begin this section by the following proposition which gives some properties of a solution of (HJS). The
proof follows using Proposition 1.2. The details is left to the reader (see the proof of [11], Prop. 4.4).

Proposition 2.1. Let ϕ a solution of (HJS). Then we have:
(i) T (α, β) + ϕ(β) ≥ ϕ(α), for all α, β ∈ RS

+.
(ii) T (α, S) ≥ ϕ(α) ≥ −T (S, α), for all α ∈ RS

+ (and then RS
+ ∩RS

− ⊂ domϕ).
(iii) For every α ∈ domϕ there exists a trajectory x of F such that x(0) = α and

ϕ(x(t)) + t = ϕ(α) ∀t ≥ 0.
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Now let α ∈ IRn. A trajectory x : [0,+∞[−→ IRn of F is a semigeodesic from α if and only if x(0) = α and
T (x(s), x(t)) = t − s for all s ≤ t ∈ [0,+∞[. If α ∈ S, then we say that x is a semigeodesic from S. The
following proposition presents the relationship between a solution of (HJS) and semigeodesic trajectories.

Proposition 2.2. Let ϕ be a solution of (HJS). Then for every α ∈ domϕ there exists a semigeodesic x from
α such that

ϕ(x(t)) + t = ϕ(α) ∀t ≥ 0.
Moreover, if α ∈ S then we have T (S, x(t)) = t ∀t ≥ 0.

Proof. Let ϕ be a solution of (HJS) and let α ∈ domϕ. By Proposition 2.1, there exists a trajectory x :
[0,+∞[−→ IRn of F in RS

+ such that x(0) = α and

ϕ(x(t)) + t = 0 ∀t ≥ 0. (1)

We claim that x is a semigeodesic from α. Indeed, let s ≤ t ∈ [0,+∞[, then by (1) and Proposition 2.1 we have

T (x(s), x(t)) ≥ ϕ(x(s)) − ϕ(x(t)) = t− s,

but
T (x(s), x(t)) ≤ t− s,

therefore T (x(s), x(t)) = t− s.
Now we assume that α ∈ S. Then by (1) and Proposition 2.1 we get that

t = T (α, x(t)) ≥ T (S, x(t)) ≥ −ϕ(x(t)) = t ∀t ≥ 0.

Hence T (S, x(t)) = t ∀t ≥ 0. �
As mentioned in the introduction, Clarke and Nour proved in [11] that if S is a single point, then under the

hypothesis “−F is S-STLC” the equation (HJS) always admits a solutions. In the following example we prove,
using Proposition 2.2, that this fails in general if S is not a single point. Thus to prove the existence of solutions
we must add another hypothesis.

Example 2.3. We consider the same data of [16], Example 7.8; that is for n = 2, we define F as the following:
• If ‖(x, y)‖ ≥ 2, then F (x, y) := F1(x, y) where

F1(x, y) :=

⎧⎪⎨
⎪⎩
{(

x2 − y2

x2 + y2
,

2xy
x2 + y2

)}
if y �= 0,

{(1, 0)} if y = 0.

• If ‖(x, y)‖ ≤ 1, then F (x, y) := F2(x, y) where F2(x, y) := B̄ for all (x, y) ∈ IR2.

• If 1 < ‖(x, y)‖ := r < 2, then

F (x, y) := {(2 − r)v2 + (r − 1)v1 : v1 ∈ F1(x, y) and v2 ∈ F2(x, y)}.

We take S := [− 1
2 , 0] × {0}. Then we can easily verify that all our hypotheses are satisfied and that −F is

S-STLC. Moreover, we have the following5:
• RS

+ = IR2\] −∞,−2] × {0}.
• For all (a, 0) ∈ S there exists only one semigeodesic x : [0,+∞[−→ IR2 from (a, 0) which is the following

trajectory: x(t) = (t+ a, 0).

5 The proof of these claims follows using the same ideas as in [11], Example 7.8.
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Now we assume that the Hamilton-Jacobi equation (HJS) admits a solution ϕ; we shall derive a contradiction.
By Proposition 2.2 there exists a semigeodesic (it must be the trajectory x defined above) from (− 1

2 , 0) such
that

T (S, x(t)) = t ∀t ≥ 0.
But this contradicts the fact that

x(t) ∈ S ∀t ∈
[
0,

1
2

]
·

Now we define the following set of subsets of RS
+:

GS := {Γ ⊂ RS
+ : for all α ∈ S there exists a sequence βi ∈ Γ such that T (α, βi) = T (S, βi) −→ +∞}.

Then we have the following theorem which generalizes Theorem 0.1.

Theorem 2.4 (existence of solutions of (HJS)). Assume that −F is S-STLC and that GS is nonempty. Then
for Γ ∈ GS the function ϕΓ : RS

+ −→ IR ∪ {−∞,+∞} defined by:

ϕΓ(α) := lim inf
α′−→α, β∈Γ

T (S,β)−→+∞

[T (α′, β) − T (S, β)],

is a solution of (HJS). Moreover, if we denote by ϕS the function ϕΓ corresponding to the choice RS
+ of Γ,

then ϕS is the minimal solution of (HJS).

Proof. We proceed exactly as in the proofs of [11], Theorems 5.2 and 5.3. The only difference here is that we
must use the definition of Γ ∈ GS to prove that ϕΓ(S) ≤ 0. �
Remark 2.5. If S = {α0} and −F is α0-STLC then the hypothesis “GS is nonempty” is always satisfied since
in this case we have that T (S, ·) = T (α0, ·).

