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A CONTINUATION METHOD FOR MOTION-PLANNING PROBLEMS ∗

Yacine Chitour
1

Abstract. We apply the well-known homotopy continuation method to address the motion planning
problem (MPP) for smooth driftless control-affine systems. The homotopy continuation method is
a Newton-type procedure to effectively determine functions only defined implicitly. That approach
requires first to characterize the singularities of a surjective map and next to prove global existence
for the solution of an ordinary differential equation, the Wazewski equation. In the context of the
MPP, the aforementioned singularities are the abnormal extremals associated to the dynamics of the
control system and the Wazewski equation is an o.d.e. on the control space called the Path Lifting
Equation (PLE). We first show elementary facts relative to the maximal solution of the PLE such as
local existence and uniqueness. Then we prove two general results, a finite-dimensional reduction for
the PLE on compact time intervals and a regularity preserving theorem. In a second part, if the Strong
Bracket Generating Condition holds, we show, for several control spaces, the global existence of the
solution of the PLE, extending a previous result of H.J. Sussmann.
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1. Introduction

In this paper, the motion planning problem for nonholonomic control systems is addressed. Consider the
control system Σ : ẋ = f(x, u), with x ∈Mn, a smooth connected n-dimensional complete Riemannian manifold;
u = (u1, . . . , um) takes values in IRm and the class of admissible inputs A(Σ) is a space H of IRm-valued functions
defined on [0, 1]. A trajectory of Σ is an absolutely continuous curve γ : J →Mn, with J a subinterval of [0, 1],
such that there exists an admissible control u ∈ A(Σ) for which γ̇ = f(γ, u), a.e. in J . Then Σ is said to be
completely controllable if, for every two points p, q ∈ M , there exists a trajectory γ : [0, 1] → Mn of Σ such
that γ(0) = p and γ(1) = q. In this case, the motion planning problem (MPP) is that of finding, for every pair
(p, q) of points of Mn, a control up,q that steers p to q.
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We might even want the trajectory of the control system to avoid obstacles: the motion planning problem
with obstacle (MPPO) can be defined as follows: for C, a closed subset of Mn, the motion planning problem
for Σ on Mn with obstacle C consists of producing, for every p, q in the same connected component of Mn \C,
a control up,q that steers p to q so that the trajectory corresponding to up,q is contained in Mn \ C.

The study of these subjects produced over the past few years many ingenious ideas and procedures, some of
them making a systematic use of differential-geometric and differential-algebraic methods, e.g. nilpotent approx-
imation [16], highly oscillatory inputs [20], optimal control [29], Pfaffian systems and Cartan prolongation [24]
and differential flatness [22].

In [32], Sussmann proposed a differential-geometric approach for nonholonomic path-finding problems, based
on the use of the homotopy continuation method (HCM). This method is widely used in several areas of
mathematics, such as partial differential equations, bifurcation theory, differential geometry, differential topology
(cf., for instance, Chow and Hale [9] and Hirsch [14]). Due to their robustness and simple implementation,
numerical homotopy methods (or path following methods) turn out to be extremely useful in a large range of
scientific applications (cf. Allgower and Georg [2], Li [19] and Richter and Decarlo [27]). Conceived by Poincaré
and systematically developed in the context of degree theory (Leray and Schauder [18]), the HCM consists in
embedding a given problem P into a parameterized family of problems Ps and then, considering the solvability
of Ps as the parameter s varies.

Let us briefly recall how the HCM works: let M1 and M2 be open subsets of IRm1 and IRm2 , m1,m2 ≥ 1, M2

connected and E : M1 → M2 be a smooth mapping onto M2. For y ∈ M2 given, the objective is to determine
x ∈M1 such that

E(x) = y. (1)

Assuming that E is surjective, such an x exists. Pick x0 ∈ M1 and an smooth path π : [0, 1] → M2 with
π(0) = E(x0) = y0 and π(1) = y. The next step consists in “lifting” π to a smooth path Π : [0, 1] → M1 such
that

E(Π(s)) = π(s), s ∈ [0, 1]. (2)

If that procedure can be worked out, then Π(1) is a solution of (1). Remark that in (2) Π is only defined
implicitly. One usually proceeds as follows: differentiate (2) to obtain

DE(Π(s))
dΠ
ds

(s) =
dπ
ds

(s), s ∈ [0, 1], Π(0) = x0.

If rank DE(Π(s)) = m2 for s ∈ [0, 1], then DE(Π(s)) has a right inverse P (Π(s)). Choosing dΠ
ds (s) as P (Π(s)) ·

dπ
ds (s), leads to the following ordinary differential equation (o.d.e.)

dΠ
ds

(s) = P (Π(s)) · dπ
ds

(s) s ∈ [0, 1], Π(0) = x0. (3)

Equation (3) is a Wazewski equation (cf. [25] or [33]). If it admits a global solution on [0, 1], then (1) has a
solution y = E(Π(1)). To proceed rigorously, the issues to be overcome are:

(a) non degeneracy: if S is the singular set of E , it is necessary to have for s ∈ [0, 1], rank DE(Π(s)) = m2

i.e. π(s) /∈ E(S);
(b) non-explosion: equation (3) must have a global solution Π on [0, 1] with E(Π(0)) = π(0).

The HCM does not always work if one of the two previous conditions fails to be satisfied. A simple example
taken from Sussmann [32] shows the relevance of condition (a). Let E : IR → IR be E(x) = x3 − 3x. From
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E ′(x) = 3(x2 −1), we get S = {−1, 1} and E(S) = {−2, 2}. Let π : [0, 1] → IR be the path π(t) = −3+6t. Then
E(S) ⊂ π([0, 1]) = [−3, 3] and the Wazewski equation is ż = 2

z2−1 , which is defined for z ∈ IR \ {−1, 1}. Clearly,
its maximal solution is defined for t ∈ [0, 1/3) and Π(t) approaches −1 as t tends to 1/3. Then π cannot be
globally lifted by using the HCM.

In the context of the MPP, the role of the surjective map E considered above is played by the end-point map
Ep,H : H →M . To define it, we first assume that a No Explosion Condition (NEC) holds, i.e., for every u ∈ H
and p ∈ M , the Cauchy problem γ̇ = f(γ, u), γ(0) = p, has a unique global solution γu,p defined on [0, 1]. We
next fix an arbitrary point p ∈ M . Then, for every u ∈ H, Ep,H(u) is defined as γu,p(1). The MPP can now
be restated as the problem of finding a method producing for arbitrary points p, q of Mn a solution up,q of the
equation Ep,H(u) = q. Step (a) requires the determination of the singularities of Ep (i.e. the controls u for
which rank DEp,H(u) < n) and the choice of paths π : [0, 1] → Mn which avoid the image of the singular set
of Ep,H. Step (b) deals with (3), which is now an o.d.e. on H called the Path Lifting Equation (PLE), cf. [31].

We consider, in this work, driftless control-affine systems Σ : ẋ =
∑m

i=1 uifi(x) with f = (f1, · · · , fm) a
finite sequence of smooth vector fields on Mn. Assuming that Σ is completely controllable, the singularities
of Ep are exactly the controls giving rise to the abnormal extremals of the distribution defined by f (see [21]
and references therein). The existence of nontrivial abnormal extremals leads to hard problems such as the
determination of the precise structure of the singular set. As an example, the nature of the singular set of the
Carnot group of rank two is still an open problem (cf. Pansu [26]). For the MPP, it means that in general,
Step (a), is already difficult to achieve in general as far as concerns the non-degeneracy issue.

The connection between the HCM and the abnormal extremals was emphasized by Sussmann in [31], where it
is shown that the HCM solves the MPP for control systems subject to the Strong Bracket Generating Condition
(SBGC) with H = A(Σ) = L2([0, 1], IRm). This condition was tailored by Strichartz in [30] to precisely avoid
the existence of nontrivial abnormal extremals. It is rather remarkable that when the SBGC holds, not only
nontrivial abnormal do not exist but one can prove global existence of the solution of the PLE. In [6], another
proof of Sussmann’s result was provided and it was extended later to cover a case where nontrivial abnormal
extremals occur [8]. There are other instances (of existence of nontrivial abnormal extremals) where one may
lift enough paths π in the state space using the PLE, in order to solve the MPP, [5, 7]. Usually, the key step
in showing global existence of the solution of the PLE consists of proving estimates on line-integrals along
trajectories. For more application-oriented works in robotics, the HCM has been thoroughly used by Wen and
his collaborators and we refer to the paper [10] and its bibliography for an account of that work.

In this paper, we present in full details the application of the HCM to driftless, control-affine systems (see
also [8,32] for a shorter presentation). In the next section, the PLE is precisely defined and local existence and
uniqueness of its maximal solution are shown. Two general results for the PLE are then established. The first
result puts forward a finite dimensional version of the PLE any compact interval J in the domain of existence I
of the maximal solution Π of the PLE. More precisely, consider a strictly increasing sequence (Hj)j≥1 of
finite-dimensional subspaces of H such that

⋃
j≥1 Hj is dense in H. Let Π : I → H be the maximal solution of

a PLE associated to some p ∈M and path π avoiding the singular set S. Assume that u0 = Π(0) ∈ H0 and set
Ep,j , the end-point map associated to p and Hj . We prove that, for every compact subinterval J = [0, a] ⊂ I,
the PLE defined by Ep,j and associated to π has a global solution on J for j large enough. In particular, if
J = I = [0, 1] (i.e. the PLE has a global solution), the previous result justifies the numerical implementations of
the HCM, based in general on a Galerkin procedure. The second general result says that the maximal solution
of the PLE is as regular as its initial condition, and so, independently of the control space H where the PLE
is considered. For instance, if H = L2([0, 1], IRm) and the initial condition u0 is assumed to be continuous,
then Π will be continuous on its domain of existence. Section 3 is devoted to prove, in the case where the
SBGC holds, global existence results for the PLE. In [31], that result was proved for H = L2([0, 1], IRm). For
completeness, we sketch an alternate proof (as given in [6]). We also consider the PLE on more regular input
spaces. Those are subspaces of the standard Hilbert spaces Hk([0, 1], IRm), k ≥ 1 so that the value of an input
at time t = 1 is zero. It means that trajectories of the resulting control system have zero speed at their ending
point. The case of the MPP with obstacles is reduced to the classical MPP by a standard trick, the use of
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a potential function. Then every result obtained for the MPP of control affine-systems subject to the SBGC
has an immediate corollary for the MPP with obstacles. Finally we gather some technical arguments in the
Appendix.

2. Presentation of the homotopy continuation method

2.1. Notations and definitions

Throughout this paper, the word “manifold” always means “finite-dimensional, Hausdorff, second countable
manifold of class C∞”. Let Mn be a connected manifold of dimension n ≥ 1, equipped with a complete
Riemannian metric 〈·, ·〉. Let us fix x0 ∈Mn.

For x ∈ Mn, TxMn and T ∗
xM

n denote the tangent and cotangent spaces of Mn at x respectively. We use
TMn, T ∗Mn, π and π∗ to denote the tangent and cotangent bundles of Mn and the canonical projections
from TMn and T ∗Mn onto Mn respectively. Let T �M

def
= {(x, z) ∈ T ∗Mn; z ∈ T ∗

xM
n, z �= 0}, π�, the

corresponding projection onto Mn and Ω, the canonical symplectic form on T ∗Mn.
We use the Riemannian metric 〈·, ·〉 to identify TxM

n and its dual T ∗
xM

n. For x ∈ Mn, y ∈ TxM
n

and z ∈ T ∗
xM

n, ‖x‖ denotes the geodesic distance between x and x0, ‖y‖2 and ‖z‖2 denote 〈y, y〉 and 〈z, z〉
respectively. For each chart � = (x1, · · · , xn) : U → IRn on Mn there are induced charts T� : π−1(U) → IR2n,
T ∗� : (π∗)−1(U) → IR2n of TMn, T ∗Mn. A curve in Mn is a continuous map γ : I → Mn defined on an
interval I of the real line. An arc in Mn is an absolutely continuous curve whose domain is a compact interval.
The boundary ∂γ of an arc γ : [a, b] → Mn is the ordered pair ∂γ = (γ(a), γ(b)). If X is a subset of M , we

use X̄ and
◦
X to denote respectively the closure and the interior of X .

We use V k(Mn) (V k(T ∗Mn) resp.) to denote the set of vector fields of class Ck on Mn (T ∗Mn resp.). We
use DX to denote the Jacobian of X , i.e., the differential of X . (In coordinates, it can be identified with a
square matrix whose columns are the partial derivatives ∂X

∂x1 , · · · , ∂X∂xn ·) For X ∈ V l(Mn) (l ≥ 1), the variational
covector field T ∗X of X is the element of V l−1(T ∗M) expressed in local coordinates of T ∗M by

(T ∗X)(x, z) = (X(x),−zDX(x)). (4)

If f is an m-tuple of elements of V l(Mn) (l ≥ 1), i.e. f = (f1, · · · , fm), we use T ∗f to denote the m-tuple of
elements of V l−1(T ∗M) given by (T ∗f1, · · · , T ∗fm). Clearly, T ∗X is intrinsically defined (i.e. independent on
the choice of a chart �).