In the following corollary we prove that the hypothesis “GS is nonempty” is also a necessary condition for
the existence of solutions.

Corollary 2.6. Assume that −F is S-STLC. Then the following statements are equivalent:
(i) The Hamilton-Jacobi equation (HJS) admits a solution.

(ii) For every α ∈ S there exists a semigeodesic x from α such that T (S, x(t)) = t ∀t ≥ 0.
(iii) The set GS is nonempty.
(iv) The Hamilton-Jacobi equation (HJS) admits a minimal solution.

Proof. Follows from Proposition 2.2 and Theorem 2.4. �
Now we give an example in which we prove, using Theorem 2.4, that (HJS) may admit a solution not of the

form ϕΓ presented in Theorem 0.1.

Example 2.7. For n = 1, let F (x) = −x+ [−1, 1]. It is easy to prove that R = R1 ∪R2 where
• R1 = {(x, y) ∈ IR × IR : −1 < y ≤ x};
• R2 = {(x, y) ∈ IR × IR : x ≤ y < 1}.

We calculate T (·, ·) and we find that:

T (x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln
(

1 + x

1 + y

)
if (x, y) ∈ R1,

ln
(

1 − x

1 − y

)
if (x, y) ∈ R2.

In this example we have h(x, p) = −〈x, p〉 − ‖p‖ and then the Hamilton-Jacobi equation (HJS) is

〈x, ∂Pϕ(x)〉 + ‖∂Pϕ(x)‖ = 1 ∀x ∈ IR, ϕ(S ) = 0.
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We consider four cases of S (in all these cases, we have that −F is S-STLC):

• S1 =
{

1
2

}
:

Clearly we have R 1
2
+ =] − 1, 1[. Moreover, there exist only two semigeodesics from 1

2 which are:
(i) x(t) = 1 − 1

2e−t, t ≥ 0.
(ii) y(t) = 3

2e−t − 1, t ≥ 0.
Let us calculate all the solutions of (HJ 1

2
) of the form ϕΓ. Let Γ ∈ G 1

2
, then there exist three cases:

(a) Γ contains a sequence which converges to 1 and does not contain a sequence which converges to −1.
Then we find the following solution of (HJ 1

2
):

ϕΓ1(x) = ln(2) + ln(1 − x).

(b) Γ contains a sequence which converges to -1 and does not contain a sequence which converges to 1.
Then we find the following solution of (HJ 1

2
):

ϕΓ2(x) = − ln
(

3
2

)
+ ln(1 + x).

(c) Γ contains a sequence which converges to −1 and a sequence which converges to 1. Then we find
the minimal solution of (HJ 1

2
):

ϕ 1
2
(x) = −T

(
1
2
, x

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln(2) + ln(1 − x) if x ∈
[
1
2
, 1
[
,

− ln
(

3
2

)
+ ln(1 + x) if x ∈

]
−1,

1
2

]
·

• S2 =
{
−1

2

}
:

As in the preceding case we have R− 1
2

+ =]− 1, 1[ and there exist only two semigeodesics from −1
2

which
are:
(i) x′(t) = 1 − 3

2
e−t, t ≥ 0.

(ii) y′(t) =
1
2
e−t − 1, t ≥ 0.

The solutions of (HJ− 1
2
) of the form ϕΓ are the following:

(a) ϕΓ3(x) = ln(1 − x) − ln
(

3
2

)
.

(b) ϕΓ4(x) = ln(2) + ln(1 + x).

(c) ϕ− 1
2
(x) = −T (− 1

2 , x
)

=

{ − ln
(

3
2

)− ln(1 − x) if x ∈ [− 1
2 , 1
[
,

ln(2) + ln(1 + x) if x ∈ ]−1,− 1
2

]
.

• S3 =
{
−1

2
,
1
2

}
:

Clearly we have RS3
+ =] − 1, 1[. We claim that GS3 �= ∅. Indeed, for α = 1

2 the semigeodesic x(t) =
1 − 1

2e−t satisfies T (S3, x(t)) = t ∀t ≥ 0, and for α = − 1
2 the semigeodesic y′(t) = 1

2e−t − 1 satisfies
T (S3, y

′(t)) = t ∀t ≥ 0. Then by Theorem 2.4, the Hamilton-Jacobi equation (HJS3) admits a minimal
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solution ϕS3 . Using Theorem 2.4, we calculate this solution and we find that

ϕS3(x) =

{
ln(2) + ln(1 − x) if x ∈ [0, 1[,

ln(2) + ln(1 + x) if x ∈ ] − 1, 0].

But ϕS3 is also a solution of (HJ 1
2
), then (HJ 1

2
) admits a solution not of the form ϕΓ (all the solutions

of the form ϕΓ calculated above are different of ϕS3).

• S4 =
{
−1

2
, 0,

1
2

}
:

In this case we also have that RS4
+ = ] − 1, 1[. We claim that GS4 = ∅ (and then (HJS4) does not admit

any solution). Indeed, we cannot find any semigeodesic z from 0 which satisfies T (S4, z(t)) = t for all
t ≥ 0.

The following proposition presents how we can calculate a solution of (HJS) using the solutions of (HJα) for
all α ∈ S.