The Hamiltonian function corresponding to a vector field X on M is the function HX : T ∗Mn → IR given
by HX(x, z) = 〈z,X(x)〉, for x ∈ Mn and z ∈ T ∗

xM . Then HX is of class Ck if and only if X is. The
Hamiltonian Vector Field associated to a function H : T ∗Mn → IR of class Ck, k ≥ 1 is the vector field−→
H ∈ V k−1(T ∗Mn) defined by Ω(

−→
H (x, z), w) = dH(w) for all w ∈ T(x,z)T

∗Mn. In coordinates,
−→
H is given by−→

H (x, z) = ((∂H∂z )T ,−∂H
∂x ), where “T ” denotes transpose. If X ∈ V 1(Mn), T ∗X is just

−→
HX (which is therefore

intrinsically defined).
For a ≤ b ∈ [0, 1] and k integer, let Hk([a, b], IRm) of m-tuples ui ∈ Hk(a, b), 1 ≤ i ≤ m. Recall that a

real valued function w belongs to Hk(a, b) if w ∈ L2(a, b]) together with its derivatives of order ≤ k, with
the convention that H0 = L2. Finally, for k ≥ 0, let Ck([0, 1], IRm) be the function space of m-tuples u =
(u1, · · · , um), where ui, 1 ≤ i ≤ m, is k-times continuously differentiable. The spaces Hk([a, b], IRm) are
Hilbert spaces for their standard inner products (u, v)Hk(a,b) =

∑k
j=0(u

(j), v(j))L2(a,b), where (u, v)L2(a,b)
def=∑m

i=1

∫ b
a
ui(t)vi(t)dt. When [a, b] = [0, 1], [a, b] is simply dropped. If H is a closed linear subspace of Hk(0, 1),

k ≥ 0, we use Hm to denote the closed linear subspace of Hk([0, 1], IRm) of m-tuples of elements of H. For
u, v ∈ Hm, we use (u, v)Hm to denote the Hilbert product between u and v.

For r ≥ 1, let Hr,1 be the subspace of functions u ∈ Hr([0, 1]) subject to

u(1) = · · · = u(r−1)(1) = 0, ‖u‖Hr,1
def
= ‖u(r)‖L2 .
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The controls are Lebesgue integrable functions u : [a, b] → IRm with [a, b] ⊂ [0, 1] (depending in general on u).
We denote that class of controls by Am.

In the sequel, we will consider bounded linear operators L : H → F where (H, (·, ·)H) and (F , (·, ·)F ) are
Hilbert spaces. We use LT : F → H to denote the adjoint operator associated to L, i.e., the unique linear
operator verifying,

(Lv,w)F = (v, LTw)H ,
for every v ∈ H and w ∈ F . Sometimes, in order to emphasize the dependence of LT with respect to H, we we
will use instead LTH to denote the adjoint operator associated to L.

A driftless control-affine system Σ is defined by the 4-tuple (Mn, IRm,A(Σ), f), where ẋ =
∑m

i=1 uifi(x),
x ∈ Mn, u = (u1, ..., um) ∈ IRm, f = (f1, · · · , fm) is an m-tuple of elements of V∞(Mn) and a Σ-admissible
control u (or simply admissible when there is no confusion on the control system) is in A(Σ), A(Σ) ⊂ Am. (For
more general definition of a control system cf. Jurdjevic [15].)

A trajectory of Σ generated by the admissible control u defined on [a, b] is an arc γ : J →Mn such that J is
a subinterval of [a, b] and

γ̇(t) =
m∑
i=1

ui(t)fi(γ(t)), a.e. in J. (5)

Notice that the time-varying vector field (x, t) → ∑m
i=1 ui(t)fi(x(t)) arising from u satisfies the conditions of

the Carathéodory existence theorem (cf. [21]). Then, given x0 ∈Mn, there exists a unique maximal trajectory
of Σ, γu,x0 , generated by u such that, γu,x0(a) = x0 and γu,x0 is defined on a subinterval J ⊂ [a, b] containing a
and relatively open in [a, b].

To a control system Σ is associated the collection TR(Σ) of all the trajectories generated by the admissible
controls. For any family of controls O ⊂ A(Σ), the system Σ is O-complete (cf. Sontag [28]) if, for every element
u : [a, b] → IRm of O and every x0 ∈ Mn, the maximal trajectory γu,x0 generated by u is defined on [a, b]. If
O = A(Σ), we say that the system is complete or that the No Explosion Condition (NEC) holds for Σ.

A control system Σ is completely controllable if for every two points p, q ∈ Mn there exists an element
γ : [a, b] → Mn of TR(Σ) so that γ(a) = p and γ(b) = q. Let LΣ be the Lie algebra of vector fields on Mn

generated by f1, . . . , fm. The Lie-Algebra rank condition (LARC) holds for Σ if

(LARC) ∀x ∈Mn, LΣ(x) def= {X(x) : X ∈ LΣ} is equal to TxMn.

Recall that if the system Σ satisfies the LARC, then Σ is completely controllable (cf. Jurdjevic [15]). The
control system Σ satisfies the Strong Bracket Generating Condition (SBGC) (cf. Strichartz [30]) if

(SBGC) ∀θ ∈ IRm \ {0}, ∀x ∈M, θ · f def=
∑m
i=1 θifi if

the vectors f1(x), · · · , fm(x), [θ · f, f1](x), · · · , [θ · f, fm](x) span TxM.

If the LARC or SBGC hold for fi, i = 1, ...,m, it still holds for f̄i = ψfi, i = 1, ...,m, where ψ is an arbitrary
nowhere vanishing C∞ real-valued function.

Given a control system Σ = (Mn, IRm,Am, f) and Hm ⊂ Am for some closed linear subspace H of Hk([0, 1]),
k ≥ 0, we want to transform Σ into another control system Σ so that

(C1) A(Σ) = Hm and Σ is complete;
(C2) Σ is completely controllable;
(C3) TR(Σ) ⊂ TR(Σ).

It is clear that if f satisfies a growth condition of the type

∃A,B > 0, ∀x ∈Mn ‖fi(x)‖ ≤ A‖x‖ +B, (6)

for i = 1, ...,m, then Σ is Hm-complete. In addition the control space H must verify some kind of property
to insure condition (C2). For that purpose, Property (Cl)k (introduced first in [12]) is given in Definition 3,
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Section 5.1. It turns out that the usual Hk and the Hr,1 satisfy it (see Sect. 5.1 for a proof). Note that (6)

is independent of a particular choice of H satisfying property (Cl)k, k ≥ 0. Let Σ
def
= (Mn, IRm,Hm, f̄) where

f̄i = ψfi, i = 1, ...,m, ψ = 1
1+
∑

m
i=1 ‖fi‖2 · The vector fields (f̄1, · · · , f̄m) are then bounded and, since Mn is

complete, condition (C1) follows. In addition, if the (LARC) holds for Σ, it also holds for Σ and condition (C2)
is valid (cf. Cor. 4.7 of [12]). As for condition (C3), this is a simple consequence of the definition of Σ.

Definition 1. A control system Σ = (Mn, IRm,Hm, f) is said to be CC-tempered if the LARC and (6) hold
and if Hm is a Hilbert space satisfying Property (Cl)k, k ≥ 0. In that case, Σ is complete and completely
controllable.

Notice that the LARC and (6) are properties of the sole m-tuple of vector fields, f . If they hold for a control
system Σ = (Mn, IRm,Hm, f) then, for every H satisfying Property (Cl)k for some k ≥ 0, the control system
ΣH = (Mn, IRm,H, f) is also CC-tempered. In particular, ΣH is complete and completely controllable. For
simplicity, we will write M for Mn and H for Hm when the context is clear.

Let Σ = (M, IRm,A(Σ), f). The Hamiltonian lift of Σ is T ∗Σ
def
= (T ∗M, IRm,A(Σ), T ∗f) with

ξ̇ =
m∑
i=1

uiT
∗fi(ξ). (7)

For u ∈ H, a trajectory ξ of T ∗Σ is a pair (γ, λ), with γ a trajectory of Σ generated by u and λ the field of
covectors along γ (i.e. λ(t) ∈ T ∗

γ(t)M for t ∈ [0, 1]) such that λ is an adjoint vector along (γ, λ), i.e. it satisfies
the adjoint equation along γ,

λ̇ = −λ
(

m∑
i=1

uiDfi(γ(t))

)
, a.e. in [0, 1]. (8)

The adjoint vector λ is nontrivial if it does not vanish on [0, 1].
For any r-tuple g = (g1, . . . , gr) of elements of V l(M), r, l ≥ 0, and ψ : M → IR of class C1, the g-Lie

derivative of ψ is given by ∇gψ = (g1 ·ψ, · · · , gr ·ψ)T : M → IRr. The time derivative of ψ along a trajectory γ
of Σ corresponding to a control u = (u1, ..., um) is

d
dt
ψ(γ(t)) = dψ(γ(t))(γ̇(t)) =

m∑
i=1

ui(t)(fi · ψ)(γ(t)) def= (u · ∇fψ)(γ(t)),

where f = (f1, · · · , fm). Similarly, for f = (f1, · · · , fm), anm-tuple of elements of V l(M), and u = (u1, · · · , um)
in H, we write

∑m
i=1 ui(t)fi(γ(t)),

∑m
i=1 ui(t)Dfi(γ(t)) and

∑m
i=1 ui(t)T

∗fi(γ(t)) resp. as (u · f)(γ(t)), (u ·
Df)(γ(t)) and (u · T ∗f)(γ(t)) resp. Using these notations, we write (5), (8) and (7) as γ̇(t) = (u · f)(γ(t)),
λ̇(t) = −λ(t)(u ·Df)(γ(t)) and ξ̇(t) = (u · T ∗f)(ξ(t)).

2.2. Study of the end-point map E
Let Σ be a CC-tempered control system and x0 be a point of M . Recall that the end-point map (EM) Ex0,H

(or simply E) : H → M is defined by E(u) = γu(1), where γu is the solution of (5) with γu(0) = x0. Since Σ
is complete and completely controllable, E is surjective. In addition, E is Fréchet-differentiable and, for u ∈ H,
we have

DE(u) : H → TE(u)M

v → DE(u) · v = yv(1),
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where, for every v ∈ H, yv : [0, 1] → TM is the solution of the variational equation

ẏ(t) = (u ·Df)(γu(t))y(t) + (v · f)(γu(t)) a.e. in [0, 1], y(0) = 0. (9)

Let Eut be the flow associated to (5), i.e., for t ∈ [0, 1] and x ∈M , Eut (x)
def
= γu,x(t), where γu,x(t) is the solution

of (5) starting at x. We use (Eut )∗(x) to denote the Fréchet differential of Eut at the point x ∈ M , so that
(Eut )∗(x) is a linear map from TxM to Tγu,x(t)M with transpose map (Eut )∗. Then,

DE(u) · v = yv(1) =
∫ 1

0

m∑
i=1

vi(t)(Eu1 )∗(Eut )−1
∗ (fi(γu,x(t)))dt. (10)

For z in T ∗
E(u)M and v ∈ H, then 〈z,DE(u) · v〉 = (DE(u)THz, v)H and for y ∈ Tγu,x(t)M , 〈z, ((Eu1 )∗(Eut )−1

∗ y〉 =
〈((Eut )∗)−1(Eu1 )∗z, y〉. Then ((Eut )∗)−1(Eu1 )∗z is the adjoint vector λ(t) along γu, with λ(1) = z.

For i = 1, · · · ,m, we use ϕi,z(t), t ∈ [0, 1], to denote the Switching Functions (SF) of Σ, i.e. the value of the
Hamiltonian function Hfi along the trajectory (γu, λ) of T ∗Σ. We have

ϕi,z(t) = 〈λ(t), fi(γu(t))〉, i = 1, . . . ,m, t ∈ [0, 1], ϕi,z(1) = 〈z, fi(E(u))〉. (11)

The switching vector is defined as next,

ϕz(t)
def= (ϕi,z(t))i=1,··· ,m, (12)

and, for any subinterval [a, b] of [0, 1], ‖ϕz‖2
L2([a,b])

def=
∫ b
a

∑m
i=1 ϕ

2
i,z(t)dt.

Using (11), we get

〈z,DE(u) · v〉 =
∫ 1

0

m∑
i=1

vi(t)ϕi,z(t)dt = (ϕz , v)L2 .

Therefore, DE(u)THz is the H-representation of ϕz , i.e. for v ∈ H, (DE(u)THz, v)H = (ϕz, v)L2 .
In particular, if H = L2([0, 1], IRm), we have

DE(u)THz = ϕz . (13)

For u ∈ H, consider the non-negative symmetric matrix

G(u) = DE(u)DE(u)TH , (14)

the controllability Gramian of (9). Then the following fundamental relations hold

∀z ∈ T ∗
E(u)M, 〈z,G(u)z〉 = ‖DE(u)THz‖2

H, rank DE(u) = n <=> G(u) > 0. (15)

The singular set S is the set of singular controls i.e. S
def
= {u ∈ H; rank DE(u) < n} and E(S) is the singular

value set. Clearly u ∈ S if and only if there exists some nonzero z in T ∗
E(u)M such that

∀i = 1, ...,m, 〈λz(t), fi(γu(t))〉 = ϕi,z(t) ≡ 0 in [0, 1], (16)

i.e., if and only if there exists a nontrivial adjoint vector λz along γu such that the corresponding SF are
identically equal to zero on [0, 1]. In this case, γu(t) is said to be an abnormal trajectory, according to the optimal
control terminology (cf. Lee and Markus [17] for example). If the fi’s are linearly independent everywhere on M
and, given an initial condition for (5), we have a one-to-one correspondence between the controls u and the
corresponding trajectories γu. For this reason, we call a control corresponding to an abnormal trajectory γu an
abnormal control (AC).
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Remark 1. Since S = {u ∈ H, detG(u) = 0}, it is a closed subset of H. Furthermore, when m < n, the zero
control is abnormal. For general nonholonomic problems, nontrivial abnormal controls can occur (cf. e.g. Liu
and Sussmann [21], Montgomery [23]). However, when the SBGC holds, it turns out that S reduces to {0} (cf.
Strichartz [30]).

Let u ∈ H and ξ = (γ, λ) a corresponding trajectory of T ∗Σ such that λ(1) = z ∈ T ∗
E(u)M . For any vector

field B ∈ V 1(M) and t ∈ [0, 1], set ϕB,z(t) := ϕB,z(t) = 〈λ(t), B(γu(t))〉. If B is not equal to any fi, 1 ≤ i ≤ m,
as elements of V 1(M), then ϕB,z is called a Pseudo-Switching Function (PSF). The time derivative of ϕB,z is
given by

ϕ̇B,z(t) =
m∑
j=1

uj(t)〈λ(t), [fj , B](γu(t))〉 =
m∑
j=1

uj(t)ϕ[fj ,B],z(t), a.e. in [0, 1]. (17)

As a consequence, we obtain the following formula for the derivatives of the SF: for i = 1, ...,m,

ϕ̇z(t) = Au(t), a.e. in [0, 1], (18)

where A is the skew-symmetric matrix A = (ϕ[fj ,fi],z(γu(t))i,j=1··· ,m. If the LARC holds, then for any compactK
of M , there exist an integer r ≥ m and a finite subset {f1, · · · , fm, fm+1, · · · fr} of LΣ, with fm+1, . . . , fr iterated
Lie brackets of the fi’s, such that

∀x ∈ K, span (f1(x), . . . , fm(x), fm+1(x), . . . , fr(x)) = TxM. (19)

Then, (see Sect. 5.2), there exists an open bounded subset UK of M containing K such that if B ∈ V∞(M)
there exist r C∞ functions v1,B ,· · · ,vr,B defined on UK with

∀x ∈ UK , B(x) =
r∑
i=1

vi,B(x)fi(x). (20)

Apply (20) with K = γu([0, 1]) and B ∈ LΣ. Then, B(γu(t)) =
∑r
i=1 vi,B(γu(t))fi(γu(t)). This implies that

(vi,B(t)
def
= vi,B(γu(t)))

ϕB,z(t) = 〈λz(t), B(γu(t))〉 =
r∑
i=1

vi,B(t)〈λz(t), fi(γu(t))〉 =
r∑
i=1

vi,B(t)ϕfi,z(t). (21)

Using (21), we write (17) for B = fi, 1 ≤ i ≤ r, as

ϕ̇fi,z(t) =
m∑
j=1

uj(t)ϕ[fj ,fi],z(t) =
m∑
j=1

uj(t)

(
r∑
q=1

vq,[fj ,fq ](t)ϕfq ,z(t)

)

=
r∑
q=1

⎛⎝ m∑
j=1

uj(t)vq,[fj ,fq ](t)

⎞⎠ϕfq,z(t) =
r∑
q=1

wq,i(t)ϕfq ,z(t), a.e. in [0, 1], (22)

where wq,l(t) =
∑m

j=1 uj(t)vq,[fj ,fl](t). The following proposition holds:

Proposition 1. For u ∈ H there exists r ≥ 0 such that, for z ∈ T ∗
E(u)M , the corresponding SF together with

suitable PSF, satisfy a first order linear differential system of dimension r.

If the SBGC holds, then the integer r defined in Proposition 1 can be taken independent of u. Actually, one
can choose r to be 2m.
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We finally treat the MPP with obstacles (MPPO for short) by the use of a potential function ψ defined next.
An obstacle C is a nonempty closed subset C of M such that M̃ = M \C is also nonempty. Then, there exists a
smooth bounded function ψ : M → IR, (cf. Sect. 5.3) such that ψ > 0 on M̃ , ψ = 0 on C and and (M̃, 〈〈·, ·〉〉x)
is a complete Riemaniann manifold, where

〈〈·, ·〉〉x =
〈·, ·〉x
ψ2

· (23)

Let Σ = (M, IRm,H, f) be a CC-tempered control system and Σ0, the control system on M defined by

ẏ =
m∑
i=1

vif̄i(y), m ≥ 1, (24)

where f̄i = ψfi, i = 1, · · · ,m. Then the vector fields f̄i, i = 1, · · · ,m satisfy the NEC. Furthermore, M̃ is
invariant under the control system Σ0. More precisely, we have

Lemma 1. ∀v ∈ H, ∀p ∈ M̃ , if γ̃v is the solution of (24) with γ̃(0) = p, then γ̃([0, 1]) ⊂ M̃ .

Proof of Lemma 1. If not, then there exist x0 ∈ M̃ , v0 ∈ H and t1 ∈ [0, 1] with γ̃(t1) = q ∈ ∂C, where γ̃v0 is
the solution of (24) with γ̃(0) = x0. On the other hand, for every w ∈ H the solution of (24) corresponding
to w with initial condition q is the constant path q. Hence, γ̃v0 ≡ q, which is a contradiction since x0 �= q. �

For every t ∈ [0, 1], γ̃(t) belongs to the connected component of M̃ containing p. Let f̄ = (f̄1, · · · , f̄m).
For every connected component C of M̃ , Lemma 1 implies that ΣC = (C, IRm,H, f̄) is a CC-tempered control
system. Thus, the MPPO is reduced to a MPP for each connected component of M̃ . On one hand, the LARC
and the SBGC are preserved but, on the other hand, the Lie bracket relations of the vector fields associated to
the original system will in general be different after this reduction.

2.3. Application of the HCM to the MPP

For the rest of the paper, all considered control systems are supposed to be CC-tempered, unless otherwise
indicated.

We start with the following remark.

Remark 2. Suppose there exists an open neighborhood M0 of some x0 in M such that, for every x ∈ M0,
the rank of the subspace of TxM spanned by f1(x), · · · , fm(x) is equal to n. With no loss of generality, we
can assume that M0 is an open ball of IRn centered at x0 = 0. Then, the MPP is trivially solved at least
locally: every path π contained in M0 can be regarded as a trajectory of Σ. Indeed, let π : [0, 1] be a C1 path
contained in M0. If we use F (x), the m×nmatrix with fi as column vectors, and G(x) a smooth right inverse of
F (x), then, for t ∈ [0, 1] π̇ = F (π(t))G(π(t))π̇ =

∑m
i=1 vi(t)fi(π(t)), for m continuous functions vi : [0, 1] → IR,

i = 1, · · · ,m.

From now on, m < n and, for every x ∈M , the fi(x) are linearly independent in TxM .
Pick x0 ∈ M and let E : H → M be the corresponding end-point map. The application of the HCM to the

MPP is divided into two steps.

Step 1. Determine the singular set S and E(S), the singular value set.

The determination of S can proceed as follows: let u be a nonzero abnormal control giving rise, for every
z ∈ T ∗

E(u)M , to a trajectory ξ = (γu, λ) of T ∗Σ. According to Proposition 1, the corresponding SF, ϕi,z , i =
1, · · · ,m, together with suitable PSF, ϕi,z, i = m+1, · · · , r satisfy a first order linear differential system (DS)z
of dimension r. There exists z ∈ T ∗

E(u)M , ‖z‖ = 1, such that ϕi,z ≡ 0, i = 1, · · · ,m. Applying (18) for each
SF, we obtain m equations involving the PSF ϕ[fi,fj ],z, i, j = 1, · · · ,m. Using (19), we get m equations only
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involving the PSF ϕi,z, i = m+ 1, · · · , r. In addition, (DS)z is reduced to another first order linear differential
system (DS)′z of dimension r−m satisfied by the PSF ϕi,z , i = m+1, · · · , r only. Then, a control u is abnormal
if there exists z ∈ T ∗

E(u)M , ‖z‖ = 1, such that

(a) There exist smooth functions αij defined in an open neighborhood of γu([0, 1]) such that

∀j = 1, · · · ,m
r∑

i=m+1

ui(t)αij(γu(t))ϕi,z(γu(t)) = 0;

(b) the PSF ϕi,z , i = m+1, · · · , r, are solution of a first order linear differential system (DS)′z of dimension
r −m with terminal condition z.

The analysis of the previous system of equations provides useful informations on the sets S and E(S), and, in
some cases, leads to their explicit characterization (see, for instance, [5,7,8]). It has to be pointed out that there
does not exist, to the best of the author’s knowledge, any interesting general result regarding the topological
nature of E(S). In particular, it is not known if Sard’s theorem holds for E , i.e., if E(S) has measure zero.

Fix q /∈ E(S). It remains to find a control u0 such that u0 /∈ S and a C1 arc π : [0, 1] → M such that
π(0) = E(u0) = p, π(1) = q, π([0, 1]) ∩ E(S) = ∅. For instance, this can be done when M \ E(S) is connected.

Step 2. By using (3), lift the path π to a path Π in H. Then the existence of the global solution of (3) with
Π(0) = u0 must be established.

The lift Π we are looking for should verify E(Π(s)) = π(s) for s ∈ [0, 1] and Π(0) = u0, i.e.

DE(Π(s)) · dΠ
ds

(s) =
dπ
ds

(s), a.e. in [0, 1], Π(0) = u0. (25)

Since π(s) /∈ E(S) for all s ∈ [0, 1], then rank DE(Π(s)) = n. To solve (25), we use P (u) the Moore-Penrose
pseudo-inverse of DE(u):

∀u ∈ H \ S, P (u) = DE(u)THG(u)−1 : TE(u)M → H, and ‖P (u)‖ =
[

inf
‖z‖=1

〈z,G(u)z〉
]−1/2

. (26)

We choose to take dΠ
ds (s) equal to

dΠ
ds

(s) = P (Π(s))
dπ
ds

(s), a.e. in [0, 1], Π(0) = u0, (27)

and in this way, (25) is verified. Equation (27) is the Path Lifting Equation (PLE). Recall that the HCM
requires global existence of the solution of the PLE. The strategy we follow consists of proving, for certain
controls u, a linear growth of ‖P (u)‖ in terms of ‖u‖. More precisely, let K be a closed subset of M such that
d(K, E(S)) = α > 0 and π([0, 1]) ⊂ K. Assume that there exists CK > 0 such that, for every u ∈ H with
E(u) ∈ K, then ‖P (u)‖ ≤ CK‖u‖H, i.e., after using (15) and (26),

(∃CK > 0)(∀u ∈ H)(∀z ∈ T ∗
E(u)M, ‖z‖ = 1)

(
E(u) ∈ K ⇒ ‖u‖H‖DE(u)THz‖H ≥ 1

CK

)
· (28)

Then, by Gronwall’s lemma, the maximal solution of (27) is global i.e. defined on [0, 1]. In the sequel, the
strategy to establish the existence of a global solution will consists in proving (28).

The application of the HCM to the MPP can be summarized as follows: we first identify a subset S of H,
the singular set, and its image E(S) on M . Next, we try to lift C1 paths lying in the connected components of
M \ E(S) by solving the PLE, that is an o.d.e. in H. That last step is reduced to establish Statement (28) for
appropriate paths π.
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Remark 3. It is important to stress on the explicit character of a (possible) solution provided by the HCM to
the MPP. Indeed, as regards existence results, there exist general ones. More precisely, if the map E is associated
to a CC-tempered control system, then E satisfies the path lifting property (PLP), i.e., for every continuous path
π : [0, 1] → M with π(0) = E(u0), u0 ∈ H, there exists a continuous path Πc : [0, 1] → H satisfying E ◦ Π = π.
This actually follows directly from the LARC (see [11] for instance). Note that the preceding lift Πc does not
satisfy equation (25) in general.