Proposition 2.8. We have the following statements:

(a) Let α ∈ S and assume that S ⊂ Rα
+ and that −F is α-LC. We consider the following statements:

(i) There exists a solution ψα of (HJα) such that ψα(S) ≥ 0.
(ii) There exists a semigeodesic x from α such that T (S, x(t)) = t ∀t ≥ 0.

Then (i) =⇒ (ii) and the reverse implication is true if we add that −F is β-STLC for all β ∈ S.
(b) Assume that S × S ⊂ R and that −F is S-STLC. Assume further that for all α ∈ S there exists a solution

ψα of (HJα) such that ψα(S) ≥ 0. Then G is a nonempty set. Moreover, the function ϕ̄ : RS
+ −→

IR ∪ {−∞,+∞} defined by

ϕ̄(x) := lim inf
x′−→x

ϕ(x′), where ϕ(x) := inf
α∈S

ϕα(x),

is a solution of (HJS).

Proof. (a) (i) =⇒ (ii): We apply Proposition 2.2 (for S = {α}) and we get that for all α ∈ S there exists a
semigeodesic xα from α such that

ψα(xα(t)) + t = 0 ∀t ≥ 0.

We claim that T (S, xα(t)) = t for all t ≥ 0. Indeed, let β ∈ S, then by Proposition 2.1 we have

T (β, xα(t)) + ψα(xα(t)) ≥ ψα(β) ≥ 0 ∀t ≥ 0.

Hence

T (β, xα(t)) ≥ −ψα(xα(t)) = t ∀t ≥ 0,

which gives (since T (α, xα(t)) = t for all t ≥ 0) that T (S, xα(t)) = t for all t ≥ 0.
Now we assume further that −F is β-STLC for all β ∈ S. Let us prove that (ii) =⇒ (i). We consider

Γ := {x(t) : t ≥ 0} and we denote by ψα the solution of (HJα) corresponding to Γ. Let β ∈ S. Then we have

0 ≤ T (β, x(t)) − T (α, x(t)) ≤ T (β, β′) + T (β′, x(t)) − T (α, x(t)) ∀β′ ∈ Rα
+,

hence

T (β′, x(t)) − T (α, x(t)) ≥ −T (β, β′) ∀β′ ∈ Rα
+,

which gives by the definition of ψα and by the continuity of T (β, ·) that ψα(β) ≥ 0.
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(b) Since S × S ∈ R we have that the open set RS
+ = Rα

+ for all α ∈ S. Then by (a) we get that G �= ∅. Now
let α ∈ S and let β ∈ RS

+. We consider θ ∈ S such that T (θ, β) = T (S, β). By Proposition 2.1 (applied for
S = {α}) we have

T (S, β) + ψα(β) = T (θ, β) + ψα(β) ≥ ψα(θ) ≥ 0,
then

ψα(β) ≥ −T (S, β).
Hence for all α ∈ S we have ψα(·) ≥ −T (S, ·) which gives (by the continuity of T (S, ·)) that

−T (S, ·) ≥ ϕ̄(·) ≥ ϕ(·).

Therefore ϕ̄(·) > −∞ and it is lower semicontinuous. Moreover, ϕ̄(S) = 0 since for all β ∈ S we have

0 = −T (S, β) ≥ ϕ̄(β) ≥ ϕ(β) = inf
α∈S

ϕα(β) = 0.

Now we prove that 1 + h(x, ∂P ϕ̄(x)) = 0 for all x ∈ RS
+. It is sufficient to prove that t+ ϕ̄ is weakly decreasing

and strongly increasing. We begin by strongly increasing.
Let x : [a, b] −→ IRn be a trajectory of F such that x([a, b]) ⊂ RS

+ and let t ∈ [a, b]. We need to prove that

t+ ϕ̄(x(t)) ≤ b+ ϕ̄(b).

We can assume that x(b) ∈ dom ϕ̄. Then there exists a sequence βi −→ β such that

ϕ̄(x(b)) = lim
i−→+∞

ϕ(βi).

By the continuous dependence on the initial condition (see [10], Th. 4.3.11) there exists a sequence of trajectories
xi on [t, b] such that xi(b) = βi and

lim
i−→+∞

xi(t) = x(t).

Clearly the trajectory xi remains in RS
+ (since it begins in RS

+), then since ψα is a solution of (HJα) for all
α ∈ S, we have

t+ ψα(xi(t)) ≤ b+ ψα(xi(b)) ∀α ∈ S.

Hence
t+ ϕ(xi(t)) ≤ b+ ϕ(xi(b)) ≤ b+ ϕ̄(xi(b)).

Taking i −→ +∞ we get
t+ ϕ̄(x(t)) ≤ b+ ϕ̄(x(b)).

The strong increase follows.
Now we prove the weak decrease property. Let β ∈ dom ϕ̄, then there exists a sequence βi −→ β such that

ϕ̄(x(b)) = lim
i−→+∞

ϕ(βi).

By the definition of ϕ we have that for all i there exists αi ∈ S such that

ψαi(βi) ≤ ϕ(βi) +
1
i
· (2)

Since ψαi is a solution of (HJαi) for all i, there exists a sequence of trajectories xi on [0,+∞[ such that xi(0) = βi

and
ψαi(βi) ≥ t+ ψαi(xi(t)) ∀t ≥ 0. (3)
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By the compactness property of trajectories, we can assume that there exists a trajectory x on [0,+∞[ such
that x(0) = β and xi −→ x uniformly on compact interval. By (2) and (3) we have

ϕ(βi) +
1
i
≥ ψαi(βi) ≥ t+ ψαi(xi(t)) ≥ t+ ϕ(xi(t)) ∀t ≥ 0.