2.4. General properties of the PLE

Let Σ = (M, IRm,H, f) be a CC-tempered control system and E be an end-point map associated to some
fixed point p.

2.4.1. Local existence and uniqueness of the maximal solution of the PLE

The Moore-Penrose inverse P is Fréchet differentiable on H\S since the end-point map E is actually smooth
(cf. Bismuth [3]). Using this fact, we get the next proposition.

Proposition 2. Let π : [0, 1] →M \ E(S) be a C1 curve. Then, for any couple (s̄, ū) in [0, 1]×H \ S, we have
local existence and uniqueness of the maximal solution Π of (27) with initial condition Π(s̄) = ū.

Proof of Proposition 2. Let K = π([0, 1]) and V an open set of M containing K. In Section 4.3, we prove the
existence of a time-varying vector field {h(s, ·)}s∈[0,1] such that

(i) h is continuous on [0, 1]×M and h(s, ·) is smooth for every s ∈ [0, 1];
(ii) for every x ∈M/V , h(·, x) : [0, 1] → TxM is identically equal to 0;
(iii) ∀s in [0, 1], h(s, π(s)) = dπ

ds (s), ∃C > 0, ∀x in M , ‖h(s, x)‖ ≤ ‖dπ
ds (s)‖ and ‖Dxh(s, x)‖ ≤ C.

Using h defined above, we write the PLE (27):

dΠ
ds

(s) = P (Π(s)) · h(s, E(Π(s))), Π(s̄) = ū. (29)

This o.d.e. is of the type du
ds = F (s, u), with F : [0, 1] × H → H and F (s, u) = P (u) · h(s, E(u)). Since P is

Fréchet-differentiable in H \ S and dπ
ds is integrable in [0, 1], then F is continuous, Fréchet-differentiable with

respect to u, and there exists C > 0 such that

∀u ∈ H \ S, ∀s ∈ [0, 1], ‖DuF (s, u)‖ ≤ C

∥∥∥∥dπ
ds

(s)
∥∥∥∥ ·

The conditions of Carathéodory existence theorem hold, and hence, the proposition. �

2.4.2. A locally finite dimensional reduction of the PLE

If L is a closed linear subspace of H, let prL be the orthogonal projector onto L and EL : L→ M the restriction
of E to L. The image of EL is equal to that of E ◦ prL : H → M . For u ∈ H, let DEL(u) : L → TE(u)M

be the restriction of DE(u) to L, (i.e. DEL(u) = DE(u) ◦ prL) and DETL

L (u) be its transpose map. Set
GL(u) = DEL(u) ◦ DETL

L (u), the controllability Gramian restricted to L and, if DEL(u) is onto, PL(u), the
Moore-Penrose inverse of DEL(u). Note that, if u ∈ L, then the differential of EL at u, its transpose map, its
controllability Gramian and the associated Moore-Penrose inverse coincide respectively with DEL(u), DETL

L (u),
GL(u) and PL(u).

Since DETL

L (u) = prL ◦DE(u)T , we have, for every z ∈ T ∗
E(u)M ,

〈z,G(u)z〉 = 〈z,GL(u)z〉 + ‖(IdH − prL)DE(u)T z‖2. (30)
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The above equation shows, in particular if DEL(u) is onto (and thus if DE(u) is) that

‖P (u)‖ ≤ ‖PL(u)‖. (31)

We prove the following theorem.

Theorem 1. Let π : [0, 1] → M \ E(S) be a C1-curve and (Hj)j≥1 be a strictly increasing sequence of finite-
dimensional subspaces of H such that

⋃
j≥1 Hj is dense in H. Assume that there exists u0 ∈ Hj0 for some j0

and E(u0) = π(0). Let I be the interval of existence of the maximal solution of the PLE starting at u0. Then,
for every closed subinterval J = [0, s0] ⊂ I, there exists j1 so that, for every j ≥ j1, πJ , the restriction of π to
J , can be lifted to a path ΠJ in Hj verifying

(a) for every s ∈ J , DEHj (ΠJ (s)) is onto;
(b) the path ΠJ is the global solution on J of the ODE in Hj given by{

dΠJ

ds (s) = PHj (ΠJ (s))dπJ (s)
ds ,

ΠJ (0) = u0.
(32)

Equation (32) is, in a sense, a finite-dimensional version in Hj of the PLE in H. In particular, if the PLE has
a global solution, then J can be taken equal to [0, 1]. This result is similar in spirit to the finite-dimensional
reduction of a general alternative problem (cf. [9] for a definition of an alternative problem and, [4, 13] for
finite-dimensional reduction procedures). Since H is a Hilbert space, such a finite-dimensional reduction of the
PLE can be obtained by taking the span of a finite number of elements of a complete orthonormal system.
Therefore, as noticed in [9], a result like Theorem 1 can be seen as a theoretical justification of the use of
Galerkin’s procedure in numerical implementations of the PLE.

Proof of Theorem 1. Consider a compact set K ⊂ M \ E(S), containing π(J) in its interior. For simplicity, we
use prj , DEj , DETj

j , ... instead of prHj , DEHj , DETHj

Hj , ..., for j ≥ 1. �

For α > 0, let Kα be the set of u ∈ H such that E(u) ∈ K and

min
s∈[0,1]

‖u− Π(s)‖ = α.

Clearly, for α > 0 is small enough, Kα is a a closed set, containing Π(J) in its interior. We first show the
following lemma.

Lemma 2. There exist α0, C0 > 0 and j1 such that, for every j ≥ j1,
(a) maxs∈J ‖(IdH − prj) ◦DE(Π(s))T ‖ →j→∞ 0;
(b) for every u ∈ Kα0 , ‖Pj(u)‖ ≤ 2‖P (u)‖;
(c) Pj is globally Lipschitz over Kα0 with constant C0.

Proof of Lemma 2. Item (a) follows from the fact that the subset of H

{DET (Π(s))z, s ∈ [0, 1], z ∈ T ∗
π(s)M, ‖z‖ = 1},

is compact and the definition of the sequence (Hj)j≥1.
To establish items (b) and (c), it is enough to prove that there exist α0 > 0, and j1 ≥ 1 such that for every

j ≥ j1 and u ∈ Kα0 , we have, for every z ∈ T ∗
E(u)M and ‖z‖ = 1,

〈z,G(u)z〉 ≤ 2〈z,Gj(u)z〉. (33)
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Indeed, item (b) directly follows from (33) and for item (c), one uses in addition the differentiation of

Pj(u) = prjDE(u)TG−1
j (u).

In order to obtain (33), we start from (30) considered for u in some Kα (α > 0 small enough) and z ∈ T ∗
E(u)M ,

‖z‖ = 1. Let su ∈ [0, 1] such that ‖u − Π(su)‖ = α. If M were an Euclidean space, then T ∗
E(u)M could be

identified with T ∗
π(su)M and we would write at once (IdH − prj)DE(u)T z as the sum of two terms

(IdH − prj)[DE(u)T −DE(su)T ]z + (IdH − prj)DE(su)T z.

The first term is majorized by C1α, C1 > 0 independent of α > 0 small enough, and, according to item (a), the
second term tends to zero as j goes to infinity uniformly with respect to u ∈ Kα.

In the general situation, one can still show that

‖(IdH − prj)DE(u)T z‖ ≤ C1α+ rj , (34)

where C1 > 0 is independent of α > 0 small enough and limj→∞ rj = 0, uniformly with respect to u ∈ Kα. An
argument goes as follows: consider the segment in Kα defined by v(ξ) = Π(su)+ ξ(u−Π(su)) for ξ ∈ [0, 1]. For
w ∈ T ∗

π(su)M , let fw be the map defined in a neighborhood U of π(su) that associates to x ∈ U the cotangent
vector obtained as the parallel transport of w along the minimizing geodesic joining π(su) and x. If α is small
enough, there is a unique zu ∈ T ∗

π(su)M such that fzu(E(u)) = z. Moreover that choice of α can be made
uniform with respect to u ∈ Kα. It is also clear that 1

2 ≤ ‖zu‖ ≤ 3
2 for α small enough. Finally, for ξ ∈ [0, 1],

define the differentiable mapping

M(ξ) = (IdH − prj)DE(v(ξ))T fzu(E(v(ξ))).

Of course (IdH − prj)DE(u)T z = M(1). Writing it as M(0) +
∫ 1

0 M
′(ξ)dξ, (34) follows.

Using (34), equation (30) becomes

〈z,Gj(u)z〉 ≥ 〈z,G(u)z〉 − C1α− rj ,

where C1 is independent of α, j ≥ 1 and limj→∞ rj = 0, uniformly with respect to u ∈ Kα.
Moreover 〈z,G(u)z〉 ≥ λmin(G(u)), the smallest eigenvalue of the positive definite symmetric matrix G(u).

We next show that there exists λ0 > 0 independent of α small enough so that,

∀u ∈ Kα, λmin(G(u)) ≥ λ0. (35)

Arguing by contradiction, there is a sequence (uk)k≥1 of elements of Kα such that λmin(G(uk)) tends to zero
as k goes to infinity. Up to a subsequence, (uk)k≥1 converges weakly to some ū ∈ Kα. This implies that
(γuk)k≥1 converges to γū uniformly on [0, 1]. Therefore, for every z ∈ T ∗

E(ū)M and sequence (zk)k≥1 with
zk ∈ T ∗

E(uk)M , ‖zk‖ = 1 and limk→∞ zk = z, then DE(uk)T zk tends to DE(ū)T z as k goes to infinity. Then
limk→∞ λmin(G(uk)) = 0 implies that there exists z̄ ∈ T ∗

E(ū)M , ‖z̄‖ = 1 such that 〈z̄, G(ū)z̄〉 = 0, i.e. ū is an

abnormal control. This contradicts the fact that E(ū) ∈ K ⊂M \ E(S).
Using (35), we can conclude the proof of Lemma 2. By choosing α small enough and j1 large enough, one

has, for every u ∈ Kα and j ≥ j1, C1α+ rl ≤ λ0

2 . Therefore, (33) follows. �
We now finish the proof of Theorem 1.For j ≥ j1, we consider the Cauchy problem given by{

dΠj

ds (s) = Pj(Πj(s))dπJ (s)
ds ,

Πj(0) = u0.
(36)
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We must show that there exists j1 large enough so that Jj1 = J , where Jj1 is the maximal interval of existence
of the solution Πj1 of (36). Let j ≥ j0. As long as Πj belongs to Kα0 , then it is defined. Since Πj(0) = u0,
there exists a nonempty time interval [0, a) included in Jj so that Πj is in the interior of Kα0 . For s ∈ [0, a),
set vj(s) = Πj(s) − Π(s). Then vj(0) = 0 and

dvj
ds

(s) = [Pj(Πj(s)) − Pj(Π(s))]
dπJ (s)

ds
+ gj(s), (37)

where gj(s) = [Pj(Π(s)) − P (Π(s))]dπJ (s)
ds . Note that gj is actually defined on the whole interval J . As for

item (a) in Lemma 2, one has that limj→∞Rj = 0, where Rj = sups∈J |gj(s)|. Using item (c) and applying
Gronwall’s lemma, one gets that

‖vj(s)‖ ≤ Rj
eC0s − 1
C0

,

as long as the the right-hand side of the above inequality remains smaller than α0. Finally, by choosing j large
enough, that right-hand side stays smaller than α0 for every s ∈ [0, 1] and we conclude.

2.4.3. A regularity theorem for the maximal solution of the PLE

Let us consider a CC-tempered control system Σ = (M, IRm,H, f) such that H = L2([0, 1], IRm). Pick a
curve π : [0, 1] → M \ E(S) such that π(0) = x1 ∈ M and π(1) = q ∈ M . For simplicity, we assume that π is
smooth. Let u0 be the initial condition of the PLE associated to π. (In particular, E(u0) = x1.) We only know
a priori that Π, the maximal solution of the PLE, belongs to H. It turns out that if u0 is chosen more regular,
then this regularity will be preserved as long as Π is defined. More precisely, the following theorem holds.

Theorem 2. Let π : [0, 1] →M \ E(S) be a smooth curve such that π(0) = x1 ∈M and π(1) = q ∈M .
(a) Assume that H = L2([0, 1], IRm) and consider an element u0 of H, which is not an abnormal control

and such that u0 ∈ Hk([0, 1], IRm) for some integer k ≥ 0 and E(u0) = x1. Let I be the maximal interval
of existence of the solution of the PLE associated to π and starting at u0. Then, ∀s ∈ I, Π(s) can be
written as u0 +M(s), where M(s) ∈ Hk+1([0, 1], IRm).

(b) The same conclusion holds, when we replace Hk with Ck in (a).
In particular, if u0 is smooth and the PLE has a global solution, then the input solving the MPP (i.e. steering
x0 to q) is also smooth.

Proof of Theorem 2. We will consider several positive constants denoted Ci that will depend only on k, some
compact set K and integer r, both defined below. In addition, the next lemma is used repeatedly. �
Lemma 3 (cf. Adams [1]). Let l be a positive integer. Then, there exists C > 0 such that for all u, v ∈ H l(0, 1),
we have uv ∈ H l(0, 1) and ‖uv‖Hl ≤ C‖u‖Hl‖v‖Hl .

Without loss of generality, we may assume that I = [0, 1]. For s ∈ [0, 1], we write

Π(s) = u0 +M(s),

where we define M(s) as

M(s)
def
=
∫ s

0

dΠ
dη

(η)dη =
∫ s

0

P (Π(η))
dπ
dη

(η)dη. (38)

First, note that there exists C1 > 0 such that

∀s ∈ [0, 1], ‖Π(s)‖L2 ≤ C1. (39)

Next, recall that the solutions of (5) are continuous with respect to the input u ∈ H, and then, thanks to (39),
there exists a compact set K of M such that

∀s, t ∈ [0, 1], γΠ(s)(t) ∈ K. (40)
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Therefore, if i = 1, · · · ,m, and s, t ∈ [0, 1]2, the vector fields fi’s and their differentials (up to order 2k) remain
bounded by a positive constant C2, when they are evaluated at γΠ(s)(t). Furthermore, the corresponding adjoint
vectors with initial condition z of norm one are also bounded by a positive constant C3.

As a consequence of Proposition 1, the switching functions together with finitely many pseudo-switching
functions satisfy a first order linear differential system of dimension r (independent of s ∈ [0, 1]). Since G−1 is
continuous, there exists a positive constant C4, such that

∀s ∈ [0, 1],
∥∥∥∥G−1(Π(s))

(
dπ
ds

(s)
)∥∥∥∥ ≤ C4. (41)

By definition of the Moore-Penrose inverse, we have, for η ∈ [0, 1],

P (Π(η))
dπ
dη

(η) = DE(Π(η))TG−1(Π(η))
dπ
dη

(η).

Thanks to (13) and recalling the definition of the switching vector given in (12), we have

P (Π(η))
dπ
dη

(η) =
∥∥∥∥G−1(Π(η))

dπ
dη

∥∥∥∥ϕη,zη ,

where zη =
G−1(Π(η))( dπ

dη )

‖G−1(Π(η))( dπ
dη )‖ , η ∈ [0, 1]. In ϕη,zη , the index η refers to the fact that the switching vector

corresponds to Π(η), η ∈ [0, 1], and the index zη refers to the fact that the terminal condition of the adjoint
equation along γΠ(η) is equal to zη. We therefore write (38) as

M(s) =
∫ s

0

∥∥∥∥G−1(Π(η))
dπ
dη

∥∥∥∥ϕη,zηdη, (42)

Theorem 2 will be a consequence of the following lemma:

Lemma 4. Let l ≤ 2k be an integer.
(i) Assume that,

(1i) for every s ∈ [0, 1], Π(s) ∈ H l;
(2i) there exists a positive constant C5 such that

∀s ∈ [0, 1], ‖Π(s)‖Hl ≤ C5. (43)

Then there exists a positive constant C6 such that,

∀s ∈ [0, 1], ∀z ∈ T ∗
π(s)M, ‖z‖ = 1, ϕs,z ∈ H l+1 and ‖ϕs,z‖Hl+1 ≤ C6. (44)

In addition, we have that, for every s ∈ [0, 1], M(s) ∈ H l+1.
(ii) Assume that

(1ii) for every s ∈ [0, 1], Π(s) ∈ Cl;
(2ii) there exists a positive constant C7, such that

∀s ∈ [0, 1], ‖Π(s)(l)‖L∞ ≤ C7. (45)

Then there exists a positive constant C8 such that,

∀s ∈ [0, 1], ∀z ∈ T ∗
π(s)M, ‖z‖ = 1, ‖ϕ(l+1)

s,z ‖L∞ ≤ C8. (46)
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Moreover,

∀s ∈ [0, 1], M(s) ∈ Cl+1. (47)

We first finish the proof of Theorem 2 assuming Lemma 4, and then provide its proof.
The conclusion of the theorem is shown by an inductive argument. For k = 0, we already know that for

every s ∈ [0, 1], Π(s) ∈ H. Then the conditions of Lemma 4 part (i) are satisfied, and hence, we get Theorem 2
part (a) for k = 0. In particular, for every s ∈ [0, 1], M(s) is continuous. Therefore, if u0 is also continuous, we
have that for every s ∈ [0, 1], Π(s) is continuous and, clearly, ‖Π(s)‖L∞ is bounded by some positive constant
independent of s ∈ [0, 1]. Hence, by Lemma 4, M(s) is continuous and Theorem 2 part (b) is proven for k = 0.

Assume now that Theorem 2 holds for all the integers l ∈ {0, · · · , k}. Consider u0 ∈ Hk+1. Then, by
applying Theorem 2 to u0 ∈ Hk, M(s) ∈ Hk+1 for every s ∈ [0, 1]. It implies that

∀s ∈ [0, 1], Π(s) = u0 +M(s) ∈ Hk+1. (48)

The conditions of Lemma 4 part (i) are satisfied with l = k + 1 and then Theorem 2 part (a) follows. Finally,
consider u0 ∈ Ck+1. Then M(s) ∈ Ck+1 for every s ∈ [0, 1] and, as in (48), Π(s) ∈ Ck+1. Using Lemma 4
part (ii), we can complete the proof of the induction step for l = k + 1. Then, Theorem 2 part (b) is proved.

Proof of Lemma 4. Thanks to (19), there exists an integer r ≥ m and a finite subset {f1, · · · , fm, fm+1, · · · fr}
of LΣ, withfm+1, . . . , fr iterated Lie brackets of the fi’s, such that for every x ∈ K,

span (f1(x), . . . , fm(x), fm+1(x), . . . , fr(x)) = TxM. (49)

Let ϕ̃s, s ∈ [0, 1], be the r-dimensional vector corresponding to the SF ϕ1, · · · , ϕm and suitable PSF ϕm+1, · · · , ϕr.
By Proposition 1 and (22), we have

(M)
{ ˙̃ϕs(t) = Ws(t)ϕ̃s(t), a.e. in [0, 1],
ϕ̃s(1) = z̃s,

where Ws(t) = (ws,q,j(t))1≤q,j≤r and z̃s = (〈zs, fj(Π(s))〉)1≤j≤r .
Note that there exists a positive constant C9, such that

∀s ∈ [0, 1], sup
1≤q,j≤r

‖ws,q,j‖Hl ≤ C9 sup(1, ‖Π(s)‖l+1
Hl ) ≤ (C9, C

l+1
5 ). (50)

In addition, it is easy to see that there exists a positive constant C10 such that

∀s ∈ [0, 1] ‖z̃s‖ ≤ C10. (51)

Finally, by Gronwall’s Lemma and Lemma 3, we obtain that (M) has a global solution in H l+1 and that there
exists a positive constant C11 such that

∀s ∈ [0, 1] ‖ϕ̃s‖Hl+1 ≤ C11. (52)

Taking (52) into account, we have that M(s), s ∈ [0, 1], admits a measurable (l + 1) derivative, namely

M(s)(l+1)(t) =
∫ s

0

∥∥∥∥G−1(Π(η))
(

dπ
dη

)∥∥∥∥ϕ(l+1)
η,zη

(t)dη. (53)



A CONTINUATION METHOD FOR MOTION-PLANNING PROBLEMS 155

Furthermore, using the Cauchy-Schwarz inequality and (53), we obtain

‖M(s)‖2
Hl+1 =

j=l+1∑
j=0

‖M(s)(j)‖2
L2 =

j=l+1∑
j=0

∫ 1

0

(∫ s

0

‖G−1(Π(η))(
dπ
dη

)‖ϕ(j)
η,zη

(t)dη
)2

dt

≤
j=l+1∑
j=0

∫ 1

0

C2
4

(∫ s

0

(ϕ(j)
η,zη

(t))2dη
)

dt ≤ C2
4

∫ s

0

‖ϕη,zη‖2
Hl+1dη ≤ C2

5C
2
11.

Therefore, Lemma 4 part (i) is established.
In order to show Lemma 4 part (ii), we need to prove that M(s)(l+1), given by (53), is continuous.

This follows from the Lebesgue dominated convergence theorem since ϕ̃s(l+1), s ∈ [0, 1], is continuous and
sups∈[0,1] ‖ϕ̃s(l+1)‖L∞ <∞. �

3. The strong bracket generating case

For the rest of the section, n > m ≥ 2 and Σ = (Mn, IRm,Hm, f̄) is a CC-tempered control system satisfying
the SBGC.

Consider on T ∗M the Hamiltonian lift T ∗Σ defined in (7). Set Fi = T ∗fi, for i = 1, . . . ,m. Then, for
ξ = (x, z) ∈ T ∗M and i, j, k = 1, · · · ,m, we set

ϕi(ξ)
def
= 〈z, fi(x)〉, ϕi,j(ξ) def= 〈z, [fj, fi](x)〉, ϕi,j,k(ξ) def= 〈z, [fk, [fj , fi]](x)〉,

ϕ(ξ)
def
= (ϕ1(ξ), · · · , ϕm(ξ)), ‖ϕ(ξ)‖ def=

(
m∑
i=1

ϕi(ξ)2
)1/2

, A(ξ)
def
= (ϕi,j(ξ))i,j=1,··· ,m.

Given a trajectory ξ of T ∗Σ, let ϕi(t), ϕi,j(t), ϕi,j,k(t), ϕ(t) and A(t) simply denote ϕi(ξ(t)), ϕi,j(ξ(t)),
ϕi,j,k(ξ(t)), ϕ(ξ(t)) and A(ξ(t)) respectively. We recall that

ϕ′(t) = A(t)u(t). (54)

We now give two consequences of the SBGC in terms of the switching functions.

Proposition 3. Let Σ be a driftless control-affine system on M subject to the SBGC. For ξ = (x, z) ∈ T �M ,
assume that ϕ1(ξ) = · · · = ϕm(ξ) = 0. Then the following two properties hold and are equivalent:

(a) the F -Lie derivatives of the SF ϕi, (∇Fϕi(ξ))i=1,...,m, span IRm.
(b) A(ξ) is invertible.

When A(ξ) is invertible, set A−1(ξ)
def
= (bij(ξ))1≤i,j≤m.

Proof of Proposition 3. We write

Fj · ϕi(ξ) = dϕi · Fj = (〈z,Dfi(x)(·)〉, fi(x))
(

fj(x)
−〈z,Dfj(x)(·)〉

)
= 〈z,Dfi(x) · fj(x) −Dfj(x)fi(x)〉 = 〈z, [fj, fi](x)〉 = ϕi,j(ξ).

For θ = (θ1, . . . , θm) and j = 1, . . . ,m, we have

m∑
i=1

θi∇Fϕi = −(〈z, [θ · f, fj ](x)〉)1≤j≤m = −A(ξ)(θ).
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Hence, A(ξ)θ = 0 is equivalent to
m∑
i=1

θi∇Fϕi = 0. (55)

We pick ξ ∈ T �M with ϕ(ξ) = 0. If (∇Fϕi(ξ))i=1,...,m do not span IRm, then, thanks to (55), there exists
θ̄ �= 0 such that 〈z, fi(x)〉 = 0 and 〈z, [θ̄ · f, fi](x)〉 = 0, for 1 ≤ i ≤ m. Therefore, there exists a nonzero vector
z ∈ TxM perpendicular to the subspace F of TxM generated by the fi(x)’s and the [θ̄ · f, fi](x)’s, 1 ≤ i ≤ m.
That contradicts the SBGC. Hence, the proposition follows. �

3.1. Case where H = L2([0, 1], IRm)

Consequence (b) of the SBGC was used by Sussmann in [31] to prove the following theorem:

Theorem 3. Let Σ = (M, IRm,H, f) be a CC-tempered control system where H = L2([0, 1], IRm), f is an
m-tuple of C3 vector fields and the SBGC holds. Let x0 ∈ M and E the corresponding end-point map. Then
every C1 path π such that x0 /∈ π([0, 1]) can be lifted through E using the HCM.

Here we describe another proof of this theorem (as given in [8]), based on consequence (a) of the SBGC. The
general structure of the proof is that of [31] and it will be provided next because that structure of proof will be
the one for the argument of Theorem 4.

It consists in applying Proposition 4 in several cases.

Proof of Theorem 3. Let x0 ∈M and consider the corresponding end-point map E : H → M . Since the control
system satisfies the SBGC, it follows from Proposition 3 (b) that the singular set S reduces to {0} (see also
Strichartz [30]). Hence, E(S) = {x0}. Let π be a C1 path such that x0 /∈ π([0, 1]). Consider u0 ∈ H with
E(u0) = π(0). Such a control exists since Σ is completely controllable and E(S) = {x0}. We must show that
the PLE corresponding to π with initial condition u0 admits a global solution on [0, 1].