Taking i −→ +∞ we get
ϕ̄(β) ≥ t+ ϕ̄(x(t)) ∀t ≥ 0.

The weak decrease follows. �

Example 2.9. We return to Example 2.7 and we remark that

• ϕΓ1

(
−1

2

)
= ln(3) > 0,

• ϕΓ4

(
1
2

)
= ln(3) > 0.

Then by Proposition 2.8 (clearly for S3 =
{− 1

2 ,
1
2

}
we have S3×S3 ⊂ R) we get that the function min{ϕΓ1 , ϕΓ4}

is a solution of (HJS3). If we calculate this function we find exactly the minimal solution ϕS3 .

Now we study the regularity of solutions.

Proposition 2.10. Let ϕ be a solution of (HJS) and let α ∈ domϕ. Then we have:
(i) F is α-STLC =⇒ ϕ is continuous at α.

(ii) F satisfies (Hλ) at α (λ ∈ ]0, 1]) =⇒ ϕ is λ-Hölder continuous near α.6

Proof.
(i) Follows exactly as the proof of (1) of [11], Proposition 6.1.

(ii) We proceed as in the proof of (2) of [11], Proposition 6.1, and we use [17], Proposition 4.4, which asserts
the existence of ρ > 0 such that T (·, ·) is λ-Hölder continuous in B(α, ρ) ×B(α, ρ). �

Proposition 2.11. We have the following statements:
(i) Assume that F is β-STLC for all β ∈ RS

+ ∩RS−. Then all solutions of (HJS) are continuous in the open
set RS

+ ∩RS
−.

(ii) Assume that F satisfies (Hλ) at β for all β ∈ RS
+ ∩ RS

− ((λ ∈ ]0, 1])). Then all solutions of (HJS) are
locally λ-Hölder continuous in the open set RS

+ ∩RS
−.

Proof. Since S ⊂ RS
+ ∩RS

−, we have that F is S-STLC in 1) and 2). Then RS
− is open and hence RS

+ ∩RS
− is

open. By Proposition 2.1 we have RS
+ ∩ RS− ⊂ domϕ for all ϕ a solution of (HJS). Then by Proposition 2.10

we find the two results. �

3. The minimal solution

In this section we present the relationship between the minimal solution ϕS and the function −T (S, ·). The
semigeodesics x from S which satisfies T (S, x(t)) = t for all t ≥ 0, will play an important role in this study. We
note that in all this section, we assume that −F is S-STLC and that GS �= ∅.
Theorem 3.1. Let x : [0,+∞[−→ IRn be a trajectory of F from S. Then the following statements are equivalent:

(i) The trajectory x is a semigeodesic from S which satisfies T (S, x(t)) = t for all t ≥ 0.
(ii) For all t ≥ 0, we have ϕS(x(t)) + t = 0.

6 If λ = 1 then we obtain that 0 ∈ int F (α) =⇒ ϕ is Lipschitz near α.
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Proof. To prove the implication (i) =⇒ (ii) and the first part of the implication (ii) =⇒ (i) (x is a semigeodesic
from S) we proceed exactly as in the proof of [11], Theorem 7.4. Let us prove the second part of (ii) =⇒ (i),
that is, T (S, x(t)) = t for all t ≥ 0. Let α ∈ S, then by Proposition 2.1 we have

T (α, x(t)) + ϕS(x(t)) ≥ ϕS(α) = 0 ∀t ≥ 0,

hence

T (α, x(t)) ≥ −ϕS(x(t)) = t ∀t ≥ 0.

This gives that

t ≤ T (S, x(t)) ≤ T (x(0), x(t)) = t ∀t ≥ 0.

The proof is completed. �

The following theorem gives a necessary and sufficient condition for ϕS(α) to be −T (S, α).

Theorem 3.2. Let α ∈ RS
+. Then the following statements are equivalent:

(i) The point α lies on a semigeodesic from S which satisfies T (S, x(t)) = t for all t ≥ 0.
(ii) ϕS(α) = −T (S, α).

Proof. See the proof of [11], Theorem 7.6. �

Remark 3.3. In Example 2.7 if we calculate the function −T (S3, ·) (S3 = {−1
2
,
1
2
}) then we obtain the

following:

−T (S3, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln(2) + ln(1 − x) if x ∈
[
1
2
, 1
[
,

− ln
(

3
2

)
− ln(1 + x) if x ∈

[
0,

1
2

]
,

− ln
(

3
2

)
+ ln(1 − x) if x ∈

[
−1

2
, 0
]
,

ln(2) + ln(1 + x) if x ∈
]
−1,−1

2

]
·

We remark that ϕS3(·) and −T (S3, ·) coincide only on ] − 1,− 1
2 ] ∪ [12 , 1[. We can easily deduce this from

Theorem 3.2. Indeed, for all α ∈ ] − 1
2 ,

1
2 [ we can not find any semigeodesic from S3 passing through α and

which satisfies T (S3, x(t)) = t for all t ≥ 0, but if we take α ∈ [12 , 1[ (resp. α ∈ ]− 1,− 1
2 ]) then the semigeodesic

x(t) = 1− 1
2e−t (resp. x(t) = 1

2e−t−1) begins from S3, passes through α and satisfies T (S3, x(t)) = t for all t ≥ 0.
We also note that in this example we have ϕ 1

2
(·) = −T (1

2 , ·) and ϕ− 1
2
(·) = −T (− 1

2 , ·) but ϕS3(·) �= −T (S3, ·).