Let d (d∗ respectively) be the distance function induced by the given complete Riemannian metric on M
(T ∗M respectively). For α > 0 and A a bounded set in a finite dimensional manifold, we define the following
compact set

Kα(A)
def
=
{
y ∈M | inf

s∈A
d(s, y) ≤ α

}
. (56)

Let Kα0 = Kα0(π([0, 1])), where α0 is chosen small enough so that x0 /∈ Kα0 . We define the compact subsets
J and ZJ of T �M by

J =
{
ξ = (x, z)|x ∈ Kα0 , z ∈ T ∗

x0
M,

1
2
≤ ‖z‖ ≤ 3

2

}
, (57)

ZJ = {ξ ∈ J |ϕ1(ξ) = · · · = ϕm(ξ) = 0} . (58)

Therefore, by Proposition 3, minξ∈ZJ | det(∇Fϕj)j=1,...,m| > 0. Let AJ,ϕ be equal to Kα̃(ZJ) for some α̃ > 0,
such that

min
ξ∈AJ,ϕ

| det(∇Fϕj(ξ))j=1,...,m| > 0. (59)

A crucial step in the proof of Theorem 3 relies on Proposition 4 (see below), which is of independent interest.
Its proof is not given since it is a simpler version of the main argument of [8]. �
Proposition 4. Let Σ be the control system (M, IRm,H, f) where H = L2((0, 1), IRm) and f is an m-tuple of
C1 vector fields. Let ϕ1, . . . , ϕr, r ≥ m : T ∗M → IR be C2 functions and set ϕ = (ϕ1, . . . , ϕr).

For a compact set K ⊆ M , consider the sets J(K) and Z(K) associated to K as J and ZJ were associated
to Kα0 in (57) and (58). Let ψ : T ∗M → IR be a C2 function satisfying

(Υ)
There exist a compact neighborhood N = Nψ,J(K),ϕ of Z(K),
C1 functions β1, . . . , βr : N → IR, C0 IRm-valued functions δ1, · · · , δr : N → IRm,
∀ξ ∈ N , ∇Fψ(ξ) =

∑r
j=1(βj(ξ)∇Fϕj(ξ) + ϕj(ξ)δj(ξ)).
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Then, there exists C = CJ(K),ψ,ϕ > 0 such that, for any subinterval [a, b] in [0, 1] and any control u ∈
L2([a, b], IRm) that gives rise to a trajectory ξ of T ∗Σ contained in J(K), we have

|ψ(ξ(b)) − ψ(ξ(a))| ≤ C‖u‖L2([a,b])‖ϕ‖L2,ξ, (60)

where ‖ϕ‖2
L2,ξ

def
=
∑r
j=1

∫ b
a
ϕj(ξ(t))2dt and ‖u‖2

L2([a,b])

def
=
∑m

j=1

∫ b
a
u2
j(t)dt.

As a consequence of the SBGC, it is easy to show that every function ψ : T �M → IR of class C2 satisfies
Hypothesis (Υ) with ϕ equal to the m-tuple of SF. Consider the following two functions ψ1, ψ2 : T �M → IR of
class C∞ defined as ψ1(x, z) = ‖z‖ and ψ2 = ψ̃2 ◦ π�, where ψ̃2 : M → IR+ is C∞ and satisfies

∀x ∈M, 1/2 ≤ ψ̃2(x) ≤ 1, ψ̃2(x) ≡ 1/2, if x ∈ Kα0/4, ψ̃2(x) ≡ 1, if x /∈ Kα0/2.

We apply Proposition 4 twice, first to ϕ, J and ψ1, and then to ϕ, J and ψ2. Here J is the set defined in (57).
We conclude the existence of C > 0, such that for every subinterval [a, b] of [0, 1] and for every u ∈ L2([a, b], IRm)
that gives rise to a trajectory ξ contained in J , we have

sup
i=1,2

|ψi(ξ(b)) − ψi(ξ(a))| ≤ C‖u‖L2([a,b])‖ϕ‖L2,ξ.

Take u ∈ H such that E(u) ∈ π([0, 1]) and consider the largest subinterval [a, 1] of [0, 1] for which γu([a, 1]) is
contained in Kα0 . Since x0 = γu(0) /∈ Kα0 , a > 0 and γu(a) ∈ ∂Kα0 . Solving the adjoint equation (8) with the
terminal condition λ(1) = z, ‖z‖ = 1, we lift γu : [a, 1] →M to ξu,z : [a, 1] → T ∗M . Because ξu,z(1) = (γu(1), z)

belongs to
◦
J , there exists a maximal subinterval [a′, 1] of [a, 1] such that ξu,z([a′, 1]) is contained in J and

ξu,z(a′) ∈ ∂J .
Two cases have to be considered: a = a′ and a < a′.

Case 1. a = a′.

The whole lift ξu,z is in J . Since γu(a) ∈ ∂Kα0, we have

d(γu(a), π([0, 1]) = α0.

Therefore, γu(a) does not belong to Kα0/2. Note that γu(1) belongs to Kα0/4. Then,

|ψ1(ξu,z(1)) − ψ1(ξu,z(a))| =
∣∣∣∣12 − 0

∣∣∣∣ = 1
2
·

Case 2. a < a′.

We have ξu,z(a′) ∈ ∂J, i.e. γu(a′) ∈ ∂K or ‖λ(a′)‖ ∈ { 1
2 ,

3
2}.

The first alternative reduces to the previous case, while for the second one, we have

|ψ1(ξu,z(1)) − ψ1(ξu,z(a′))| = | ‖λ(1)‖ − ‖λ(a′)‖ |
= | ‖z‖ − ‖λ(a′)‖ =

∣∣∣∣1 − 1
2

∣∣∣∣ =
∣∣∣∣1 − 3

2

∣∣∣∣ =
1
2
·

Therefore, in both cases, we obtain from Proposition 4

1
2
≤ C‖u‖L2(a′,1)‖ϕ‖L2,ξu,z

, (61)

where C is independent of u ∈ H with E(u) ∈ π([0, 1]) and z ∈ T ∗
E(u)M as long as ‖z‖ = 1.
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Using the notations introduced in Chapter 2, we have

‖ϕ‖L2,ξu,z
= ‖ϕz‖L2(a′,1) ≤ ‖ϕz‖L2(0,1).

Let C′ = 1
2C > 0. Then (61) implies that, for every u ∈ H for which E(u) ∈ π([0, 1]) and for every z ∈ T ∗

E(u)M

such that ‖z‖ = 1, ‖u‖L2(0,1)‖ϕz‖L2(0,1) ≥ C′. This completes the proof of Theorem 3.
Following the strategy described in Section 2.3, the MPP can be solved, i.e., for any points p, q ∈M , we can

produce a control up,q that steers p to q. Pick two points p, q ∈M such that p �= q. We consider the end-point
map E : H → M corresponding to p. Since our control system satisfies the SBGC, E(S) = {p}. We consider
first ū0 �≡ 0 in H. There exists a time t1 in [0, 1] such that γū0(t1) = x0 �= p. We define the control u0 by{

ū0 on [0, t1],
0 on (t1, 1].

Thus, E(u0) = x0 �= p. Since n > 1, M̃ = M \ p is arcwise connected, we can choose now a C1 path π in M̃
joining x0 to q. By Theorem 3, π can be lifted through E using the HCM to a path Π and we take up,q = Π(1).

3.2. Other control spaces

In this section, we are concerned with more regular Hilbert spaces defined next. For r ≥ 1, the Hilbert space
Hr,1 was already introduced in Chapter 2 as an example of Hilbert space satisfying Property (Cl)r. The spaces
Hr,m are the spaces of functions u = (u1, · · · , um) : [0, 1] → IRm, where each ui ∈ Hr,1, i = 1, · · · ,m. These
spaces are Hilbert spaces for the scalar products

∀u, v ∈ Hr,m, < u, v >
def
=

m∑
i=1

∫ 1

0

u
(r)
i (t)v(r)

i (t)dt.

The associated norms are denoted ‖ · ‖. We write, here and henceforth, the spaces Hr,m simply H. The main
result of this section is the following:

Theorem 4. Let Σ = (M, IRm,H, f) be a CC-tempered control system with H = Hr,m for some r ≥ 1. Assume
that Σ satisfies the SBGC. Let x0 ∈ M and E the corresponding end-point map. Then every C1 path π such
that x0 /∈ π([0, 1]) can be lifted through E using the HCM.

Note that Theorem 4 has a natural corollary in the case of the MPP with obstacles.

Proof of Theorem 4. For u ∈ H, i = 1, · · · ,m, and t ∈ [0, 1], set

Ui(t)
def
=
∫ t

1

ui(s)ds, U(t)
def
= (U1(t), · · · , Um(t)), U(t)

def
= sup

[t,1]

sup
i=1,··· ,m

|Ui(s)| .

Let x0 ∈ M and let E : H → M , u → γu(1) be the corresponding end-point map. Under the SBGC, the set
of abnormal controls reduces to {0}. Let π : [0, 1] → M be a C1 path and u0 ∈ H such that π(0) = E(u0)
and x0 /∈ π([0, 1]). We choose α > 0 small enough so that Kα(π([0, 1])) is compact and dM (x0, π([0, 1])) > α.
Consider J and Z(J) introduced in (57), (58) and define

K def
= {ξ = (x, z) ∈ T ∗M |x ∈ π([0, 1]), ‖z‖ = 1}.

Then choose β > 0 small enough such that

min
ξ∈Kβ(Z(J))

|detA(ξ)| > 0.
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Introduce the following constants:

ρ1 = min{‖ϕ(ξ)‖, ξ ∈ K/Kβ(Z(J))}(> 0) ,

D1 = sup
ξ∈J

1≤i,j,k≤m
(1, ‖ϕ(ξ)‖, ‖ϕi,j(ξ)‖, ‖ϕi,j,k(ξ)‖, ‖A(ξ)‖, ‖DA(ξ)‖) ,

D2
def
= sup

J
⋂
Kβ(Z(J))

(‖A−1(ξ)‖, ‖DA−1(ξ)‖), D def
= sup(D1, D2), ρ̄

def
= inf

(
ρ1√
m
,

1
24mD

)
·

A direct computation shows that, for every u ∈ H and z ∈ T ∗
E(u)M , we have

〈z,G(u)z〉 =
m∑
i=1

‖Ri‖2
Hr,1 , (62)

where, for each i = 1, · · · ,m, Ri is the Hr,1- representation of ϕi ∈ L2([0, 1], IR), i.e. we have

for i = 1, · · · ,m, ∀v ∈ Hr,1, 〈Ri, v〉 =
∫ 1

0

ϕi(s)v(s)ds.

For i = 1, · · · ,m, we get that (−1)rR(2r)
i = ϕi with the boundary conditions

R
(j+r)
i (0) = R

(j)
i (1) = 0, j = 0, · · · , r − 1.

Let R = (R1, · · · , Rm). We rewrite (62) as

〈z,G(u)z〉 = ‖R‖2
H = ‖R(r)‖2

L2(0,1). (63)

Following the strategy of the proof of Theorem 3, the proof of Theorem 4 reduces to establish (28) which, by
using (63), can be written

(∃C > 0)(∀u ∈ H)(∀z ∈ T ∗
E(u))((E(u), z) ∈ K ⇒ ‖u(r)‖L2(0,1)‖R(r)‖L2(0,1) ≥ C). (64)

Let u ∈ H and z ∈ T ∗
E(u)M with (E(u), z) ∈ K. If ξ is the trajectory of u associated to T ∗Σ, then ξ(1) =

(γu(1), z) ∈ ◦
J . Therefore, there exists a maximal subinterval [t0, 1] of [0, 1] such that

(i) t0 < 1, (ii) ξ([t0, 1]) ⊂ ◦
J, (iii) ξ(t0) ∈ ∂J. �

Furthermore, we have

Lemma 5. There exists a subinterval [t1, 1] of [t0, 1], such that

(P1) ξ((t1, 1]) ⊂ ◦
J, and (P2) ∀t ∈ (t1, 1], U(t) <

1
6
·

Moreover, we have either

(P3) ‖ϕ(1)‖ < ρ

2
, ∀t ∈ (t1, 1] ‖ϕ(t)‖ < ρ, and equality holds at t = t1 for one (Pi), i = 1, 2, 3,

or
(P4) ‖ϕ(1)‖ ≥ ρ

2
, ∀t ∈ (t1, 1], ‖ϕ(t)‖ > ρ

4
, and equality holds at t = t1for one (Pi), i = 1, 2, 4.
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Remark 4. Equality in (P1) says that ξ(t1) ∈ ∂J .