We recall (see [11]) that a continuous function ϕ is said to be mildly regular at a point x if it satisfies
∂Pϕ(x) ⊂ ∂Lϕ(x), where ∂Pϕ(x) is the proximal superdifferential of ϕ at x defined (for an upper semicontinuous
function) by ∂Pϕ(x) := −∂P (−ϕ)(x) and ∂Lϕ(x) is the limiting subdifferential of ϕ at x defined (for a lower
semicontinuous function) by

∂Lϕ(x) := {lim ξi : ξi ∈ ∂Pϕ(xi), xi −→ x and ϕ(xi) −→ ϕ(x)}.

For more informations about these definitions, see [10]. The following proposition gives a sufficient conditions
for a continuous function to be mildly regular at a point x. For the proof, see [11], Proposition 6.3.
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Proposition 3.4. Let ϕ be continuous in a neighborhood of a point x and assume that one of the following
condition holds:
(1) ϕ is regular at x7;
(2) ϕ is differentiable at x;
(3) ∂Pϕ(x) is nonempty.
Then ϕ is mildly regular at x.

Before giving some applications for the mildly regular property, let us give some geometric definitions. Let A
be a nonempty closed subset of IRn. For α ∈ IRn, we denote by projA(α) the set of closest points of α onto A
(that is, the set of points β ∈ A such that dA(α) = ‖α− β‖). Now let β ∈ A. We define the proximal normal
cone to A at β by

NP
A (β) := {t(α− β) : t ≥ 0 and β ∈ projA(α)}.

We also define the generalized exterior normal to A at β by

NA(β) :=
{

ξ

‖ξ‖ : ξ ∈ NP
A (β) \ {0}

}
.

For more information about these definitions, see [10, 21]. The following theorem gives a necessary condition
for −T (S, ·) to be the minimal solution of (HJS).

Theorem 3.5. Assume that the function T (S, ·) is mildly regular on RS
+ \ S. Assume further that domNP

S :=
{s ∈ S : NP

S (s) �= {0}} = ∂S 8. Then the minimal solution ϕS coincides with −T (S, ·) and then every point
of RS

+ lies on a semigeodesic x from S which satisfies T (S, x(t)) = t for all t ≥ 0.

Proof. It is sufficient to prove that −T (S, ·) is a solution of (HJS). By the definition, we have −T (S, x) = 0 for
all x ∈ S. Let us show that −T (S, ·) satisfies the Hamilton-Jacobi equation of (HJS). Let α ∈ RS

+, then there
exist two cases.

Case 1. α �∈ S.
Let ζ ∈ ∂P (−T (S, ·))(α). Then −ζ ∈ ∂PT (S, ·)(α) ⊂ ∂LT (S, ·)(α), since T (S, ·) is mildly regular at α. But it is
well-known that we have

1 + h−F (α, ∂PT (S, ·)(α)) = 09.

Hence since h−F is continuous and ∂L is constructed from ∂P by a limiting process we get that
1 + h−F (α,−ζ) = 0, and then 1 + h(α, ζ) = 0.

Case 2. α ∈ S.
We claim that ∂P (−T (S, ·))(α) = ∅. Indeed, if not then since 0 ∈ ∂PT (S, ·)(α) we get that T (S, ·) is differen-
tiable at α and ∂PT (S, ·)(α) = {0}. But by [22], Theorem 5.1, we have ∂PT (S, ·)(α) = NP

S (α) ∩ {ζ ∈ IRn :
h(x , ζ) ≥− 1}, then since NP

S (α) �= {0} we find a contradiction. �

Remark 3.6. We remark that in the preceding proof, we proved directly that −T (S, ·) is a (minimal) solution
of (HJS) and then we can eliminate the hypothesis GS �= ∅ in Theorem 3.5.

Corollary 3.7. Let F admit a representation of the form F (x) = {Ax + u : u ∈ U}, where A is an n × n
matrix and U is a compact and convex set. Assume further that we have the following hypotheses:

• S is a convex set;
• for all α ∈ S and for all unit vector γ ∈ NP

S (α), we have h(α, γ) < 010.

7 ϕ is regular in the sense of Clarke, see [10].
8 A sufficient condition for dom NP

S = ∂S(= S since int S = ∅) is for example S = ∂A, where A is a compact and convex set.
9 This is a well-known characterization of the minimal time function but here applied for the dynamic −F . We note that h−F

is the lower Hamiltonian for the dynamic −F .
10 This condition reduces to 0 ∈ int F (α) if S = {α}. For more informations about this hypothesis see [3].
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Then ϕS is semiconcave and coincides with −T (S, ·), and then every point of RS
+ lies on a semigeodesic x

from S which satisfies T (S, x(t)) = t for all t ≥ 0.

Proof. Follows from Theorem 3.5 and using [5], Theorem 4.1, which asserts that in this case the function T (S, ·)
is semiconvex on RS

+ and then mildly regular on RS
+ (for more informations about semiconcave and semiconvex

functions, see [6]). �

4. Eikonal equations

In this section we apply the results of the preceding sections to eikonal equations. We consider the following
global eikonal equation:

‖∂Pϕ(x)‖ = 1 ∀x ∈ IRn, ϕ(S ) = 0. (eS )
We remark that (eS) is exactly the Hamilton-Jacobi equation (HJS) corresponding to the choice B̄ of F (that
is, F (x) = B̄ for all x ∈ IRn). Clearly in this case we have:

• F and −F are β-STLC for all β ∈ IRn (since 0 ∈ intF (β)).
• R = IRn × IRn and T (α, β) = ‖α− β‖ for all (α, β) ∈ IRn × IRn.
• T (S, ·) = T (·, S) = dS(·), where dS(·) is the distance function associated to S.
• The minimal trajectory between two points α and β is exactly the segment [α, β].
• If ϕ is a solution of (eS ) then domϕ = IRn.

Then we have the following corollary.

Corollary 4.1. The following statements are equivalent:
(i) The equation (eS) admits a solution.

(ii) For all α ∈ S there exists a unit vector λ ∈ IRn such that

dS(α+ tλ) = t ∀t ≥ 0.

(iii) S ⊂ ∂ (coS).

Proof. The equivalence (i) ⇐⇒ (ii) follows from Corollary 2.6 and the equivalence (ii) ⇐⇒ (iii) follows from
the following lemma (we omit the proof):

Lemma 4.2. Let α ∈ S. Then the following assertions are equivalent.
• There exists a unit vector λ ∈ IRn such that dS(α + tλ) = t ∀t ≥ 0.
• α ∈ ∂ (coS). �

Example 4.3. We take n = 2, and we consider the following data:
• F (x, y) := B̄ for all (x, y) ∈ IR2.
• α := (0, 1), β := (1, 0) and γ := (−1, 0).
• S := [α, β] ∪ [α, γ], where [α, β] (resp. [α, γ]) is the segment joining α to β (resp. α to γ).

Clearly we have S ⊂ ∂ (coS). Then by Corollary 4.1, the Hamilton-Jacobi equation (HJS) admits a solutions.
Let us calculate a solution using Proposition 2.8. Let (a, b) ∈ [α, γ]. We denote by z the exterior perpendicular
to [α, γ] at (a, b) (see Fig. 1). Clearly z is a semigeodesic from (a, b) which satisfies T (S, z(t)) = t ∀t ≥ 0. We
calculate z and we find that

z(t) =

(
−
√

2
2
t+ a,

√
2

2
t+ b

)
t ≥ 0.

Now let Γ1 := {z(t) : t ≥ 0}, then by Proposition 2.8 we have that ϕΓ1 is a solution of (HJ(a,b)) which satisfies
ϕΓ1(S) ≥ 0. We calculate this function (using its definition) and we obtain that

ϕΓ1(x, y) =
√

2
2

(x− y + 1) ∀(x, y) ∈ IR2.
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Figure 1. Example 4.3.

We remark that this function does not depend on (a, b) and then it is a solution of (HJ(a,b)) for all (a, b) ∈ [α, γ].
Using the same idea, the following function

ϕΓ2(x, y) :=
√

2
2

(−x− y + 1),

is a solution of (HJ(a,b)) for all (a, b) ∈ [α, β]. Moreover as for ϕΓ1 , we have ϕΓ2(S) ≥ 0. Then by Proposition 2.8,
the function ϕ := min{ϕΓ1 , ϕΓ2} is a solution of (HJS).

We note that at the point α, there exist several semigeodesics z(t) satisfying T (S, z(t)) = t ∀t ≥ 0, and then
we can construct (using the preceding algorithm) several solutions of (HJS).

Now we characterize, using the result of Section 3, the minimal solution of (eS).

Proposition 4.4. Assume that S ⊂ ∂ (co S ) and let PS := {α ∈ IRn \ S : proj(coS)(α) ∩ S �= ∅}. Then
ϕS(α) = −dS(α) for all α ∈ PS. Moreover, for α ∈ PS and β ∈ proj(coS)(α) ∩ S (β is unique) if N(coS)(β) is
a singleton then for all ϕ a solution of (eS), we have ϕ(α) = −dS(α).

Proof. Let α ∈ PS . Then there exists (a unique) β ∈ S such that d(co S)(α) = dS(α) = ‖α − β‖. We set
λ := α−β

‖α−β‖ and we consider the trajectory x(t) := β+λt for all t ≥ 0. Clearly the trajectory x is a semigeodesic
from S passing through α. Moreover, we can easily prove that

d(co S)(x(t)) = dS(x(t)) = t ∀t ≥ 0.

But T (S, ·) = T (·, S) = dS(·), then by Theorem 3.2 we get that

ϕS(α) = −T (S, α) = −dS(α).

Now we take α ∈ PS and we assume that for (the unique) β ∈ proj(coS)(α) ∩ S we have that N(coS)(β) is a
singleton. Let ϕ be a solution of (eS). We consider λ and x(·) as above. Since β ∈ S and by Proposition 2.2
there exists a semigeodesic y(t) = β + λ′t (‖λ′‖ = 1) form β such that

ϕ(y(t)) + t = 0 and dS(y(t)) = T (S, y(t)) = t ∀t ≥ 0.
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Using the fact that dS(y(t)) = t for all t ≥ 0, we can prove that λ′ ∈ Nco S(α). Then λ′ = λ and this gives
that y coincides with x. Hence

ϕ(β + λt) + t = 0 ∀t ≥ 0.