Proof of Lemma 5. Let t2 be such that U(t2) = 1
6 and U(t) < 1

6 on (t2, 1] (if U(0) < 1
6 , we take t2

def
= 0). If

‖ϕ(1)‖ < ρ/2, let t4 be such that ‖ϕ(t4)‖ = ρ and ∀t ∈ (t4, 1], ‖ϕ(t)‖ < ρ (if ∀t ∈ [t0, 1], ‖ϕ(t)‖ < ρ, t4
def
= t0).

Set t1
def
= max(t2, t4, t0).

Assume now that ‖ϕ(1)‖ ≥ ρ/2. Let t3 be such that ‖ϕ(t3)‖ = ρ/4 and ‖ϕ(t)‖ > ρ/4 on (t3, 1] (if ‖ϕ(t)‖ > ρ/4

on [t0, 1], t3
def
= t0). Set t1

def
= max(t2, t3, t0). The statement of Lemma 5 follows. �

We call the time t1 obtained in Lemma 5, the “first exit time” for the trajectory ξ corresponding to the pair
(u, z) so that (E(u), z) ∈ K. We prove the following lemma.

Lemma 6. There exist ρ ∈ (0, ρ̄], ρ = ρ(α, ρ̄,D) and C = C(ρ, α, J), such that for every u ∈ H and z ∈ T ∗
E(u)M

so that (E(u), z) ∈ K, if t1 ∈ [0, 1) is the “first exit time” corresponding to (u, z), then

‖u‖L2([t1,1])‖ϕ‖L2([t1,1]) ≥ C. (65)

Proof of Lemma 6. We have to consider several cases.

• Case 1. (P3) holds.

1.a. Equality in (P1): The conclusion of the theorem follows since this subcase is treated Case 2 in the proof
of Theorem 3.

1.b. Equality in (P2): In this case, there is an index i1 ∈ (1, · · · ,m), such that

|Ui1(t1)| =
1
6
· (66)

By (P3), A(t) is invertible for every t ∈ [t1, 1]. Hence,

Ui1(t1) =
∫ t1

1

ui1(s)ds =
∫ t1

1

(A−1ϕ′)i1 (s)ds =
∫ t1

1

m∑
j=1

bi1j(s)ϕ
′
j(s)ds (67)

=
m∑
j=1

⎛⎝bi1j(s)ϕj(s)|t11 −
∫ t1

1

m∑
j,k=1

bi1jk(s)uk(s)ϕj(s)ds

⎞⎠ . (68)

Here, the bi1jk denote some components of DA−1. Therefore, by (66) and (68), we have

1
6
≤ 2mDρ+D

m∑
j,k=1

∫ 1

t1

|uk(s)ϕj(s)|ds,

and, with ρ ≤ 1
24mD , we have

∫ 1

t1
|uk(s)ϕj(s)|ds ≥ 1

12m2D , for some j, k ∈ (1, · · · ,m). Hence, (65) follows.

1.c.: Equality in (P3): There exist t∗ < t∗ ∈ [t1, 1], such that

‖ϕ(t∗) − ϕ(t∗)‖ ≥ ρ

4
and ∀t ∈ [t∗, t∗], ‖ϕ(t)‖ ≥ ρ

4
· (69)
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Therefore, using Cauchy-Schwarz inequality, we obtain

‖ϕ‖L2(t∗,t∗)‖u‖L2(t∗,t∗) ≥ ρ

4
(t∗ − t∗)1/2‖u‖L2(t∗,t∗)

≥ ρ

4D

∥∥∥∥∥
∫ t∗

t∗
A(t)u(t)dt

∥∥∥∥∥ =
ρ

4D
‖ϕ(t∗) − ϕ(t∗)‖ ≥ ρ2

16D
,

and (65) follows.

• Case 2. (P4) holds.
2.a. Equality in (P1): the conclusion of the theorem follows from Theorem 4 of [31].
2.b. Equality in (P2): by (P4), there exist a time t′1 > t1 and an index i1 in 1, · · · ,m, such that

1
12

≤ |Ui1(t)| ≤
1
6

for t ∈ [t1, t′1] and |Ui1(t′1)| =
1
12

· (70)

Therefore, using (P4) and Cauchy-Schwarz inequality in equation (70), we have

‖ϕ‖L2(t1,t′1)‖u‖L2(t1,t′1) ≥ ρ

4
(t′1 − t1)1/2‖u‖L2(t1,t′1)

≥ ρ

4
|
∫ t′1

t1

ui1(s)ds| ≥
ρ

4
|Ui1(t1) − Ui1(t

′
1)| ≥

ρ

48
,

which implies (65).
2.c. Equality in (P4): this case reduces to 1.c. Indeed, equation (69) still holds. �

Taking into account Lemma 6, the proof of Theorem 4 reduces to show the next lemma.

Lemma 7. There exists C > 0 such that for every u ∈ H and z ∈ T ∗
E(u)M so that (E(u), z) ∈ K, if t1 ∈ [0, 1)

is the “first exit time” corresponding to (u, z), then we have

‖u(r)‖L2([t1,1])‖R(r)‖L2([t1,1]) ≥ C‖u‖L2([t1,1])‖ϕ‖L2([t1,1]). (71)

Proof of Lemma 7. We need two lemmas given next. �

Lemma 8 (cf. Adams [1]). Let f = (f1, · · · , fp) : [a, b] → IRp, where p is a positive integer, and each fi has an

absolutely continuous first derivative; let l
def
= b− a > 0 and

Mj
def
=

(
p∑
i=1

‖f (j)
i ‖2

L2([a,b])

)1/2

,

for j = 0, 1, 2. Then there exists a universal constant C > 0 such that
(L2i) if M0 ≤ l2M2, then M2

1 ≤M0M2;
(L2ii) if M0 > l2M2, then M1 ≤ CM0

l .

Lemma 9. Let f : [a, b] → IR be an absolutely continuous function such that f(b) = 0 and supt∈[a,b]

∣∣∣∫ tb f(s)ds
∣∣∣ ≤

1
6 . Then ∫ b

a

f4(s)ds ≤
∫ b

a

f ′(s)2ds.
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Proof of Lemma 9. Define I(t) =
∫ t
a
f(s)ds. Then,

∀t ∈ [a, b], |I(t)| ≤ 1/3. (72)

Therefore, integrating by parts and using (72), we get∫ b

a

f4(s)ds = I(s)f3(s)|s=bs=a − 3
∫ b

a

I(s)f2(s)f ′(s)ds ≤
∫ b

a

f2(s)|f ′(s)|ds.

Then, we conclude using Cauchy-Schwarz inequality. �

We will also need some obvious facts: if q is a positive integer, then

∀v ∈ Hq,1, ∀t ∈ [0, 1], v(t) =
∫ t

1

(t− s)q−1

(q − 1)!
v(q)(s)ds, (73)

‖v‖L2(t,1) ≤ Cq(1 − t)q‖v(q)‖L2([t,1]), (74)

with Cq = 1√
2q(2q−1)(q−1)!

≤ 1√
2
. In particular, for u ∈ H and l

def
= 1 − t1, we have

‖u‖L2([t1,1]) ≤ Crl
r‖u(r)‖L2([t1,1]). (75)

Therefore, for r ≥ 2, every u ∈ H satisfies (L2i).

From now on, we fix u ∈ H and z ∈ T ∗
E(u)M so that (E(u), z) ∈ K. Let l

def
= 1 − t1(> 0), where t1 is defined

in Lemma 5. Recall that (65) holds. In order to prove (71), several cases are to be considered:

Case 1. (P3) holds.
1.a. (L2ii) holds for R(2r).
1.b. (L2ii) holds for R(r+j0), with j0 < r.
1.c. (L2ii) does not hold for any R(r+j), where j ∈ {0, · · · , r}.

Case 2. (P4) holds.

We show in Case 1a, that actually (L2ii) holds for every R(r+j), where j ∈ {0, · · · , r}. In Case 1b, we choose
the largest j0 < r for which (L2ii) holds and then show that (L2ii) holds for every j ≤ j0.

Proof of Case 1. It is clear that A(t) is invertible on [t1, 1]. Using (54), we have

∀t ∈ [t1, 1], u(t) = A−1(t)ϕ′(t). (76)

From (54) and (76), we get

1
CK

‖u‖L2([t1,1]) ≤ ‖ϕ′‖L2([t1,1]) ≤ CK‖u‖L2([t1,1]). (77)

In addition, for i = 1, · · · ,m, and t ∈ [t1, 1], we have

ϕ′′(t) = A(t)u′(t) + A′(t)u(t) .

Since ϕ′
i,j(t) =

∑m
k=1 ϕi,j,k(t)uk(t), we have

‖ϕ′′(t)‖ ≤ CK(‖u′(t)‖ + |uTu(t)|),
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where CK is a constant depending on K. By Lemma 9, we obtain

‖ϕ′′‖L2([t1,1]) ≤ CK‖u′‖L2([t1,1]). (78)

We now apply lemma 8 successively to f := R(r), · · · , f := R(2r) = (−1)rϕ.

Case 1.a. We have

‖R(2r+1)‖L2([t1,1]) = ‖ϕ′‖L2([t1,1]) ≤ CK
‖R(2r)‖L2([t1,1])

l
= CK

‖ϕ‖L2([t1,1])

l
· (79)

Using (77), we obtain

‖u‖L2([t1,1]) ≤ CK
‖ϕ‖L2([t1,1])

l
· (80)

We need the following lemma, whose proof is postponed to the end of the section. �

Lemma 10. Assume that there exists j0 ≤ r, such that

‖R(r+j0+1)‖L2([t1,1]) ≤ CK
‖R(r+j0)‖L2([t1,1])

l
·

Then, for 0 ≤ j ≤ j0, we have

‖R(r+j+1)‖L2([t1,1]) ≤ CK
‖R(r+j)‖L2([t1,1])

l
· (81)

From Lemma 10 applied to j0 = r, we obtain

‖ϕ‖L2([t1,1]) ≤ CK
‖R(r)‖L2([t1,1])

lr
· (82)

Multiplying (82) and (75), we obtain the estimate (71).

Case 1.b. From Lemma 10, we have

‖R(r+j0+1)‖L2([t1,1]) ≤ CK
‖R(r)‖L2([t1,1])

lj0+1
· (83)

If j0 = r − 1, then (82) and (75) hold. Hence, we get the estimate (71). If j0 < r − 1, we apply lemma 8
successively to f := R(r+j0+l), for l = 1, · · · , r − j0. For j ≤ j0, we are in the case (L2i) and then, we get for
l = 1, · · · , r − j0 that

‖R(r+j0+l+1)‖2
L2([t1,1])

≤ C‖R(r+j0+l)‖L2([t1,1])‖R(r+j0+l+2)‖L2([t1,1]). (84)

Thanks to (77) and (78), we can write (84) for l = r − j0 as

‖u‖2
L2([t1,1])

≤ CK‖ϕ‖L2([t1,1])‖u′‖L2([t1,1]). (85)

We elevate (84) to the power l, for l = 1, · · · , r− j0 − 1, and (85) to the power r− j0 − 1. We multiply together
all the inequalities previously obtained and get

‖u‖r−j0−1
L2([t1,1])

‖ϕ‖L2([t1,1]) ≤ CK‖R(r+j0+l)‖L2([t1,1])‖u′‖(r−j0−1)
L2([t1,1])

. (86)
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On the other hand, we apply Lemma 8 to successively f := ul for l = 0, · · · , r − j0 − 3. Since Cq < 1 for q ≥ 1,
we are in the case (L2i). Therefore, we have, for l = 0, · · · , r− j0− 3, after elevating to the power r− j0 − 2− l,

‖ul+1‖2(r−j0−2−l)
L2([t1,1])

≤ C‖ul‖r−j0−2−l
L2([t1,1])

‖ul+2‖r−j0−2−l
L2([t1,1])

. (87)

Multiplying the previous inequalities, we obtain

‖u′‖(r−j0−1)
L2([t1,1])

≤ C‖u‖r−j0−2
L2([t1,1])

‖u(r−j0−1)‖L2([t1,1]). (88)

Multiplying (86) and (88), we end up with

‖ϕ‖L2([t1,1])‖u‖L2([t1,1]) ≤ CK‖R(r+j0+1)‖L2([t1,1])‖u(r−j0−1)‖L2([t1,1]). (89)

Using (74) (for v := u(r−j0−1) and q := j0 + 1), (83) and (89), we obtain the estimate (71).

Case 1.c. For every j = 0, · · · , r, (L2i) holds. This case reduces to case 1.b. with j0 = −1.