Taking t = ‖α− β‖, we get that

ϕ(α) = −‖α− β‖ = −dS(α). �

Theorem 4.5. Assume that S = ∂ (coS). Then we have the following:

(i) If int (coS) = ∅ then ϕS(·) = −dS(·).
(ii) If int (coS) �= ∅ then

ϕS(α) =

⎧⎨
⎩

−dS(α) if α ∈ IRn \ coS,
0 if α ∈ S, (∗)
dS(α) if α ∈ int (coS).

Proof.

(i) Follows from Corollary 3.7.
(ii) By Proposition 4.4, we have that ϕS(·) = −dS(·) on IRn \ co S . Let us prove that ϕS(·) = dS(·) on

int (coS). Let α ∈ int (coS), then by Proposition 2.2 there exists a semigeodesic x(t) = α+tλ (‖λ‖ = 1)
from α such that

ϕS(x(t)) + t = ϕS(α) ∀t ≥ 0.

Clearly there exists t0 > 0 such that x(t0) = β ∈ S. Then

ϕS(β) + t0 = ϕS(α).

But we can easily prove that t0 = ‖α− β‖, hence

‖α− β‖ = ϕS(α).

On the other hand and by Proposition 2.2, we have that ϕS(α) ≤ dS(α) ≤ ‖α−β‖.This gives that ϕS(α) = dS(α)
which completes the proof. �

Corollary 4.6. Assume that S = ∂ (coS) and that N(co S)(β) is a singleton for all β ∈ S. Then the function ϕS

defined in (∗) is the unique solution of (eS).

Proof. This follows from Theorem 4.5 and from the fact that if N(co S)(β) is a singleton for all β ∈ S, then
int (coS) �= ∅. �

Remark 4.7. In Theorem 4.5, we can prove that ϕS(·) = dS(·) on int (coS) using the following known result
(see [3]):

Theorem 4.8. Let Ω be a nonempty bounded open set of IRn. Then the function d∂Ω(·) is the unique solution
of the following eikonal equation

‖∂Pϕ(α)‖ = 1 ∀α ∈ Ω, ϕ = 0 on ∂Ω.
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5. Geodesics

A trajectory x :] −∞,+∞[−→ IRn of F is a geodesic if and only if

T (x(s), x(t)) = t− s ∀s ≤ t ∈ ] −∞,+∞[.

We are interested in this section by the geodesics passing through S (that is x(0) ∈ S) and which satisfy the
following

T (x(−t), S) = T (S, x(t)) = t ∀t ≥ 0. (+)
We remark that if x is a geodesic passing through S which satisfies (+), then x intersects S only on one point
which is x(0). Clearly under our hypotheses, we cannot guarantee the existence of such geodesic (see the case
S1 = {− 1

2 ,
1
2} in Ex. 2.7). To study the existence of this type of geodesics, we define the following dual equation

of (HJS):
1 + h(x, ∂Pϕ(x)) = 0 ∀x ∈ RS

−, ϕ(S) = 0. (HJ∗S)
A solution of (HJ∗

S) refers to an upper semicontinuous function. We remark that a function ψ is a solution
of (HJ∗S) if and only if the function ϕ = −ψ is a solution of the version of (HJS) obtained by replacing F by
−F . Since the trajectories of −F correspond to trajectories of F in reversed time, we can apply our previous
results to (HJ∗S) but in this case we replace the trajectories of F on [0,+∞[ by trajectories on ] −∞, 0] (past
rather than future time).

Theorem 5.1. Let α ∈ S and assume that the following hypotheses hold:
• F and −F are α-LC.
• S ⊂ Rα− ⊂ Rα

+.
• There exist solution ϕ and ψ of (HJα) and (HJ∗α) respectively such that

• ϕ(S) ≥ 0.
• ψ(S) ≤ 0.
• ϕ ≥ ψ on Rα

−.
Then there exists a geodesic passing through S at α (x(0) = α) and satisfying (+).

Proof. By Proposition 2.8 there exists a trajectory x with x(0) = α such that

ϕ(x(t)) + t = 0 and T (S, x(t)) = t ∀t ≥ 0,

and a trajectory y with y(0) = α such that

ψ(y(t)) + t = 0 and T (x(t), S) = −t ∀t ≤ 0.

Then since ϕ ≥ ψ on Rα
−, we get that

ϕ(y(t)) + t ≥ 0 ∀t ≤ 0.
But the opposite inequality holds by strong increase. Then the trajectory z defined on ]−∞,+∞[ by concate-
nating y and x satisfies

ϕ(z(t)) + t = 0 ∀t ∈ IR and T (z (−t),S ) = T (S , z (t)) = t ∀t ≥0.

This gives, using Proposition 2.1, that z is a geodesic passing through S at α and satisfying (+). �
Theorem 5.2. Assume that the following hypotheses hold:

• F is S-LC.
• RS

− ⊂ RS
+.

• There exists solutions ϕ and ψ of (HJS) and (HJ∗
S) respectively such that ϕ ≥ ψ on RS−.

Then for all α ∈ S there exists a geodesic passing through S at α (x(0) = α) and satisfying (+).
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Proof. Let α ∈ S. Then by Proposition 2.2 there exists a trajectory x with x(0) = α such that

ϕ(x(t)) + t = 0 and T (S, x(t)) = t ∀t ≥ 0,

and a trajectory y with y(0) = α such that

ψ(y(t)) + t = 0 and T (x(t), S) = −t ∀t ≤ 0.

Then we continue as in the proof of Theorem 5.1. �
Corollary 5.3. Assume that the following hypotheses hold:

• F is is S-LC.
• RS− ⊂ RS

+.
• There exists a continuous solution ϕ of (HJS) which is mildly regular on RS

+.
Then for all α ∈ S there exists a geodesic passing through S at α and satisfying (+).

Proof. The function ϕ satisfies

1 + h(x, ∂Lϕ(x)) = 0 ∀x ∈ RS
+, ϕ(S) = 0,

since h is continuous, and since ∂L is constructed from ∂P by a limiting process. Then since ϕ is mildly regular
on RS

+, we get that ϕ is a solution of (HJ∗S). The result follows from Theorem 2.8. �
We denote by ES(·) the pointwise upper envelope of all solutions of (HJS). This is a lower semicontinuous

function bounded above by T (·, S). In the following theorem, we use this function to give a necessary and
sufficient condition for the existence of geodesic passing through S and satisfying (+).

Theorem 5.4. Assume that the following hypotheses hold:
• RS− ⊂ RS

+.
• F and −F are β-STLC for all β ∈ RS

−
11.

Then we have the following:
(a) lim sup

β∈RS−
T(β,S)−→+∞

[ES(β) − T (β, S)] ≥ 0 =⇒ there exist a geodesic passing through S and satisfying (+).

(b) For α ∈ S we have:
(i) There exists a geodesic passing through S at α and satisfying (+) =⇒ lim sup

β∈Rα−
T (β,S)−→+∞

[Eα(β)−T (β, S)] ≥ 0.

(ii) lim sup
β∈Rα−

T (β,α)−→+∞

[ES(β)−T (β, α)] ≥ 0 =⇒ there exists a geodesic passing through S at α and satisfying (+).

Proof. (a) Assume that
lim sup

β∈RS−
T (β,S)−→+∞

[ES(β) − T (β, α)] ≤ 0.

Then since ES(·) ≤ T (·, S) we get that

lim sup
β∈RS−

T (β,S)−→+∞

[ES(β) − T (β, α)] = 0.

11 Since RS− ⊂ RS
+ and using [17], Proposition 4.2, we can show that this condition is equivalent to the continuity of T (·, ·) on

RS
− ×RS

+.
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Hence, there exists εi −→ 0 and βi be a sequence in RS
− such that

• T (βi, S) −→ +∞ and ES(βi) − T (βi, S) −→ 0.
• For each i there exists a solution ϕi of (HJS) which satisfies

ϕi(βi) ≥ T (βi, S) − εi.

Set τi = T (βi, S), and let xi be an optimal trajectory on the interval [−τi, 0] joining βi to S. Let αi := xi(0),
then since S is compact we can assume that αi −→ α ∈ S. By Proposition 2.2 we can extend xi to [0,+∞[ by
a trajectory satisfying

ϕi(xi(t)) + t = 0 and T (S, xi(t)) = t ∀t ≥ 0. (4)

Since xi(t) ∈ RS
− ⊂ RS

+ ∀t ∈ [−τi, 0] and by the strong increasing property, we have that for any t ∈ [−τi, 0],

0 = ϕ(xi(0)) + 0 ≥ ϕi(xi(t)) + t

≥ ϕi(xi(−τi)) − τi

= ϕi(αi) − T (αi, 0)
≥ −εi.

We deduce that

−εi ≤ ϕi(xi(t)) + t ≤ T (xi(t), S) + t ≤ 0 ∀t ∈ [−τi, 0]. (5)

By (4), (5) and Proposition 2.1, we get that for any two points s ≤ t ∈ [−τi,+∞[ we have

t− s ≥ T (xi(s), xi(t)) ≥ t− s− εi. (6)

By the compactness property of trajectories, we can assume that the sequence xi converges uniformly on
bounded intervals to a trajectory x. Clearly we have x(0) = α ∈ S. We claim that x is the researched geodesic.
Indeed, let s ∈] −∞, 0] and let t ∈ [0,+∞[. We have x(s) ∈ RS− and x(t) ∈ RS

+. Then T (·, ·) is continuous at
(x(s), x(t)) and by (6) we get that

T (x(s), x(t)) = t− s,

which gives that x is a geodesic. Using the continuity of T (S, ·) and T (·, S) and by (4) and (5), we get that x
satisfies (+).

(b) (i) Let α ∈ S and assume that there exists a geodesic x passing through S at α and satisfying (+). We
define Γ := {x(t) : t ≥ 0}, and we consider the solution ϕΓ of (HJα). Set βi := x(−i). Then for any β ∈ Rα

+

and for t > 0 we have

T (β, x(t)) − T (α, x(t)) = T (βi, x(t)) − T (S, x(t)) + T (β, x(t)) − T (βi, x(t))
≥ T (βi, S) − T (βi, β).

Using the definition of ϕΓ and since T (·, ·) is continuous at (βi, βi) ∈ RS
− ×RS

+ we get that

ϕΓ(βi) ≥ T (βi, S) = T (βi, α).

Then Eα(βi) = T (βi, S). Since T (βi, S) −→ +∞ and βi ∈ RS
−, the result follows.

(ii) Follows using the same idea as in (a). �
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Remark 5.5. If we assume that S = {α0} in the preceding theorem, then we obtain that

lim sup
β∈Rα0−

T (β,α0)−→+∞

[Eα0 (β) − T (β, α0)] = 0 ⇐⇒ there exists a geodesic passing through α0.

Then Theorem 5.4 generalizes [11], Theorem 8.6.
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