Proof of Case 2. Using the following inequality:

‖U‖L2([t1,1]) ≤ µ
√
ml =

4µ
ρ

ρ

4

√
ml ≤ 4µ

√
m

ρ
‖ϕ‖L2([t1,1]), (90)

and applying lemma 8 to U , we obtain (note that U ∈ Hr+1,m)

‖u‖2
L2([t1,1])

≤ C‖U‖L2([t1,1])‖u′‖L2([t1,1]). (91)

Then, thanks to (90), we obtain ‖u‖2
L2([t1,1])

≤ CK‖ϕ‖L2([t1,1])‖u′‖L2([t1,1]) and we are back to case 1.b. The
proof of Lemma 7 is complete. �
Proof of Lemma 10. The proof goes by “backward” induction on j. For j = j0, (81) holds. Suppose the
conclusion is true for some 1 ≤ j ≤ j0. Apply Lemma 8 to f := R(r+j−1). If (L2ii) holds we are done, otherwise

‖R(r+j)‖2
L2([t1,1])

≤ C‖R(r+j−1)‖L2([t1,1])‖R(r+j+1)‖L2([t1,1]).

By the induction hypothesis, we obtain

‖R(r+j)‖2
L2([t1,1])

≤ C‖R(r+j−1)‖L2([t1,1])CK
‖R(r+j)‖L2([t1,1])

l
,

which implies

‖R(r+j)‖L2([t1,1]) ≤ CK
‖R(r+j−1)‖L2([t1,1])

l
·

Lemma 10 is proved. �

4. Conclusion

In this paper, we have presented in details how the well-known continuation method applies to the motion-
planning problem for a nonlinear control-affine system without drift on a smooth, finite-dimensional Riemannian
manifold. In the context of nonlinear geometric control, that idea goes back to Sussmann (cf. [32]). The
continuation method comes down to the study of the so-called “PLE”, which is an ordinary differential equation
in the space of controls. More precisely, there are two technical obstacles associated with the continuation
method: (i) avoidance of the singular set on which the differential of the end-point mapping looses surjectivity
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(and on which the PLE is not defined); (ii) possible explosions in finite time of solutions of the PLE. The results
obtained in the present paper can be divided in two sets. In the first one, general facts regarding the PLE are
established: (1−a) if the PLE admits a global solution in a control space, then there exists a finite-dimensional
space where the corresponding PLE also admits a global solution; (1 − b) the maximal solution of the PLE is
as regular as its initial condition. The second set of results concern control-affine system without drift verifying
the Strong Bracket Generating Condition. For such control systems, Sussmann proved an existence theorem
for the global solution of the PLE in the space of controls with finite L2-norm (cf.[31]). We have extended that
result to other spaces of controls, which are more regular.

5. Appendix

5.1. Property (Cl)k
A map u : [0, 1] → IR is piecewise-constant if there exist an integer p ≥ 1 and t1 < · · · < tp in [0, 1] such that u

is constant on the intervals [0, t1),· · · , (tp−1, tp), (tp, 1]. We use Ustep to denote the set of all piecewise-constant
maps on [0, 1]. For every set F ∈ IR, we use UFstep to denote the set of the piecewise-constant maps on [0, 1]
taking values in F . We use ∆p to denote the set of p-tuples (t1, · · · , tp) such that ti ≥ 0 for i = 1, · · · , p and
t1 + · · ·+ tp ≤ 1. For the real numbers ω1, · · · , ωp+1 and (t1, · · · , tp) ∈ ∆p, we associate the piecewise-constant
map on [0, 1]

[ω1, t1] ∗ · · · ∗ [ωp, tp] ∗ ωp+1,

equal to ω1 on [0, t1), ω1 on [t1, t1 + t2), · · · , ωp on [t1 + · · · + tp−1, t1 + · · · + tp) and ωp+1 on [t1 + · · · + tp, 1).

Definition 2 (cf. Def. 4.5 of Grasse and Sussmann [12]). Let W be a specified nonempty subset of Ustep. An
admissible sequence of approximation operators (Pj) for W is a sequence of maps Pj : Ustep → W (j ∈ IN) such
that:

(i) for every finite subset F of real numbers there exists a compact set Ω of real numbers such that F ⊂ Ω
and, for every j ∈ IN,

Pj(UFstep) ⊂ W ∩ UΩ
step;

(ii) for every j, p ∈ IN and for every real numbers ω1, · · · , ωp+1, the map

(t1, · · · , tp) → Pj([ω1, t1] ∗ · · · ∗ [ωp, tp] ∗ ωp+1)

from ∆p to W is continuous in the topology of convergence in measure on [0, 1];
(iii) for p ∈ IN, for every real numbers ω1, · · · , ωp+1 and for every (t1, · · · , tp) ∈ ∆p, we have

lim
j→∞

Pj([ω1, t1] ∗ · · · ∗ [ωp, tp] ∗ ωp+1) = [ω1, t1] ∗ · · · ∗ [ωp, tp] ∗ ωp+1,

and the convergence is locally uniform in (t1, · · · , tp).
Definition 3. For k ≥ 0, a closed linear subspace H of Hk([0, 1], IR) has the (Cl)k property if either k = 0 and
H = L2([0, 1]) or k ≥ 1 and there exists an admissible sequence of approximation operators (Pj) for H.

We have

Proposition 5. For r ≥ 1, Hr,1 verifies Property (Cl)r.

Proof of Proposition 5. For r = 0, Ustep ⊂ L2([0, 1]). Then it is enough to take the Pj ’s to be the inclusion
operators. We now assume that r ≥ 1. For ρ > 0, let λρ : IR → IR be a mollifier i.e. λρ is a smooth function
such that λρ(t) > 0 for t ∈ [−ρ, ρ], λρ(t) = 0 for t ∈ IR \ [−ρ, ρ] and

∫∞
−∞ λρ(t)dt = 1. For ρ > 0 and u ∈ Ustep,

let uρ be the function defined on [0, 1] by

uρ(t) =
(1 − t)r

(1 − t)r + ρ

∫ ρ

−ρ
u(t− s)λρ(s)ds,
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where u is taken to be 0 outside [0, 1]. Since u is bounded, uρ tends to u in L2-norm as a consequence of
Fubini theorem and the dominated convergence theorem. Therefore, by choosing a decreasing sequence (ρj)j∈IN

of positive numbers that tends to 0, we get an admissible sequence of approximation operators (Pj) for Hr,1,
where each (Pj) associates to an element u ∈ Ustep the input uρj ∈ Hr,1. �

5.2. Proof of equation (20)

We want to establish that there exists an open bounded subset UK of M containing K such that, for every
smooth vector field B ∈ V∞(M), there exist r smooth real-valued functions v1,B ,· · · ,vr,B defined on UK for
which (20) holds for every x ∈ UK .

We fix an open bounded subset UK of M containing K such that, for every x ∈ UK , (19) holds. Then, since
UK is compact, we can find a finite number of bounded open subsets (Uj)j∈J ofM and charts ((xj), Dom(xj))j∈J
such that for j ∈ J , Uj ⊂ Dom(xj), and for every x ∈ Uj , (19) holds. For j ∈ J and x ∈ Uj , we can consider
F (j)(x), the n× r matrix whose columns are the f(x)’s, � = 1, · · · , r, written using the chart ((xj), Dom(xj)).
Since rank F (j)(x) = n, we can define a pseudo-inverse PF (j)(x) of F (j)(x) as

PF (j)(x) = F (j)(x)T (F (j)(x)F (j)(x)T )−1.

In particular, we have F (j)(x)PF (j) (x) = ITxM . Then, for B ∈ V∞(M) and x ∈ Uj , we express B(x) using the
chart xj and obtain

B(x) = F (j)(x)PF (j) (x)B(x) =
r∑
=1

v
(j)
,B(x)f(x), (92)

where the r real-valued functions v(j)
1,B,· · · ,v(j)

r,B are smooth on Uj. We will denote the previous expressionB(j)(x).
We now multiply B by a smooth function ψ(j) compactly supported in Dom(xj), such that 0 ≤ ψ(j) ≤ 1 and
ψ(j) ≡ 1 near Uj . Then, for x ∈ UK , the vector field B̃ is defined by

B̃(x) =
∑
j∈J

f (j)(x)ψ(j)(x)B(j)(x), (93)

where (f (j))j∈J is a partition of unity subordinate to the open covering of UK , (Uj)j∈J . It is clear that B̃
and B coincide on UK and, by rearranging (93), we have that for x ∈ UK , B(x) =

∑r
=1 v,B(x)f(x), where

v,B(x) =
∑
j∈J f

(j)(x)ψ(j)(x)v(j)
,B(x), � = 1, · · · , r.

5.3. Existence of h in the proof of Proposition 3

Let π : [0, 1] →M be a C1 curve. Consider K = π([0, 1]) and V a bounded open set of M containing K. We
show the existence of a time-varying vector field {h(s, ·)}s∈[0,1] such that

(i) h is continuous on [0, 1]×M and h(s, ·) is smooth for every s ∈ [0, 1];
(ii) for every x ∈M/V , h(·, x) : [0, 1] → TxM is identically equal to 0;
(iii) ∀s in [0, 1], h(s, π(s)) = dπ

ds (s) and ∃C > 0, ∀x in M , ‖h(s, x)‖ ≤ ‖dπ
ds (s)‖ and ‖Dxh(s, x)‖ ≤ C.

Since [0, 1] is compact, we can find a finite number of relatively open subintervals of [0, 1], (Ij)j∈J and charts
((xj), Dom(xj))j∈J such that for j ∈ J , π(Ij) ⊂ Dom(xj). Then, for j ∈ J s ∈ Ij and x ∈ Dom(xj),
define hj(s, x) as the constant vector field with value dπ

ds . We now multiply hj by a smooth function ψj
compactly supported in Dom(xj) such that 0 ≤ ψj ≤ 1 and ψj ≡ 1 near π(Ij). Then, h(s, x) is taken as∑

j∈J fj(x)ψj(x)hj(s, x), where (fj)j∈J is a partition of unity subordinate to the open covering of [0, 1], (Ij)j∈J .
Furthermore, there exists a bounded open subset of M such that, for every s ∈ [0, 1], h(s, ·) is identically equal
to 0. It is then clear that conditions (i) to (iii) hold.
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5.4. Existence of the function ψ used for the MPPO

Let C be a closed subset of the complete Riemannian manifold (M, 〈·, ·〉). Let us first assume that there
exists a smooth function ψ : M → IR such that ψ ≡ 0 on C, 0 < ψ(x) ≤ inf(1, d(x,C)) on M \ C and
supx∈M

∑3
j=1 ‖Djψ(x)‖ is finite. We use d̄ to denote the distance function on M \C induced by the metric 〈·,·〉

ψ2 .
Suppose that it is not the case. Therefore, there exists a geodesic x : [0, t0) → M \ C such that t0 is finite and
x(t) tends to some point p ∈ C as t goes to t0. Let us assume that, in addition, the arc x is parameterized by arc-

length. If J(t)
def
=
∫ t0
t

√〈ẋ(s), ẋ(s)〉ds for t ∈ [0, t0), then J̇(t) = −〈ẋ(t), ẋ(t)〉 and ψ(x(t)) ≤ d(p, x(t)) ≤ J(t).
For t ∈ [0, t0), we have

t0 ≥ t =
∫ t

0

√〈ẋ(s), ẋ(s)〉
ψ(x(s))

ds ≥
∫ t

0

−J̇(s)
J(s)

ds = ln
J(0)
J(t)

·

Since limt→t−0
J(t) = 0, we get t0 = +∞, which is a contradiction. Then (M \ C, 〈·,·〉ψ2 ) is complete.

To construct the required function ψ, consider an increasing sequence (Ki)i≥0 of compact subsets of M such
that C = ∪i≥0Ki. For every i ≥ 0, we can construct a smooth function ψi : M → IR such that ψi ≡ 0 on Ki

and 0 < ψi(x) ≤ inf(1, d(x,Ki)) for x ∈M \Ki. Let Mi
def
= supx∈M 1 +

∑j=3
j=1 ‖Djψi(x)‖. We then define ψ as∑

i≥0
1

2iMi
ψi.
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[4] L. Cesari, Functional analysis and Galerkin’s method. Mich. Math. J. 11 (1964) 385–418.
[5] A. Chelouah and Y. Chitour, On the controllability and trajectories generation of rolling surfaces. Forum Math. 15 (2003)

727–758.
[6] Y. Chitour, Applied and theoretical aspects of the controllability of nonholonomic systems. Ph.D. thesis, Rutgers University

(1996).
[7] Y. Chitour, Path planning on compact Lie groups using a continuation method. Syst. Control Lett. 47 (2002) 383–391.
[8] Y. Chitour and H.J. Sussmann, Line-integral estimates and motion planning using a continuation method. Essays on Math.

Robotics, J. Baillieul, S.S. Sastry and H.J. Sussmann Eds., IMA. Math. Appl. 104 (1998) 91–125.
[9] S.N. Chow and J.K. Hale, Methods of Bifurcation Theory. Springer, New York 251 (1982).

[10] A. Divelbiss and J.T. Wen, A Path Space Approach to Nonholonomic Motion Planning in the Presence of Obstacles. IEEE
Trans. Robotics Automation 13 (1997) 443–451.

[11] Ge Zhong, Horizontal Path Spaces and Carnot-Carathéodory Metrics. Pacific J. Math. 161 (1993) 255–286.
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